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ABSTRACT
Partitioning large matrices is an important problem in distributed

linear algebra computing, used in ML among others. Briefly, our

goal is to perform a sequence of matrix algebra operations in a

distributed manner on these large matrices. However, not all parti-

tioning schemes work well with different matrix algebra operations

and their implementations (algorithms). This is a type of data tiling

problem. In this paper we consider a data tiling problem using hy-

pergraphs. We prove some hardness results and give a theoretical

characterization of its complexity on random instances. Addition-

ally we develop a greedy algorithm and experimentally show its

efficacy.

CCS CONCEPTS
•Computingmethodologies→Distributed computingmethod-
ologies; Parallel computing methodologies; • Theory of compu-
tation→ Theory and algorithms for application domains.
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1 INTRODUCTION
Our problem is motivated by the following. Machine Learning and

Scientific Computing usually involve linear algebra operations over

largematrices and tensors (here we call them elements) ([19, 20]). To

achieve scalability, operations involving these elements are usually

carried out using distributed algorithms. If the involved elements

are too large to be stored within a single shared memory system,

then distribution is the only viable option in most cases. In this

setting, the problem of partitioning data elements across a collection
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of nodes over which the computation will be carried out emerges

as a problem whose solution can yield significant benefits.

First, we give an informal description of the tiling problem. We

consider a user program P as a high-level collection of operations

involving large elements. We consider only matrices and vectors;

however, our formulation can be extended to higher dimensions

without great difficulty. These operations may be logically depen-

dent, which is given by a dependency graph G. We want to execute

the operations (in P) in a distributed manner on a set of computa-

tional nodes. In general, for different operations, we may have one

or more distributed algorithms implementing the operation. For

example, suppose we have several different distributed implementa-

tions of matrix multiplication, which takes two input matrices and

returns their product. This operation can be implemented usingmul-

tiple distributed algorithms (e.g., Cannon’s Algorithm, Distributed

Stressen’s [3], PUMMA [9] etc.) each may prefer a different type

of partitioning scheme for the matrices involved. An element may

participate in multiple operations, and each operation may intro-

duce a different set of constraints on the preferable partition of the

element. Considering the matrix example again, suppose a matrix

A is involved in two different operations: C = mulcannon (A,B)
and D = invдj (A). Further, suppose multiplication has been im-

plemented using the Cannon’s algorithm, which prefers that the

matrices be partitioned block-wise. On the other hand, a matrix

inversion using Gauss-Jordan may prefer the matrix A to be dis-

tributed as blocks of columns (column tiling). Unless we want to

keep multiple copies of A, the choice of the partitioning scheme

will affect the performance of different operations involvingA. This
example leads us to a natural optimization problem: given a collec-

tion of operations, determine an optimal partitioning scheme for

the elements to minimize the communication cost.

1.1 Problem Formulation
In this section, we describe some elements of our model at a high

level. In subsequent sections, we adapt it based on the specific

result we seek. We often use the phrase “user program" to indicate a

collection of possibly dependent high-level operations. Abstracting

away local operations, external memory read-write, etc. We only

concern ourselves with operations in the program involving the

distributed matrices. However, our optimization framework is fairly

generic.

1.1.1 Partitioning Schemes. First, we discuss the type and the de-

gree of granularity in the partitioning scheme that we consider.

In general, a collection of matrices (either sparse or dense) can be

considered as a hypergraph where the elements of the matrices are

vertices, and an edge indicates if the elements are involved in some
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operation (here operation refers to atomic operations like sum,

comparisons, etc.). Hence a collection of matrices and dependent

expressions gives way to a set of hypergraphs, and the goal is to

find an optimal p-partition (where p is the number of processing

nodes) that minimizes the total number of cut-edges. Hypergraph

partitioning has been used extensively for partitioning data or the

computation ([4, 11, 16]). This problem is approximation-hard and

various heuristic based solvers used in practice are best suited

when dealing with one such graph at a time. Further, determination

of the exact communication pattern (and thus the edges) may be

non-trivial.

On the other hand, most distributed matrix algebra algorithms

use some type of block decomposition (especially for dense matri-

ces). Thus it makes sense to look at the partitioning scheme at a

higher level, which we call tilings. As an example in figure 1 three

commonly used tilings are shown. A tiling need not be contiguous

or necessarily disjoint, and as such, there can be many different

tiling types (a parameter for our model which is discussed later).

m

n

t

t

t

Figure 1: A tile is highlighted as the shaded rectangular re-
gion. Three types of tilings. From left to right order: row (r ),
column (c) and block (b).

1.1.2 Operations. The second element in our model is the matrix

algebra operations. They are encapsulated at a high level as ex-

pressions like A = mul(B,C). These are the “atomic expressions"

in our model. So an expression like the following is a composite

expression:

A = sum(B,C,mul(D,E, FT )), (1)

where FT is the transpose of F . The above expression does not

immediately tell us how we should go about computing the product

DEFT . Interpreting this as D(EFT ) is not the same as (DE)FT in

terms of the number of arithmetic operations used, since different

parenthesization of the matrices in the product term may lead to

a differing number of arithmetic operations to compute the final

product. This is another optimization issue
1
separate from the par-

titioning problem. The above expression does not explicitly tell us

where/how to store this temporary product. For example, if the

result matrix DE will be used later in some other expression, it

may be a good idea to store it as a separate matrix. This is another

optimization problem. To avoid ambiguities in classifying expres-

sions, we consider an abstraction based on hypergraphs (introduced

in section 4). However, to prove a lower bound, a simpler model

1
We can solve this easily using a dynamic programming formulation.

B

C

FT

D E

A = DE

G = AFT

A = C +G

A = B +A

Figure 2: A possible computation DAG corresponding to the
expression in Eq 1. Here G is an additional matrix to hold
the intermediate result mul(D,E, FT ).

using graphs is considered (section 3). A computation DAG corre-

sponding to the expression given in Eq. 1 is shown in figure 2. Even

in the hypergraphic model, we use a partial order to encode the

dependency of the expressions similar to using a computational

DAG.

1.1.3 Cost Model. A solution to our partitioning problem is a tiling

of the matrices. There are various ways to define a cost function

based on the communication complexity of the tiling. A choice

of tiling may affect the performance of a distributed algorithm in

a non-trivial way. In most cases, this would require experimen-

tal evaluations. We separate our cost model from specific system

architectures and consider only the cost of the number of retil-
ing operations. Where a retiling is the operation of changing the

current tiling of the matrix (to meet the algorithm’s requirements

in the implementation).
2
That is, given a tiling of the matrices,

we determine the number of instances in which a matrix is not

tiled according to the specification of the operation. If the matrices

have unequal sizes, we can use weights to scale the retiling cost

accordingly. In summary, we consider a data partitioning problem

on a collection of distributed matrix algebra operations to minimize

overall communication, which is approximated by the retiling cost.

2 RELATEDWORK
The model which is closest to ours[14] introduces a distributed

array framework that tries to optimize the tiling (defined at a high

level, similar to ours) during runtime. In [23] the authors develop an

array-based distributed framework that tries to optimize the com-

putation DAG to minimize both computation and communication.

In [13] the authors specifically focused on optimizing matrix multi-

plication to improve concurrency. Using the Legion programming

model[6] the authors in [5] describe a distributed array framework

for the popular Numpy Python library. Lastly, our proposed experi-

mental algorithms in part were motivated by scalability problems

encountered in the following distributed array processing frame-

works [7, 22].

2
Alternatively, we may think of this as the cost of accessing non-local memory as if

the matrix has been tiled correctly.
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3 A SIGNED GRAPH MODEL AND
APPROXIMATION HARDNESS

In this section, we consider a simpler model to prove the hardness

of our tiling problem. In [14] authors gave a similar result showing

that their tiling problem is NP-complete (by a reduction from the

not-all-equal SAT). However, we use a different reduction which is

approximation-preserving. This helps us establish an approxima-

tion hardness result assuming that the Unique Games Conjecture

([17, 18]) is true.

Here we assume that the user program is given as a directed

acyclic graph (DAG). A program P(V ,E) is given by an ordered

sequence of expressions E = (e1, . . . , em ) along with a set of ma-

trices V (|V | = n) 34. Dependencies are inferred from the ordering

of the expressions. Additionally, we are given a subset O ⊂ V of

output matrices. These are the matrices that stay in memory until

the end of the program execution. Next, we make an important

assumption: each matrix appears at the left-hand side (the output)

of an expression at most once. Consider the tree in figure 2 which

corresponds to the following sequence of expressions:

e1(A = DE), e2(G = AFT ), e3(A = C +G), e4(A = A + B).

After the execution of the expression e3, A holds the result of (C +
DEFT ) and logically this matrix is different from the A used in e1
and e2. We can make the case that this matrix is different from the

previous A. This implies that it may have a different tiling without

incurring any additional cost. Thus we could rewrite the above

expressions as:

e1(A = DE), e2(G = AFT ), e3(H = C +G), e4(I = H + B).

Note that this does not increase the memory requirement since we

can always “forget" any unused matrices that are not in O . Making

these restrictive assumptions on themodel onlymakes our hardness

result stronger.

3.1 The Binary Tiling Problem
Now we are ready to define the problem formally. We restrict ex-

pressions to only allow at most three matrices (e.g. A = sum(B)
is allowed but A = sum(B,C,D) not). Cost of an expression is ei-

ther 1 (if tilings are sub-optimal) or 0 (otherwise). As an example,

let A = sum(B,C). Say we assume the sum operation prefers all

matrices to have the same tiling (since it is an elementwise oper-

ation). If B and C have different tilings in the solution S , say one

is row-wise, and the other is column-wise, then a unit of cost is

incurred. Further, we assume there are only two types of tilings

(say row-wise and column-wise). We will refer to this problem as

the binary tiling problem, which is formally defined below.
5
Two

variants are considered to give a separation-type result. We only

allowA = B andA = BT types of expressions for the first type. This

problem is denoted by BTPT , whereT stands for transpose. For the

expressionA = B, the communication cost is 0 if both matrices have

the same tiling. On the other hand, for the expression A = BT , the
matrices must have differing tilings. The input size is the number

of matrices (n) + number of expressions (m). We show BTPT has

3
Later in section 4 we will treat the expressions as edges of a hypergraph.

4
In what to follow, we will use the terms “expression" and “edge" interchangeably.

Similarly, we will use the terms “matrix" and “vertex" interchangeably.

5
The qualifier “binary" refers to the fact that we only allow two tiling types.

a polynomial-time (in fact linear) algorithm. For the second type,

we also allow the sum operator (denoted by BTPT ,+). This simple

modification makes the problem approximation hard.

e1 : A = B

e2 : C = A
T

e3 : D = A

e4 : E = B
T

e5 : F = C
T

A

B

C

D

E

F

Figure 3: The graph G (right) corresponding to the program
given by the expressions (left). Red edges indicate tilings
must be different.

Theorem 1. BTPT can be solved in linear time.

Proof. Consider an input P(V ,E) to BTPT . We can create a

bipartite graph G from P(V ,E) as follows. The vertex set of G is

V ∪ E. There is an edge between e ∈ E and A ∈ V if and only if the

matrix A is in the expression e (see figure. 3). Note that a matrix

never appears more than once on the LHS of an expression and if it

is in the LHS of some expression then it must be the first time that

matrix appeared in any expression. Hence G is a tree. Otherwise,

for the sake of contradiction, assume there is some cycle involving

the matrices (Ai1 , . . . ,Ait ). Since there are t expressions, there are
exactly 2t slots, one left and one right for each expression for us

to put these matrices. Further, each expression must contain two

different matrices. Hence for any ordering of the expressions and

assignment of the matrices the matrix appearing in the RHS of

the first expression must appear on the LHS of some later expres-

sion; due to the pigeonhole principle. This contradicts our earlier

assumption.

B

A

E

C D

F

Figure 4: The tree T from the graph G in figure. 3
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Now that we have determined G is a tree it is easy to come

up with an algorithm to optimally tile all the matrices. Consider

the tree T on the vertex set V created from G by adding an edge

between a pair of matrices if they were in some expression. This

tree is shown in figure 4 corresponding to the graph G. We decide

a tiling for the root and proceed downward to its children. Since

there are no cycles we never have to backtrack. Clearly this can be

done in linear time. □

As a corollary to the above we see that this restricted tiling prob-

lem is solvable in polynomial time as long as G is a tree even with

more than two tiling types. HoweverG must satisfy the condition

that a matrix appears at the LHS of an expression exactly once.

Theorem 2. BTPT ,+ is NP-Complete.

Proof. Proving the problem is in NP is trivial so we only prove

that it is NP-hard. We reduce the Balanced Subgraph problem [15]

to BTPT ,+. Assume each expression is of the following form :

A = sum(B±T ,C±T ),

where A±T denotes either A or AT . We create a graphG from the

expressions as follows. The vertex set of G is the set of matrices in

V . For each expression A = sum(B±T ,C±T ) we create two edges.

One between A and B and another between A and C . Additionally,
we add signs to these edges. An edge has the sign “ = ” if both A
and B are in standard form. If B is in transpose form then we put

the “ , ” sign on the corresponding edge. The graph G formed this

way is 2-degenerate. In a 2-degenerate graph there is an ordering

of the vertices such that every vertex has at most 2 neighbors to

its left in the ordering. We can order the vertices in G as follows.

Let B be the set of matrices that occur only in the right hand side

of an expression. Let A ′ = V \ B. Note that each matrix in A ′

corresponds to the expression in which it first occurs (in the LHS).

In our ordering we put the matrices in B first (in any order) then

put the matrices in A ′ according to the order of the expressions

they first appear. Since each expression has at most 2 matrices in

the RHS it is easy to see that this ordering showsG is 2-degenerate.

BTPT ,+ can be restated as a problem of determining a tilling

assignment of the vertices inG such that for each =-edge the tiling

of the incidence vertices match and for each ,-edge the tilings are
different. Then the objective is to find a tiling of the vertices that

minimizes the number of unsatisfied edges. Where an edge is said

to be unsatisfied if the tilings of its incident vertices do not match

with the sign of the edge. We show this problem to be equivalent to

the minimization version of the balanced subgraph problem (BSP)
([10, 15]) on a 2-degenerate graph.

In BSP we are given an undirected graph G(V ,E) for which we

need to find a bi-coloring of the vertices. Associated with each

edge is a constraint = or ,. A =-edge (,-edge) is satisfied if it

incident vertices have the same (different) color(s). The goal is to

find a coloring that minimizes the number of unsatisfied edges
6
.

A graph is balanced if there is a bi-coloring that satisfies all the

edges. The decision problem is to determine for a given k if there

6
In literature some authors uses an alternate but equivalent formulation without using

colors on the vertices. Instead a resigning operation is defined on the vertices which

flips the edge types of all the edges incident to the said vertex. Then the goal is to find a

sequence of resignings so that the number of edges of the minority type is minimized.

is a bi-coloring such that at-most k edges remain unsatisfied. This

problem is NP-complete([1, 15]). This is true even for 2-degenerate

graphs which we show next. Any graph G can be transformed to a

2-degenerate graph G ′ as follows. For each edge in G create a new

vertex inG and delete the edge. Then make the new vertex adjacent

to the two vertices incident to the deleted edge. It is an easy exercise

to show that G ′ is 2-degenerate. If the deleted edge was a =-edge

then the two newly created edges are made =-edges. Otherwise,

we make one of the edges a ,-edge arbitrarily. We claim that any

solution to the minimum BSP problem in G ′ immediately gives a

solution to the minimum BSP forG of the same value k . Let V ′ the
set of new vertices in G ′ (they replaced the original edges of G).
Suppose C ′ : V ∪V ′ → {0, 1} is an optimal bi-coloring onG ′ that
leaves k edges unsatisfied. Since C ′ is optimal it cannot leave both

edges incident to a vertex in V ′ unsatisfied. Since we can always

flip the color of that vertex to satisfy the two edges incident to it.

This implies that if we restrictC ′ toV then it induces a coloring on

G which also leave k edges unsatisfied. To prove the other direction

suppose C : V → {0, 1} is a bi-coloring on G. We can extend C to

create a bi-coloring C ′′ on G ′ as follows. We let C ′′(v) = C(v) if
v ∈ V otherwise we let C ′′(v) = C(u) where uv is a =-edge. This

ensures that in G ′ exactly k edges remain unsatisfied.

To complete the proof we need to reduce BSP
2-degn

to BTPT ,+.
Create a matrix for each vertex in G. Let v1, . . . ,vn be an ordering

of the vertices according to the 2-degeneracy structure of G. For
each vertex vi which has a single neighbor vj (j < i) create an

expression Ai = Aj or Ai = ATj depending on whether the sign of

the edge is either + or − respectively. Similarly we can deal with

case where vi has two left neighbours. Further it can be easily

shown that BSP
2-degn

has a bi-coloring with k unsatisfied edges

if and only if BTPT ,+ has a tiling with cost k . □

Corollary 3. Assuming the unique games conjecture there are no
approximation algorithms for BTPT ,+ with an approximation ratio
better than O(logn).

Proof. The two reductions (BSP ≤ BSP
2-degn

≤ BTPT ,+) in
Theorem 2 preserve the size (cost) of the solutions and hence are

also approximation preserving. Then the lower bound follows from

the result of [2] for the minimum BSP assuming the unique games

conjecture [17]. □

Another observation of note is that the graph G in the above

construction is at most 2-connected (since the rightmost vertex has

degree at most 2). This, along with the previous theorem, gives a

sharp characterization of our tiling problem with respect to the

connectivity of G.

4 TILING AS HYPERGRAPH LABELING
In this section, we consider a more general formulation of the tiling

problem using hypergraphs. This allows us to state an interesting

result on the complexity of the problem for random instances. Fur-

ther, in the following section, we extend this model to develop a

greedy algorithm.

Authors in [14] studied the performance of their tiling solver on

several randomly generated programs. However, we suspect that

random programs (appropriately defined) may be over-constrained
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and easier to optimize. Specifically, a random solution may be close

to an optimal one. We formally prove this fact in the hypergraph

setting introduced in this section.

Let H (V ,E) be a hypergraph whose vertices represent matrices

and edges represent expressions. As usual we take |V | = n, |E | =m.

We assume H to be k-uniform. Now we define the tiling problem

a bit differently. We do not assume any order on the edges (this

does not necessarily make the problem easier). There may be one or

more algorithms that we can use to execute the expression for each

expression. Each algorithmmay have one or more preferred choices

of tilings for the matrices involved in the expression. All these

preferred choices can be expressed as a constraint on the labeling.

Specifically, we keep a set L(e) for each edge e ∈ E, which is the

union of all the preferred tiling configurations of the algorithms

that can execute the expression corresponding to the edge. Suppose

we allow at most τ different tiling types. For example, if we only

consider row and column tiling, then τ = 2. Then each L(e) is a

non-empty ⊂ [τ ]k . We also use a parameter s ≥ 1 to denote the

number of preferred labelings per edge (|L(e)| = s).
Given (H ,L) with parameters k, s the optimization problem is to

find a labeling S such that:

S ∈ argmin

X ∈[τ ]V

∑
e ∈E

(
min

l ∈L(e)
d(X , l)

)
where d(X , l) is defined as follows. LetX [v] be the label assigned

to the vertex v . Similarly we define l[v] as the feasible label of the
vertex v ∈ e given by the constraint l ∈ L(e). Then

d(X , l) =
∑
v ∈e
(1 − δX [v]l [v])

Here δi j = 1 iff i = j and 0 otherwise. Hence d(·, ·) is the Ham-

ming distance over the alphabet [τ ]. We call this the Constrained

Hypergraph Labeling Problem (CHLP(H ,L)).
It is an easy observation that the decision version of the problem

is NP-complete by a reduction from 3SAT with τ = 2. We leave the

details as an exercise to the reader. Corollary to this is that verifying

whether the optimal cost is 0 is also NP-complete, and hence there

is no approximation algorithm with a bounded approximation ratio.

We describe a simple randomized algorithm and show that it

achieves a bounded approximation ratio in expectation for a ran-

domly (defined later) generated instance of the problem. The ran-

domized algorithm, unsurprisingly, is the one that assigns each

vertex a label uniformly and independently at random.

Lemma 4. Expected cost of the randomized algorithm for any
instance of CHLP(H ,L) with parameter k, s is O(m). The result hold
with high probability.

Proof. Suppose S is the solution selected at random. Let,

C(S) =
∑
e ∈E

(
min

l ∈L(e)
d(S, l)

)
Then the expected cost,

E[C(S)] = E[
∑
e ∈E

(
min

l ∈L(e)
d(S, l)

)
] =

∑
e ∈E
E[ min

l ∈L(e)
d(S, l)]

≤
∑
e ∈E
E[d(S, l)]

The last inequality follows from the fact that min(x1, . . .) ≤ x1 and
considering an arbitrary l ∈ L(e) for each edge e . Now we can easily

compute the expected value using the indicator random variable

method. For any v ∈ e let IX [v],l [v] be the event that v is labeled

differently between X and l . Then,

E[C(S)] ≤
∑
e ∈E

(∑
v ∈e
P[IX [v],l [v]]

)
=m

(∑
v ∈e
P[IX [v],l [v]]

)
=

(
1 −

1

τ

)
km = O(m) when k is fixed.

Since C(S) is a sum of |H | i.i.d 0-1 random variables we can apply

Chernoff bound to get a high probability result. Specifically,

P[C(S) ≥ (1 + δ )

(
1 −

1

τ

)
km] ≤ e−

δ 2(1− 1

τ )km
3

where 0 < δ < 1. This probability tends to 0 as n →∞ where we

assumem = Ω(n). □

Although the above result in itself is not that interesting, we will

need this to give an upper bound on the approximation ratio when

used on a random hypergraph. First we need to define a model for

random k-uniform hypergraphs that are instances of CHLP.
Let V (k ) be the set of all k-subsets of V . A random k-uniform

hypergraph Hn,m,k is then the pair (V ,E) where E ⊂ V (k ) of size

m chosen uniformly at random from all possible

((nk)
m

)
such subsets.

Then we choose the labeling constraint L as follows. Assuming

each edge e ∈ E gets exactly s feasible labels, we select a subset

L(e) ⊂ [τ ]k of size s uniformly at random from

([τ ]k
s

)
such subsets.

This gives us a pair (Hm,n,k ,Lτ ,s ) which behaves uniformly on

every labeling X ∈ [τ ]k of the vertices. Let,

C(Hm,n,k ,Lτ ,s ) = min

X ∈[τ ]V

∑
e ∈E

(
min

l ∈Lτ ,s (e)
d(X , l)

)
be the minimum cost of labelingHm,n,k . Due to the minimum at

the front it is difficult to determine the expected costE[C(Hm,n,k ,Lτ ,s )]
over the randomness of the pair (Hm,n,k ,Lτ ,s ). However, for the
purpose of bounding the approximation ratio of the randomized

algorithm we only need to give lower bound of C(Hm,n,k ,Lτ ,s )
with high probability.

Lemma 5. For some non-negative t > 0, P[C(Hm,n,k ,Lτ ,s ) > t] =
1 − o(1) ifm = Ω(n).

Proof. For brevity let C∗ = C(Hm,n,k ,Lτ ,s ). We lower bound

the probability P[C∗ > t]. Let

YX =
∑
e ∈E

(
min

l ∈Lτ ,s (e)
d(X , l)

)
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for each labeling X ∈ [τ ]k . Due to the way we have constructed

(Hm,n,k ,Lτ ,s ), YX ’s are i.i.d random variables. Let Y be a r.v. with

the same distribution as the YX ’s. Then,

P[C∗ > t] = (1 − P[Y ≤ t])τ
n

(2)

Let Ze = minl ∈Lτ ,s (e) d(X , l) for each edge e ∈ E. Note that Ze ’s
are i.i.d. and we use the sequence (Z1, . . . ,Zm ) to enumerate them.

Zi ’s take values between 0 and k . Let Y =
∑m
i Zi and Y

′ =
∑m
i Z ′i

where

Z ′i =

{
0 if Zi < k

1 otherwise

(3)

Then Z ′i ∈ {0, 1} for all i and i.i.d. We use Z ′ to denote an

arbitrary Z ′i . According to the above definition P[Y < t] ≤ P[Y ′ <
t/k] as the event [Y < t] implies that there are < t/k values of i for
which Zi = k . Y

′
is a sum of i.i.d random variables in {0, 1} and we

use Chernoff bound to derive an upper bound on the probability

P[Y < t] based on the expected value µ of Z ′. For some 0 < δ ′ < 1

we have,

P[Y ′ ≤ (1 − δ ′)mµ] ≤ e−
δ ′2mµ

2

where E[Y ′] =mµ. Then,

P[Y ≤ (1 − δ ′)kmµ] ≤ e−
δ ′2mµ

2

Taking t = (1 − δ ′)kmµ in Eq. 2 we get

P[C∗ ≥ (1 − δ ′)kmµ] ≥

(
1 − τne−

δ ′2mµ
2

)
= 1 − en ln τ− δ

′2mµ
2 (4)

Now we determine µ = P[Z ′ = 1]. According to our definition in

Eq. 3 if Z ′ = 1 then minl ∈Lτ ,s (e) d(X , l) = k . Hence,

P[Z ′ = 1] = P

[
min

l ∈Lτ ,s (e)
d(X , l) = k

]
= (P[d(X , l) = k])s =

(
1 −

1

τ

)ks
Let,

f (n) = n lnτ −
δ ′2m

(
1 − 1

τ

)ks
2

which is the exponent in the RHS of Eq. 4. Since τ ,δ ′, s and k are all

bounded, for some constant β > 0 we have f (n) < −βn whenever

m = Ω(n). This proves the lemma.

□

Now we use Lemma 4 and Lemma 5 to prove the main result of

this section.

Theorem 6. There is a randomized algorithm that, with high
probability, has a bounded approximation ratio, which only depends
on k, s,τ , for a class of random hypergraphs Hm,n,k with random
feasibility constraints Lτ ,s .

Proof. The upper tail bound of the randomized algorithm de-

scribed in Lemma 4 applies to any hypergraph, not necessarily ran-

dom. Hence the high probability results of Lemma 4 and Lemma 5

are independent. They jointly hold with high probability. The ap-

proximation ratio is

≤
(1 + δ )(1 − 1/τ )

(1 − δ ′)µ

which is function of k, s,τ only for a specific choice of δ ,δ ′. □

In the figure 5 below we plot the histogram of the cost function

C(·) for a pair (H ,L) of samples according to our random hyper-

graph model. The plot supports the theorem; showing the cost is

distributed over a somewhat narrow range.

Figure 5: A histogram ofC(·) for an instance of (H50,10,3,L3,3)

5 A GREEDY ALGORITHM
Based on the hypergraph labeling framework introduced in the

previous section, we present a greedy algorithm for a more realistic

version of the tiling problem. Essentially, using the greedy heuristic

we partition the search space and iteratively solve the problem on

these subspaces via exhaustive search. Experimental evaluations

are presented in section 6.

In this approach, we do not discard the dependency information

available in the computation DAG. We use it to develop a greedy

order that we use to choose how we process the expressions (edges).

Let H (V ,E) be the input hypergraph corresponding to the user

program. As before, V constitutes the set of matrices, and E are

the edges corresponding to the expressions. Additionally, we are

also given the computation DAG G on the vertex set V . G induces

a partial order on V . This, in turn, induces a partial order on the

edges in E. For two edges e, e ′ ∈ E, we define e >G e ′ if and only if

∃(A,B) ∈ e × e ′ such that there is a directed path in G from A to B.
Since G is acyclic, if there is a A ; B path, then there can be no

C ; D path such that (C,D) ∈ e ′×e . Hence the partial order is well
defined. The cost of a tiling operation is defined exactly as before.

For each edge e , the costC(e, S) for the tiling S is the minimum cost

over all feasible tiling sets. To make our formulation robust, we also

allow a weight functionw over the edges that enable accounting

for things like multiple executions of the expression (inside a loop),

unequal sizes of the matrices, and computational complexity of the

expression, etc. Lastly, we do not assume H to be uniform, nor we
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set any constraint on s , the size of the feasibility set. In summary,

the input to our greedy algorithm is the tuple (H (V ,E),G,L,w).
Recall that L is the feasibility constraints imposed by the algorithms

implementing a particular operator. We use TP(H (V ,E),G,L,w) to
denote this tiling problem. We will omit some or all of the terms

inside the parentheses for notational clarity whenever the meaning

is clear.

Now we are ready to describe our algorithm, which has several

parts. First, we decompose G into connected components. We can

solve these components independently of each other. This is the

preprocessing step which is given in algorithm 1.

Algorithm 1 Preprocess TP(H ,G)

1: Find all the connected components inG . Let C = {G1, . . . ,Gk }

be this set.

2: i ← 0

3: while i ≤ k do
4: greedy-solver(TP(H [Gi ],Gi ))

{Here H [Gi ] is the induced sub-hypergraph with the same

vertex set as Gi .}

5: i ← i + 1
6: end while

Then we process each component independently based on its

size. If the size (number of variables + expressions) is “small" then

we compute an optimal tiling by an exhaustive search. Otherwise,

we take a greedy approach.

Henceforth we assume G is connected. Let (L1, . . . ,Lp ) be the
level sets of the poset (E, >G ) in non-decreasing order of depen-

dency. That is, expressions in L1 are computed directly from the

input matrices and does not depend on other layers, expressions in

L2 depend on L1, and so on. Algorithm 2 below describes the outer

structure of our algorithm.

Algorithm 2 greedy-solver(TP(H ,G))

1: Parameters: size threshold α
2: Compute the layered decomposition of E. Let L = (L1, . . . ,Lp )

be the layers based on this decomposition.

{Let S is the space of all tilings.}

3: if |S| ≤ α then
4: Perform an exhaustive search on the space S

5: return argminS ∈S
∑
e ∈E w(e)C(e, S)

{Otherwise S is big and we use a greedy approach.}

6: else
7: return inner-greedy-solver(TP(H ,G),L)
8: end if

Next we describe the method inner-greedy-solver() which uses

our greedy method. Initially we start with the full set of edges.

The algorithm calls a subroutine that produces a greedy ordering

of the remaining set of edges. From this ordering we choose the

first ≤ β (a tunable parameter) edges to process. We compute the

optimal tiling of the sub-hypergraph induced by these edges and

we remove these before the start of the next iteration. Additionally

we maintain a set Ŝ which stores the vertices that have been already

tiled. If Ŝ is non-empty then the optimal tiling is computed while

fixing the tiling of vertices as given in Ŝ . Here we abuse the notation
Ŝ to indicate both the set of vertices which are tiled as well as the

partial tiling.

Algorithm 3 inner-greedy-solver(TP(H ,G),L)

1: Let E ′ ← E
{ Initially all vertices in V are un-tiled. Let Ŝ be a partial tiling

of V .}

2: Set Ŝ ← ∅
3: while V \ Ŝ , ∅ do
4: E ′′ ← compute-greedy-order(V ,E ′, Ŝ,L)

{E ′′ are the set of edges in the first bucket based on their

cumulative weights.}

5: Choose an optimal tiling SE′′ for the set of vertices in⋃
e ∈E′′ e .

6: Ŝ ← Ŝ ∪ SE′′

7: E ′ ← E ′ \ E ′′

8: end while
9: return Ŝ

Finally, in the following (algorithm 4) we describe the procedure

to compute the greedy order. The algorithm uses a few parameters

that can be tuned experimentally. In line 5 we use a new notation

cov(e)which is the set of all edges that e is the cover of in the partial
order (E, <G ). Informally, these are the set of expressions which

directly depend on the result of the expression e . Line 11-18 simply

choose an appropriate subset of edges based on the greedy order. A

higher γ -value indicates that the tiling of the vertices in the edge

has a bigger influence on the overall solution cost so we should

proceed to tile these vertices first. Results in section 6 support this

intuition.

5.1 Running Time Analysis
It is easy to see that our greedy algorithm has a polynomial running

time in the number of vertices (matrices) n. Here we give a detailed
analysis. In Algorithm 1 we find the connected components of

the computation graph. This takes O(n +m) times. Note that each

expression has a bounded number of matrices, hence number of

edges in G is of O(m). The exhaustive search is performed only

if the size of the search space is bounded, hence we can ignore

this case in our analysis (line 3-5 in Algorithm 2). Now we turn to

Algorithm 3. At each iteration of thewhile loop size of Ŝ increases by
at least 1. Hence we iterate at mostO(n) times. Choosing an optimal

tiling at line 5 costs O(τ β ) = O(1), since τ and β are assumed to

be bounded. Rest of the operations (set union and difference) can

be carried out by any off-the-shelf disjoint set data stricture in

total O(nα(n)) times, where α(n) is a inverse of Ackerman-type

function. This is for all practical purpose we can assume to be

linear. Only things remain is to determine the cost of computing

the greedy order in line 4. So we turn our attention to Algorithm 4.

Clearly cost incurred in line 2 is O(|Lp |). Now let us look at the

double-for loops between line 3-7. The γ (e) value is calculated for

each edge exactly once. At line 5, computing the sum of cover

takes O(|cov(e)|) time. Hence summing over all γ (e) calculations
including that in line 2 we get total run-time of all the instructions
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Algorithm 4 compute-greedy-order(V ,E ′, Ŝ,L)

1: Parameters: β for the bucket size, η is the weight ratio.

2: For each expression e ∈ Lp compute γ (e) ←

w(e)minS ∈S
|Ŝ
C(e, S).

{Next we compute γ (·) for all other expression going up layer-

wise. Here S
|Ŝ is the remaining search space conditioned on

Ŝ .}
3: for i from p − 1 down to 1 do
4: for e ∈ Li do
5: γ (e) ← minS ∈w (e)S

|Ŝ
C(e, S) +

∑
f ∈cov(e) γ (f )

6: end for
7: end for
8: i ← 0

9: Sort E ′ in descending order based on the γ values. {We process

each expressions according to this order. We are abusing the

notation E ′ to indicate both a set and an indexed array.}

10: E ′′ ← ∅
11: while |E ′′ | ≤ β do
12: if γ (E ′[i]) ≥ ηγ (E ′[0]) then
13: E ′′ ← E ′′ ∪ E ′[i]
14: else
15: return E ′′

16: end if
17: i ← i + 1
18: end while
19: return E ′′

upto line 7 is O(
∑
e |cov(e)|) = O(m) by the argument we made

previously. Sorting E ′ in line 7 costsO(m logm) and the operations
on line 11-18 take O(α(n))-time, since β ,η are bounded, which is

dominated by the cost we incur before line 11. Hence Algorithm 3

has a running time ofO(m logm). Combining this with the previous

analysis of Algorithm 2 we see that the total runtime of our greedy

solver is O(nm logm).

6 EXPERIMENTAL RESULTS
We implemented the greedy algorithm in Python

7
to facilitate

its use in Python-based distributed processing API’s which have

shown significant growth throughout the past few years. For the

experiments, we chose to investigate the performance of our algo-

rithm on a mix of modifications on known algorithms and random

algorithms. We chose these modified algorithms due to the limited

number of supported expressions in our implementation of the

greedy algorithm. For known algorithms, we chose an approximate

Linear Regression program, an approximate PCA with a 3-round

powermethod for eigenvector determination, a bi-directional power

set series of multiplications, and two random programs. Although

our implementation was sensitive to matrix size as a factor in cost

calculations, we chose to leave all matrices used in our simulated

programs the same size to simplify testing.

We compared our results between the three algorithms: 1) a local

solver, 2) exhaustive search, and 3) our greedy algorithm described

in the previous section. According to the execution order specified

7
https://github.com/folshost/TilingSolver

by the computation DAG, the local solver chooses locally optimal

tilings for each expression in a single forward pass of the program.

The exhaustive search enumerates all possible tilings and finds

the lowest cost available. To obtain improvements in computation

time (i.e., to make exhaustive search tractable), we restricted our

expressions to one implementation for each algorithm.

The greedy search algorithm has three configurable parameters.

All of the experimental data was collected using α = 10. How-

ever, we chose to vary β and η in a grid search to investigate the

effects of these parameters. Figure 7 shows the effects of this varia-

tion. The figure is an average across our five test programs of the

max-normalized times yielded by the grid search. That is, for each

program, the grid search yielded a number of times, which were

then normalized against the maximum amount of time required for

that program. To aggregate across the five programs, we averaged

the five generated grids on an element-wise basis to characterize

the effects of β and η across all programs, giving equal weight to all

programs. The greedy search algorithm gave equal scores for the

solutions derived, irrespective of the parameterization of β or η.
From figure 7 we can see a significant effect of the β (bucket

size) parameter, while it would not appear that there is a significant

effect due to η (weight ratio).

Test Local E Search Greedy

Linear Regression 0.0012 0.3443 0.019366

Parallel PCA 0.0020 605.7924 0.042917

Power Set 0.0042 1275.4500 0.042180

Random 1 0.0041 1.0372 0.029209

Random 2 0.0014 0.0517 0.023032

Table 1: Times for search execution (in seconds)

Figure 6: Each program has three searches performed for it

In figure 6 we can see that in all cases but one, our algorithm

matched the solution found by exhaustive search, and in all cases

did better than the local solver. Table 1 shows us that our algorithm
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Figure 7: Effects on search time of Beta and Eta parameters

in most cases is comparable in timing to the local solver opera-

tion, while the exhaustive search is almost always more than an

order of magnitude slower. For our tests then, our greedy algorithm

was generally successful in obtaining the benefits of both of the

competing algorithms while retaining none of their drawbacks.

As we noted previously, one of our goals is to make the greedy al-

gorithm work in the distributed HPC environment. Since this tiling

solver would run for every program executed in that environment,

it must allow running at such a speed that it does not significantly

impact the actual user program’s total run time. With this in mind,

although the exhaustive search would yield good results, in certain

cases, the number of involved matrices and operations in a user

program could result in a lengthy solve process, as typified by the

Parallel PCA and Power Set Multiplication programs. All of the

programs we used were less than 18 matrix operations. For com-

parison, SOTA deep neural networks like BERT[12] or GPT-3[8]

often use a large number of layers (in large BERT’s case 24 trans-

former layers, in GPT-3’s 96 transformer layers), without taking

into consideration any preprocessing steps for data, meaning user

programs for investigation could substantially exceed the size of

our experimental programs. We also kept our search space small

with the number of implementations of edges in these experiments.

With these facts in mind, in certain circumstances, it could become

prohibitive, even with further parallelization of the search process

(on server processors or across multiple nodes), to exhaustively

search the entirety of that space.

6.1 Hardware
For these experiments, we ran all of the tests as multi-threaded

processes on an i5-8600k, with a base clock of 3.6 GHz, running in

Python 3.6.8 and using Numpy 1.18.1.

7 A MEMORY OCCUPANCY PROBLEM
Here we take a digression and discuss an interesting problem aris-

ing out of our tiling optimization study. LetG be the program DAG

and H (V ,E) is the corresponding hypergraph as introduced previ-

ously. Here we consider an optimization of the memory storage

by reordering the expressions consistent with the partial order P
induced byG on the set E of expressions. Lifespan of a matrix is the

interval starting from the first time it appeared in an expression

to the last time. If the matrix is one of the outputs (we denote the

set of outputs as O ⊂ V , here O can be empty if the output of the

program is a scalar) of the program then it must be kept in mem-

ory at least until the last expression is executed. The number of

matrices that must be kept simultaneously in memory (where the

lifespans overlap) depends on the order in which the expressions

are executed. Our goal is to minimize the maximum memory load

during the execution of the user program. We will show that this

problem is NP hard by a reduction from the cut-width problem.

We continue to define some more terms. Let L be a linear ex-

tension of P . For every matrix A < O let sA and tA be the first

and the last expression in the ordering L that the matrix A was

involved in. If A ∈ O then we associate with A the interval [sA,m]
(m is the number of expression). This forces us to keep the output

matrix to stay in memory after it has been computed. We can create

an interval graph IL based on the intervals [sA, tA] corresponding
to the matrices in V for the linear extension L. If two intervals

overlaps then the corresponding matrices must be kept in mem-

ory together during the execution of overlapping expressions. The

maximum memory needed to execute the program depends on the

maximal set of mutually overlapping intervals for a given ordering

of the expressions. In order to reduce the maximum memory con-

sumption we want to choose a linear extension that minimizes the

maximum overlapping set of intervals. Since output matrices must

stay in memory after they have been computed, hence we need to

hold at least |O | matrices simultaneously, regardless of the order in

which they have been computed. Let κ(IL) be the clique number of

IL . Then the decision version of this memory occupancy problem

(MOP) is as follows: given G,H and a positive integer k decide if

there is a linear extension L such that κ(IL) ≤ k . Next we prove
that MOP is NP-complete.

Theorem 7. Deciding whetherMOP has a satisfiable instance for
some k is NP-Complete.

Proof. This can be proven by reducing the cut-width problem

for simple undirected graphs to our problem. If vertices of a graph

is linearly ordered along a line, then the edges between the points

(vertices) on this line forms intervals (see Fig 8). Let R be some

left to right ordering of the vertices. A vertex is denoted by its

order from the left. An edge is represented by an interval [l , r ].

We say an interval crosses the ith vertex in R if i ∈ [l , r − 1].

Let θi (R) be the number of intervals crossing the ith vertex in

R. The cut-width of the ordering R is then max1≤i≤n θi (R). The
cut-width of G is minimum cut-width over all possible orderings

(minR∈Sn max1≤i≤n θi (R)). It is known that determining the cut-

width of a graph is NP-hard for an arbitrary k , but fixed parameter

tractable in k (see [21]).

Given an instance of the cut-width problem (a graph G(V ,E))
we reduce it to an instance ofMOP in the following way. Identify

a matrix Bi j for every edge (i, j) ∈ Ev and i, j ∈ V and a matrix Ci
for each vertex. We create an initial expression:

e−1 : (A−1; {C1, . . . ,Cn })
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1

23

4

4 3 1 2

Figure 8: A graphG (left) along with a linear representation
(right). Maximum number of edges crossing any vertex is
the width, which in this case is 2.

In the above and what follows the matrix before the semicolon is

the output matrix and the set of matrices after the semicolon are

the input matrices. For each vertex i ∈ V create an expression:

ei : (Ai ; {Bi j | j ∈ N (i)} ∪ {Ci } ∪ {A−1})

where N (i) is the set of neighbors of i in G. Now we create an

additional expression:

en+1 : (An+1; {A1, . . . ,An ,A−1})

and set O = {An+1}. Let A = {A−1,A1, . . . ,An+1}, B = {Bi j |
(i, j) ∈ E} and C = {C1, . . . ,Cn }.

LetG ′ be the program DAG determined by the above expressions

{e−1, e1, . . . , en+1} with the vertex setA∪B∪C . Next we show that

G ′ has a satisfying instance of size at most k +n + 1 if and only ifG
has a cut-width of at most k . Let us prove the only if direction first.

Let R be an ordering of the expressions that produces a satisfying

instance of size at most k + n + 1. Firstly, In the partial order P
induced by G ′ we have e−1 ≻ ei ≻ en+1 for all i ≤ n. Further ei
and ej are incomaparble if i , j and i, j < {−1,n + 1}. Secondly,

each expression ei has a unique (input) matrix Ci associated with

it. The number of matrices from A ∪ C that need to be kept in

memory just after executing the ith expression (according to R)
is exactly n + 1. This is independent of the ordering R. Hence if
G ′ has a satisfying instance of size at most n + 1 + k then there

are at most k matrices from the set B are kept in memory at any

given time. From our construction we see that these are precisely

those matrices that corresponds to edges in G. Hence cut-width
of G on R is at most k . To prove the other direction assume G
has a cut-width of at most k and let R′ be an optimal ordering

on V (vR′(1), . . . ,vR′(1)). We then extend R′ to get an ordering of

the expressions R = (e−1, eR′(1), . . . , eR′(1), en+1) for which we only

need to keep at most k matrices from B in memory at any given

time. Hence R is an satisfying ordering of size at most n + 1 + k .
□

Remark 8. In [21] authors show that the cut-width problem is
fixed parameter tractable in k . Here we conjecture thatMOP is also
fixed parameter tractable if minL κ(IL) is bounded. The problem is
to determine the cut-width of G when ordering of the vertices are
restricted to linear extensions of a given partial order.
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