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Abstract—Skill-based volunteering is an expanding branch
of crowdsourcing where one may acquire sustainable services,
solutions, and ideas from the crowd by connecting with them
online. The optimal mapping between volunteers and tasks with
collaboration becomes challenging for complex tasks demanding
greater skills and cognitive ability. Unlike traditional crowdsourc-
ing, volunteers like to work on their own schedule and locations.
To address this problem, we propose a novel two-phase frame-
work consisting of Initial Volunteer-Task Mapping (i-VTM) and
Adaptive Common Slot Finding (a-CSF) algorithms. The i-VTM
algorithm assigns volunteers to the tasks based on their skills
and spatial proximity, whereas the a-CSF algorithm recommends
appropriate common working time slots for successful volunteer
collaboration. Both the algorithms aim to maximise the overall
utility of the crowdsourcing platform. Experimenting with the
UpWork dataset demonstrates the efficacy of our framework over
existing state-of-the-art methods.

Index Terms—Crowdsourcing, Skill-based volunteering, Spa-
tial task allocation, Collaboration, Common working time

I. INTRODUCTION

Crowdsourcing, be it spatial or non-spatial, has even shifted
from traditionally professional areas to involving a large
number of people. This happened due to the significant tech-
nological advancements over the last decade. The capacity to
quickly create content online via Web 2.0 and the proliferation
of smart mobile devices that can timely record the location of
assets have always had a positive technological impact. Now,
we use this technology to create a skill-based volunteering
crowdsourcing system (VCS) that finds its role in different
domains like healthcare, emergency, sustainable development,
social awareness, etc.

VCS is an expanding branch of crowdsourcing where one
may acquire sustainable services, solutions, and ideas from the
crowd by connecting with them online. This is different from
commercial platforms like Mechanical Turk [1], UpWork [2],
Freelancer.com, and Topcoder.com that allow enterprises and
organizations to hire crowd-workers to do various tasks, saving
money and resources. In contrast, volunteer crowd-workers can
be neophytes, expert amateurs, professionals, or a combination
of all contributing to the socio-economic upliftment and sus-
tainable development goals of shared interests.

One of the most important research issues of any crowd-
sourcing infrastructure is task assignment to best-fit workers.
The mapping between tasks and ideal crowd-workers becomes
particularly challenging for complex tasks that demand high
skill needs and cognitive capacities; but no single worker

may satisfy diverse requirements of such a complex task [3]–
[5]. Dealing with volunteers raises additional challenges that
are also common in traditional enterprise crowdsourcing. One
factor we address in this research which is more prevalent to
VCS is that volunteers prefer to work in their physical vicinity,
at home (for non-spatial tasks) or in local neighborhood (for
spatial tasks), and also at their own schedule. They presumably
prioritise tasks that best fit their skills, abilities, and interests.
Although they are not paid directly, they are reimbursed for
any expenses related to the execution of assigned activities,
such as travel expenses, instrument costs, medical aid, etc. One
of the primary critiques of volunteering is that inexperienced
volunteers do tasks that normally need qualified personnel.
Volunteered instructors with little or no experience are preva-
lent. Volunteering work abroad allows medical students to
undertake unskilled procedures tests. In any women’s empow-
erment projects, micro-scale rural commerce units, etc.,there is
a need of highly skilled professionals to train novice workers.
Thus, in order to ensure that volunteers’ skills fit organisational
needs while also accommodating their schedules, a thorough
volunteer-task mapping method is necessary.
Our Contributions: This paper proposes a novel two-phase
framework to select volunteers for spatially scattered tasks
(Phase-1) and then recommend an adaptive common working
slot for effective volunteer collaboration (Phase-2). Our main
contributions are:

(1) We formulate the volunteer-task mapping (VTM) as a
constraint optimization problem. The tasks into consideration
have a location attribute along with certain skill requirements.

(2) We propose an Initial Volunteer-Task Mapping Algo-
rithm (i-VTM) for assigning volunteers to the tasks based
on their skills and location proximity. Next, we propose an
Adaptive Common Slot Finding Algorithm (a-CSF) to suggest
a common working slot for effective volunteer collaboration.

(3) We conduct experiments on a real dataset, UpWork [2]
(a marketplace for freelancing and crowdsourcing) consisting
of 97 tasks and 1,575 candidates in the sample. Results show
that the proposed strategy is effective in comparison to the
other state-of-the-art techniques.

The rest of the paper is organized as follows. Section II
briefly reviews the related work. Section III formulates the
problem while Section IV describes the proposed framework.
Section V presents experimental results to evaluate the perfor-
mance of the framework. Section VI concludes the paper.978-1-6654-3540-6/22$31.00 © 2022 IEEE
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Fig. 1: Proposed Framework

II. RELATED WORK
Regardless of the form of crowdsourcing, task allocation is

one of the most important issues. Because of the emergence
of GPS and mobile sensing technology, spatial crowdsourcing
[6], [7] is gaining popularity. Since participants in spatial
crowdsourcing must physically progress to the task’s location,
the task allocation procedure should also include their ability
to reach the target place. The conceptualization and manage-
ment of complex tasks is extensively studied [3], [8].

In [9], the authors proposed the GMA approach, which
was influenced by group strategy, and subsequently fine-
tuned it to produce the RGMA method. Other works based
on diverse skill based complex task allocation are [3], [4].
The authors [8] of paper stresses on decomposing a complex
tasks into their atomic counterparts for improved completion
rate and reliable solutions. On the same ground, the [8]
proposes combining related subtasks into a batch that will
be assigned to the same participants. Bounded budget and
non-homogeneous tasks, each demanding certain skills, are
considered in [10], which uses bipartite matching to design
an incentive-compatible method; but it does not consider the
dynamic setting of the entity’s arrival trend. The paper [11]
discusses a participant selection scenario of crowdsourcing in
disaster management area. In [12] the authors presented a team
recruiting technique for collaborative crowdsourcing based on
team members’ social network neighbours’ familiarity. Col-
laborative crowdsouring is popular in software development
marketplace [13], [14]. Yet another popular idea is to use
incentives mechanisms [15], [16].

To the best of our knowledge, none of the above works ex-
plored skill-based volunteer allocation for spatially distributed
complex tasks, which require a variety of skills that may not be
met by a single volunteer. Though the paper [3] deals with the
complex spatial task allocation, their greedy approach runs in
O(|C|+ |T |)2. We also advocate a shared working slot for all
volunteers to help in collaboration. Volunteers are preferably
assigned tasks that are nearest to their proximity. The authors
in [14] do consider workers’ active time preferences, but the
tasks are neither spatial nor they recommended any common
time slot. Their allocation is also one-to-one.

III. PROBLEM FORMULATION
Given a set of complex spatial tasks T . Any task t ∈ T

has a list of skills Qt required by it and a set of locations

Lt . Each replica rti of t may be will be located at Pti from
the set Lt . It is assumed that when t is posted on a VCS
platform, the interested volunteers would apply. Thus, a cluster
of applicants A is formed. Any volunteer c ∈ A has a list of
skills Qc and is linked to a current location Pc. Along with it,
c also has a time slot Slotc with starting time Sc and ending
time Ec. This slot is the preferable active online time for c.
It is obvious that the interested volunteer should have certain
skills/experience/abilities/knowledge required for task t. These
matching competencies actually encourage them to apply. The
cost Zc incurred by c is based on the distance Dist(Pc,Pti).
This Dist is the distance between c and any ith the replica
of the task t for which c will be selected and the expense is
charged per unit distance, denoted by δ . For simplicity, we
considered the Euclidean distance formula, and the locations
for both the entities are assumed to be in (x,y) point format
in a 2D Cartesian Coordinate system.

The working time of the volunteers A is utilized as an
important driving factor for initiating collaboration among
them. We need to determine a common working time slot
applicable to most of the selected volunteers for a given t’s ith

replica. It is to be noted that all replicas of any task t shall have
the same skill requirements but vary with respect to location
attributes. Thus, skill requirements Qt for all replicas of each
task t, need to be satisfied for successful allocation and every
c would be assigned to his/her near-most located replica.

Problem Statement: We propose a two-phase framework
consisting of: (1) Volunteer-Task Mapping (VTM): Given a
set of spatial tasks T (including their corresponding replicas)
and a set of interested volunteers A, assign volunteers to
the best-fit tasks’ replica based on the former’s skills and
spatial proximity such that skills requirements of the tasks are
covered and the net utility (refer Formula-1) is maximized. (2)
Common working time slot finding for productive collaboration
among the volunteers Cti selected for rti replica of t ∈ T , while
assuring volunteers’ feasibility. Thus, when a candidate c is
assigned to a task t, the emphasising utility (c, t) is given by:

U(c, t) = |S′t |/Zc (1)

where S
′
t represents the candidate’s matched skills, Zc is

calculated as Dist(Pc,Pti) ∗ δ for each c ∈Cti towards the ith

replica of t and δ is the trip expense per unit distance. The
net utility is the overall utility supplied by all selected (task,
volunteer) pairings at the conclusion of assignment cycle. The
goal is to select a set of volunteers Cti that reduces the incurred
cost while covering Qt so as to maximise the utility gained
by including c. This is followed for every task,volunteer pair,
hence optimising the overall utility of the VCS platform.
This leads us to construct the VTM problem as constraint
optimization problem.

Theorem 1. VTM can be reduced to Weighted Set Cover
(WSC) problem and hence is NP-hard.

Proof. In an instance of WSC there is a m size universal set
U = {a1,a2, ....am} and its n subsets A1,A2, ...An. Each Ai has
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a weight wi.The aim is to find A∗ ⊆ A = {A1,A2, ...An} such
that union of A is U and ∑Ai∈A∗ wi is minimized.

In case of VTM, suppose there is a single task T = {t} with
only one replica, whose skill requirements is Qt =U . There set
of applicants is A of cardinality n. The cost incurred by each
applicant from A is Zi. Our goal is to find a set of volunteers
Ct ⊆ A to minimize the cost ∑i∈Ct Zi in order to maximise the
utility (Equation-1). Thus, VTM can be successfully reduced
to WSC which is a popular example of NP-hard problems
[17]. Hence, VTM is also NP-hard.

IV. PROPOSED FRAMEWORK
The framework has two distinguished phases. The first one

is the i-VTM phase, and the second one is the a-CSF phase.
The illustration of our proposed framework is depicted in
Figure-1. The primary objective of this work is optimizing task
allocation, whereas proposing common work slots to chosen
applicants is an added functionality. The phase-1’s action is
contingent upon the parameters skill set and spatial location
being known. The phase-2’s functionality is determined by
the information given on the parameters slot timings and the
output allocation map from phase-1.

The concept of bipartite graph is utilized in scheming three
main data structures, namely Allocation Map (Map or Gmap),
Skill-Task Mapper (GST ) and Skill-Volunteer Mapper (GSM).

A. Initial Volunteer-Task Mapping Algorithm
This section describes in detail the i-VTM algorithm. To

begin, the volunteer having the highest skill is selected at step-
4. In step-5, the Task Allocation subroutine is invoked which
returns the ideal replica of the best-fit task suitable for that
volunteer. This holds true for all volunteers in A. If any t is
still incomplete, the client or the task requester is notified, and
searching outside set A is initiated.

Algorithm 1 Initial Volunteer-Task Mapping (i-VTM)
Input: Set of interested applicants A, set of tasks T = {t1, t2, ...tn}
Output: Allotment dictionary Map

1: Start
2: Generate Skill-Task Mapper matrix GST
3: for c ∈ A do
4: ω ← argmax (|Qc|) {Select the applicant volunteer who has the highest

number of skills}
5: t

′
=Task Allocation(ω,T )

6: Update Map,GST
7: end for
8: if any t ∈ T has some existing skill requirements or is incomplete then
9: Notify the client

10: Initiate search outside A
11: end if
12: return Map
13: End

GST and GSM are constructed inside the Task Allocation
subroutine (refer Algorithm-2). GST or Skill-Task Mapper is
used for storing skills per task requirement and is implemented
using a 2D matrix. For constructing the matrix, all replicas of
all posted tasks are taken together to represent the columns
and are considered as general tasks (denoted as T

′
). Thus, if

combining all the n tasks in T
′
, there are in total m distinct

skills, then the size of GST will be m×n. The entry (x,y) is
set to one if and only if, a skill x is required by any task y;

Algorithm 2 Task Allocation
Input: volunteer ω , Set of Tasks T = {t1, t2, .., tn}
Output: Allocated Task t

′

Initialization: Initialize list of recommended tasks P←∅, Reco←∅
1: Start
2: GSM ← Generate Skill-Volunteer Mapper for ω

3: col sum ← Column-wise sum of GSM
4: col max sum ← Max(col sum)
5: for i ∈ |col sum| do
6: if col sum[i] == col max sum then
7: Append i to P {Recommend all tasks in T who match the condition}
8: end if
9: end for

10: for each i ∈ P do
11: r = argmin Dist(ω,replica o f i) {Using any distance formulation metric}
12: Append r to Reco
13: end for
14: t

′ ← argmin Reco
15: return t

′

16: End

else zero. GST is necessary for maintaining current knowledge
of the status of a task’s skill requirement coverage, and it is
dynamically modified after each allocation. The first step of
Algorithm-1 is to generate this GST . To clarify, an example is
presented through Table-I and Table-II.

TABLE I: Details of the Tasks and their Replicas
Tasks Skill requirements Replicas Locations
t1 Photography, Cartographer, t11, t12, t13 (1,2), (3,5), (5,5)

Planning knowledge
t2 Food critic, Nutritionist, Chef t21, t22 (5,8), (3,1)
t3 Photography, Cartographer, t31 (6,10)

Sport enthusiast

TABLE II: Details of the volunteers
Volunteers Skill-set Current Preferred

Location Slot
c1 Cartographer, Guitarist, (3,7) 12-15 hr

Photographer, Chef
c2 Food critic, Nutritionist (1,1) 12-14 hr
c3 Photography, Cartographer, (6,4) 11-15 hr

Sport enthusiast
c4 Planning knowledge, (3,3) 13-17 hr

Cartographer
c5 Chef, Cartographer, (1,5) 9-11 hr

Driving
c6 Driving, Chef (7,7) 14-16 hr

GSM or Skill-Volunteer Mapper is for matching each volun-
teer’s skills to that of the requirements of tasks. GSM is also
implemented by a 2D matrix called. If a volunteer has m skills,
the GSM for n tasks will be m×n in size. If and only if skill x
is required by task y, the entry (x,y) is set to one; otherwise,
zero. Any skill a volunteer has that is not in any of the posted
tasks lists is not taken into account. Moreover, construction of
GSM is straight forward. In fact, GSM is a sub-graph of GST .
The details of volunteers exemplified in the Table-II are used
throughout the paper. The corresponding GSM of c1 is:

t11 t12 t13 t21 t22 t31( )1 1 1 0 0 1 Photography
1 1 1 0 0 1 Cartography
0 0 0 1 1 0 Che f

According to the Algorithm-2, the first volunteer to be
chosen is c1. Then, GSM of c1 is generated and column-wise
sum of GSM is manipulated. There is no need to update GSM
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because once an applicant is assigned to any replica, he or
she is removed from the decision process for the particular
assignment cycle. In steps 11-13, for every recommended
tasks (here both t1 and t3), its corresponding nearest replica
is selected and is appended to a temporary list Reco. The
decision is made depending on distance between C1’s current
location and that of the replicas. After this, the closest among
nominated replicas (t12) in Reco is returned. The t12 is a
replica of t1 and is located at position (3,5) and is at 2
unit distance away from C1, following Euclidean distance.
Then, Map is updated in i-VTM. The contributed skills of c1
are Photography and Cartography. This does not necessarily
imply that the requirements of t1 are entirely satisfied. It
signifies that the requirements of t1’s replica t12 for only these
two skills are covered. The respective cell entries of GSM are
made zero. The resultant modified GST is:

t11 t12 t13 t21 t22 t31



1 ���
0

1 1 0 0 1 Photography

1 ���
0

1 1 0 0 1 Cartography
1 1 1 0 0 0 Planning Know
0 0 0 1 1 0 Food Critic
0 0 0 1 1 0 Nutritionist
0 0 0 1 1 0 Che f
0 0 0 0 0 1 Sport Enthusiast

Theorem 2. The proposed solution for VTM problem has a
soft lower-bound
Proof. A task t is considered satisfied if and only if all its
skills requirements are met by the volunteers (Ct) assigned to
t that is Qt ⊆

⋃
c∈Ct Qc. The soft lower bound is set on the

task assignment because it is impossible to determine whether
there is a 100% success rate due to the greedy nature of the
solution. However, we assure that in order to declare our given
assignment decision successful for task t, it should at least as
good as covering the skill requirements of t in order. The idea
has been derived from the papers [18], [19].

B. Adaptive Common Slot Finding Algorithm
This algorithm (refer Algorithm-3) defines the second phase

of our framework. The Map from the previous phase is used as
the input here. The final result is a list of common slots, cs. The
classic prefix sum calculation is combined with a novel self-
adjusting satisfaction threshold strategy to determine the most
advantageous common working time slot for the volunteers
who cooperated for any given task’s replica. Note that only
the successfully assigned tasks and volunteers (presented in
Map) in i-VTM phase are passed to the second phase.

First, the preferred slots’ HH:MM time format is trans-
formed to MM:MM for precise manipulation and saved in
pre f slots minutes. Next, an array time slot minutes is ini-
tialized to contain the total number of minutes in a day begin-
ning at 12 AM (0000) and ending at 11:59 PM (1439). The
|time slot minutes| array shall always be bounded and equal
to 1,440. Then, the start (+1) and end (-1) time boundaries of
each slot in pre f slots minutes are marked. Doing the prefix

Algorithm 3 Adaptive Common Slot Finding (a-CSF)
Input: Allotment dictionary Map
Output: List of recommended common slots cs with respective volunteers count

Initialization: Initialize self-adjusting satisfaction threshold θ = 0.5, List n thresh←
∅

1: Start
2: pre f slots hours=Lists the slots of all volunteers in Map, each in the form

[start,end]
3: pre f slots minutes= Convert each slot in pre f slot hours in minutes {Convert

HH:MM to MMMM format}
4: for i=0 to (24*60+1) do
5: Initialize time slot minutes[i] = 0 {Account for all the minutes present in 24

hour}
6: end for
7: for slot in pre f slots minutes do
8: time slot minutes[slot[0]]+= 1 {For each slot just mark the start marker i.e +=1

and the end marker i.e -1}
9: if slot[1]+1 < length(time slot minutes) then

10: time slot minutes[slot[0]]−= 1
11: end if
12: end for
13: Find the prefix sum of every element in time slot minutes array
14: n thresh= Threshold Volunteers Count (length(pre f slots minutes)) {Number of

threshold volunteers to look for}
15: for θ in n thresh do
16: cs = Final Slot Computation Algorithm(time slot minutes,θ ) {Get the recom-

mended common slots for every given threshold count}
17: if csend − csstart +1 < 60 minutes then
18: Stretch csstart and csend to 60 minutes each.
19: end if
20: end for
21: return cs

sum calculation on time slot minutes array, the count of slots
in which the minutes appeared is computed.

Algorithm 4 Threshold Volunteers Counting
Input: length of preferred slots l
Output: Set of the number of volunteers of every threshold generated from 1 to 0.5,

n thresh
1: start
2: θ = 1
3: while θ >= 0.5 do
4: Add ceil(l ∗θ ) to n thresh
5: θ−= 0.1
6: end while
7: return n thresh
8: End

In step 14, the Threshold Volunteers Count method is used
to set the lower bound of n thresh. The element θ ∈ n thresh
is called self-adjusting satisfaction threshold. The n thresh is
a non-increasing array whose 0th index is always 1 and the
last index is 0.5 (the lower bound in our setting). This means
that a-CSF should first try to search for a slot to satisfy 100%
of the volunteers and gradually lower the bar till its threshold
meets the pre-defined lower bound of 50%. This accounts for
adaptability of a-CSF. The Final Slot Computation method
invoked at line 16 compute the slots for every threshold counts.
Given, A is the number of applicants and T

′
is the number of

all the replicas of all available tasks in the VCS platform,
the i-VTM runs in O(|A|× |T ′ |) time and the a-CSF runs in
O(|A′ |), where |A′ | is the number of volunteers qualified in
phase one for a specific tasks’ replica.
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Algorithm 5 Final Slot Computation
Input: List of time slots in minutes timeslot minutes, List of calculated thresholds thresh
Output: Common slot slot

1: start
2: start =−1,end =−1 {Stores the final common slot having maximum duration}
3: i =−1, j =−1 {Pointers to mark the current maximum length slot}
4: curMaxDur = 0 {To compare the next valid slot with previous slot of maximum

duration}
5: while i < length(time slot minutes) do
6: if time slot minutes[i]≥ thresh then
7: j = i+1
8: while j < length(time slot minutes) and time slot minutes[ j]≥ thresh do
9: j = j+1

10: end while
11: if j− i > curMaxDur then
12: start = i, end = j−1, curMaxDur = j− i
13: end if
14: if j < curMaxDur then
15: i = j
16: else
17: break
18: end if
19: else
20: i = i+1
21: end if
22: end while
23: slot = [start,end]
24: return slot, thresh
25: End

V. PERFORMANCE EVALUATION
We conducted simulations using an Intel i3 dualcore CPU

running at 2GHz, 4GB of RAM, and Windows 10. The code
was written and compiled in Python.
A. Dataset

On Feb 26, 2021, data was crawled from UpWork [2] for
experimental purposes. The locations are produced synthet-
ically using a random distribution, such that each entity is
spatially constrained within a [50× 50] 2D Cartessian plane.
The volunteers’ chosen time slots are generated randomly. All
starting times lies within [00 : 00,20 : 59] in accordance with
the HH:MM norm. All volunteer slots are assumed to be 3
hours long,. The end time should not exceed 11:59 p.m. The
task’s category contains the task’s name, ID, skill require-
ments, and XY positions. The features of candidates include
their names, ID, preferred time slots, and XY locations.

TABLE III: Parameter Settings
Parameters Settings
Number of tasks 97
Number of volunteers 250 to 1575
Average number of replicas per task 3
Average Skill count per volunteer 7
Average skills demanded per task 10
Average completion time of task 7.5 hours

B. Performance Comparison
The following three works serve as benchmarks for evalu-

ating our framework’s performance: (1) Online Greedy (OG)
[3]: It is also greedy and allocates spatial tasks online
based on multi-skill needs. The time complexity of OG is
O(|C|+ |T |)2. (2) Group Matching Algorithm (GMA) [9]: It
is also greedy based, considers distance factor between any
task and candidate into account and follows one-to-many task
allocation in offline mode. (3) TM-Uniform [10]: It allocates
tasks to applicants maintaining budget sustainability. It also
takes into account the skill needs of tasks, but in a different
way than our more common greedy method. We integrated

the proposed a-CSF phase into the baselines to show the
performance comparisons of the proposed i-VTM method. To
our knowledge, this is the first study to recommend a common
working slot in the context of crowdsourcing that assures at
least θ participants’ preferences are met.
Performance metrics: The performance metrics for evaluating
the algorithms are:
(1) Net utility: For a single pair, utility is computed using the
Formula-1. The net utility is supplied by all selected (task,
volunteer) pairs at the conclusion of a given assignment cycle.
(2) Success rate: It quantifies the mean proportion of allotted
volunteers whose involvement results in the completion of all
available tasks. Assuming, the present tasks in the system is
T = {t1, t2, ..t|T |} and their corresponding number of replicas is
R= {r1,r2, ..,r|T |} such that ti has total ri replicas distributed at
different locations. The number of successful allocation count
for the replicas are given as S = {s1,s2, ...s|R|}. This means
out of ri replicas of task ti, si are allocated. Thus, success rate

is calculated using the following formula: ∑
|R|
i=1 si

∑
|T |
i=1 ri
×100.

(3) Average waiting Time: It specifies the average time spent
by the tasks waiting to be assigned in an assignment cycle and
is expressed in seconds.
(4) Overall task completion rate: It is computed for each task
as a whole considering all the replicas and is calculated using

the formula:
∑
|R|
i=1(

si
ri
)

∑
|T |
i=1 ti

×100.

(5) Total satisfactory rate: It is determined as per the final
computation of common slot and comparing the same with
the actual preferred slot given by the applicants. It is cal-

culated by using the formula:
∑
|R|
j=1 satis f action score j×|A

′ |
|A| × 100,

where satis f action score of all selected volunteers V as-
signed to any replica r is determined as satis f action scorer =

∑
|V |
v=1(length(slotv)∩ length(csr)). This metric is used to test

the performance of the a-CSF algorithm by capturing how
each recommended common working time slot for a replica is
covering the selected volunteers’ given time slot preferences.

The first four metrics (net utility, success rate, average
waiting time, and overall task completion rate) are used to
observe the performance between the proposed framework’s i-
VTM (phase-1) and the three baselines, based on the respective
task assignment strategy. The Total satisfactory rate is utilised
to compare the effectiveness of our framework (phases 1 and
2) to that of the baselines integrated with a-CSF module.

C. Experimental Results
Effect on success rate: Our proposed i-VTM approach has
average success rate is 18.6%, the second-best provider is
OG which gives average of 16% (Figure-2(a)). The respective
values for the rest are 13% (GMA) and 11%(TM-Uniform).
Our method establishes a preliminary match based on task skill
requirements and volunteer skill availability. From the filtered
tasks and replicas, a volunteer gets the spatially nearest replica.

Effect on net utility: The i-VTM, OG, GMA, and TM-
Uniform have average net utilities of 31, 26, 23 and 22 units
respectively (Figure-2(b)). They all try to map volunteers by
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Fig. 2: Illustration of (a) success rate, (b) net utility, (c) average waiting times and (d) overall completion rate

skills and vicinity. Our method looks for volunteers who can
not only provide the highest skill coverage at a given time but
also have the highest skill set among all compatible volunteers,
so they can be provisionally matched to more tasks.

Effect on average waiting time: Figure-2(c) shows that our
i-VTM task allocation algorithm (phase-1) is extremely fast,
taking only 5 seconds on average, while others take 10 (OG),
8 (GMA) and 13 (TM-Uniform) seconds.

Effect on overall task completion rate: If a task has x replicas
and all of them have been successfully assigned to ensure that
all of their skill criteria are satisfied, the task’s completion rate
is 100%. From Figure-2(d), overall completion rate of i-VTM
is high which is on average is 27%. OG is the second lead
22%. Others are 16% (GMA) and 12% (TM-Uniform).

Effect on total satisfactory rate: From Figure-3, it is noted
that our proposed framework (i-VTM with a-CSF) gives an
average satisfactory rate of 86%. It is noted that a-CSF does
have a positive impact on increasing the satisfactory gain of
the assigned volunteers from the task allocation phase.
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Fig. 3: Total satisfactory rate of the assigned volunteers

VI. CONCLUSION
In this work, we proposed a two-phase framework consisting

of Initial Volunteer-Task Mapping (i-VTM) and Adaptive
Common Slot Finding (a-CSF) algorithms. The i-VTM al-
gorithm is for assigning volunteers to tasks based on their
skills and spatial proximity and a-CSF algorithm is for rec-
ommending appropriate common working time slots to aid in
successful volunteer collaboration. The UpWork dataset proves
the efficiency of our strategy with respect to the existing state-
of-the-art methods. We intend to further explore this work by
experimenting in an both-way online setting. We have also
planned to look into the effects of the participating volunteers’
latent potential levels and willingness on task assignment.
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