
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 2022

Toward Feature-Preserving Vector Field Compression Toward Feature-Preserving Vector Field Compression

Xin Liang
Missouri University of Science and Technology, xliang@mst.edu

Sheng Di

Franck Cappello

Mukund Raj

et. al. For a complete list of authors, see https://scholarsmine.mst.edu/comsci_facwork/1245

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
X. Liang et al., "Toward Feature-Preserving Vector Field Compression," IEEE Transactions on Visualization
and Computer Graphics, Institute of Electrical and Electronics Engineers, Jan 2022.
The definitive version is available at https://doi.org/10.1109/TVCG.2022.3214821

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/1245
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1245&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TVCG.2022.3214821
mailto:scholarsmine@mst.edu

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Toward Feature-Preserving Vector Field
Compression

Xin Liang, Member, IEEE, Sheng Di, Senior Member, IEEE, Franck Cappello, Fellow, IEEE,
Mukund Raj, Member, IEEE, Chunhui Liu, Kenji Ono, Zizhong Chen, Senior Member, IEEE,

Tom Peterka, Member, IEEE, and Hanqi Guo, Member, IEEE

Abstract—The objective of this work is to develop error-bounded lossy compression methods to preserve topological features in 2D and
3D vector fields. Specifically, we explore the preservation of critical points in piecewise linear and bilinear vector fields. We define the
preservation of critical points as, without any false positive, false negative, or false type in the decompressed data, (1) keeping each
critical point in its original cell and (2) retaining the type of each critical point (e.g., saddle and attracting node). The key to our method is
to adapt a vertex-wise error bound for each grid point and to compress input data together with the error bound field using a modified
lossy compressor. Our compression algorithm can be also embarrassingly parallelized for large data handling and in situ processing. We
benchmark our method by comparing it with existing lossy compressors in terms of false positive/negative/type rates, compression ratio,
and various vector field visualizations with several scientific applications.

Index Terms—lossy compression, critical points, vector field visualization.

F

1 INTRODUCTION

LOSSY compression of floating-point data has become a
promising technique for data reduction, as the disparity

between data generation rate and available I/O bandwidth continues
to grow in today’s and future supercomputers. Data generated from
large-scale ocean, atmosphere, and fluid dynamics simulations can
be compressed in situ, and then the decompressed data can be used
both in situ and post hoc for data analysis and visualization. In
order to preserve insights in the compressed data, error-bounded
lossy compressors such as SZ [1], ZFP [2], TTHRESH [3], and
FPZIP [4], as opposed to traditional JPEG [5] image compressors,
are used to strictly guarantee the desired accuracy while acceptable
compression ratio is achieved.

The motivation of this study is to preserve the accuracy of
features extracted in error-bounded lossy compressed data. We ex-
amine critical points in 2D and 3D vector fields as an example of a
feature. Critical points—locations where the vector field vanishes—
are important because they are the key constituents of vector
field topology and thus essentially determine the characteristics

• X. Liang is with the Department of Computer Science, Missouri University
of Science and Technology, Rolla, MO, 65409.
E-mail: xliang@mst.edu

• S. Di, F. Cappello, and T. Peterka are with the Mathematics and Computer
Science Division, Argonne National Laboratory, Lemont, IL, 60439.
E-mail: sdi1@anl.gov, {cappello, tpeterka}@mcs.anl.gov.

• M. Raj is with the Stanley Center for Psychiatric Research, Broad Institute
of MIT and Harvard, Cambridge, MA 02142, USA.
E-mail: mraj@broadinstitute.org

• C. Liu is with the Department of Mathematics, Kyoto University, Kyoto,
Japan.
E-mail: chunhui.liu@math.kyoto-u.ac.jp

• K. Ono is with the Department of Informatics, Kyushu University, Fukuoka,
Japan.
E-mail: keno@cc.kyushu-u.ac.jp

• Z. Chen is with the Department of Computer Science and Engineering,
University of California, Riverside, Riverside, CA 92521.
E-mail: chen@cs.ucr.edu

• H. Guo is with the Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH, 43210.
E-mail: guo.2154@osu.edu

of flow visualizations based on geometry [6], texture [7], and
topology [8], [9]. The extraction of critical points leads to both
locations and types (e.g., sources, sinks, and saddles), and both
properties must be preserved in order to deliver authentic insights
into the decompressed data.

With today’s lossy compressors, failure to preserve critical
points can result in false positives (FPs), false negatives (FNs), and
false types (FTs). A false positive happens if a critical point is
localized in the decompressed data but such a point does not exist
in the same vicinity of the original data. A false negative means
that a critical point is missed in the decompressed data. A false type
occurs when the critical point type does not match in the original
and decompressed data. For example, an attracting critical point
may turn into a repelling one during compression/decompression.

In this work, we aim at improving error-bounded lossy
compressors to preserve critical points in piecewise linear 2D/3D
and bilinear vector fields. We define the preservation of critical
points as, without any false positive, false negative, or type change
in the decompressed data, (1) keeping each critical point in its
original cell and (2) retaining the type of each critical point.
The key to our method is to adapt a vertex-wise error bound
for each grid point and to compress input data together with the
vertex-wise error bounds using SZ [1], which is a prediction-
based lossy compressor. We develop both decoupled and coupled
compression pipelines. The decoupled approach estimates vertex-
wise error bounds for all vertices and then compresses the vector
field based on the error bounds. The coupled approach estimates
the error bound and compresses the data on the fly during the lossy
compression. The coupled method delivers higher compression
ratios but is more computationally expensive than the decoupled
method. We demonstrate that our methods outperform existing lossy
compressors in terms of FP, FN, and FT rates and compression
ratio with several scientific applications.

Existing efforts to compress 2D vector fields based on topol-
ogy [10], [11] (1) are nontrivial to generalize to 3D, (2) do not
guarantee local error bounds and may lead to large distortions, (3)

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

require undetermined iterations to converge, or (4) are difficult to
parallelize. More discussion on the differences between our method
and previous efforts is in the following section. The contributions
of this paper can be summarized as follows:

• Theoretical framework to preserve critical points in 2D/3D
piecewise linear and 2D bilinear vector fields based on the
vertex-wise error bound derivation. Note that our method
does not generalize to 3D trilinear vector fields due to the
unavailability of closed form solutions, as will be discussed
in Section 7.4.

• Two feature-preserving compressor designs that enforce
vertex-wise error bounds: a decoupled method optimized
for speed and a coupled method optimized for storage.

2 BACKGROUND

We review the related work on error-bounded lossy compression
and vector field compression and then formalize the critical point
extraction problem. Notations used in this paper are in Table 1.

2.1 Error-Bounded Lossy Compression
Data compression can be either lossless or lossy, and lossy
compression can be further categorized into non-error-bounded
lossy and error-bounded lossy methods. This study focuses on error-
bounded lossy compressors, which guarantee local error within
designated error bounds. Error-bounded lossy compressors usually
deliver higher compression ratios than the lossless compressors
such as FPC [12], while are more precise than non-error-bounded
lossy compressors such as JPEG [5]. We refer to the literature [13],
[14] for comprehensive reviews of scientific data compression;
hence we focus mainly on error-bounded lossy compressors.

Error-bounded lossy compression can be prediction- or
transformation-based. Prediction-based error-bounded compressors
include FPZIP [4] and SZ [1]. FPZIP uses a Lorenzo predictor [15]
with integer mapping on both the predicted and actual data for
avoiding underflow, followed by an arithmetic encoding on the
prediction residuals. SZ is a multialgorithm compressor with
blockwise selection on the best-fit predictor, including both Lorenzo
and regression-based predictors. Different from the arithmetic
encoding used in FPZIP, SZ performs linear quantization on
the prediction residuals and encodes the quantization integers
by customized Huffman encoding and lossless compressors such
as GZIP [16] and ZSTD [17]. An example of transformation-
based error-bounded compressors is ZFP [2]. ZFP first performs
the exponent alignment and fixed-precision points conversion and
applies a fine-tuned orthogonal/inorthogonal transformation for
each block and then encodes the coefficients for compression.

While a user-given single error bound is mandatory for all
existing error-bounded lossy compressors, the key difference of
our study is that we derive vertex-wise error bounds. Specifically,
we construct vertex-wise error bounds that adapt the numerical
tolerance in order to preserve features in the decompressed data.
Formally, the relative error between the exact value d ∈ R 6=0 and
its approximation d′ ∈ R is defined as

δ (d,d′) def
= |d−d′|/|d|. (1)

The relative error bound ∆(·) is an arbitrary value such that no
relative error exceeds the error bound.1 We generalize the notation

1. In this work, we limit relative error bounds to [0,1], and in this case, d′
and d always have the same sign.

of δ to represent the maximal relative error between the input data
d and its approximation d′ as δ (d,d′) def

= maxi δ (di,d′i), where d
and d′ are vectors of arbitrary dimensions in R and i is the linear
index of each element in d and d′. We also use the notation ∆(d)
to represent the relative error bound of each element in d, and we
use ||∆(d)|| as the maximal element of ∆(d).

Although most error-bounded compressors provide guranteed
point-wise error control on the raw data, little has been done
to generalize such error control to specific user requirements.
MGARD [18], [19], [20] offers error control on the outcome
of bounded-linear analysis, but the error analysis relied heavily
on the linear assumption thus cannot be generalized easily.
Underwood et al. [21] proposed an iterative approach to meet
certain requirements (e.g., fixed ratios) from users, but it suffered
from high computational overhead due to the iterative process
and low efficiency because of the unified error bound. To the best
of our knowledge, no existing error-bounded lossy compressors
can preserve topological information such as the critical points in
piecewise linear and bilinear vector fields.

2.2 Vector Field Compression

Vector field compression has been studied to preserve 2D topo-
logical features. Lodha et al. [11] used an iterative clustering
method [22] to simplify and compress 2D vector fields. The
iteration stops when all critical points remain identical to the
original topology and the designated local error bound is met.
Compared with that method, our method is noniterative, has fixed
time complexity, and works for both 2D and 3D vector fields in
regular and unstructured meshes. Theisel et al. [10] iteratively
collapsed edges in the 2D mesh in order to guarantee topology
preservation, but without local error control. Dey et al. [23]
proposed a Delaunay simplification for the vector field based
on error-bounded edge collapsing, but the simplification did not
explicitly preserves topological features. Koch et al. [24] presented
a segmentation-based compression approach based on region-wise
linear approximation; a simplified mesh grid can be generated
by iteratively adding new segmentations and testing topological
equivalence.

To the best of our knowledge, this study is the first attempt to
tailor error-bounded lossy compressors to preserve features in 2D
and 3D vector field data. The following are the key differences
between our method and the state of the art. First, existing error-
bounded lossy compressors are not aware of important vector
field features, whereas our method preserves critical points. By
compressing individual vector components, existing compressors
produce FP, FN, and FT critical points in the decompressed data.
Second, existing topology-based vector field compression does
not bound local error, whereas our method enforces local error
bounds. For example, the iterative edge collapsing approach [10]
does not control local error, which may lead to large distortions
in the decompressed data. Third, existing vector field compression
algorithms are challenging to generalize to 3D, whereas our
technique applies to both 2D and 3D vector fields. Because
3D vector field topology is much more complicated than 2D,
the generalization of clustering- [11], mesh simplification- [10],
[23], and segmentation- [24] based algorithms can be convoluted
and computationally expensive. Fourth, most existing vector field
compressors [10], [11], [23], [24] are iterative, whereas our
method compresses a vector field in a single pass with fixed-
time complexity. In addition, our method can be easily parallelized

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

TABLE 1
Nomenclature.

Symbol Domain Meaning
nd 2 or 3 Dimensionality of vector field
m,n, i, j,k N Integer numbers and indices
v(·), v′(·) Rnd → Rnd Input and decompressed vector fields
u(·), v(·), [w(·)] Rnd → R Components of v(·)
J(·) Rnd → Rnd×nd Jacobian of v(·)
vi = (ui,vi, [wi])

ᵀ N→ Rnd Input vector values at ith vertex
v′i = (u′i,v

′
i, [w

′
i])

ᵀ N→ Rnd Decompressed vector values at ith vertex
V j = (v(j,0),v(j,1),v(j,2), [v(j,3)]) Rnd×(nd+1) All vector values of jth piecewise linear cell
J j N→ Rnd×nd Jacobian of v in jth cell
xi = (xi,yi, [zi])

ᵀ Rnd Coordinates of ith vertex
µµµ = (µ0,µ1,µ2, [µ3])

ᵀ Rnd+1 Barycentric coordinates of critical points
(m0,m1,m2, [m3])

ᵀ Rnd+1 Auxiliary barycentric coordinates; Equations (10) and (11)
δ (·, ·′) Rn×n→ [0,1) Relative error; Equation (1)
∆(·) Rn→ [0,1)n Relative error bounds of each element
ψ(f (·); ·) or ψ(f (·)) Rn→ [0,1) Sign-preserving error function (SPEF) of scalar function f ; Equation (5)
η j [0,1) Relative error bound for all vertices associated with jth cell
ξi, ξ̂i [0,1) Relative error bound and quantized relative error bound for ith vertex; ξ̂i ≤ ξi
(λ0,λ1, [λ2])

ᵀ Cnd Eigenvalues of Jacobian matrices
Re(·), Im(·) C→ R Real and imaginary part denotation
sgn(·) R→{−1,0,1} Sign function
R+(·),R−(·) R→ R Positive and negative ramp functions; R+(·) = max(0, ·) and R−(·) = min(0, ·)

and thus can (de)compress data for high-performance data storage,
analysis, and visualization.

2.3 Critical Point Extraction

A critical point is defined as the location where the vector field
vanishes. Formally, let nd be the dimensionality of the data and the
vector field be v : Rnd → Rnd ; the vector value v at a critical point
xc ∈ Rnd must be 0. In this study, we focus on non-degenerate
(or first-order) critical points, where the determinant of the vector
gradient tensor (Jacobian) of the vector field |Jv(xc)| 6= 0. The
vector field v is defined on a simplicial (triangular or tetrahedral)
mesh; the interpolation scheme for each cell is piecewise linear or
bilinear. Without loss of generality, we use 2D cases for illustration
and derivation; the same techniques apply to 3D unless otherwise
noted. Figure 1 depicts an example of a critical point in 2D
simplicial and square cells.

(a) (b)

Fig. 1. Critical point in (a) a linearly-interpolated triangular cell and (b) a
bilinearly interpolated rectangular cell.

Critical points in piecewise linear vector fields. The extrac-
tion of critical points involves finding zero points in each linearly
interpolated cell:

V ·µµµ =

[
u0 u1 u2
v0 v1 v2

]µ0
µ1
µ2

= 0 and µ0 +µ1 +µ2 = 1, (2)

where µµµ is defined as the (normalized) barycentric coordinates of
the critical point and V is a 2×3 matrix consisting of all vector

values for the vertices. If the condition 0 ≤ µk ≤ 1 holds for all
k ∈ {0,1,2}, the critical point resides inside of the cell; otherwise
the cell contains no critical point.

Critical points in piecewise bilinear vector fields may be
extracted in an exact analytical manner. Bilinear interpolation gives
a smooth representation of vector fields within the cells; each
cell contains four vector values, as illustrated in Figure 1(b). The
bilinear interpolation of the vector components u and v is u(x,y) =
(1−x)(1−y)u0+x(1−y)u1+xyu2+(1−x)yu3 and v(x,y) = (1−
x)(1−y)v0+x(1−y)v1+xyv2+(1−x)yv3, which then boils down
into the following form

u(x,y) = Auxy+Bux+Cuy+Du,

v(x,y) = Avxy+Bvx+Cvy+Dv, (3)

where x and y are 2D coordinates; coefficients Au,Bu, · · · ,Dv, which
are constants for each cell, are functions of vector values on the
corners (v0,v1,v2, and v3). With each cell, a critical point (x,y)
inside the quadrilateral exist if u(x,y) = v(x,y) = 0. The equation
u(x,y) = v(x,y) = 0 can be reformulated as[

Bu Du
Bv Dv

][
x
1

]
=−y

[
Au Cu
Av Cv

][
x
1

]
, (4)

which is a generalized eigenvalue problem2. The equation has
up to two roots that can be derived in closed form3; after that, a
point-in-quadrilateral test further confirms if the critical point is
inside the cell.

Type of critical points. Critical points can be categorized into
various types based on the signs of eigenvalues of the Jacobian
Jv(xc) [25], [26]. In general, negative and positive eigenvalues

2. In general, generalized eigenvalue problems are defined in the form of
Ax = λBx, where A and B are given n× n matrices; λ and x, respectively,
represent the eigenvalue and eigenvector. Assume that B is nonsingular, the
problem may be converted into a classical eigenvalue problem B−1Ax = λx.

3. Note that 2 × 2 eigenvalue problems have closed-form solutions.
Specific to Eq.(4), for simplicity, we use Q to denote the product

−
[

Au Cu
Av Cv

]−1[Bu Du
Bv Dv

]
in this paper, assuming the left matrix is nonsingular.

In case the left matrix is singular, we use lossless compression in the
corresponding cell, as further discussed in the rest of this paper.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

indicate attracting and repelling, respectively; eigenvalues with
imaginary parts imply circulation behavior. In 2D piecewise linear
fields, the critical point can be determined analytically based on J,
because the characteristic polynomial |λ I−J|= λ 2− tr(J)λ + |J|
is quadratic and thus has a closed-form solution, where I is the
identity matrix and tr(·) is the trace of a matrix. In 3D piecewise
linear and bilinear fields, the characteristic polynomial can be
determined in closed form as well.

3 OVERVIEW

In this work, we propose a novel approach to compress data while
preserving critical points in piecewise linear and bilinear vector
fields. Our key idea is to adapt a vertex-wise error bound for
each grid point based on how critical points are extracted, and to
compress data with the adapted error bounds using a modified error-
bounded lossy compressor. This enables feature preservation with
local error control, thus is fundamentally different from existing
error-bounded lossy compressors which are feature-agnostic and
provide only a uniform global error bound over all points.

We structure the rest of the paper as follows to present
the proposed approach. In Section 4, we first formulate the
research problem, where we define the requirements for feature
preservation in piecewise linear and bilinear vector fields and
rigorously derive the generic formulas of sufficient error bounds
to meet such requirements. These mathematical formulations lay a
solid theorectical foundation for the proposed methods. We then
present the decoupled and coupled feature-perserving compression
schemes in Section 5, along with how the actual error bounds are
computed in these schemes for different vector fields based on the
derived formulas. As a comparison, the decoupled scheme features
lower computational cost and lighter dependancy across vertices
compared with the coupled scheme, while the coupled scheme
delivers higher compression ratios under the same requirements
with higher overhead. After that, we demonstrate how one existing
lossy compressor is customized to support our schemes with
optimizations toward efficient storage of the derived error bounds
in Section 6. At last, we present the evaluation results in Section 7
and conclude with a vision for future work in Section 8. Details
about the supported combinations of schemes and dimensions in
this paper are listed in Table 2.

TABLE 2
Combinations of Schemes and Dimensions for Different Vector Fields

Schemes Dimensions
Decoupled Coupled 2D 3D

Piece-wise linear 3 3 3 3
Piece-wise bilinear 3 3

4 MATHEMATICAL FORMULATION

This section introduces the mathematical formulation before
outlining the distinct approaches to achieve feature-preserving
compression. Specifically, we first formulate the requirements
for feature-preserving compression, followed by the sufficient
conditions on vertex-wise error bounds to meet the requirements.

We formulate the feature-preserving compression problem for
the non-degenerative critical point extraction in piecewise linear
vector fields and bilinear vector fields as follows. In general, the
original and decompressed 2D/3D vector fields v and v′ respectively
are defined on the same simplicial (triangular or tetrahedral) or

Cartesian mesh; the vector values on the ith vertex are vi and v′i,
respectively; and the relative error bound of vi is denoted as ξi. For
simplicity, we introduce our problem using piecewise linear vector
fields as an example; our objectives/definitions can be generalized
to bilinear vector fields in a similar way.

For each cell in the mesh, assuming the barycentric coordinates
of the critical point in the original and decompressed data are
(µ0,µ1,µ2, [µ3])

ᵀ and (µ ′0,µ
′
1,µ

′
2, [µ

′
3])

ᵀ, respectively, and the Jaco-
bian eigenvalues are (λ0,λ1, [λ2])

ᵀ and (λ ′0,λ
′
1, [λ

′
2])

ᵀ, respectively,
the objective of this study is to guarantee the following three
conditions by finding proper relative error bounds ξi:

• Non-FN: If µk ∈ [0,1] holds for all k, µ ′k ∈ [0,1] holds for
all k as well;

• Non-FP: If there exists k such that µk /∈ [0,1], there exists
k′ such that µk′ /∈ [0,1];

• Non-FT: The “non-FN” condition is met, and there
exists a one-to-one mapping between l and l′ such
that sgn(Re(λl)) = sgn(Re(λl′)) and sgn(Im(λl)) =
sgn(Im(λ ′l′)).

Here, sgn(·) is the sign function; Re(·) and Im(·) are the real and
imaginary part operators, respectively; and k,k′ ∈ {0,1, . . . ,nd},
l, l′ ∈ {0,1, . . . ,nd−1}. For bilinear case, similar conditions need
to hold for x, y, and λ1,λ2.

To derive sufficient error bounds for these conditions, we
introduce the sign-preserving error function (SPEF) of any
given scalar function. Formally, denoting the ball B(d,γ) =
{d′ | δ (d,d′)≤ γ},γ ∈ [0,1), we define the SPEF of any given
scalar function f : Rm×n→ R as

ψ(f ;d) def
= sup

{
γ | f (d) f (d′)≥ 0,∀d′ ∈ B(d,γ)

}
. (5)

10

20

30

40

Fig. 2. Illustration of
SPEF function ψ.

As illustrated in Figure 2, ψ(f ;d) ∈ [0,1] is
defined as the supremum of δ (d,d′) such that
f (d) and f (d′) keep the same sign. In general,
finding the closed form of ψ functions is
challenging. Thus we instead attempt to find
a relaxed error bound ∆(d) that is less than
or equal to ψ(f ;d), in order to preserve the
sign of f (d′). In the following, we present the
possible relaxed error bounds for preserving
critical points in piecewise linear and bilinear
vector fields. Before diving into the details,
we first show the following properties of SPEFs which will be
repeatedly used in our derivation:

ψ(f g;d)≥min(ψ(f ;d),ψ(g;d)), (6)

ψ(f +g;d)≥min(ψ(f ;d),ψ(g;d)), if sgn(f (d)) = sgn(g(d)),
(7)

where f and g are two given scalar function Rm×n→ R that take
the same arguments. We further generalize the notation of ψ for
multiple functions f0, f1, . . . , fn−1 to represent the maximal error
bound to keep the sign of each function, and we have

ψ(f0, f1, . . . , fn−1;d) def
= min

i
ψ(fi;d). (8)

4.1 Critical Point Preservation in Piecewise Linear Vec-
tor Fields

We derive the sufficient error bounds for 2D/3D piecewise linear
vector fields in this subsection. The conclusions are summarized

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

in Equation (10), (11), and (12) with the proofs presented in
Proclaims 1, 2, and 3.

For simplicity, we first introduce auxiliary barycentric coordi-
nates (m0,m1,m2)

ᵀ to represent the 2D critical point solution in
Equation (2), such that in non-degeneracy cases, we have

µk = mk/(m0 +m1 +m2) = mk/M,k ∈ {0,1,2}, (9)

where M = ∑k mk 6= 0, m0 = |u1 u2
v1 v2 |, m1 =

∣∣u0 u2
v0 v2

∣∣, and m2 =
∣∣u0 u1

v0 v1

∣∣;
We use similar notations to represent 3D critical point solutions
with auxiliary barycentric coordinates. Based on the definitions
of the auxilary barycentrice coordinates and SPEFs, a sufficient
condition for non-FN, non-FP, and non-FT in 2D piecewise linear
vector fields is

||∆(V)|| ≤ ψ(m0,m1,m2;V), (10)

||∆(V)|| ≤ max
k∈{k|µk /∈[0,1]}

min

(
ψ(mk),ψ(∑

k′ 6=k
mk′ ;V)

)
, and (11)

||∆(V)|| ≤

{
ψ(|J|;V) if |J| ≤ 0
ψ(tr2(J)−4|J|, tr(J);V) if |J|> 0

, (12)

respectively, where V is the 2x3 matrix defined in Equation (2); m0,
m1, and m2 are auxilary barycentrice coordinates; and k ∈ {0,1,2}.
Equations (10) and (11) can be directly generalized to 3D cases,
and we use ||∆(V)||= 0 to guarantee the 3D non-FT condition. In
what follows, we prove Equations (10), (11), and (12) by proving
the three proclaims below, respectively.

Proclaim 1. A sufficient condition to avoid FN in a triangular cell
is ||∆(V)||max ≤ ψ(m0,m1,m2;V).

Proof. The “non-FN” condition is equivalent to finding a proper
maximal error bound ||∆(V)||max such that

||∆(V)||max ≤ ψ(µ0,µ1,µ2,1−µ0,1−µ1,1−µ2;V)
def
= φFN(V).

(13)
Based on Equations (9) and (6), we have

φFN(V)
(9)
=ψ

(
m0

M
,

m1

M
,

m2

M
,

m1 +m2

M
,

m0 +m2

M
,

m0 +m1

M
;V
)

(6)
=ψ(m0,m1,m2,m1 +m2,m0 +m2,m0 +m1,M;V)

(7)
≥ψ(m0,m1,m2;V). (14)

The last inequality holds because sgn(m0) = sgn(m1) = sgn(m2),
which is deduced from µk = mk/M ≥ 0 for all k.

Proclaim 2. A sufficient condition to avoid FP in a triangular cell
is ||∆(V)||max ≤maxk∈{k|µk /∈[0,1]}min

(
ψ(mk),ψ(∑k′ 6=k mk′ ;V)

)
.

Proof. In the “non-FP” condition, there exists at least one k such
that µk /∈ [0,1]. Thus, a sufficient condition to avoid FP is to adapt
||∆(V)||max satisfying µ ′k /∈ [0,1] in the decompressed data for any
k ∈ {k | µk /∈ [0,1]} such that

||∆(V)||max ≤maxk∈{k|µk /∈[0,1]}ψ(µk(1−µk);V). (15)

For ψ(µk(1−µk);V), we have

ψ(µk(1−µk);V) = ψ

(
mk

M
· M−mk

M
;V
)
= ψ

(
mk(∑k′ 6=k mk′)

M2 ;V
)

(6)
≥ min

(
ψ(mk),ψ(∑k′ 6=k mk′);V

)
, (16)

and thus the proclaim is proved.

Proclaim 3. A sufficient condition to avoid FT of noncenter critical
points in a triangular cell is4

||∆(V)||max ≤

{
ψ(|J|;V) if |J| ≤ 0
ψ(tr2(J)−4|J|, tr(J);V) if |J|> 0

. (17)

Proof. Let B = − tr(J) and C = |J| for simplicity. The root of
λ 2 +Bλ +C are λ0,λ1 = (−B±

√
B2−4C)/2. Consider the case

of C < 0. The discriminant will be larger than 0; thus the roots are
both real. Furthermore, the roots have to be one positive and one
negative for |B|<

√
B2−4C. Therefore, we need only to preserve

the negativity of λ0λ1:

ψ(λ0λ1;V) = ψ
(
B2− (B2−4C);V

)
= ψ(C;V). (18)

However, when C > 0, the sign of discriminant B2−4C has to be
preserved because it determines the number of real roots. When
the discriminant is greater than 0, we also need to preserve B only
because sgn(−B+

√
B2−4C) = sgn(−B−

√
B2−4C) = sgn(−B).

The proclaim is thus proved.

4.2 Critical Point Preservation in Bilinear Vector Fields
We derive the sufficient error bounds for 2D bilinear vector fields in
this subsection. The conclusions are summarized in Equation (19)
and (20) with the proofs presented in Proclaims 4 and 5.

In bilinear vector fields, the 2D coordinates (x,y) of the critical
points are derived one after another based on the generalized eigen
solving problem. Thus, it is natural to preserve the coordinates one
by one. Specifically, we derive sufficient conditions for y instead
of (x,y); nevertheless, the same approach can be applied to x
to prevent FN and FP of x. Note that we avoid corner cases by
setting ||∆(V)|| = 0 when the determinant or trace of the matrix
in the generalized eigen problem equals 0. Denoting p(λ) = λ 2−
tr(Q)λ + |Q| and q = tr(Q)/2, a sufficient condition for non-FN
and non-FP in terms of y is:

||∆(V)|| ≤

0 if p(q) = 0,q ∈ [0,1)
ψ(p(0), p(1);V) if p(0)p(1)< 0
ψ(p(q), p(0), p(1),q,q−1;V)

if p(q)< 0, p(0)> 0, p(1)> 0,q ∈ [0,1)
(19)

||∆(V)|| ≤

ψ(p(q);V) if p(q)> 0
min(ψ(p(0), p(1)),max(ψ(q),ψ(q−1));V)

if p(q)≤ 0, p(0)> 0, p(1)> 0,q /∈ [0,1)
ψ(p(0), p(1);V) if p(q)≤ 0, p(0)< 0, p(1)< 0

(20)

Note that V is the 2x4 matrix representing points in a square cell.
Also note that we only preserve the FN and FP of coordinate y in
the critical points. Unlike the positions, types of critical points in
bilinear vector fields are hard to preserve using SPEFs, because
Jacobian in this case involve functions of x and y which have
unknown perturbations on their own values. Nevertheless, we
notice that preserving FN and FP of y automatically preserve x and
the type in most cases. Thus, we perform compression of current
data point using the error bound that preserves the positions of y
and verify whether the decompressed data affect the positions of

4. The preservation of a center (Re(λ0) = Re(λ1) = 0 and Im(λ0), Im(λ1) 6=
0) requires tr(J) = 0, which leads to the error bound of 0. However, centers
are seldom found because the floating-point representation of tr(J) is normally
nonzero.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

x and the types of critical points. In particular, the decompressed
value will be recovered and used to check whether it incurs FN/FP
on x or changes the type in all of its adjacent cells. If both x
and types can be preserved, we will move to the next data point;
otherwise the current data point will be re-compressed with error
bound 0. As such, this approach is only applicable to the coupled
compression framework, which will be introduced in details in the
next section.

We then present the proofs of Equations (19) and (20) with the
two proclaims below.

Proclaim 4. A sufficient condition to avoid FN of coordinate y in
a critical point (x,y) for a bilinear square cell is in Equation (19).

Proof. A valid y needs to fall in one of the three cases below: 1)
there is one double root in [0, 1); 2) there is one and only one root
in [0, 1); 3) there are two roots in [0, 1). Case 1) happens when
p(q) = 0 so an error bound 0 is required. Case 2) only requires
p(0)p(1) < 0 so preserving signs of p(0) and p(1) will satisfy.
Case 3) is the most complex, which requires four conditions to be
met at the same time. As q ∈ [0,1) is equavalent to the preservation
of signs in both q and q−1, five signs need to be preserved in this
case.

Proclaim 5. A sufficient condition to avoid FP of coordinate y in
a critical point (x,y) for a bilinear square cell is in Equation (20).

Proof. According to Equation (4), whether y is a valid solution
depends on the number of roots in the equation p(λ) = 0 and their
locations. Thus, one of the following conditions needs to be met
when y is not valid: the equation p(λ) = 0 has 1) no real root; or 2)
more than one real roots but no real roots in [0, 1). Falling into case
1) is equivalent to p(q)> 0, thus avoiding FP turns out to preserve
the sign of p(q), which yields the first condition. Two subcases
exist for case 2) when p(q) ≤ 0, depending on the sign of p(0).
If p(0) > 0, y is not valid if and only if p(1) > 0 and q /∈ [0,1).
Avoiding FP reduces to preserve signs of p(0), p(1), and q or q−1.
If p(0)< 0, having no roots in [0, 1) only requires p(1)< 0, so we
only needs to preserve the sign of p(0) and p(1) to keep y invalid.
Note that the sign of p(q) may not need to be preserved for both
the two subcases because there will not be roots if the sign of p(q)
changes.

Although the above proclaims only preserve FN and FP for
y, they can be applied to preserve x by rewritting the generalized
eigen problem in Equation (4) using x as the eigen value. Setting
||∆(V)|| to the minimum of two derived error bounds in terms of
x and y will yield non-FN and non-FP for both x and y. However,
as we have to perform a verification to check the preservation of
types, we only preserve FN and FP for either x or y to save the
computational cost.

5 DECOUPLED AND COUPLED FEATURE-
PRESERVING COMPRESSION SCHEMES

This section presents both decoupled and coupled approaches to
compress the vector field while preserving critical points. The
decoupled method compresses data in a pipelined manner (Figure 3
and Section 5.1), while the coupled method compresses data in a
single pass (Figure 4 and Section 5.2). Comparison between the two
methods is in Section 5.3. We use nv and nc to represent the number
of vertices and cells, respectively, in the descriptions. We only
develop the coupled approach for 2D bilinear vector fields because

Algorithm 1 Error bound computation for critical point preserva-
tion for a cell in either decoupled or coupled compression
Input: values V =

(u0 u1 u2
v0 v1 v2

)
and coordinates X =

(x0 x1 x2
y0 y1 y2

)
of vertices

Output: maximal error bound er ∈ [0,1) for V
function EB {DECOUPLED|COUPLED}(V,X)

A←
(u0 u1 u2

v0 v1 v2
1 1 1

)
,b←

(0
0
1

)
if |A|= 0 then . check if the system is singular

return 0; . use lossless compression for this cell
else

if µµµ = A−1b ∈ [0,1]3 then . check if critical point exists
return min(eb FN {decoupled|coupled}(V),

eb FT {decoupled|coupled}(V,X)) . Sections 5.1.2, 5.2.2
else

return eb FP {decoupled|coupled}(V) . Sections 5.1.2, 5.2.2
end if

end if
end function

of the complexity of error derivation in the decoupled scheme
and trilinear fields. Without loss of generality, we present all the
compression algorithms using piecewise linear vector fields as an
example. The extension to bilinear vector fields is straightforward
thus omitted. Nevertheless, the error bound derivation for bilinear
vector fields is different and will be detailed in Section 5.2.

5.1 Decoupled Compression
We first present the overview of the compression scheme, followed
by the derivation of error bounds in this scheme.

5.1.1 Decoupled Feature-preserving Compression Scheme
Figure 3 illustrates the pipeline of our decoupled compression
scheme, which consists of cell-wise error bound computation,
vertex-wise error bound aggregation, and vertex-wise compression.

Cell-wise error bound computation The pseudocode for
cell-wise error bound computation is in Algorithm 1. The algorithm
takes in the values and coordinates of the vertices in the given
cell and returns a sufficient error bound to keep the critical point
information in the cell. If the underlying linear system is deficient,
we use zero as the error bound for the cell, and the vector values
will be compressed losslessly in the compression stage. Otherwise,
we check whether the critical point exists in the cell. If the critical
point exists, we return a sufficient error bound to avoid FN and FT;
otherwise, we return a sufficient error bound to avoid FP. Notice
that the procedure for error bound computation is similar in the
coupled compression method, and the mathematical derivation of
sufficient error bounds is detailed in Section 5.1.2.

Vertex-wise error bound computation We calculate vertex-
wise error bounds based on cell-wise error bounds that are
computed in the previous step. As shown in Algorithm 2, we
iterate over each cell and compute the cell-wise error bound η with
Algorithm 1. For each vertex of the cell, we assign the minimum
of the current error bound and η as the updated error bound for the
vertex.

Vertex-wise compression We use the vertex-wise error
bound to guide the error-bounded lossy compression; the pseu-
docode is in Algorithm 3. The quant() function in the pseu-
docode takes the derived error bound ξi as input and returns the
quantized value ξ̂i, in order to reduce the storage of vertex-wise
error bounds in the compression. The details on the quantization
are discussed in Section 6.2. In the algorithm, we first initialize
a byte buffer to stage quantized values of the vector field data.
We then iterate each vertex by quantizing the error bound and

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Input

Vector Field

Decompressed

Vector Field

Lossy

Compressed

Vector Field

Cell-wise

Error Bounds

Vertex-wise

Error Bounds

Quantized
Vertex-wise

Error Bounds

Quantized
Vertex-wise

Error Bounds

Losslessly
Compressed

Quantized
Vertex-wise

Error Bounds

Compression Decompression

Fig. 3. Decoupled compression pipeline for critical-point-preserving compression.

Algorithm 2 Vertex-wise error bound computation based on cell-
wise error bounds in decoupled compression.
Input: values {vi} and coordinates {xi} of all vertices
Output: vertex-wise error bounds {ξi}

function DECOUPLED ERROR BOUND MAP DERIVATION({vi}, {xi})
{ξi}← {1} . initialize each error bounds with 1
for j ← 0 to nc−1 do . iterate cells
{i0, i1, i2} ← cell vertices(j)
η ← eb_decoupled

((
vi0 ,vi1 ,vi2

)
,
(
xi0 ,xi1 ,xi2

))
. see Alg. 1

for i ∈ {i0, i1, i2} do
ξi←min(ξi,η) . vertex-wise error based on cell-wise error

end for
end for
return {ξi}

end function

Algorithm 3 Decoupled feature-preserving compression
Input: values {vi}, coordinates {xi}, and error bounds {ξi} for all vertices
Output: compressed byte stream

buffer={ /0} . buffer for vector field compression
for i← 0 to nv−1 do

ξ̂i← quant(ξi) . quantize error bound for vertex i
bytes← lossy_compress(vi, ξ̂i) . compress vi lossily while

guarantee the error bound ξ̂i
buffer.append(bytes)

end for
return compress losslessly(buffer, {ξ̂i})

compressing the data values. The lossy_compress() function
lossily compresses the vector data by guaranteeing the given
error bound and returns the compressed data in bytes. In our
implementation, we use the prediction and quantization scheme
in SZ for compression; more details are in Section 6. In the last
step, the byte buffer and the quantized vertex-wise error bounds
are losslessly encoded and compressed.

5.1.2 Error Bound Derivation in the Decoupled Scheme

This section derives the error bounds used in decoupled com-
pression scheme, namely the functions eb_FN_decoupled,
eb_FP_decoupled, and eb_FT_decoupled used in Algo-
rithm 1. We use the following lemma for the error bound derivation
in decoupled compression. The positive ramp R+(·) and negative
ramp R−(·) used in the lemmas are defined as(

R+(d)
)

i = max{0,di} and
(
R−(d)

)
i = min{0,di}, (21)

respectively, for vector d of arbitrary dimensions, where i is
the linear index of the elements. Note that Equation (22) is
the key formula that is used to perform the derivation using
Equations (10), (11), and (12) in this scheme.

Lemma 1. For d = {di j} ∈ Rm×n, if ∑i ∏ j di j 6= 0, we have

ψ
(
∑i ∏ j di j;d

)
≥

∣∣∣∣∣∣
n
√

∑i R+
(
∏ j di j

)
− n
√
−∑i R−

(
∏ j di j

)
n
√

∑i R+
(
∏ j di j

)
+ n
√
−∑i R−

(
∏ j di j

)
∣∣∣∣∣∣. (22)

Proof. Consider the case of ∑i ∏ j di j ≥ 0. Assuming the adopted
cell-wise error bound is er, we have

∑i ∏ j d′i j = ∑i R+
(

∏ j d′i j

)
+∑i R−

(
∏ j d′i j

)
≥(1− er)

n
∑i R+

(
∏ j di j

)
+(1+ er)

n
∑i R−

(
∏ j di j

)
. (23)

Let the second line of Equation (23) be greater than or equal to 0.
The problem turns out to be solving

(1− er)
n

∑i R+
(
∏ j di j

)
+(1+ er)

n
∑i R−

(
∏ j di j

)
≥ 0. (24)

By elementary calculation, we obtain er in the form of Equa-
tion (22) in this case. The case of ∑i ∏ j di j ≤ 0 can be proved
similarly.

We then can derive the sufficient error bounds for all the SPEFs in
Proclaims 1, 2, and 3, because all the functions in the SPEFs
can be written in the form of d = {di j} ∈ Rm×n. Notice that
Proclaim 3 cannot be generalized to 3D because of the prohibitive
complexity and limited benefit; we use ||∆(V)||max = 0 as the
sufficient condition to guarantee “non-FT”. The reasons are detailed
as follows.

The problem of preserving the type of critical points in
3D piecewise linear vector fields boils down to solving a 6
degree multivariate polynomial under certain circumstances. Taking
the case when the characteristic polynomial has one real root
and two complex roots for example. For simplicity, we let
B = − tr(J), C = 1

2 (tr
2(J)− tr(J2)), and D = det(J) and reduce

the polynomial to the decompressed form λ 3− pλ = q, where
p = 3C−B2

3 , q = 2B3−9BC+27D
27 . The real root of the polynomial is

λ0 =
3

√
− q

2 +

√
q2

4 + p3

27 +
3

√
− q

2 −
√

q2

4 + p3

27 . Theoretically speak-
ing, the maximal/minimal of λ ′0 with respect to the error bound can
be estimated because it is a multi-variate polynomial function
with each variable defined in [−er,er] where er is the error
bound. However, finding the maximal/minimal of q2

4 + p3

27 requires
computing the maximal/minimal of a 12-variable polynomial
function up to 6 degrees, which is hard to solve. The problem
is mitigated in the coupled approach, but we still need to solve
a 3-variable polynomial function up to 6 degrees. Therefore, we
directly use 0 as a sufficient error bound (i.e., lossless compression)
for cells with critical points in 3D data.

5. Approximated upperbound of compression ratio for 3D piecewise linear
vector fields by loosing the requirements to preserve FP and FN only.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

TABLE 3
Benefit of non-FT Derivation for

Piecewise Linear Fields

Dataset Method CR

Ocean lossless 10.93
derivation 11.58

Nek5000 lossless 7.48
derivation 7.495

We further study the im-
pact of using derived error
bound and lossless compres-
sion for cells with critical
points for both 2D and 3D
piecewise linear vector fields.
The impact of deriving a
bound for type preservation is
shown in Table 3, where we
estimated the compression ratios of the derivation-based 3D type
preservation by loosening the error bound of cells with critical
points to preserve FP/FN only. We find that critical points in
the 3D dataset are more sparse than those in the 2D dataset, so
lossless compression on those cells do not make a big difference
to the overall compression ratio. From this table, we can see that
the increase of compression ratio is almost 10% for the 2D type
preservation while 0.2% for the 3D one. As such, we carefully
derive the error bound preservation for 2D datasets and use an error
bound of 0 for 3D or higher dimensional cases.

5.2 Coupled Compression
The coupled compression scheme couples error bound estimation
and compression on the fly in the iteration of each vertex. The key
to the coupled compression is to incorporate decompressed values,
which are available during the process, in order to obtain more
relaxed error bounds than that of decoupled compression. Similar
to the previous section, we first present the compression scheme
and then the derivations of error bounds under this scheme.

5.2.1 Coupled Feature-preserving Compression Scheme
As detailed in Algorithm 4, for each vertex i, we first compute
the vertex-wise error bound ξ

(j)
i based on each of its adjacent

cells j. We then aggregate the vertex-wise error bound to ξi,
quantize ξi to ξ̂i, and perform lossy compression on vector field
data vi. The output bytes are appended to a preallocated buffer for
further compression. The quant() and lossy_compress()
functions are the same as those in the decoupled compression. Note
that the coupled compression needs to use the decode() function
to calculate the decompressed data v′i on the fly and to overwrite
the original vi.

Algorithm 4 Coupled feature-preserving lossy compression
Input: values {vi} and coordinates {xi} of all vertices
Output: compressed byte stream

buffer={ /0} . integer buffer for compression
for i← 0 to nv−1 do . iterate vertices

for j ∈ vertex cells(i) do . iterate cells connected to vertex i
{i0, i1, i2} ← cell vertices(j) . vertices of cell j
ξ
(j)
i ←eb_coupled

((
vi0 ,vi1 ,vi2

)
,
(
xi0 ,xi1 ,xi2

))
. see Alg. 1

end for
ξi←min j ξ

(j)
i . aggregate error bound for vertex i

ξ̂i← quant(ξi) . quantize error bound of vertex i
bytes← lossy_compress(vi, ξ̂i) . quantize vector values with SZ
v′i← decode(bytes, ξ̂i) . calculate decompressed value v′i on-the-fly
vi← v′i . replace the input value with the decompressed value
buffer.append(d)

end for
return compress losslessly(buffer, {ξ̂i})

Algorithm 4 can be proved by mathematical induction.
We would like to show that in the ith iteration, if the
dataset {v′0, . . . ,v′i−1,vi, . . . ,vnv−1} preserves all critical points,
{v′0, . . . ,v′i−1,v

′
i, . . . ,vnv−1} preserves all critical points as well.

Actually, we can obtain an error bound such that all adjacent

Input & Partially

Compressed

Data

S
te

p
 0

S
te

p
 1

S
te

p
 6

D
o

n
e

Vertex-wise Error

based on

Associated Cells

Vertex-wise

Error

Aggregation

Vertex-wise

Error

Quantization

Current Vertex to Process

Vertices with Input Data

Vertices with Decompressed Data

......

Fig. 4. Illustration of coupled compression algorithm.

cells of i preserve critical points; critical points in nonadjacent
cells remain unchanged. The base condition (i = 0) holds as well
because no decompressed data are available. The correctness of the
algorithm is thus proved.

Figure 4 illustrates the coupled compression on a tiny example
(nv = 7 and nc = 6). At step 0, the error bound of vertex 0 is
obtained per adjacent cell (C0 and C1). Then the error bound ξ0
can be calculated by aggregation. The decompressed vector value
is then calculated on the fly as v′0, which will be used in the error
bound computation of v1, v5, and v6 in the next few iterations.
Notice that we must use v′0 instead of v0 for the error bound
derivation; otherwise, the use of the original value v0 violates the
proof above.

5.2.2 Error Bound Derivation in the Coupled Scheme

We present the derivation in details for eb_FN_coupled,
eb_FP_coupled, and eb_FT_coupled used in Algorithm
1 for coupled compression in this section. We first introduce three
lemmas that are widely used in the derivation, followed by how
they are applied to derive the sufficient error bounds. Note that
Equation (25) is the key formula that is used to perform the
derivation using Equations (10), (11), (12), (19) and (20) in this
scheme.

Lemma 2. Let a∈Rn, b∈Rn, and c∈R, if R+(a)ᵀb−R−(a)ᵀb 6=
0. Then we have

ψ(aᵀb+ c;b)≥ |aᵀb+ c|
R+(a)ᵀb−R−(a)ᵀb

. (25)

Proof. First, we consider the case of aᵀb+ c > 0. The decom-
pressed data aᵀb′+ c can be scaled as follows by assuming the

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

adopted cell-wise error bound is er. Then we have

aᵀb′+ c = (R+(a)+R−(a))ᵀb′+ c

≥ R+(a)ᵀb(1− er)+R−(a)ᵀb(1+ er)+ c. (26)

Let the second line of Equation (26) be larger than or equal to 0.
Then we have

er ≤
R+(a)ᵀb+R−(a)ᵀb+ c

R+(a)ᵀb−R−(a)ᵀb
=

aᵀb+ c
R+(a)ᵀb−R−(a)ᵀb

. (27)

Second, the case for aᵀb+ c < 0 can be proved similarly. This
completes the proof.

Lemma 3. Let f (ε) =w0ε2+w1ε+w2 where w0,w1,w2 ∈R. The
maximal er (er ∈ [0,1]) that keeps the sign of f (ε) in [0,er] can be
solved in closed form.

Proof. We only show the solutions when w0 > 0 and w2 > 0; the
solutions for other cases can be derived in a similar way but omitted

here for simplicity. Denote ∆ f = w2
1−4w0w2, x1 =

−w1−
√

∆ f
2w0

, and

x2 =
−w1+
√

∆ f
2w0

. In this case, if ∆ f < 0, f (ε)> 0 will always hold
so the maximal er will be 1. If ∆ f ≥ 0, f (ε) = 0 will have either
negative roots or positive roots. If the roots are negative, f (ε)> 0
will always hold and again it is safe to have er = 1. However, if the
roots are positive, f (ε) will be less than 0 when x1 < ε < x2. Thus,
we have

er =

1 if ∆ f < 0
1 if ∆ f ≥ 0,x1 < 0
x1 if ∆ f ≥ 0,x1 > 0

. (28)

Lemma 4. Let u ∈ R, v ∈ R, and f (u,v) = (u,v,1)W(u,v,1)ᵀ

where W ∈ R3×3 is an upper triangular coefficient matrix. Then
ψ(f (u,v);u,v) can be solved in closed form.

Proof. Let εu,εv ∈ [−er,er] indicate the introduced errors for u,v
and f ′(εu,εv;er) be the transformed form of f (u,v) by letting
u = u(1+ εu) and v = v(1+ εv). Because f (u,v) is a quadratic
function of u and v, f ′(εu,εv;er) will be a quadratic function of εu
and εv with f ′(0,0;er) = f (u,v). Then we have

ψ(f (u,v);u,v)≤

0 if f ′(0,0;er) = 0
maxer (min f ′(εu,εv;er)> 0) if f ′(0,0;er)> 0
maxer (max f ′(εu,εv;er)< 0) if f ′(0,0;er)< 0

.

(29)
As f ′(εu,εv;er) is defined on a bounded interval [−er,er]×
[−er,er], its extremum is either on the only critical point or the
boundaries of the interval. For example, if the extremum is located
on one of the corners, we need to find the maximal er such that
f ′(−er,−er;er), f ′(er,−er;er), f ′(−er,er;er), and f ′(er,er;er)
have the same sign as f ′(0,0;er) at the same time. Note that
f ′(−er,−er;er), f ′(er,−er;er), f ′(−er,er;er), and f ′(er,er;er) all
reduce to some univariate quadratic functions in the form of
w0e2

r +w1er+w2, the closed form for er can be solved by Lemma 3.
Similar derivations apply when the extremum falls onto the edges,
where an additional relaxation is used to reduce the target function
to a univariate form. When the target extremum is located in the
critical point, it will be safe to have er = 1 if the extremum has
the same sign as f ′(0,0;er); otherwise we should decrease the
maximal bound of er to ensure the critical point is excluded from
the interval so the extremum will be located in the boundaries

again. As ψ(f (u,v);u,v) have closed form in all the cases, this
completes the proof.

With the above lemmas, we derive the error bounds for
piecewise linear vector fields and bilinear vector fields as follows.

Derivation for Piecewise Linear Vector Fields: According to
the sufficient condition to avoid FNs and FPs in coupled compresion
(i.e., eb_FN_coupled and eb_FP_coupled) for piecewise
linear vector fields in Proclaims 1 and 2, the actual error bounds
can be calculated using Lemma 2.

Next, we explain how to derive the sufficient error bounds to
avoid FTs for 2D piecewise linear vector field. The 2D piecewise
constant Jacobian can be formulated as

J = X̂−1V̂ =

[
x0− x2 x1− x2
y0− y2 y1− y2

]−1[u0−u2 u1−u2
v0− v2 v1− v2

]
. (30)

Without loss of generality, we assume v0 = (u0,v0) is the “current”
value that is being processed in Algorithm 4 and u1,v1,u2,v2 are
constants. By elementary calculation, |J| can be written as an affine
function of v0 = (u0,v0):

|J|(u0,v0) = α0u0 +α1v0 +α2, (31)

where α0, α1, and α2 are constants that can be derived from
u1,v1,u2,v2, and X̂. Likewise, the trace of J can be written as
another affine function of v0 = (u0,v0) with derived constants β0,
β1, and β2:

tr(J)(u0,v0) = β0u0 +β1v0 +β2. (32)

Therefore, the sufficient error bounds for ψ(tr(J);v0) and ψ(|J|;v0)
can be directly derived by using Lemma 2.

As tr(J) is a linear function and |J| is a quadratic function of v0,
the discriminant tr2(J)−4|J| can be written as a quadratic function
of v0. Thus the sufficient error bound ψ(tr2(J)−4|J|;v0) can be
solved using Lemma 4.

Given the sufficient error bound for ψ(tr(J);v0), ψ(|J|;v0),
and ψ(tr2(J)− 4|J|;v0), we obtain the eb_FT_coupled value
required in Algorithm 4 based on Proclaim 3.

Derivation for 2D Bilinear Vector Fields: Without loss of
generality, we assume v2 = (u2,v2) which locates in the right upper
corner of the square in Figure 1(b) is the “current” point that is
being processed and u0,v0,u1,v1,u3,v3 are constants; otherwise
we can always perform a rotation to move the current point to the
right upper corner, which does not affect the presence/absence of
critical points. In this case, the bilinear representation u(x,y) =
Auxy+Bux+Cuy+Du and v(x,y) = Avxy+Bvx+Cvy+Dv can
be solved explicitly: Au and Av will be a linear function of v2
while Bu,Bv,Cu,Cv,Du,Dv are all constants. Thus, each entry in
the matrix Q will be a linear fractional transformation of v2 with
the same denominator. Accordingly, tr(Q) will be a linear fractional
transformation and |Q| will be a quadratic transformation of v2.
Let gi(v2) be linear functions and hi(v2) be quadratic functions
of v2, the expressions for p(0), p(1), p(q), q, and q− 1 can be
represented as follows:

p(0) = |Q|= h0(v2)

g0(v2)2 , p(1) = 1− tr(Q)+ |Q|= h1(v2)

g0(v2)2

p(q) =− tr2(Q)

4
+ |Q|= h2(v2)

g0(v2)2 ,q =
g1(v2)

g0(v2)
,q−1 =

g2(v2)

g0(v2)

Then, the SPEF for these variables will be ψ(p(0)) =
ψ(h0(v2)), ψ(p(1)) = ψ(h1(v2)), ψ(p(q)) = ψ(h2(v2)), ψ(q) =
ψ(g0(v2),g1(v2)), and ψ(q − 1) = ψ(g0(v2),g2(v2)). As

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

ψ(gi(v2)) can be solved using Lemma 2 and ψ(hi(v2)) can be
solved using Lemma 4, the sufficient error bounds for non-FP and
non-FN in terms of the y coordinates of the critical points can be
solved in closed form.

5.3 Comparison between Decoupled and Coupled
Compression
We compare our decoupled and coupled compression with regard
to both complexity and compression ratio.

Space and time complexities The space complexities of both
methods are identical (O(nv)); the time complexity of the decoupled
and coupled algorithm is O(nc) and O(∑i card(adj cells(i))),
respectively, where card(·) is the number of elements in a set. The
O(nc) complexity of the decoupled compression algorithm is based
on the cell-wise iteration in Algorithm 2. The complexity of the cou-
pled compression algorithm is O(nv · (∑i card(adj cells(i))/nv)),
where the fraction is the average number of adjacent cells for each
vertex. This expression can be reduced to O(∑i card(adj cells(i))).

Error bounds and compression ratio Decoupled compres-
sion has a lower compression ratio than coupled compression does,
because the coupled method delivers more relaxed error bounds
than the decoupled method does. The reason is that the decoupled
method attempts to control errors on three vertices simultaneously,
while the coupled method achieves the same goal by controlling
the error on one single vertex.

6 LOSSY COMPRESSOR CUSTOMIZATION

We tailor the SZ lossy compressor to guarantee vertex-wise error
bounds, and we optimize the storage of the vertex-wise bounds to
achieve high compression ratios.

6.1 Baseline Compressor Selection
In general, any prediction-based compressor such as FPZIP and SZ
can be customized for feature-preserving compression; we use SZ
as an example in this study. Transform-based compressors may be
used if the error can be bounded for individual vertices.

We review two important SZ features that are used in this study.
First, SZ strictly guarantees the error bound. SZ uses linear-scale
quantization [27] on the difference between the original data and
predicted value from a Lorenzo predictor for a strict absolute error
bound guarantee. Second, SZ uses a logarithmic transformation
in its recent design [28] to transform a relative error compression
problem in the original domain to an absolute error compression
problem in the logarithmic domain. Specifically, SZ records the
signs of the original data and transforms the original data to the
logarithm of their absolute value. The transformed data there are
compressed with the absolute error bound log(1+ er) where er is
the relative error bound. During the decompression, the data are
transformed back to the original data by the exponential function
and the corresponding signs.

6.2 Efficient Vertex-wise Error Bounds Storage
We incorporate the following three optimizations to SZ and use
these optimized functions in Algorithms 3 and 4.

Logarithm-based error bound transform We extend the
logarithmic transformation for relative error bound compression
in SZ to the vector field compression, in order to store one
transformed error bound instead of nd absolute error bounds for
different components. Note that we have to store the original data

when the error bound is 0 or the logarithmic data need to be
losslessly recorded, because the round-off error in the logarithmic
and exponential function may lead to unexpected perturbations in
the decompressed data.

Exponential-scale error bound quantization We use quan-
tization to further compress the transformed relative vertex-
wise error bounds. Instead of adopting the default linear-scale
quantization in SZ, we use an exponential-scale quantization for
more aggressive size reduction. Specifically, we quantize the each
error bound er larger than ε0 (er less than ε0 is quantized to
0) to an integer q = blogb

er
ε0
c, where b and ε0 are two tuning

parameters, and we apply Huffman encoding to the quantized
integers. Unlike the linear-scale quantization, which quantizes er
to b er

ε0
c, exponential-scale quantization has fewer values for the

quantized integers, leading to higher compression ratios on the
vertex-wise error bounds. In our experiments, we set ε0 to machine
precision and b to 2, which leads to satisfactory performance.

Global error bound restriction We also use a global error
bound as a strict restriction, such that any derived error bound
greater than the threshold will be set to the threshold. The reason
is that the precision of the Lorenzo predictor relies heavily on the
precision of decompressed data, especially when the error bound of
the current data is small compared with its neighbors. Limiting the
error bound mitigates such problems and also decreases the range
of the quantization index, reducing the size of the vertex-wise error
bounds. However, this could reduce compression ratio, and the
threshold needs to be tuned to achieve the best trade-off. In our
implementation, we empirically set the global error bound to 0.1
for 1D and 2D data and to 0.05 for 3D data.

7 EVALUATION

In this section, we evaluate our work using the three scientific
datasets listed in Table 4, and we compare the results with
three state-of-the-art error-bounded lossy compressors—FPZIP [4],
SZ [1], and ZFP [2]—using different error bound configurations.
We show both quantitative results, involving the exact number of
FPs, FNs, and FTs reported by the critical point detection algorithm,
and qualitative results, displaying the consequent visual difference
in the local area of the changed critical points.

We use three datasets from ocean simulation, Nek5000 fluid
simulation, and large eddy simulation (LES). Ocean and Nek5000
data are available in 2D and 3D regular grids, respectively, and we
tessellate each 2D/3D cube into two triangles or six tetrahedra to
construct piecewise linear vector fields. The LES dataset includes
71M tetrahedral cells and 110M wedges with 67.8M nodes. We
consider only the tetrahedral cells for our test. All the experiments
are conducted on an Intel Broadwell node with two Intel Xeon
E5-2695 v4 processors and 128 GB of memory.

TABLE 4
Datasets for benchmarking

Dataset Size nd nv nc
Ocean 65.92 MB 2 3600×2400 3599×2399×2

Nek5000 1.536 GB 3 5123 5113×6
LES 145.8 MB 3 12.74 M 71.19 M

7.1 Results with 2D Ocean Data
We first compare the number of FPs, FNs, and FTs by tuning all
the lossy compressors to a similar compression ratio (∼ 11.5×
with piecewise linear cells and ∼ 4.7× with bilinear cells), as
shown in Table 5. From this table, we can see that our approaches

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE 5
Benchmark of (lossy) compressors on 2D ocean data: ea, er are the global absolute and relative error bound used by compressors, respectively; CRu,

CRv, and CRall are the compression ratio (input size over output size) of u, v, and all components, respectively; Sc and Sd are the speed for
compression and decompression, respectively; #TP is the number of true-positive (preserved) critical points; #FP, #FN, and #FT are the number of

false critical points.

Piecewise Linear Cells
Compressor Setting ea er CRu CRv CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT
Our method decoupled - - - - 7.54× 32.28 77.15 20,929 0 0 0
Our method coupled - - - - 11.73× 27.43 60.81 20,929 0 0 0

FPZIP -P 13 - 0.0625 11.48× 11.00× 11.23× 122.23 102.86 20,416 310 244 269
SZ -A 0.05 0.05 - 11.19× 11.50× 11.35× 131.07 214.97 18,350 43,880 1,913 666
SZ -P 0.07 - 0.07 11.34× 11.06× 11.20× 90.53 149.33 19,680 630 601 648

ZFP -A 0.5 0.5 - 10.06× 10.73× 10.39× 223.51 366.85 17,816 46,364 2,455 658
ZFP -P 10 - 0.125 11.11× 11.18× 11.14× 228.04 359.04 18,685 49,207 1,593 651

Bilinear Cells
Compressor Setting ea er CRu CRv CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT
Our method coupled - - - - 4.69× 13.51 47.83 20,345 0 0 0

FPZIP -P 19 - 2−10 4.53× 4.43× 4.48× 85.94 85.27 20,343 3 1 1
SZ -A 1E-3 0.001 - 4.63× 4.61× 4.62× 110.41 121.91 20,298 35 32 15
SZ -P 7E-4 - 0.0007 4.73× 4.50× 4.61× 78.00 131.04 20,336 1 1 8

ZFP -A 1E-2 0.01 - 4.48× 4.62× 4.55× 194.76 208.565 20,302 34 31 12
ZFP -P 16 - 2−9 4.73× 4.74× 4.74× 205.81 218.16 20,319 10 16 10

can be free of FPs, FNs, and FTs at relatively high compression
ratio, successfully preserving all the features, whereas existing
general-purpose error-bounded lossy compressors have more or
less altered critical points in their decompressed data. Because
preserving critical points in bilinear vector fields has more complex
constraints, our method on bilinear vector fields yields lower
compression ratios compared with that on linear vector fields. We
also study the performance of both compression and decompression
for all the compressors. Our methods are slower than existing
compressors in terms of compression performance because of the
higher time complexity—nc ≈ 2nv for the decoupled approach and
∑i card(adj cells(i))≈ 6nv for the coupled approach.

We also compare the compression ratios of different com-
pressors by tuning compressors to be free of FPs, FNs, and
FTs. To do so, we manually tune the error bound settings and
detect critical points until no FPs, FNs, and FTs are present.
The results are displayed in Table 6. Under such circumstances,
existing compressors have to perform near lossless compression
with compression ratios less than 3 on the piecewise linear fields.
In contrast, our decoupled and coupled approaches can lead to
compression ratios of 7.54× and 11.73×, respectively, while
automatically preserving critical points without manual intervention.
Similarly, the compression ratio of our coupled approach on the
bilinear fields is 1.25× that of the best existing approaches, when
all the critical points need to be preserved.

TABLE 6
Compression ratio for lossy compressors to avoid FP/FN/FT in 2D ocean

data.

Piecewise Linear Cells
Compressor Settings ea er CRu CRv CRall

GZIP -1 0 0 1.58× 1.58× 1.58×
FPZIP -P 25 - 2−17 2.86× 2.82× 2.84×

SZ -A 1E-10 1E-10 - 1.60× 1.59× 1.59×
SZ -P 1E-5 - 1E-5 2.73× 2.63× 2.68×

ZFP lossless 0 0 1.90× 1.88× 1.89×
Our method decoupled - - - - 7.54×
Our method coupled - - - - 11.73×

Bilinear Cells
Compressor Settings ea er CRu CRv CRall

GZIP -1 0 0 1.58× 1.58× 1.58×
FPZIP -P 21 - 2−13 3.79× 3.72× 3.75×

SZ -A 2E-5 2E-5 - 2.76× 2.78× 2.77×
SZ -P 9E-5 - 9E-5 3.57× 3.44× 3.51×

ZFP -A 1E-4 1E-4 - 2.68× 2.73× 2.70×
Our method coupled - - - - 4.67×

30

40

50

60

70

80

90

100

P
S

N
R

 (
d

B
)

Bit Rate

0 1 2 3 4 5 6 7

SZ
FPZIP
Our Method

Fig. 5. Rate-distortion of dif-
ferent lossy compressors on
the Ocean data.

We then compare the global com-
pression fidelity of SZ, FPZIP, and
our method with the rate-distortion
plot in Figure 5. Only result on the
piecewise linear field is presented for
demonstration purposes. The plot is
generated by first compressing data
with different global error bounds, and
then computing and plotting the peak
signal-to-noise ratio (PSNR) and bit
rate (average bits per compressed data
sample). We can see that our method
has comparable rate-distortion trends to those of SZ and FPZIP
when the bit rate is high, because our derived error bounds are
usually smaller than the global error bound. However, the bit rate
of our method stops decreasing after it reaches 2.7, because the
compression ratio is dominated by our derived error bounds instead
of the global one.

We present the qualitative results by visualizing both the global
view of critical point distribution and local topology. The global
critical point distribution (including preserved, FPs, FNs, and FTs)
of the different compressors is illustrated in Figure 6. From this
figure, we can see that all of the existing compressors have FPs,
FNs, and FTs across the global region, whereas our methods
preserve all the critical points. We also show the derived error bound
and the final relative error of the two approaches in Figs. 6(c), (d),
(g), and (h), with the range of [0,0.1]. These figures indicate that
the coupled approach indeed allows for higher error bound, leading
to higher higher compression ratio than the decoupled approach can.
A detailed visualization of the derived error bounds on a zoomed
region is displayed in Fig. 7. We can observe that data points that
are closed to non-saddle critical points usually require a strict error
bound in both schemes. Compared to the decoupled scheme, the
coupled scheme allows for higher errors in regions without critical
points. This is because we use a pessimistic estimation (Proclaim 2)
when deriving the error bounds for avoiding false positive critical
points. This estimation leads to strict error bounds when errors of
multiple veritices are considered simultaneously in the decoupled
scheme, and such impact is mitigated when the error of only one
vertex is considered in the coupled scheme.

In Figure 8, we further zoom into local regions to visualize the
impact of critical point changes on local topology. We compare

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

(a) input data (b) our method (decoupled), CR=7.54 (c) relative error bounds for (b) (d) relative error in (b)

(e) FPZIP, CR=11.23 (f) our method, CR=11.73 (g) relative error bounds for (f) (h) relative error in (f)

(i) SZ -A, CR=11.35 (j) SZ -P, CR=11.2 (k) ZFP -A, CR=10.4 (l) ZFP -P, CR=11.2

original/preserved false-typesfalse-positives false-negatives

0% 10%

0% 10%

0% 10%

0% 10%

Fig. 6. Visualizations of 2D ocean benchmark with piecewise linear cells. More details are in Table 5.

Re
la

tiv
e

er
ro

r b
ou

nd

(a) Decoupled scheme (b) Couple scheme

Fig. 7. Visualization of derived error bounds (encoded by color) from the
two compression schemes, respectively. Streamlines and critical points
are overlayed on top of error bound images for reference.

only with FPZIP for demonstration purpose, because it has the
smallest number of FPs, FNs, and FTs. Specifically, we show the
difference in the line integral convolution (LIC) of the local region
near the critical points for FPs and FNs in case I and case II, where
the gray spheres indicate the original/preserved critical points and
the yellow spheres represent FPs. For example, the LIC patterns of
the saddle and the focus in both the original data and decompressed
data using our coupled approach can be observed in case I, while
the patterns of the decompressed data of FPZIP shows no critical
point. We also trace a streamline to show the impact of type change
in case III, where an attracting focus in the original data is turned
into a repelling focus in the decompressed data of FPZIP.

7.2 Results with Nek5000 Data
The quantitative results of the different lossy compressors are
displayed in Table 7. We skip the absolute error bound mode
because of its inefficiency in preserving critical point in previous

Input Data

C
a

se
 I:

 F
N

C
a

se
 II

: F
P

C
a

se
 II

I:
F

T

FPZIP (CR=11.23) Our Method (CR=11.73)

Fig. 8. Visualizations of FN (case I), FP (case II), and FT (case III)
in FPZIP decompressed data, compared with the original data and
decompressed data of our method. In case III, the critical point type
changed from attracting focus to repelling focus with FPZIP; each plot
has one single streamline seeded from a fixed location near the critical
point, and color encodes the integration time of streamlines.

experiments. Again, the other lossy compressors have critical
point changes to achieve a similar compression ratio (∼ 7.5×)
to our coupled approach, which preserves all the critical points.
Although GZIP can also preserve all the critical points, the
compression ratio is only around 1.1×. Similarly, the compression

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

performance of our methods is hindered mainly by the nc ≈ 6nv
and ∑i card(adj cells(i))≈ 24nv complexity in the 3D regular grid.

We present the qualitative results by visualizing the critical
point distribution and local topology in the Nek5000 data. The
global views are displayed in Figure 9, with traced streamlines from
the same source. We also show the derived error bound and the
resulting real errors in the coupled approach. We see in the figure
that the streamlines generated from original data and decompressed
data of different lossy compressors are almost the same. However,
the changed critcal points in the decompressed data of FPZIP result
in streamline changes in local regions, as shown in Figure 10. For
example, the changed critical point type in case III leads to an
attracting effect instead of the repelling effect in the original data.

7.3 Results with LES Data
The unstructured LES data yield similar results, where our coupled
approach preserves all the critical points while the other compres-
sors introduce FPs, FNs, and FTs at the same compression ratio. In
this case, the compression performance of our method is affected
by both the 22.4× complexity (∑i card(adj cells(i))≈ 22.4nv) and
the construction of unstructure grid.

Figure 11 visualizes the global critical point distribution with
traced streamlines as context. Again, we see little change in all the
global streamlines, but the other lossy compressors lead to FPs,
FNs, and FTs in different locations.

7.4 Limitations
Separatrix preservation Our method does not theoretically guar-
antee the preservation of separatrices, but empirical studies show
that our method outperforms general-purpose lossy compressors
in preserving separatrices. As shown in Figure 12(b), separatrices
are changed in the FPZIP results because a saddle-source pair
is missing. In Figure 12(c), the separatrices are preserved in our
decompressed data. We discussed the limitation with ocean climate
researchers, and the preservation of critical point locations and
types are important because they may imply features such as eddies.
The preservation of separatrices may be achieved by iteratively
reducing the global error bound until all separatrices are kept; we
leave the separatrix preservation for future work.

Eigenvector direction preservation Our method introduces
distortion to the eigenvalues and eigenvectors of critical points,
which may in turn change the topology of separatrices. However,
experiments show that the impact to eigenvector directions is
usually minimal, as demonstrated in Figure 12. Eigenvector
directions can be strictly preserved by applying zero error bounds
for corresponding cells, which may affect the compression ratio.

Generalization to trilinear vector fields Our compressor
currently does not consider trilinear vector fields. The error bound
to avoid FN, FP, and FT may be derived with the technique
presented in this paper but with much higher degrees of polynomials
involved. Thus, closed-form error bounds may not be available,
and numerical approximations are necessary. We will study feature
preserving compression in trilinear and higher-order interpolated
vector fields in future work.

Stability of critical points Our compression scheme pre-
serves every critical point in the input vector field, which may not
be necessary for practice because not all critical points are equally
important per recent studies [29]. One possible improvement is to
allow thresholding of critical points with high stability measures
instead of preserving every single one. However, difficulties exist in

incorporating stability metrics and determining proper thresholds,
which we leave for future work.

8 CONCLUSIONS AND FUTURE WORK

This paper introduces a theoretical framework to strictly preserve
critical points by adapting vertex-wise error bounds in lossy
compression. We also present two approaches to achieve feature-
preserving compression: decoupled and coupled methods; the
decoupled method is optimized for performance, while the coupled
method has higher compression ratio. Experiments demonstrate
that the proposed methods can preserve the critical points and local
topologies are preserved in the visualization results.

We would like to further investigate preserving more topo-
logical features—topological skeletons, vortex core lines, and
boundary surfaces—with error-bounded lossy compression. We
would also like to generalize our method to trilinear, higher-
order finite elements, and spectrum mesh elements in addition
to simplicial cells. In addition to Lorenzo predictors, we will also
investigate regression- and statistics-based predictors to further
improve the compression quality.

ACKNOWLEDGMENTS

We thank Dr. Jeffery Larson, Dr. Todd Munson, and Dr. Chongke
Bi for useful discussions. Work by Chunhui Liu was supported
by JSPS KAKENHI Grant Number JP17F17730 and JSPS grant
(S) 16H06335. This material is based upon work supported by
Laboratory Directed Research and Development (LDRD) funding
from Argonne National Laboratory, provided by the Director, Office
of Science, of the U.S. Department of Energy under Contract
No. DE-AC02-06CH11357. This work is supported by the U.S.
Department of Energy, Office of Advanced Scientific Computing
Research, Scientific Discovery through Advanced Computing
(SciDAC) program and the Exascale Computing Project (ECP,
Project Number: 17-SC-20-SC), a collaborative effort of two
DOE organizations – the Office of Science and the National
Nuclear Security Administration. This work is also supported
by the National Science Foundation under grant OAC-2153451.
We acknowledge the computing resources provided on Bebop,
which is operated by the Laboratory Computing Resource Center
at Argonne National Laboratory.

REFERENCES

[1] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression ratios
of scientific datasets,” in Proc. IEEE International Conference on Big
Data. IEEE, 2018, pp. 438–447.

[2] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE Trans.
Vis. Comput. Graph., vol. 20, no. 12, pp. 2674–2683, 2014.

[3] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor
compression for multidimensional visual data,” IEEE Trans. Vis. Comput.
Graph., 2019.

[4] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-
point data,” IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 1245–
1250, 2006.

[5] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[6] T. McLoughlin, R. S. Laramee, R. Peikert, F. Post, and M. Chen, “Over
two decades of integration-based, geometric flow visualization,” Comput.
Graph. Forum, vol. 29, no. 6, pp. 1807–1829, 2010.

[7] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and D. Weiskopf,
“The state of the art in flow visualization: Dense and texture-based
techniques,” Comput. Graph. Forum, vol. 23, no. 2, pp. 203–222, 2004.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 14

TABLE 7
Benchmark of (lossy) compressors on Nek5000 data.

Compressor Setting er CRu CRv CRw CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT
GZIP -1 0 1.09× 1.09× 1.09× 1.09× 23.32 119.71 10,587 0 0 0

Our method decoupled - - - - 3.27× 8.97 41.46 10,587 0 0 0
Our method coupled - - - - 7.48× 6.38 62.14 10,587 0 0 0

FPZIP -P 16 2−7 6.87× 6.73× 7.59× 7.04× 94.90 82.76 10,499 98 72 16
SZ -P 0.015 0.015 7.14× 6.74× 7.75× 7.19× 97.27 148.06 10,199 358 326 62

ZFP -P 13 0.0625 6.59× 6.47× 6.95× 6.66× 129.29 306.60 9,927 695 566 94

(a) (b) (c) (d) (e) (f)
5%0

(c(b
5%0

original/preserved false-typesfalse-positives false-negatives

Fig. 9. Visualization of Nek5000 simulation data: (a) original data with all critical points, (b) FPZIP decompressed data with false critical points, (c) SZ
decompressed data with false critical points, (d) decompressed data from our method with all critical points, and (e) vertex-wise error bound derived
and (f) vertex-wise error by our method. Streamlines are visualized as context.

TABLE 8
Benchmark of (lossy) compressors on unstructured LES Data.

Compressor Setting er CRu CRv CRw CRall Sc (MB/s) Sd (MB/s) #TP #FP #FN #FT
GZIP -1 0 1.16× 1.07× 1.07× 1.10× 24.8 108.7 1,024 0 0 0

Our method coupled - - - - 5.06× 1.82 60.55 1,024 0 0 0
FPZIP -P 13 0.0625 6.78× 4.27× 4.27× 4.87× 81.95 73.88 992 31 25 7

SZ -P 0.02 0.02 6.44× 4.39× 4.38× 4.91× 121.06 238.82 984 13 29 11
ZFP -P 6 2 5.13× 4.75× 4.77× 4.88× 136.32 193.6 241 1870 708 75

false positive

critical points

critical

points

critical

points

repelling

node

false attracting

node

preserved

repelling node

C
a

se
 I:

 F
P

Input Data FPZIP (CR=7.04) Our Method (CR=7.48)

C
a

se
 II

: F
N

C
a

se
 II

I:
F

T

Fig. 10. Visualizations of local streamline changes in FPZIP decom-
pressed data, compared with the original data and decompressed data
of our method. In case III, the streamline in each figure is seeded closely
to the critical point in the original data, and colors encode the integration
time of streamlines.

[8] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post, “Topology-based flow

visualization, the state of the art,” in Proc. Topology-Based Methods in
Visualization, 2007, pp. 1–19.

[9] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth, “A survey of topology-based
methods in visualization,” Comput. Graph. Forum, vol. 35, no. 3, pp.
643–667, 2016.

[10] H. Theisel, C. Rössl, and H.-P. Seidel, “Compression of 2D vector fields
under guaranteed topology preservation,” Comput. Graph. Forum, vol. 22,
no. 3, pp. 333–342, 2003.

[11] S. K. Lodha, J. C. Renteria, and K. M. Roskin, “Topology preserving
compression of 2D vector fields,” in Proc. IEEE Visualization 2000, 2000,
pp. 343–350.

[12] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed compressor for
double-precision floating-point data,” IEEE Transactions on Computers,
vol. 58, no. 1, pp. 18–31, 2008.

[13] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. P. Clyne, and H. Childs,
“Data reduction techniques for simulation, visualization and data analysis,”
Comput. Graph. Forum, vol. 37, no. 6, pp. 422–447, 2018.

[14] M. Rodrı́guez, E. Gobbetti, J. Guitián, M. Makhinya, F. Marton, R. Pa-
jarola, and S. Suter, “State-of-the-art in compressed GPU-based direct
volume rendering,” Comput. Graph. Forum, vol. 33, no. 6, pp. 77–100,
2014.

[15] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
Computer Graphics Forum, vol. 22, no. 3, pp. 343–348, 2003.

[16] “GZIP,” https://www.gzip.org.
[17] “ZSTD,” http://www.zstd.net.
[18] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel

techniques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5-6, pp. 65–76,
2018.

[19] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the multivariate
case,” SIAM Journal on Scientific Computing, vol. 41, no. 2, pp. A1278–
A1303, 2019.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 15

(a) original data (b) FPZIP, CR=4.87 (c) SZ, CR=4.91 (d) our method, CR=5.06(a) igin (c) SZ CR (d) th(b) FPZIP,

original/preserved false-typesfalse-positives false-negatives

Fig. 11. Visualization of LES unstructured data: (a) original data with all critical points, (b) FPZIP decompressed data with false critical points, (c)
SZ decompressed data with false critical points, and (d) decompressed data from our method with all critical points. Streamlines are visualized as
context.

(a) (b) (c)

saddle-source

pair missed

saddle-source

pair

saddle-source

pair

(0.909, -0.417)

(0.436, 0.900) (0.437, 0.899) (0.431, 0.902)

(0.911, -0.412) (0.912, -0.411)

λ=0.031±0.621i λ=0.035±0.611i λ=0.064±0.590i

Fig. 12. Zoomed visualization of separatrices in (a) original ocean data,
(b) decompressed data with FPZIP (CR=7.04), and (c) decompressed
data with our method (CR=7.48).

[20] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
techniques for compression and reduction of scientific data-quantitative
control of accuracy in derived quantities,” SIAM Journal on Scientific
Computing, vol. 41, no. 4, pp. A2146–A2171, 2019.

[21] R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: a generic
high-fidelity fixed-ratio lossy compression framework for scientific
floating-point data,” in 2020 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2020, pp. 567–577.

[22] A. Telea and J. J. van Wijk, “Simplified representation of vector fields,”
in Proc. IEEE Visualization 1999, 1999, pp. 35–42.

[23] T. K. Dey, J. A. Levine, and R. Wenger, “A Delaunay simplification
algorithm for vector fields,” in Proc. Pacific Conference on Computer
Graphics and Applications, 2007, pp. 281–290.

[24] S. Koch, J. Kasten, A. Wiebel, G. Scheuermann, and M. Hlawitschka,
“2D vector field approximation using linear neighborhoods,” The Visual
Computer, vol. 32, no. 12, pp. 1563–1578, 2016.

[25] J. Helman and L. Hesselink, “Representation and display of vector field
topology in fluid flow data sets,” IEEE Computer, vol. 22, no. 8, pp.
27–36, 1989.

[26] H. Theisel, C. Rössl, and T. Weinkauf, “Topological representations of
vector fields,” in Shape Analysis and Structuring, L. D. Floriani and
M. Spagnuolo, Eds. Springer, 2008, pp. 215–240.

[27] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in Proc. IEEE International Parallel
and Distributed Processing Symposium, 2017, pp. 1129–1139.

[28] X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello, “An efficient
transformation scheme for lossy data compression with point-wise relative
error bound,” in CLUSTER’18: Proc. IEEE International Conference on
Cluster Computing. IEEE, 2018, pp. 179–189.

[29] P. Skraba, P. Rosen, B. Wang, G. Chen, H. Bhatia, and V. Pascucci,
“Critical point cancellation in 3d vector fields: Robustness and discussion,”
IEEE transactions on visualization and computer graphics, vol. 22, no. 6,
pp. 1683–1693, 2016.

Xin Liang is an assistant professor with the
Department of Computer Science at Missouri
University of Science & Technology. Prior to that,
he worked as a Computer/Data Scientist in the
Workflow Systems Group at Oak Ridge National
Laboratory. He received his Ph.D. degree from
University of California, Riverside in 2019 and his
bachelor’s degree from Peking University in 2014.
His research interests include high-performance
computing, parallel and distributed systems, sci-
entific data management and reduction, big data

analytic, and scientific visualization. He has interned in multiple national
laboratories and worked on several exascale computing projects. He is a
member of the IEEE. Email: xliang@mst.edu.

Sheng Di (Senior Member, IEEE) received his
master’s degree from Huazhong University of
Science and Technology in 2007 and Ph.D. de-
gree from the University of Hong Kong in 2011.
He is currently a computer scientist at Argonne
National Laboratory. Dr. Di’s research interest
involves resilience on high-performance comput-
ing (such as silent data corruption, optimization
checkpoint model, and in-situ data compression)
and broad research topics on cloud computing
(including optimization of resource allocation,

cloud network topology, and prediction of cloud workload/hostload). He
is working on multiple HPC projects, such as detection of silent data
corruption, characterization of failures and faults for HPC systems, and
optimization of multilevel checkpoint models. He is the recipient of DOE
2021 Early Career Research Program Award. Email: sdi1@anl.gov.

Franck Cappello (Fellow, IEEE) is the direc-
tor of the Joint-Laboratory on Extreme Scale
Computing gathering six of the leading high-
performance computing institutions in the world:
Argonne National Laboratory, National Center for
Scientific Applications, Inria, Barcelona Super-
computing Center, Julich Supercomputing Cen-
ter, and Riken AICS. He is a senior computer
scientist at Argonne National Laboratory and an
adjunct associate professor in the Department of
Computer Science at the University of Illinois at

Urbana-Champaign. He is an expert in resilience and fault tolerance for
scientific computing and data analytics. Recently he started investigating
lossy compression for scientific data sets to respond to the pressing
needs of scientist performing large-scale simulations and experiments.
His contribution to this domain is one of the best lossy compressors for
scientific data set respecting user-set error bounds. He is a member of
the editorial board of the IEEE Transactions on Parallel and Distributed
Computing and of the ACM HPDC and IEEE CCGRID steering commit-
tees. He is a fellow of the IEEE. Email: cappello@mcs.anl.gov.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Mukund Raj is a senior software engineer at the
Broad Institute of MIT and Harvard. He received
his Ph.D. in computing from the University of Utah
in 2018. From 2018 to 2021, he was a postdoc-
toral appointee at Argonne National Laboratory.
His interests are primarily in data visualization,
particularly in developing visualizations for en-
sembles, genomics data, and large-scale data.
E-mail: mraj@broadinstitute.org.

Chunhui Liu is a JSPS international research
fellow working in Department of Mathematics,
Faculty of Science, Kyoto University. He gets his
Ph. D. degree in mathematics from Université
Paris Diderot - Paris 7, France.

Kenji Ono is currently a director of Research
Institute for Information Technology in Kyushu
University, and he holds an appointment at the
University of Tokyo, after working on RIKEN
Advanced Institute for Computational Science
and Nissan Motor company. He received his de-
grees of Dr. Eng. in mechanical engineering from
Kumamoto University in 2000. His research fields
are computational fluid dynamics, parallel compu-
tation, visualization and equation discovery from
large-scale dataset. Email: keno@cc.kyushu-

u.ac.jp

Zizhong Chen (Senior Member, IEEE) received
a bachelor’s degree in mathematics from Beijing
Normal University, a master’s degree degree in
economics from the Renmin University of China,
and a Ph.D. degree in computer science from
the University of Tennessee, Knoxville. He is a
professor of computer science at the University
of California, Riverside. His research interests
include high-performance computing, parallel and
distributed systems, big data analytics, cluster
and cloud computing, algorithm-based fault tol-

erance, power and energy efficient computing, numerical algorithms
and software, and large-scale computer simulations. He received a
CAREER Award from the US National Science Foundation and a Best
Paper Award from the International Supercomputing Conference. Email:
chen@cs.ucr.edu.

Tom Peterka (Member, IEEE) received the PhD
in computer science from the University of Illinois
at Chicago in 2007. He is currently a computer sci-
entist with Argonne National Laboratory, a scien-
tist with the University of Chicago Consortium for
Advanced Science and Engineering, an adjunct
assistant professor with the University of Illinois
at Chicago, and a fellow with the Northwestern
Argonne Institute for Science and Engineering.
He currently leads several DOE- and NSF-funded
projects. He has authored or coauthored more

than 100 peer-reviewed papers in conferences and journals that include
the ACM/IEEE SC, IEEE IPDPS, IEEE VIS, IEEE TVCG, and ACM
SIGGRAPH. His research focuses on large-scale parallel in situ analysis
of scientific data. He was the recipient of the 2017 DOE Early Career
Award and four best paper awards.

Hanqi Guo (Member, IEEE) received the BS
degree in mathematics and applied mathematics
from the Beijing University of Posts and Telecom-
munications in 2009 and the PhD degree in
computer science from Peking University in 2014.
He is an Associate Professor at the Department
of Computer Science and Engineering in the Ohio
State University. His research interests include
data analysis, visualization, and machine learning
for scientific data. He is an awardee of the DOE
Early Career Research Program (ECRP) in 2022

and received multiple best paper awards in premiere visualization
conferences. Email: guo.2154@osu.edu.

This article has been accepted for publication in IEEE Transactions on Visualization and Computer Graphics. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVCG.2022.3214821

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 22,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

	Toward Feature-Preserving Vector Field Compression
	Recommended Citation

	Toward Feature-Preserving Vector Field Compression

