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Abstract—Electric vehicles (EVs) have emerged in the in-
telligent transportation system (ITS) to meet the increasing
environmental concerns. To facilitate on-demand requirement of
EV charging, vehicle-to-vehicle (V2V) charge transfer can be em-
ployed. However, most of the existing approaches to V2V charge
sharing are centralized or semi-centralized, incurring huge mes-
sage overhead, long waiting time, and infrastructural cost. In
this paper, we propose novel distributed heuristic algorithms for
V2V charge sharing based on the multi-criteria decision-making
policy. The problem is mapped to an alias classical problem (i.e.,
optimum matching in weighted bipartite graphs), where the goal
is to maximize the matching cardinality while minimizing the
matching cost. An integer linear programming (ILP)-based prob-
lem formulation can not achieve optimum matching because the
global network topology is not available with the EVs due to their
limited communication range. Our proposed heuristics can yield
an almost stable matching with lesser computational and message
overhead compared to other existing distributed approaches. An
average case matching probability is also calculated. Simulation
experiments are conducted to measure the performance of our
heuristics in terms of message overhead, matching percentage,
and matching preference. The proposed solution outperforms the
existing distributed approaches and shows comparable result with
respect to standard centralized stable matching algorithm.

Index Terms—Intelligent Transportation System (ITS); Elec-
tric Vehicles (EVs); V2V charge sharing; multi-criteria decision
making; distributed algorithm; matching.

I. INTRODUCTION

In a smart city environment, intelligent sensing and actua-
tion (control) techniques help improve the quality of living [1].
Among many technologies, Intelligent Transportation Systems
(ITS) form a significant part of a smart city. Specifically,
ITS deals with traffic safety, accident caution, lane changing
guidance, improved navigation support, and danger discretion
[2]. In an ITS scenario, as depicted in Figure 1, there exist
mainly three types of communications – Vehicle to Vehicle
(V2V), Vehicle to Roadside unit (V2R), and Roadside unit to
Roadside unit (R2R).

In recent years, there has been an emergent importance of
Electric Vehicles (EVs) in the context of ITS. The deployment
and scaling up of EVs in urban areas greatly depend on
the quality and access of charging infrastructure. Charging
infrastructure includes low speed charging stations at homes
and workplaces as well as fast charging points in public areas,
such as shopping malls, petrol pumps, public parking, and

Fig. 1: An Intelligent Transportation System (ITS) Scenario

mass transit stations. High infiltration of EVs will lead to
incremental demand of excess charging which in turn will
eventually lead to significant challenges, namely how fast,
from where and when the charging can take place, or what is
the cost of charging. The Idaho National Laboratory published
a report “Plugged In: How Americans Charge Their Electric
Vehicles”, claiming that around 85% of the EV drivers refuel
their vehicles by electricity at home [3]. This is primarily
because of the inaccessibility and non-ubiquity of charging
stations at other places. With optimal placements of new
charging stations, the total return on investment (ROI) might
be increased [4] [5] [6].

A direct V2V charging scheme supplies flexible and fast
energy exchange for EVs without the support of charging
stations [7]. It provides mutual benefits to the buyers as well
as sellers while traveling, without worrying about the presence
of any pre-existing dedicated charging station.

A. Motivation

While a number of approaches have been proposed recently
to address the charge sharing phenomenon in V2V networks,
they are mostly centralized [8], [9] or semi-centralized [7],
[10]. These are not suitable for energy constraint EVs in a
dynamic vehicular environment due to high message commu-
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nication overhead and long response time of the aggregators
[11]. There exist a few distributed solutions [12], [13] which
consider only Euclidean distance between the EVs as a metric
for matching. However, in real applications, there can be sev-
eral criteria such as charging cost, waiting time, reliability, etc.
In [14], a consumer-provider allocation strategy is proposed
based on multiple criteria, involving additional cars acting as
multi-point relays (MPRs). However, the consumer selects a
provider based on only the charging cost. The convergence
time and message overhead of the algorithms are high. More-
over, these schemes assume homogeneous communication
ranges for all EVs, which is unrealistic. Finally, none of the
works focus on how to maximize the matching cardinality
while preserving the preference of EVs, which is one of the
criteria for optimum matching [15].
B. Our Contributions

This paper proposes a novel distributed matching-based
approach to V2V charge sharing through a multi-criteria
decision-making policy. The EV offering charge is called a
donor while the EV accepting charge is called an acceptor.

The contributions of this paper are summarized as follows.
1) An Integer Linear Programming (ILP)-based multi-

criteria decision-making problem is first formulated for
acceptor-donor matching for charge sharing. The goal
is to maximize the matching cardinality while assigning
a preferable donor to an acceptor. The problem is then
mapped into an optimum matching in weighted bipartite
graphs [15].

2) A distributed heuristic approach for V2V Distributed
Charge Sharing) (V2VDisCS) is proposed for acceptor-
donor pairing. It has smaller computational and message
complexities with respect to the existing distributed ap-
proaches [12], [13], [14].

3) An average case probabilistic analysis establishes a the-
oretical result on the matching percentage. Simulation
studies demonstrate that V2VDisCS outperforms existing
distributed approaches [13], [14] with respect to the
matching percentage and message overhead. For match-
ing preference, V2VDisCS shows comparable result with
respect to the centralized Gale-Shapley [16] algorithm,
and ensures an almost stable matching [17].

The rest of the paper is organized as follows. Section II
summarizes related work and Section III introduces the system
model. Section IV formulates the problem while Section V
describes our proposed two distributed algorithms – one for
the acceptor and another for the donor. Section VI analyzes
the experimental results and Section VII concludes the paper.

II. RELATED WORK
In this section, we will describe the existing state-of-the-art

strategies on V2V charge sharing for electric vehicles.

A. Centralized Approaches
In [8], authors introduce a centralized charging system

where charging stations are selected by considering their re-
spective charging costs. In [9], authors propose two algorithms

for matching the demander and supplier EVs, where all the EV
drivers are connected to a central server via a mobile applica-
tion. Server does the matching at regular predefined intervals
based on several parameters i.e. location, availability, energy
consumption. In [18], a data control center connects all the
EVs, smart houses, charging stations, power/communication
infrastructures for real-time information collection, while an
aggregator coordinates the grouping of consumer EVs and
provider EVs. In [19], V2V charging strategy is modelled
as an optimization problem by taking care of parking place
reservations. In [20], a centralized aggregator collects charg-
ing requests and calculates charging/discharging schedule to
minimize charging cost. In [21], gridable electric vehicles take
optimal charging/discharging decisions through the aggregator,
which is used to balance the demand and supply of power by
updating the price at a specific interval.

In [22], based on matching theory, enough suppliers are
provided according to demand. All charging stations are con-
trolled by one local aggregator, which performs all necessary
information sharing and decision-making. In [23], authors
propose two matching algorithms where the benefits of both
demander and supplier are considered. Based on the collected
information, the data control center chooses the best parking
lot for charge transfer between EV pairs. Authors in [24]
formulate a new concept of V2V Wireless Power Transfer.
A dynamic programming solution is applied to propose the
energy-feasible path for the recipient vehicle from the origin
to the destination. In [25], a multi-objective mobile charging
vehicles (MCV) scheduling problem is investigated. By opti-
mizing the charging sequence and the actual amount of energy
being charged, the proposed framework aims to minimize the
EV waiting time while maximizing the charging benefits of
all EVs. To solve the multi-objective optimization problem, a
deep reinforcement learning (DRL) based framework is further
explored.

B. Semi-centralized Approaches

In [7], authors propose an Mobile Edge Computing(MEC)
based V2V navigation framework. Authors deduce three
charging models for local charging : Long Short-Term Mem-
ory based travel time prediction, charging time estimation and
charging comfortable degree. They have designed a Q-learning
based adaptive route selection algorithm for choosing optimal
moving path. Finally, a global charging navigation mechanism
is proposed on the basis of weighted bipartite graph which
increases the amount of energy transfer between EVs while
decreasing the waiting time. In [10], the Oligopoly game and
Lagrange duality optimization techniques are exploited, where
an online coordinator makes the charging/discharging decision
depending on real time information.

C. Distributed Approaches

In [12], the authors propose a distributed matching algo-
rithm for charge sharing using Bichromatic Mutual Nearest
Neighbor (BMNN) assignments to preserve the privacy of
the users while providing a satisfactory assignment. The
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algorithm works in rounds. In case of highly dense networks,
the algorithm takes more time to converge, but still cannot
ensure 100% matching due to the unavailability of all suppliers
within the limited communication range of a demander. In
[13], a partially homomorphic encryption based algorithm is
proposed for privacy preservation of the suppliers by hiding
their locations until matched. Based on the preference of the
demander, although a supplier is assigned, no matching deci-
sion is carried out at the supplier end. Both of the above works
consider only distance metric for demander-supplier matching.
However, there can be several criteria in real applications to
select a supplier.

The authors in [14] propose a Multi-Point Relay (MPR)-
based approach, where the providers’ announcements are done
through MPRs by using quality of service-optimized Link
State Routing (LSR) protocol. Next, the consumers send offers
to the providers with minimum payment and the providers
select the appropriate consumer based on the maximum payoff,
considering multiple criteria. However, the consumer may have
different criteria such as travel time, charge transfer rate,
reliablity, etc, to select a provider. One of the important criteria
during the interaction between EVs can be trust, which is not
considered here. The computational and message complexities
are high in the above approaches. Moreover, the authors
consider homogeneous communication range for EVs, which
is unrealistic.

Table I shows the comparison of the existing works.

III. SYSTEM MODEL

This section defines the relevant concepts followed by the
introduction of the system model and underlying assumptions.

Definition 1 (Acceptor). An EV requesting for charge or
accepting charge, is called an acceptor.
Definition 2 (Donor). An EV ready to share its excess charge
is called donor.
Definition 3 (Reachable donor set). This is the set of donors
within the communication range of an acceptor.
Definition 4 (Reachable acceptor set). This is the set of
acceptors within the communication range of a donor.

A. Assumptions

The proposed system model makes the following assump-
tions. Each EV has a unique ID and can track its own
(absolute) location, speed and travel direction. The EVs can
have heterogeneous communication ranges, but follow a unit-
disc model. An EV can directly communicate with another EV
through wireless communication, if they reside within their
communication range.

The donors maintain a set of criteria required for the charge-
sharing purpose: (i) the cost per unit charge, Cu; (ii) the trust
value or reliability with respect to a particular acceptor, R;
(iii) the amount of available charge to be shared, charge; (iv)
the estimated travel time to reach an acceptor, T ; and (v) the
charge transfer rate, rate.

B. Trust Model

For V2V message communications, this paper follows a
Data-oriented Trust Model (DTM) [26], which is a well-known
model used in VANETs. Let a charge request message be
received at a vehicle EVd from a vehicle EVa. Then the overall
trust R(d,a) at the EVd at time (t) is calculated as:

R(d,a)(t) =
q

R(d,a)(t� 1)⇥
p

Tdir ⇥ Tind

Here, Tdir relies on the quality of the received message;
and Tind is the rating given by an acceptor to a donor after
the completion of the charge sharing phenomenon. We assume
that the value of Tind ranges from 1 to 5 with an initial value
of 0.5 [27]. The initial value of R(d,a)=1, and Tdir is always
assumed to be 1.

C. Travel Time Estimation

For travel time prediction model, we follow the method
suggested in [7]. The derivation is as follows:

Tk(ei) = TMk(ei) + TW (ei)

=
L(ei)

vk(ei)
+ ⌫(ei) · p(ei) · �(ei)

where Tk(ei), TMk(ei), TW (ei) and vk(ei) respectively
denote the average traveling time, moving time, waiting time
and velocity of an EV k going through the road segment ei
having length L(ei). Now ⌫(ei) = {0, 1} indicates whether
there is a traffic light located in the road segment ei, where 1
implies the traffic light is available. The notation p(ei) signifies
the probability that an EV suffers from the red traffic light in
ei; whereas �(ei) implies the average waiting time for the red
traffic light in ei, The average velocity vk(ei) is derived as:

vk(ei) =
Tfk(ei)

Tdk(ei)
where Tfk(ei) and Tdk(ei) denote the predicted traffic flow
and traffic density of the road segment ei, respectively.

IV. PROBLEM FORMULATION

Steps required for problem formulation are described below:
1) Weight allocation : Suppose there are m number of EVs

{EV1, EV2, ....., EVm} in reachable donor set of an acceptor.
Each donor has five criteria {Cu, R, charge, T , rate}. Each
acceptor assigns different weights {w1, w2, w3, w4, w5} to
each of the criteria by point allocation method [28] at any
particular time. These weights reflect the importance of each
criterion to make a decision i.e. to select a donor. Weight
assigned to each criterion may vary from one acceptor to
another acceptor at any time instant.

2) Score and Rank generation: An acceptor wants to
minimize (T,Cu) and maximize (rate, charge,R). Acceptor
calculates the Score of a donor based on equation 1.

Score =
Cu

Cumax
⇥ w1 + T

Tmax
⇥ w4

R
Rmax

⇥ w2 + rate
ratemax

⇥ w3 +
charge

chargemax
⇥ w5

(1)
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TABLE I: Comparison of Existing Works

Approach Paper
Ref. Merits Demerits

Centralized

[8] Hybrid algorithm of particle swarm optimization and genetic
algorithm Not scalable; communication bottlenecks,

bandwidth limitations, and costly
expansion of the supporting infrastructure
to handle the explosive increase of data
from rapid EV uptake; EVs need to
communicate complete charging
information to central aggregator hence
cannot take decision in self-organized
manner [11]

[9] Trip-based probabilistic EV charging behavior model
[18] Max-weight V2V matching based on weighted bipartite graph

[19] Data transmissions between parking service center and mobile
EVs in real-time, optimization problem

[20] Renewable energy sources, mixed integer programming problem
[21] Mobility aware V2V energy swapping based on price control
[22] Mixed-integer optimization problem based on matching theory
[23] Two V2V matching algorithms proposed
[24] V2V wireless power transfer, dynamic programming solution
[25] multi-objective MCV scheduling, DRL based framework

Semi-centralized [7] MEC based charging navigation, Q-learning based algorithm Power loss at swapping stations, charging
cost increased[10] (Dis)charging strategy is modelled as Oligopoly game and La-

grange duality optimization techniques

Distributed [12] Dynamic environment, privacy preservation, bichromatic mutual
nearest neighbor (BMNN)

Long convergence time [log D rounds, where D:
# acceptors/donors]; high message complexity;
only distance as metric, homogeneous commu-
nication range

[13] Partially homomorphic encryption based distance calculations

Increased computational and message complexi-
ties; decision taken by demander only; only dis-
tance as metric, homogeneous communication
range

[14] Multi-criteria decision making, Provider announcement by MPRs
and QoS-OLSR

Additional cars used as MPRs; Increased com-
putational and message complexity; Some of
important criteria not considered, Homogeneous
fixed communication range

where Cumax, Tmax, ratemax, chargemax and Rmax are the
maximum possible values of the criteria. A higher Score value
means a lower preference and a lower Score value means a
higher preference. An acceptor tries to select a donor with
minimum Score value such that:

(i) Cost per unit charge is within acceptor’s budget
(Cuaccept).

(ii) Travel time should be less than or equal to the admissible
time(Taccept), by which the acceptor, with its residual
charge, can reach to a respective donor.

(iii) Charge transfer rate should be less than or equal to the
acceptable rate (rateaccept) of the acceptor.

(iv) A donor is able to provide the required charge
(chargereq) to the acceptor.

(v) Reliability of a donor should be greater than or equal to
a minimum threshold value (Rmin).

The Score generation can be formulated as an optimization
problem:

Minimize Score

subject to Cu  Cuaccept

T  Taccept

rate  rateaccept

charge � chargereq

R � Rmin

Now, an acceptor sorts the Scores of different donors in
its reachable donor set and assigns Rank. The donor with
minimum Score is ranked as 1.

3) Matching: To decrease the matching cost, an acceptor
always tries to match with the donor with minimum Rank. On

the other side, if we want to increase the matching cardinality,
it may not be always possible to assign the most preferable
donor to an acceptor. This is an alias problem of finding
the Optimum Matching in a Weighted Bipartite Graph [15].
A matching of maximum cardinality and minimum weight is
called optimum matching.

Definition 5 (Acceptor-Donor weighted bipartite graph). An
Acceptor-Donor weighted bipartite graph G = (A [D,E) is
a graph whose vertices can be divided into two disjoint sets A
and D such that each edge eij 2 E connects a vertex ai 2 A
and a vertex dj 2 D and has weight as Rankij , where Rankij
is the rank of donor dj assigned by the acceptor ai.

Our objective is to find an optimum matching on the
Acceptor-Donor weighted bipartite graph.

The symbols used in the paper are listed in Table II.

V. PROPOSED DISTRIBUTED ALGORITHMS

To construct the Acceptor-Donor weighted bipartite graph
for the whole vehicular network, global knowledge of the
entire network is required. But, due to the limited commu-
nication ranges of EVs, an EV cannot possess information
about the whole network. In that case, with the partial view
of the entire network, it can construct a subgraph of the global
Acceptor-Donor weighted bipartite graph and can try to find
a matching solution, where matching cardinality is maximized
and matching cost is minimized.

It is alias to the problem of Distributed Stable Matching with
Incomplete preference list (DisSMI) [29]. In [29], authors pro-
pose a solution where nodes are distributed among some agent
nodes, such that each agent owns some nodes and every node
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TABLE II: Symbol Table

Symbol Meaning

R Reliability
T Travel time
Cu Cost per unit charge
rate charge transfer rate

charge available charge
Tdir Direct Trust
Tind Indirect Trust
Tfk predicted traffic flow
Tdk traffic density
w Weight of criteria

chargemax maximum value of available charge
Cumax maximum value of cost / unit charge
Rmax maximum value of reliability

ratemax Maximum value of charge transfer rate
Tmax Maximum value of travel time
Score Score of donor
Rank Rank of donor
m Number of reachable donors
G Acceptor-Donor weighted bipartite graph
E Edge set in G

EVrd Reachable donor set
EVra Reachable acceptor set
Ts Threshold time
mij Decision matrix

EVranked Rank list of reachable donors
Nij Weighted decision matrix

is owned by a single agent. An agent can access and modify
all the information of the owned nodes, but it cannot access
the information of nodes owned by other agents [30]. The
limitation of the above solution with respect to our problem is
that, we need to incorporate extra cars/infrastructure serving
as agents which is cost-intensive. The solution converges after
multiple iterations, which is computationally intensive.

Hence, we have proposed Distributed heuristics for V2V
Charge Sharing (V2VDisCS), without involving any agents,
rather relying on only V2V communication and local compu-
tation at EV. The algorithm completes in one run.

A. Description of the algorithms

In this section, we shall illustrate the algorithms which are
executed parallelly at acceptor and donor end.

a) Acceptor side: Algorithm 1 performs the donor se-
lection procedure. To decrease the matching cost, an acceptor
always tries to match with the donor with minimum Rank.
The steps involved are described as follows:

Step 1: An acceptor broadcasts REQ message containing
the location and velocity information and waits for REPLY
message. If it does not receive any REPLY within a predefined
time (TS), it goes for static charging stations. [Static charging
point allocation through RSU is beyond the scope of this
paper.]

Step 2: If an acceptor EVa receives REPLYs from donors
e.g. EV1, EV2, EV3, EV4, it prepares the Reachable donor
set {EV1, EV2, EV3, EV4} and a decision matrix as shown
in Table III, containing different criteria of the donors.

Step 3: An acceptor assigns weights to each criterion and
calculates Scores by following eqn 1. Let us assume that, 20%,

Algorithm 1 Acceptor EVa selects a donor
Input : Ts:threshold time
Output: Matched Donor: Selected Donor
Initialize: EVrd=null, //Reachable donor set

Rank =1,//Rank of selected donor
Matched Donor = null;

EVa sends REQ;
while time < Ts do

if EVa receives REPLY(Cu,R, T, rate, charge) from EVb then
EVrd = EVrd [ EVb; //Put all replying EVs in reachable donor set
m  {Cu,R, T, rate, charge} //Put criteria in decision matrix m

end
end
if EVrd == null then

Goes for static charging point allocation;
else

EVranked=Rank Donor(EVrd,m) ; // call procedure to calculate Ranks of
donors in EVrd

Sends REGISTER(EVranked) to all donors2 EVrd;
while time < Ts do

if receives CONFIRM from EVd 2 EVrd then
if Rank of EVd < Rank then

Rank=Rank of EVd;
Matched Donor = EVd;

end
end

end
if Matched Donor == null then

Goes for static charging point allocation;// Not receive any CONFIRM
else

Sends MATCHED to Matched Donor;
Return ( Matched Donor);

end
end

Algorithm 2 Rank Donor(EVrd,m)
Output: EVranked : Rank list of donors in EVrd

Initialize wi(weights);

Weighted decision matrix Nij = mij ⇥ wi;
Calculate Scorej 8EVj 2 EVrd;
Sort EVrd according to Scores;
Assign Rank to each EVj 2 EVrd, based on their position in
the sorted EVrd list and store in vector EVranked;

Return(EVranked);

20%, 10%, 30% and 20% weightages are assigned to T , R,
Cu, charge and rate respectively and {30, 10, 5, 20, 40} are
the values for Tmax, Cumax, Rmax, chargemax and ratemax

respectively. Then,
Score of EV1 = 0.20⇥ 5

30+0.10⇥ 4
10

0.20⇥ 5
5+0.30⇥ 5

20+0.20⇥ 4
40

= 0.25

Score of EV2 = 0.20⇥ 9
30+0.10⇥ 10

10

0.20⇥ 3
5+0.30⇥ 10

20+0.20⇥ 7
40

= 0.52

Score of EV3 = 0.20⇥ 7
30+0.10⇥ 3

10

0.20⇥ 2
5+0.30⇥ 15

20+0.20⇥ 7
40

= 0.23

Score of EV4 = 0.20⇥ 12
30+0.10⇥ 8

10

0.20⇥ 1
5+0.30⇥ 20

20+0.20⇥ 40
40

= 0.3
Hence Ranks of EV1, EV2, EV3 and EV4 are 2, 4, 1, 3

respectively.
Step 4: An acceptor multicasts REGISTER message con-

taining the Rank list (EVranked) to all donors in reachable
donor set and waits for CONFIRM message. If it receives
CONFIRM within TS from multiple donors, then it chooses
one with minimum Rank and sends MATCHED message to
the selected donor. If it does not receive any CONFIRM, it
goes for static charging point finding with the help of RSU.

b) Donor side: Algorithm 3 illustrates the steps exe-
cuted at donor side. To increase the matching cardinality, a

2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON)

510Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 17,2023 at 19:27:48 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III: Decision Matrix of EVa

EV1 EV2 EV3 EV4

T (in minutes) 5 9 7 12
R 5 3 2 1

Cu(in $ per kWh) 4 10 3 8
charge(in kWh) 5 10 15 20

rate(in kWh per hour) [31] 4 7 7 40

donor selects a particular requesting acceptor with minimum
|EVranked|. The description of the algorithm is as follows:

Step 1: If a donor receives REQ, it sends REPLY to that
particular acceptor.

Step 2: If a donor receives multiple REGISTERs within time
TS , it puts all the responses in a priority queue. Donor chooses
an acceptor as per priority (Higher priority is assigned to
|EVranked| and lower priority for Rank) and sends CONFIRM
to the selected acceptor. It empties the queue.

Suppose for a network having six acceptors,
{EVa, EVb, EVc, EVd, EVe, EVf}, the priority queues
of the four donors {EV1, EV3, EV2, EV4} at any time instant
are shown in Table IV. Here, EV1 selects EVa; EV2 selects
EVc; EV3 selects EVf ; EV4 selects EVf .

TABLE IV: Priority Queues of donors

(a) Priority Queue of EV1

|EVranked| Rank Acceptor
1 1 EVa

2 1 EVb
2 2 EVc

3 3 EVd

(b) Priority Queue of EV2

|EVranked| Rank Acceptor
2 1 EVc

2 2 EVb
3 2 EVd
3 3 EVe

(c) Priority Queue of EV3

|EVranked| Rank Acceptor
2 2 EVf
3 1 EVd
3 2 EVe

(d) Priority Queue of EV4

|EVranked| Rank Acceptor
2 1 EVf
3 1 EVe

Step 3: If donor does not receive any MATCHED within
TS , it resets itself;

The message communication between acceptor and donor
is shown in diagram 2. In the Discovery phase, EVs exchange
REQ and REPLY messages to find out the reachable donors
and reachable acceptors. In the Pairing phase, the matching
has been performed. Here, a donor sends CONFIRM message
to a particular acceptor and an acceptor sends MATCHED
message to a particular donor. So, an acceptor got matched
with a single donor and vice-versa. Finally, the charge sharing
is conducted in the last phase.

Algorithm 3 Donor EVd confirms an acceptor
Input : {Cu,R, T, rate, charge} : criteria of donor
Output: EVa: Selected acceptor
Initialize: Q = null;//Priority Queue
if donor EVd receives REQ from EVa then

Sends REPLY{Cu,R, T, rate, charge} to EVa ;
end
while time < TS do

if Receives REGISTER(EVranked) from EVa then
Inserts EVa in Q based on |EVranked| and Rank of
EVd (assigned by EVa);

end
end
Deletes EVa from Q and sends CONFIRM to EVa;
Empties Q;
if not receives MATCHED within TS then

Reset;
end

Acceptor EVa

REPLY

REQ

Donor EV1 Acceptor EVb

REGISTER

CONFIRM

REQ

REPLY

Donor EV2

REQ

REPLY

REGISTER
REGISTER

CONFIRM

MATCHED

Ti
m

e

Discovery 
Phase

Pairing 
Phase

Charge 
Sharing 
Phase

Fig. 2: Message Communication between acceptor and donor

B. Complexity Analysis
The comparison of message complexities with the existing

distributed approaches are depicted in Table V. Here, n is the
number of reachable acceptors, m is number of reachable
donors of an acceptor. For homogeneous transmission range
and uniform distribution of acceptors and donors, m4 >>
n. k is the number of reachable MPRs and providers of an
MPR. For [13], we have considered message complexity in
one round.

TABLE V: Comparison of Message Complexities

V2VDisCS Ref [13] Ref [12] Ref [14]
Acceptor or De-
mander or Con-
sumer

O(1) O(m) O(m) O(m4)

Donor or Sup-
plier or Provider

O(n) O(n) O(n) O(1)

MPR NA NA NA O(k4)

The comparison of computational complexities with the
existing distributed approaches are depicted in Table VI. Here,
n = |EVra| , m = |EVrd|, TTL(Time to Live): 4 hop(provider
announcement phase), D: No. of demanders.
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TABLE VI: Comparison of Computational Complexities

V2VDisCS Ref [13] Ref [12] Ref [14]
Acceptor or Demander or
Consumer

O(m log m)+2TS O(m log m)+(m+1)TS logD rounds, where each round
takes m log m+ (m+ 1)TS

O(m4
log m

4)+
TSm

4

Donor or Supplier or
Provider

O(1) O(n) logD rounds, where each round
takes (n log n+ n)

TTL+TS +
O(n4

log n
4)

C. Calculating Matching Probability of an Acceptor

Let, Nd be the arrival rate of donors and Na be the arrival
rate of acceptors in a deployment area B at any time instant
t.

Probability that a donor EVd sends CONFIRM message to
any one of the acceptors EVa among its reachable acceptor
set at time t is

Pconfirmd =
1

|EVra(t)| of EVd

Hence, probability that an acceptor EVa do not get any
CONFIRM is
Pnot confirm = (1�Pconfirm1)(1�Pconfirm2)...(1�Pconfirmm)

where m = |EVrd(t)| of EVa.
Probability that an acceptor EVa got matched is

Pmatched = 1� Pnot confirm

Now, for constant arrival rates of acceptors and donors,
homogeneous communication ranges ra and rd for acceptors
and donors respectively,

Pconfirm1 = Pconfirm2 = ...... = Pconfirmm = P

Therefore,
Pmatched = 1�

✓
1� B

⇡r2dNa

◆⇡r2aNd
B

VI. SIMULATION RESULTS

A. Simulation Environment

In this section, we have presented our simulation results
as a performance index of our proposed algorithms. For the
simulation, we use a system with following specifications:
1.8 GHz Dual-Core Intel Core i5, 8 GB 1600 MHz DDR3
RAM. Octave tool [32] is used for programming. Among the
three existing distributed works, discussed in Section II-C, we
have compared our simulation results with Distributed Stable
Matching [13] and MPR-based Method [14]. The other work
[12] is not considered, as the algorithm proposed in that paper
works in rounds, hence takes more time to converge. For every
result in this section, we took the average of 20 different runs
for statistical significance. The simulation parameters are listed
in Table VII.

B. Performance Metrics

Performance of our proposed algorithms is analyzed based
on the following metrics:

1) Successful matching percentage: It is the percentage of
acceptors got matched with the respective donors.

2) Matching preference: It is denoted by the Rank asso-
ciated with the matched edge between an acceptor and

TABLE VII: Simulation Parameters

Parameter Value
Region(R⇥R) 1 km⇥1 km

Number of donors 20-50
Number of acceptors 20-50

Communication range of EV 100 m to 500 m
EV Deployment Uniform random distribution
Vehicle speed 10 - 25 km/hr

Cumax 10 $ per kWh
Tmax 30 mins

ratemax 50 kWh per hour
chargemax 20 kWh

Rmax 10

donor. It signifies that whether an acceptor is matched
with its preferable donor or not.

3) Message overhead: This is the number of messages
exchanged between the acceptors and donors during the
entire matching process.

C. Performance Analysis
1) Successful Matching Percentage: In Figure 3, we

have compared the matching percentage of V2VDisCS
with respect to [13] and [14] varying number of donors.
V2VDisCS(simulation) and V2VDisCS (Theoretical) indicate
the results that we get from simulation and from theoretical
matching probability calculation (Sec V-C) respectively. We
achieve 100% matching, when no.ofdonors

no.ofacceptors = 2.25, while
the communication range is 0.2R. V2VDisCS outperforms the
existing Distributed Stable Matching algorithm [13] signifi-
cantly with atmost 80% increase in matching % and with [14]
atmost 3 times improvement. V2VDisCS (simulation) is also
very close to V2VDisCS (Theoretical).

Fig. 3: Successful matching % vs Number of donors
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Fig. 4: Ranks of reachable donors for each acceptor

2) Matching Preference: In Figure 4, for a particular 100%
matching scenario with 50 acceptors and 50 donors, the Ranks
of the reachable donors for each acceptor are plotted. Here,
MIN Rank and MAX Rank denote the minimum and maximum
Ranks of reachable donors respectively. AVG Rank denotes the
average of minimum and maximum Ranks and the Assigned
Rank(V2VDisCS) denotes the Rank of the matched donor,
found by V2VDisCS.

We can see in the figure that, for 100% acceptors, the
assigned Ranks are below the average Rank, 10% acceptors get
their first preference and none of the acceptors get the worst
choice. Hence, we can conclude that, most of the acceptors
get their favorable donors.

In this figure, we also plotted the Rank of the matched donor
for each acceptor, found by the Gale-Shapley algorithm [16],
which is a standard centralized stable matching algorithm.
We can see that, for almost 76% acceptors, assigned ranks
by V2VDisCS are less than or similar to the results of [16].
Hence, there are 24% unstable edges [17]. In spite of being a
distributed heuristic approach with partial view of the network,
V2VDisCS performs well compared with centralized matching.

Remark. An edge {a 2 A, d 2 D} 2 E\M in an Acceptor-
Donor bipartite graph G = (A[D,E) is unstable relative to
matching M if a is unmatched or prefers d over its current
match in M [17].

In Table VIII, we have listed percentage of unstable edges(✏)
considering different scenarios, by varying number of accep-
tors and donors. Here, we can see that ✏  0.38, which is a
fraction of the number of matched edges. Hence we can claim
that, we have achieved almost stable matching [33].

3) Message Overhead: In Figure 5, the number of different
types of messages, communicated in V2VDisCS is shown for
a particular scenario with 100% matching.

Fig. 6 compares the message overhead of V2VDisCS with
[13] varying communication range. In Fig 7 we have compared
the message overhead of V2VDisCS with [13] and [14] varying
number of donors. In both the cases, the message overhead of
V2VDisCS is lesser than the existing approaches.

TABLE VIII: % of Unstable Edges

#Acceptors #Donors % of unstable edges (✏)
30 30 38
30 40 34
30 50 31
40 30 33
40 40 28
40 50 26
50 30 29
50 40 26
50 50 22

Fig. 5: Different types of Message Communication

Fig. 6: Total Number of Message Communication vs. Com-
munication Range

VII. CONCLUSIONS

V2V charge transfer is an emerging technology for EVs
nowadays, which can reduce the congestion in the static
charging points. In this paper, we have proposed distributed
heuristics V2VDisCS for V2V matching for charge sharing
by solving a multi-criteria decision-making problem, where
we can maximize matching cardinality and minimize match-
ing cost. An average case matching probability analysis is
performed. Simulation results show that the proposed solu-
tion outperforms the existing distributed state-of-the-art with
respect to matching percentage and message communication
overhead. It shows comparable result for matching preference
with respect to standard centralized stable matching algorithm
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Fig. 7: Comparison of Message Overhead

and ensures almost stable matching. In future we will consider
more real simulation scenarios, such as increased number of
EVs in a larger deployment area and will check the perfor-
mance, if an acceptor is allowed to reach a donor beyond its
communication range. How close the proposed solution is to
the optimal one also need to be proved.
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