MISSOURI

Missouri University of Science and Technology

&I Scholars' Mine

\(;V%Tkpsuter Science Faculty Research & Creative Computer Science
01 Apr 2022

Improving I/0 Performance for Exascale Applications through
Online Data Layout Reorganization

Lipeng Wan
Axel Huebl
Junmin Gu

Franz Poeschel

et. al. For a complete list of authors, see https.//scholarsmine.mst.edu/comsci_facwork/1228

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

6‘ Part of the Computer Sciences Commons

Recommended Citation

L. Wan and A. Huebl and J. Gu and F. Poeschel and A. Gainaru and R. Wang and J. Chen and X. Liang and
D. Ganyushin and T. Munson and |. Foster and J. L. Vay and N. Podhorszki and K. Wu, "Improving 1/0
Performance for Exascale Applications through Online Data Layout Reorganization," IEEE Transactions on
Parallel and Distributed Systems, vol. 33, no. 4, pp. 878 - 890, Institute of Electrical and Electronics
Engineers, Apr 2022.

The definitive version is available at https://doi.org/10.1109/TPDS.2021.3100784

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork/1228
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1228&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TPDS.2021.3100784
mailto:scholarsmine@mst.edu

878 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

Improving I/O Performance for Exascale
Applications Through Online Data
Layout Reorganization

Lipeng Wan
Jieyang Chen

, Axel Huebl
, Member, IEEE, Xin Liang

, Member, IEEE, Junmin Gu
, Member, IEEE, Dmitry Ganyushin, Todd Munson™,

, Franz Poeschel ', Ana Gainaru, Ruonan Wang,

lan Foster™, Fellow, IEEE, Jean-Luc Vay ™, Senior Member, IEEE, Norbert Podhorszki,

Kesheng Wu

, and Scott Klasky, Senior Member, IEEE

Abstract—The applications being developed within the U.S. Exascale Computing Project (ECP) to run on imminent Exascale
computers will generate scientific results with unprecedented fidelity and record turn-around time. Many of these codes are based on
particle-mesh methods and use advanced algorithms, especially dynamic load-balancing and mesh-refinement, to achieve high
performance on Exascale machines. Yet, as such algorithms improve parallel application efficiency, they raise new challenges for /0O
logic due to their irregular and dynamic data distributions. Thus, while the enormous data rates of Exascale simulations already
challenge existing file system write strategies, the need for efficient read and processing of generated data introduces additional
constraints on the data layout strategies that can be used when writing data to secondary storage. We review these I/O challenges and
introduce two online data layout reorganization approaches for achieving good tradeoffs between read and write performance. We
demonstrate the benefits of using these two approaches for the ECP particle-in-cell simulation WarpX, which serves as a motif for a
large class of important Exascale applications. We show that by understanding application I/O patterns and carefully designing data

layouts we can increase read performance by more than 80 percent.

Index Terms—~Parallel 10, data layout, 10 performance, WarpX, data access optimization

1 INTRODUCTION

XASCALE computing has many challenges. One of the most

dramatic ones is storing data fast enough. Because storage
devices are getting bigger, but not greatly faster [1], exascale
systems provide far greater increases in computational speed,
relative to petascale computers, than in I/O bandwidth [2].
Indeed, the ratio of peak I/O bandwidth to peak compute
speed, in bytes per million floating point operations, is getting
dramatically worse for current and projected systems [3], [4].
This growing disparity has profound implications for applica-
tions and pushes them toward extremely efficient 1/O.

o Lipeng Wan, Ana Gainaru, Ruonan Wang, Jieyang Chen, Dmitry
Ganyushin, Norbert Podhorszki, and Scott Klasky are with the Computer
Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, TN 37830 USA. E-mail: {wanl, gainarua, wangrl, chenj3,
ganyushindi, pnorbert, klasky}@ornl.gov.

o Axel Huebl, Junmin Gu, Jean-Luc Vay, and Kesheng Wu are with the Law-
rence Berkeley National Laboratory, Berkeley, CA 94720 USA. E-
mail: {axelhuebl, jqu, jlvay, kwul@Ibl.gov.

e Franz Poeschel is with the Center for Advanced Systems Understanding
(CASUS), 02826 Gorlitz, Germany. E-mail: f.poeschel@hzdr.de.

o Todd Munson and Ian Foster are with the Argonne National Laboratory,
Lemont, IL 60439 USA. E-mail: tmunson@mcs.anl.gov, foster@anl.gov.

e Xin Liang is with the Missouri University of Science and Technology,
Rolla, MO 65409 USA. E-mail: xliang@mst.edu.

Manuscript received 24 Feb. 2021; revised 13 July 2021; accepted 13 July 2021.
Date of publication 29 July 2021; date of current version 15 Oct. 2021.
(Corresponding author: Lipeng Wan.)

Recommended for acceptance by S. Alam, L. Curfman McInnes, and K. Nakajima.
Digital Object Identifier no. 10.1109/TPDS.2021.3100784

Furthermore, many exascale applications are using advanced
computing techniques, such as dynamic load balancing and
adaptive mesh refinement (AMR), that bring new 1/O chal-
lenges due to irregular layouts of data in memory.

While applications are moving towards more online analy-
sis and reduction [3], they still generate a tremendous amount
of data for post processing by themselves and other teams.
Thus a key challenge in scientific computing is obtaining
near-optimal write performance so that simulations spend
minimal time performing I/O. Several projects in the Exascale
Computing Project (ECP) focus on methods for optimizing
write performance. For efficiency, these methods generally
write data to disk in formats and layouts that mirror those
used in memory. But because these data must subsequently
be read for post processing and analysis, data should ideally
be written to disk in a format and layout that is efficient for
both immediate write performance by the simulation and
read performance by subsequent analyses. However, studies
of access patterns [5], [6] have generally considered only data
generated with simple in-memory data arrangements; they
have not studied the effect on read performance of more com-
plex memory layouts. Codes that contain multiple data blocks
per process permit a wide range of I/O strategies that trade
off write performance for potential improvements in read per-
formance. These tradeoffs are complicated by the fact that
reading can be performed on from one to thousands of nodes,
and on each node, we can read from varying numbers of pro-
cesses and threads. Each choice can motivate new designs.

1045-9219 © 2021 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2347-8667
https://orcid.org/0000-0003-2347-8667
https://orcid.org/0000-0003-2347-8667
https://orcid.org/0000-0003-2347-8667
https://orcid.org/0000-0003-2347-8667
https://orcid.org/0000-0003-1943-7141
https://orcid.org/0000-0003-1943-7141
https://orcid.org/0000-0003-1943-7141
https://orcid.org/0000-0003-1943-7141
https://orcid.org/0000-0003-1943-7141
https://orcid.org/0000-0002-1521-8534
https://orcid.org/0000-0002-1521-8534
https://orcid.org/0000-0002-1521-8534
https://orcid.org/0000-0002-1521-8534
https://orcid.org/0000-0002-1521-8534
https://orcid.org/0000-0001-7042-5088
https://orcid.org/0000-0001-7042-5088
https://orcid.org/0000-0001-7042-5088
https://orcid.org/0000-0001-7042-5088
https://orcid.org/0000-0001-7042-5088
https://orcid.org/0000-0002-1905-9171
https://orcid.org/0000-0002-1905-9171
https://orcid.org/0000-0002-1905-9171
https://orcid.org/0000-0002-1905-9171
https://orcid.org/0000-0002-1905-9171
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0002-0030-3648
https://orcid.org/0000-0002-0030-3648
https://orcid.org/0000-0002-0030-3648
https://orcid.org/0000-0002-0030-3648
https://orcid.org/0000-0002-0030-3648
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0003-2129-5269
https://orcid.org/0000-0002-0040-799X
https://orcid.org/0000-0002-0040-799X
https://orcid.org/0000-0002-0040-799X
https://orcid.org/0000-0002-0040-799X
https://orcid.org/0000-0002-0040-799X
https://orcid.org/0000-0002-6907-3393
https://orcid.org/0000-0002-6907-3393
https://orcid.org/0000-0002-6907-3393
https://orcid.org/0000-0002-6907-3393
https://orcid.org/0000-0002-6907-3393
mailto:wanl@ornl.gov
mailto:gainarua@ornl.gov
mailto:wangr1@ornl.gov
mailto:chenj3@ornl.gov
mailto:ganyushindi@ornl.gov
mailto:pnorbert@ornl.gov
mailto:klasky@ornl.gov
mailto:axelhuebl@lbl.gov
mailto:jgu@lbl.gov
mailto:jlvay@lbl.gov
mailto:kwu@lbl.gov
mailto:f.poeschel@hzdr.de
mailto:tmunson@mcs.anl.gov
mailto:foster@anl.gov
mailto:xliang@mst.edu

WAN ETAL.: IMPROVING I/0 PERFORMANCE FOR EXASCALE APPLICATIONS THROUGH ONLINE DATA LAYOUT REORGANIZATION 879

In this paper, we examine these tradeoffs in the context of
WarpX [7], an AMR-based particle-in-cell (PIC) accelerator
physics modeling code that uses the AMReX [8] framework.
We conduct a comprehensive study of common data layout
strategies, focusing in particular on the challenges that
WarpX’s use of adaptive meshes and its dozens of blocks per
process pose for read performance. Our results yield insights
into when scientists should consider transforming a write-
optimized format into a read-optimized format; for example,
whether to optimize for reading on the number of nodes from
which the data was written, and whether to transform the
data after writing but before reading. WarpX’s use of impor-
tant computational motifs (AMR, dynamic load balancing)
make the lessons learned from this study relevant for the
larger particle-mesh and AMR communities.

While we would like to provide general-purpose meth-
odologies that encompass all possible read patterns, we
realize that it is not possible to optimize for all. Indeed, the
data layout optimization problem is challenging even for
some of the simpler read patterns discussed in this paper.
Thus we do not address the additional complexity of opti-
mizing for queries, as studied in [9]. Nor do we examine the
additional optimizations that are often necessary to obtain
good I/0O performance on parallel file system such as work-
load-aware striping [6], [10], [11], since the GPFS filesystem
on Summit supercomputer handles the striping internally
and it does not allow applications to modify the striping
strategy. Such studies are out of scope for this paper.

Our contributions are as follows. 1) We evaluate the I/O
performance of WarpX and quantify performance differen-
ces for different data layout strategies. 2) We show that no
standard data layout strategy can achieve both good write
and read performance. 3) We propose and implement an
approach to reduce the number of blocks in WarpX data on-
the-fly by leveraging the spatial characteristics, which sig-
nificantly improves the read performance for most common
read patterns. 4) By establishing a model based on perfor-
mance numbers collected from Summit supercomputer, we
study the feasibility of using staging techniques to move
data asynchronously to a small number of extra staging
nodes while modifying the data layout to optimize for read
performance. Our study shows that not only does this
approach improve read performance by up to 85 percent
compared to the original data layout, but it also can be more
efficient in terms of resource utilization compared to a post-
hoc data layout reorganization.

2 CoMMON DATA LAYOUT STRATEGIES

We describe three data layout strategies commonly used in
parallel I/O.

2.1 Logically Contiguous Layout
In this first strategy, data are linearized and then stored in
their entirety as a logically contiguous block on a file sys-
tem. (We say logically contiguous because on a parallel file
system, the data might be automatically partitioned into
“stripes” and distributed across different storage servers).
Supported by parallel striding I/O operations in the
Message Passing Interface (MPI), this intuitive data layout
strategy is typically used by default in I/O libraries.

P2 P3
0o]01 |20[21]30[31][22]23]32]33]
10[11
2021
3031

4x4 2D array

{20]2122]23]30[31]32[33]
J

R Y .
one single shared file

Fig. 1. Logically contiguous data layout on four processors. Left: The
application’s partitioning of a 4x4 2D array. Above: The data layout in
each process’ memory. Below: A logically contiguous layout in the output
file. Arrows show required data movement.

However, it often yields sub-optimal write performance for
large MPI-based parallel applications, because while the
partitioned data that resides in each MPI process may be
locally contiguous, generating a globally contiguous data lay-
out can require considerable inter-process communication.
For example, Fig. 1 shows an MPI program with four pro-
cesses in which the data held by each process is linearized in a
certain order (e.g., row-major). In order to linearize the global
2D array to generate a logically contiguous layout, data from
each process needs to be rearranged. Such rearrangements are
usually achieved by calling MPI-IO functions, which often
trigger some MPI collective operations to coordinate the data
movement among processes. These rearrangements can be
particularly costly for higher dimensional data, especially
when many processes participate or when the volumes of the
data that needs to be moved are large.

2.2 Chunking

Due to the excessive overhead of generating a logically con-
tiguous data layout, a data tiling strategy called chunking is
often adopted by I/O libraries as it tends to organize the
data produced by large-scale runs of parallel programs in a
more efficient manner. The basic idea is straightforward:
the original data is not serialized as a single contiguous
block but is instead split into multiple chunks that are
stored separately in the file, each as a logically contiguous
sequence. For example, as shown in Fig. 2, each process still
operates on a 2x2 block of the global array. If we set the
block owned by each process as a chunk, each process is
allocated an exclusive space in the file for storing its own
data. Thus the overhead caused by rearranging the data
among processes is significantly reduced. Moreover, since
each chunk can be accessed individually, the performance
of operating on a data subset is also improved.

Parallel HDF5 provides users the flexibility to set chunks
with different sizes as long as the chunks are in regular shapes.
However, if the chunk size is too large or the shape of each
chunk is not carefully selected, the rearrangement will still be
triggered. For instance, in Fig. 2, if each column of the global
array is set as a chunk, data from two different processes are
included in one chunk. In this case, the rearrangement leads to
an increase of inter-process communication. Furthermore, in
the general scenarios, the data contributed from individual
processes might not form a regular, feasibly large chunk. To
prevent the rearrangement from slowing down the
application’s execution, the two-phase I/O techniques [12],
[13] are often adopted. Usually, such techniques require extra
compute nodes/cores dedicated for the data rearrangement.
ADIOS2 [14] does not allow users to set the chunk size based
on a logical view of the global space. Instead, it treats each

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

PO P1 P2 P3
00 01. 00]01]10[11[02]03]12]13]|20]21]30[31][22]23[32]33]
11 \ J\ J\ J \ J

L chu‘r'1k0 chu?lkl chu?lkz chu?lkS

20(21|22|23 /

13 ENE)) ey o) 1 15 5 ED ET DT ERY R EE)
J

4x4 2D array © Y
one single shared file

Fig. 2. Chunked Data layout: 1 chunk per process.

process-local, contiguous data block as a separate chunk.
Moreover, in order to avoid the inter-process coordination for
data layout, ADIOS2 adopts a log-structured file format, thus
the positions of those chunks in the global array is not reflected
in the actual data layout. Therefore, ADIOS2 requires extra
metadata to not only track all the chunks in the actual file, but
also record the chunks’ positions in the global array.

2.3 Sub-Filing

Although chunking can reduce data rearrangement overhead,
the performance of large-scale parallel write operations is
sometimes greatly reduced due to file locking contention. For
example, we show in Fig. 3a a configuration in which a
512x512 2D array is distributed over four MPI processes. The
four 128 x128 chunks on each process are not always adjacent
in the global space. This type of data distribution pattern is
often observed in scientific codes that support dynamic load
balancing and/or adaptive mesh refinement (AMR). Com-
pared to the example illustrated in Fig. 2, where each process
only writes one contiguous data chunk to the file, now each
process needs to issue four separate write operations, target-
ing different offsets in the shared file. As a result, file locking
contention occurs.

A strategy called sub-filing has been developed to address
this issue. As shown in Fig. 3b, instead of writing all data
chunks to a single shared file, each process creates an individ-
ual file to store its data, to which it writes independently to
take advantage of high parallel file system bandwidth. This
strategy faces three challenges: 1) Tracking the data chunks
stored in each sub-file adds extra overhead to overall I/O per-
formance; 2) Too many sub-files will be created if the parallel
program is launched with many processes, overwhelming the
parallel file system’s metadata service and inconveniencing
post-hoc data management; 3) processing of sub-filed data
needs to find and open all sub-files that correspond to a read
request, which can incur significant read latency.

Due to these issues, sub-filing is not widely used by 1/0O
libraries as their primary layout strategy. Yet it remains popu-
lar as a simple I/O implementation in custom application I/O
layers. ADIOS2 uses sub-filing by default; to mitigate the
issues caused by sub-filing, it provides options to aggregate
data over a subset of parallel processes through MPI commu-
nication, reducing the total number of sub-files, which can
lead to significant performance improvements [15]. This
approach allows ADIOS2 to trade off a certain degradation in
write performance for lighter filesystem metadata load.
PnetCDF supports sub-filing, but disables it by default. Paral-
lel HDF5 plans to support sub-filing in the future [16].

3 DATA LAYOUT STRATEGIES: A CASE STUDY

Choosing the right data layout strategy is critical for parallel
computing programs since it has huge impact on their I/O

512x512
2D array

128x128
chunk

N Y .
one single shared file

(a) Without sub-filing

P1

(4] [aofss
N J

Y
sub-file 3

512x512 \) \ J
Y Y Y
2D array sub-file 0 sub-file 1 sub-file 2

(b) With sub-filing

Fig. 3. Data layout: 4 chunks per process, 4 processors.

performance. This is particularly challenging for scientific
codes with complex load balancing patterns, often in combi-
nation with support for AMR. We use WarpX [7], an AMReX-
based [8] particle-in-cell (PIC) simulation, as an example to
study the pros and cons of common data layout strategies for
parallel I/O.

3.1 Summit’s GPFS Filesystem and WarpX I/O
Patterns

Here we first provide a brief overview of Summit’'s GPFS fil-
esystem (where we perform all our tests) and WarpX 1/0O
patterns. Summit mounts a POSIX-based IBM Spectrum
Scale parallel filesystem (Previously it was called GPFS and
we use GPFS in this paper for simplicity). This filesystem’s
maximum capacity is 250 PB and its maximum performance
is about 2.5 TB/s for sequential I/O and 2.2 TB/s for ran-
dom I/O under FPP mode, which means each process
writes its own file [17]. GPFS, unlike Lustre, does not allow
applications to set stripe size and stripe count. The data
striping is handled internally in GPFS and not exposed to
applications. Therefore, in this study, we only focus on the
data layout strategies in user space.

WarpX uses spatial domain-decomposition and dynamic
load-balancing to distribute blocked memory structures over
MPI processes and associated accelerator devices. Domain-
decomposed data in a physical simulation box consists of
meshes (“cells”), which can be of nested refined resolution
(MR), and particles. Between 1 and N blocks of meshes are
dynamically assigned to a device, distributed in multiples
of a user-defined block size. Associated with each mesh
block is particle data, whose amount can vary arbitrarily
in load per mesh block. Since particles move through the
simulation and the operations on particles are more expen-
sive than mesh operations, WarpX/AMReX provides users
with multiple dynamic load-balancing algorithms to achieve a
fine-grained, compute-balanced decomposition, which can
lead to extremely complex parallel I/O patterns [18].

3.2 Impact of Data Layouts on Write Performance

We set up a weak scaling test on Summit to study how dif-
ferent data layout strategies affect the write performance of
AMR-based codes. We use Parallel HDF5 and ADIOS2 to
output WarpX simulation data with different layout strategies

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

WAN ETAL.: IMPROVING I/O PERFORMANCE FOR EXASCALE APPLICATIONS THROUGH ONLINE DATA LAYOUT REORGANIZATION 881

logically contiguous
chunking
chunking+sub-filing-FPN
chunking+sub-filing-FPP

1 ‘| || ‘|| ||| ||| ||| ||‘ “ |‘
6 12 24 48 96

192 384 768 1536 3072 6144
of processes

N

-
o

-
o
=)

write throughput (GB/s)

-
o

-
S,
)

Fig. 4. WarpX write performance on Summit: weak scaling. (We do not
report write performance for “logically contiguous” and “chunking” strate-
gies with 3,072 and 6,144 processes because poor write performance
did not allow those tests to complete before the time allocation was
exhausted.).

(using Parallel HDF5 for logically contiguous and chunked
data layout while ADIOS2 for the sub-filing strategy), since
these two I/O libraries have been integrated into openPMD-
api [19], the I/O framework used by WarpX and other Exas-
cale PIC codes. Particularly, we configured the Parallel HDF5
in “independent I/O” mode since the “collective I/O” mode
is not applicable to scientific codes using load-balancing and/
or mesh-refinement due to certain constraints. In each run, we
launch a WarpX simulation with a certain number of compute
nodes (up to 1,024) with six MPI ranks per node. The simula-
tion data is written to the GPFS filesystem using different data
layout strategies based on the chosen I/O library. Each com-
pute node writes 64 GB of data per output step and we
measure the overall write throughput for all nodes. GPFS
internally splits big data chunks into 16 MB blocks and distrib-
utes them across all IO servers. Although the blocks’ size can-
not be changed in user space, we make sure in our write
performance tests the minimal data chunk written by each pro-
cess is 16MB to take full advantage of the existing setting in
GPFS on Summit. All measurement results are shown in Fig. 4.

Fig. 4 shows that organizing the WarpX data into a logi-
cally contiguous layout significantly degrades write perfor-
mance. During the execution of the simulation, each process
operates on dozens of data blocks for each mesh variable
(e.g., 10 blocks per rank in our test). While initially adjacent
in the global array, these blocks are exchanged among pro-
cesses as the simulation progresses due to load balancing
operations. Thus each process may end up with data blocks
from arbitrary locations in the global array. Rearranging
these nonadjacent data blocks into a logically contiguous
layout can lead to considerable overhead.

Enabling chunking improves the write performance; fur-
ther significant gains can be achieved by also adding the
sub-filing strategy. This is particularly the case when the
number of processes increases. As discussed in Section 2.3,
the file locking contention becomes a bottleneck if all the
processes write all the data chunks to a single shared file
concurrently. For instance, when running a simulation with
1,536 processes, the overall write throughput of only
enabling chunking is still more than one order of magnitude
lower than enabling both chunking and sub-filing.

When the sub-filing strategy is enabled, changing the
number of sub-files can also affect write performance. As
shown in Fig. 4, when using a small number of processes,

Z ZI _____ Z PE(
¢ 1
T I 1
Rabrs: o I Y i T
. __L ___ 1 : 1
| s :)
X X ,,' X

decomposition = 1x1x2 decomposition = 1x2x1 ~ decomposition = 2x1x1

101

101III IIII IIII

mm |logically contiguous w= chunking

mm chunking+sub-filing

read throughput (GB/s)

Fig. 5. Impact of decomposition schemes when reading.

creating one sub-file per process (“chunking+sub-filing-
FPP”) always achieves higher write throughput compared to
one sub-file per compute node (“chunking+sub-filing-
FPN”). With the increase of processes, the write performance
of adopting one sub-file per compute node eventually
becomes better. This is because when too many sub-files are
created simultaneously, the parallel file system needs to
complete many metadata operations, which can slow down
the overall write performance.

3.3 Impact of Data Layouts on Read Performance

We tested read performance on Summit using a 2.7 TB
WarpX dataset in which each 3D mesh variable is 256 GB.
We focus on these mesh variables, since they were the pri-
mary concern for the scientists who ran this type of simula-
tions. Because all 3D mesh variables have the same shape
and size, we only show read results for one variable, “B”.

To demonstrate how decomposition affects read perfor-
mance, we use two Summit nodes to read all of “B” with
three different domain decomposition schemes, with results
shown in Fig. 5. Decomposition 1x1x2 means the 3D array
is split in half along the z dimension so that each of the two
processes reads half of the data. Similarly, decomposition
1x2x1 and 2x1x1 split the 3D array along the y and x
dimensions, respectively. Fig. 5 shows that not only are
there large performance differences when reading data gen-
erated by different layout strategies under the same decom-
position scheme, but read performance is also sensitive to
the decomposition scheme for certain data layout strategies.
We will see that this difference has a major consequence
when we read from a larger number of processes.

Finally, we run a comprehensive test with varying num-
ber of processes and different decomposition schemes to
measure the performance of reading data generated by the
common layout strategies under different read patterns.
Fig. 6 shows six common data access patterns for reading
3D mesh variables in WarpX data. Depending on the num-
ber of readers and the decomposition schemes, each reader
only reads a portion of the required data concurrently.
When a number of processes permits multiple possible
decomposition schemes, we only present results for the
decomposition that achieves the best read performance.

Our results, presented in Fig. 7, show that the logically
contiguous layout offers better read performance in most
cases if only a few processes (8 or fewer) are used to read
the data. However, this advantage of logically contiguous

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

882 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

& Z l V4
Y
L W X X X
the whole domain a yz-plane an xz-plane
Z Z YA
7Y
X X X

an xy-plane asub area partial area of a plane

Fig. 6. Six common read patterns of a 3D mesh variable.

layout goes away when reading an xy-plane, as the data ele-
ments of an xy-plane are dispersed in a logically contiguous
layout of a 3D array. When the number of processes increases,
the performance of reading the logically contiguous layout
also decreases. This is because more processes means more
concurrent read requests for different regions in the logically
contiguous layout, which increases the random seek opera-
tions issued to the underlying storage devices.

When data is generated by only enabling the chunking
strategy, read performance is not good in all cases. This is
because the data read by each process is composed of many
chunks; thus, not only must each process find all needed
chunks in the file, it must also linearize those chunks to gen-
erate a contiguous array in memory. In general, a larger
chunk size helps to mitigate this issue, but it also degrades
the write performance significantly, as seen in Section 2.2.

If both the chunking and sub-filing strategy are enabled
when generating data, read performance improves substan-
tially with more processes. We see improvements in read
performance compared to the chunking-only case. How-
ever, reading data with fewer processes is still slow because
each process still needs to merge many chunks.

4 CLUSTERING AND MERGING OF DATA BLOCKS

From the performance study presented in the previous sec-
tion, we observe that none of the common data layout strat-
egies can achieve satisfying write and read performance at
the same time. In this section, we study how to leverage the

spatial locality in WarpX simulation data to optimize the
existing data layout strategies, so that we can find a good
tradeoff between the write and read performance.

4.1 Spatial Locality

As mentioned in Section 3.1, a load balancing operation is often
triggered during the execution of AMR-based scientific codes
such as WarpX. Once the load balancing operation starts, the
data blocks are exchanged among processes. Therefore, as the
simulation proceeds, the data blocks each process operates on
might be very different from those initially assigned and prob-
ably cannot be merged together to form a bigger chunk with a
regular shape (e.g., cuboid). This is the fundamental reason
why none of the common data layout strategies performs well
on WarpX data. For example, if the logically contiguous layout
is used, due to the huge number of blocks distributed across
all the processes, rearranging the layout will cause a lot of over-
head. If the chunking and sub-filing strategy are enabled,
although the write performance is improved, reading data
from small number of processes becomes slow because each
reader needs to read and linearize many small blocks. Parallel
HDEFS5 allows users to set bigger chunks to reduce number of
small blocks based on a logical view of the global data space,
but in this case that setting hardly matches the physical distri-
bution of data blocks among processes. It is quite possible that
data blocks from different processes or nodes belong to the
same chunk based on the user setting, resulting in expensive
layout rearrangement again.

Our basic idea to address this issue is to leverage the spa-
tial locality in WarpX data to reduce the number of data
blocks. Specifically, instead of setting bigger chunks from a
logical view of the entire data space, we focus on how data
blocks are actually distributed and the possibility of merg-
ing data blocks within each process or compute node. If the
intra-process or intra-node block merging is possible, we
can reduce the number of blocks without causing too much
overhead since the intra-process or intra-node data move-
ment is less expensive compared to inter-node data move-
ment. Here is a simple example to demonstrate this idea. As
shown in Fig. 8, let us assume the mesh variable is a
512x512x512 array which is decomposed into 64 blocks of
128x128x128. After a few rounds of load balancing, the
data blocks owned by different processes are in different
colors. We see that although it is impossible to merge all
data blocks that each process owns, it is possible to merge

EEE |ogically contiguous . chunking B chunking+sub-filing

whole domaln

lane xz-plane

6 MB 1 64MB

— 10
] II||||II|| |III|| -2I||||||IIII|||
m
e ll | l Il ll I -* -II ll T MMM ll I I I | l.n. I.l.
*é_ 16 32 64 128 16 32 64 128 1 2 4 16 32 64 128
§’ lane sub area -1 sub xz-plane
_§10 1 8MB 32GB 10 16MB
= -2
* bbbl * ounsdadidal II|I|I||I|I|||I|
= LalnlnhibiLIL nu.unnnn I Rkl LI,

16 32 64 128 16 32 64 128 16 32 64 128

of processes

of processes

of processes

Fig. 7. Performance of reading data generated by common layout strategies under different read patterns.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

WAN ETAL.: IMPROVING I/0 PERFORMANCE FOR EXASCALE APPLICATIONS THROUGH ONLINE DATA LAYOUT REORGANIZATION 883

P3

]

/ ,',I ’
990 o 0 88 7.

SeismiSis 7

16>7

Fig. 8. Merging small blocks into bigger cuboid blocks.

some data blocks into bigger blocks. For instance, some of
the blocks on process 0 can be merged, which reduces the
number of blocks on process 0 from 16 to 6. Moreover, if
process 0 and 1 are running on the same compute node and
the data blocks they have can be aggregated together, the
number of blocks might be further reduced.

4.2 Algorithm for Clustering and Merging Data
Blocks

We extend an algorithm proposed by Berger and Rigoutsos
[20] to cluster and merge data blocks in WarpX simulation
output. The original algorithm was used to cluster grid
points which aims to find minimal number of rectangles to
cover all grid points in a 2D space. We have modified the
original algorithm so that 1) it can work with 3D data and 2)
it will not stop until cuboids filled with original data blocks
are found. (In the original algorithm, empty spaces are
allowed within each rectangle.)

Algorithm 1. Data Blocks Clustering and Merging

Input: Original blocks [bg, by, . . ., by—1]
Output: Merged blocks [By, By, . . ., Bi—1]
Find minimal cuboid C,,,; that owns [by, . . ., b,—1];
Create an empty list [= [J;
Add Ciot to an empty FIFO queue Q;
while @ is not empty do
Cpm'ent = Q.dequeue();
Cparent contains original blocks [by, ..., by, ,];

if Vol(Cparent) == S.1=) Vol(b,,) then
Linsert(Cparent);
else
Calculate the block distributions;
Find the best place to split Cpayent;
Split Cpurens into Crey and Crjgny;
if Ci.p, has at least one original block then
Q.enqueue(Crep);
end
if Cyigns has at least one original block then
Q.enqueue(Crignt);

end
end
end
foreach C; € [do
C; contains original blocks [b;,, ..., b;,_,];
Copy [biys - - -, b;,] into memory allocated to B;
end

The input to this algorithm is a set of WarpX data blocks
that either are owned by the same process or have been gath-
ered from processes running on the same compute node. For
simplicity in presentation, we assume here that these data
blocks all have the same shape; in practice, this assumption
can be loosened to a certain extent. As shown in Algorithm 1,
the first step is to find the minimal cuboid that contains all
original data blocks in the global 3D space. For example, the
minimal cuboid that contains all data blocks owned by pro-
cess 0 in Fig. 8 has shape 512x512x512. Then this cuboid is
added to a FIFO queue. If this queue is not empty, a new itera-
tion of the while loop starts. During each iteration of this
while loop, a cuboid is first fetched from the FIFO queue,
which contains a certain number of the original data blocks. If
the volume of this cuboid equals the total volume of all the
original data blocks it owns, meaning we have found a bigger
block that all the original blocks this cuboid owns can be
merged into, we then add this cuboid to a list . Otherwise,
there is still empty space in this cuboid and it needs to be fur-
ther split into smaller cuboids.

The key component of this algorithm is finding the best
place to split the cuboid. For example, consider Fig. 9. To find
where to split the cuboid, we need to first calculate the distri-
bution of original data blocks along each dimension. For
instance, along the x dimension, the cuboid can be divided
into four slices of blocks. Within each slice, some positions are
occupied by the original data blocks while others are empty.
The percentages of original data blocks within each slice form
avector Uy, = [, 15, 15). This vector represents a histogram
that can be treated as a 1D binary image. Finding the best
place to split on the x dimension is similar to detecting the
edge in this image. Therefore, we can apply common edge
detection technique such as the Laplacian edge detector to
this histogram. For instance, L,. = V2 U, is the result of Lap-
lace’s differential operator applied to U,.. To find the location
of the edge in this histogram, we need to find a zero-crossing
in L,.; as the Laplace operator is a second order derivative, a
zero-crossing corresponds to an inflection point in Uy, which
is the edge location we are looking for. Similarly, we can calcu-
late L,. and L,, for the y and z dimensions, respectively, and
find their zero-crossings also. Among all these zero-crossings,
we select the one with the steepest slope in the histogram as
the place to split the entire cuboid. In this example, that place
is on the y dimension.

After the current cuboid is split into two sub-cuboids, we
check whether these two sub-cuboids are empty or not. If
they still own original data blocks, we add them to the FIFO
queue for further processing. Once the FIFO queue becomes
empty, the while loop exits and all the cuboids filled up
with original data blocks are in list /, meaning the clustering
of data blocks is finished. Now we need to merge the actual
data of these original data blocks. Specifically, for each
cuboid in list I, we merge and serialize the data of all the
original blocks it owns into a bigger memory buffer as a
new data block. All these new data blocks will then be writ-
ten out as the “chunks” to the parallel file system.

4.3 Evaluation on Data Blocks Clustering and
Merging

We evaluate the data block clustering and merging algorithm

from two aspects: 1) the read performance improvements it

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

884

7/16 6/16
5/16
1/16 e X l‘LMJ—!_\

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

block distribution
of each yz-plane

of each xz-plane

! i 15 7 3 v = 5 1 4
(] yz_[16'16'16'16] * "~ 16’16’16’
X Ly, = v? Uy, Lyy = V?Uy,

Fig. 9. Finding the best place to split the original space.

provides, and 2) the write overhead it causes. Particularly, we
apply the algorithm to the real WarpX simulation output. For
the WarpX run with 256 compute nodes and 1,536 processes,
each process operates on roughly 10 original data blocks and
there are about 64 data blocks on each compute node. If the
intra-process blocks clustering and merging are enabled, on
average the number of data blocks each process operates on is
reduced from 10 to 3. If the intra-node blocks clustering and
merging are enabled, on average the number of data blocks
on each compute node is reduced from 64 to 10. Intra-node
clustering and merging require data blocks owned by pro-
cesses running on the same compute node to be gathered to
one process, leading to extra data movement overhead.

By reducing the number of data blocks, the read perfor-
mance is expected to be improved. As shown in Fig. 10, we
measure the performance of reading the WarpX data after
intra-process and intra-node blocks clustering and merging
respectively, and compare the performance numbers with
those achieved by using common data layout strategies. As
we can see, under four of the six common read patterns
(reading whole domain, yz-plane, sub area, xz-plane), the
read performance of enabling data blocks clustering and
merging is notably better than only enabling chunking and
sub-filing. However, since the merged data blocks might be
different from each other in terms of shape and size (e.g., as
shown in Fig. 8), enabling block merging cannot guarantee
read performance improvements under every read pattern
(e.g., when reading the xz-plane and xy-plane).

We also evaluate the overall benefit of enabling the block
clustering and merging by taking both the performance
improvements and overhead into account. When the intra-
process blocks clustering and merging are adopted, the
overhead of clustering blocks of one 3D mesh variable in
WarpX data is less than 0.001 seconds, while merging these
data blocks in memory takes about 0.19 seconds. If we
enable intra-node block clustering and merging, these two

block distribution

f each | .
6 ° ealcl Xép alne 1 flnd the best place to L
—] === = I split the original space ’ !
16 16°16°16"16 based on Ly, Ly, Lyy A
Lyy = V2U vz bz Rididii
xy — xy il i

11/16 .
1
316 116 116 Z 5/16 1416, 8/1
116 y

block distribution

numbers are 0.0003 and 1.03 seconds, but there is an extra
overhead of about 0.25 seconds in gathering data blocks
within each compute node through an MPI collective opera-
tion. On the reader side, the seconds saved by enabling the
block merging is obtained by calculating the difference
between read times without and with block merging. There-
fore, the total time saved by using block merging is calcu-
lated by subtracting the overhead caused on the writer side
from the time saved on the reader side. As shown in
Figs. 11a and 11b, for most scenarios, enabling block merg-
ing shortens the total time of the application workflow.

If scientists are more sensitive to the cost of a job running
on supercomputers (which is usually measured by the
product of the compute nodes and time that the job occu-
pies), here we also calculate the node seconds that we gain
and loss by turning on the clustering and merging of data
blocks to assess its usefulness. As shown in Fig. 12a, when
intra-process block merging is enabled, the loss in node sec-
onds per variable on the writer side is always 256 x(0.001+
0.19) = 48.9. The gain in node seconds is then the number of
nodes used for reading multiplied by the number of sec-
onds saved by enabling the block merging. We see in the
figure that if the number of readers is less than four, the
gain of node seconds in the reader is always greater than
the loss in the writer, indicating that we should enable the
intra-process block merging. By enabling intra-process
block merging, we can save up to 150 node seconds for writ-
ing and reading each 3D mesh variable. However, with the
increase of readers, the gain of node seconds on the reader
side drops, which makes intra-process block merging less
efficient. We did the same calculations for the intra-node
block merging case. As shown in Fig. 12b, since intra-node
block merging causes more overhead and the writer side
usually uses more compute nodes, only when the decompo-
sition scheme 2x1x1 is used for reading, the gain of node
seconds is greater than the loss. One thing we must point

Bl [ogically contiguous B chunking BB chunking+sub-filing M chunking+sub-filing+intra-process-merging M chunking+sub-filing+intra-node-merging

0 whole domain xy-plane xz plane
256GB 64MB
21
| ||I]l il ol nll\ Il ||I L ||| ||\ | |II| |I||I |||I| |||| AN
S Lo ol o ol ol] ol ol e 0 Rl 110 .
e 16 32 64 128 16 32 64 128 16 32 64 128
(*)]
g Iane sub area sub xz-plane
< 10° 32GB
1
ko 10
-1
|||||||”I I|I II‘II IIIIIII|| ||| |“ |||| |I||II||I||||||||||‘||“I|“I|
all TAEJARY DA T vl A R O o M A
1 2 4 128 1 128 128
of processes # of processes # of processes

Fig. 10. Read performance when intra-process or intra-node blocks merging is enabled.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

WAN ETAL.: IMPROVING I/0 PERFORMANCE FOR EXASCALE APPLICATIONS THROUGH ONLINE DATA LAYOUT REORGANIZATION 885

100
75

25
0II. |-

total time saved (s)
W
o

-

"1/ N D 0, g U RN S U = B
o aF + o N P L N IV T P U,

\+ ‘\(-1/ \'\g/ (]/‘\- q;\- (1;{'1/ (lj{'l’ rl;\g/ (1;\?‘ (1;\?‘ ‘{'1/ _‘(_1/ s b:\'b‘ 4 ‘\c'b s

different decomposition schemes when reading

(a) Total time saved using intra-process block merging

- 300

2 250

©

€ 200

b

P 150

£ 100

g ODD

2 D Dl:l:l:l:l:ll:l_:l=___

Q& & Qg X a4 X 9 X 9 X D

N3 +r\+++++++++++++
r\'\- r\‘\‘} \'\g/ (1;\- rl’ rl/q/ (1/‘\{-1/ rl,‘\‘j/ (l/b‘ (]/‘\P‘ b;\{-]’ bﬂg/ v‘\P‘ &\P‘ b:\-b‘ v‘\‘-b zbb(

different decomposition schemes when reading

(b) Total time saved using intra-node block merging

Fig. 11. Writing and reading a 3D mesh variable: total end-to-end time
saved. Comparison for intra-process and intra-node block merging.

out is that the outputs of large-scale long-running simula-
tion jobs are usually repeatedly accessed by domain scien-
tists after being generated. Therefore, even if the block
clustering and merging incurs some overhead when gener-
ating the data, there will often be a long-term benefit in
downstream data workflows.

In summary, both intra-process and intra-node block
merging can improve the read performance, but intra-process
block merging achieves better resource utilization for scien-
tific codes with dynamical load-balancing and/or AMR on
supercomputers. For common scientific campaigns where

200
150

100

oﬂ’_’ |_| 0 P PR o _
_so 1 | Y |) o)
-100

-150
-200

gain

loss

& L & Q g & U v

& o S T S LN L LN R e

\'\:\ r\'\{-l/ r\‘\‘} q;\- rl/'\:\ rl,‘\‘} rl;\g/ (1;\{-1/ rl,‘\‘b‘ rl/'\-b‘ u.{_l/ b;\{J’ b;\-b‘ V.\P‘ b;\‘b‘ bﬂg’ %‘\P‘
different decomposition schemes when reading

(a) Node-second gain and loss using intra-process block merging

-600

R
U O I Ly q’b‘q’wkq’“‘(‘""wkw&‘ﬂ!"
\'\- r\“} r\'{-l' ’1/+ q/‘\' rl;\‘} q/_{} q;\' q;\' q;\-b‘ b(.{_l/ g‘} b;\'b‘ b:\' b‘ b;\g) ‘\-b(
different decomposition schemes when readlng
(b) Node-second gain and loss using intra-node block merging

Fig. 12. Writing and reading a 3D mesh variable: node-seconds saved on
the reader side versus node-seconds lost on the writer side.

{compute] write [compute] write]--(compute | write]_t-(m, q, NS)i t,,(m, g, NS)!

A | =
Lt t(up)S) @ | write | J

Y R .
data layout reorganization

LY
simulation

(a) Post-hoc data layout reorganization

ts(n p,m q,5)
{ compute I compute |_compute | -+ [_compute |
J
! : : simUlation
| | (Stage] write] m -+ (Stage) write
' t. . W(m q,S) data Iayoutreorganlzatlon

(b) On-the-fly data layout reorganization

Fig. 13. Data layout reorganization.

data is written once but read many times, these approaches can
offer significant benefits in the long run.

5 REORGANIZATION OF DATA LAYOUT

Although the data blocks clustering and merging approach
proposed in Section 4 improves the read performance com-
pared to only enabling the chunking and sub-filing strategies,
the lack of flexibility in adjusting the size and shape of the
merged blocks prevents it from achieving even better read
performance. In this section, we study the feasibility of reor-
ganizing the data layout on-the-fly to further improve the
read performance if extra system resources are available.

5.1 Different Ways to Reorganize The Data Layout
As shown in Fig. 13a, let us assume we run a simulation on
Summit which periodically outputs data with chunking and
sub-filing enabled to achieve the optimal write perfor-
mance. The most naive way to reorganize the data layout is
to launch a job with certain number of processes after the
simulation finishes, which reads in the data generated by
the simulation and writes it out again to the parallel file sys-
tem with a new layout. This is the so-called post-hoc data
layout reorganization. The advantage of this approach is
that it does not slow down the simulation job. Its disadvan-
tage is domain scientists cannot access the data in reorgan-
ized layout immediately after the simulation job finishes,
because reading in and writing out the data might take a
long time, especially when the simulation output is large.
An alternative approach is to reorganize the data layout
on-the-fly. Specifically, while the simulation is running,
instead of letting the simulation write the outputs directly
to the parallel file system, we move the data to certain pro-
cesses through MPI or other communication protocols to
form the data layout we need, and then let those processes
write the data to the file system. Existing studies have pro-
posed to implement this functionality based on different
techniques, including two-phase I/O and staging. For
example, Tessier et al. [12] developed an efficient topology-
aware two-phase I/O algorithm to aggregate contiguous
pieces of data before performing reads/writes. Kumar et al.
[13] proposed a two-phase approach that leverages MPI-
based data aggregation to reorganize particle data layout on
the fly. Solutions based on the staging techniques were also
proposed in [21], [22]. Although these approaches showed

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

886 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

TABLE 1
Symbols Used in Our Model

Symbol Notation

te Computation time between two outputs
Time it takes to write data to the PFS

tr() Time it takes to read data from the PFS

ts() Time it takes to stage data

n # of compute nodes used for simulation

D # of processes per node used for simulation

m # of compute nodes used for data layout
reorganization

q # of processes per node used for data layout
reorganization

S Size of each simulation output

N Total # of simulation outputs

U Resource utilization in compute node seconds

promising results for certain application use cases, we still
need to understand if it is feasible or efficient to reorganize
complex data layouts on the fly for scientific applications
that use dynamic load-balancing and/or AMR since mov-
ing the huge amount of data blocks among processes can
cause significant overhead.

5.2 Efficiency of Data Layout Reorganization

In order to study this, here we leverage the non-blocking
staging technique called Strong Staging Coupler [23] to
asynchronously move the data blocks from the compute
nodes where the simulation is running, to a few staging
nodes where the data blocks are merged as a contiguous
chunk before being written to the parallel file system. We
choose this technique instead of others because it is part of
ADIOS?2 library which can be called by WarpX through the
openPMD-api [19]. We run tests on Summit to collect per-
formance numbers and then build a model which is quanti-
fied based on these performance numbers. We list the
symbols used in this model in Table 1.

Among all these symbols, t,(), t.() and () are depen-
dent on the scale and parallelism of the setup, which means
they are functions of number of compute nodes, number of
processes per node and size of data. Thus, we first present
results of some weak and strong scalability tests for the stag-
ing technique we used to understand how ¢,() (¢,() and ¢,()
have been studied in previous sections) changes when dif-
ferent setups are adopted. As shown in Fig. 14, in our weak
scaling test, we fix the data size per writer node (1 or 2 GB)
and measure the data staging time when different number
of writers and readers are used. In our strong scaling test,
we fix the total size of the data (100 or 200 GB) and also mea-
sure the data staging time when different number of writers
and readers are used. From the results we can see that the
data staging time ¢,() cannot be characterized by a simple
formula, which adds extra complexities to this problem.

Now let us introduce our model. As shown in Fig. 13a,
the total simulation time is N[t. + t,,(n, p, S)], while the time
it takes to reorganize the data layout offline is ¢,(m, ¢, NS) +
tw(m, ¢, NS). Therefore, the resource utilization of post-hoc

Data size
50 . 1GB
mm 2GB

20 I

\31 20 o 31 28 e

Data size
strong scaling mm 100GB
mmm 200GB

weak scaling

156\ o S

2.5

0.0
&2 20 o 30 28 6

>
S

N

=}

Time [seconds]
w
3

Time [seconds]
—
«

g
o

o) \
o \sx 15 Ar’ﬂ

Number of wrlters / readers [nodes]

(9 \5\
Number of wrlters/ readers [nodes]

Fig. 14. Weak and strong scalability tests for staging.

data layout reorganization is U = nN(t, + t,(n,p,S)) +
mlt,(m,q, NS) + t,(m,q, NS)]. For on-the-fly data layout
reorganization, there are two possible scenarios: 1) If
ts(n,p,m,q,S) + ty,(m,q,S) <t. then the execution time of
the entire workflow is Nt. + ts(n,p,m,q,S) + tw(m,q,S),
thus the resource utilization can be calculated as (n+
m)[Nt. +ts(n,p,m, q,S) + tu(m,q,S)]. 2) If ty(n,p,m,q,S) +
tw(m,q,S) > t., the computation will be delayed and not
continue until the current simulation output is written to
the file system. In that case, the execution time of the entire
workflow is t.+ Nts(n,p,m,q,S) + tw(m,q,S)] and the
resource utilization is U = (n + m){t. + N[ts(n,p,m,q,S) +
t,(m,q,S)]}. For a given simulation setup, some variables
in these formulas are fixed, including n,p, S. Although we
might be able to use more staging nodes, that number is
usually fixed (1 percent of the total compute nodes the job
occupies) due to limited resources. If n,p,m, q, S are fixed,
tw(),tr(),ts() are also unchangeable since they are hard-
ware-dependent. The only variables users can control are ¢,
and N. Particularly, ¢, determines the frequency of outputting
simulation data, while N determines how long the simulation
runs. Therefore, we measure the performance of a given simu-
lation setup on Summit to quantify all the unchangeable varia-
bles, and demonstrate how to select ¢, and N to make the on-
the-fly data layout reorganization more efficient than the
post-hoc approach in terms of resource utilization.

We use 256 nodes and launch six processes per node to run
the WarpX simulation. We also use two extra nodes and
launch 32 processes per node for data staging. Each simula-
tion output has size 256 GB, which is one 3D mesh variable (it
is possible to reorganize the layout of all variables through
staging, but here we only output one variable to be consistent
with the read performance comparison in the previous sec-
tions). We also test the post-hoc data layout reorganization
using 256 nodes (six processes per node) for simulation and
two nodes (32 processes per node) for the post-hoc run. In the
reorganized layout, the 2048x4096x4096 mesh variable is
decomposed into 64 chunks and the decomposition scheme is
4x4x4. Our measurements, listed in Table 2, show that ¢,(2,
32,256N) = t,(2,32,256)N = 11.1N while t,(2,32,256N) =
tw(2,32,256)N = 13.6].

If we fix t, = 40 seconds (i.e., the simulation outputs data
every 400 steps, since each simulation takes about 0.1 sec-
onds under this setting), then ¢,(n = 256,p =6,m =2,q =
32,8 = 256) + tu(m = 2,q = 32, S = 256) = 19.4 + 13.6 = 33

t.. The resource utilization of on-the-fly reorganization
is U, = (256 + 2)(40N 4 19.4 + 13.6) = 258(40N + 33). The

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

WAN ETAL.: IMPROVING I/0 PERFORMANCE FOR EXASCALE APPLICATIONS THROUGH ONLINE DATA LAYOUT REORGANIZATION 887

TABLE 2
Timing Information of Our Staging-Based Data
Layout Reorganization Experiment

Variable Value (seconds)
ts(n =256,p =6,m = 2,q = 32,5 = 256) 19.4
to(m =2,q = 32, S = 256) 136

tw(n = 256,p = 6,5 = 256) 14
to(m=2,q=32,8 = 256) 11.1

resource utilization of post-hoc reorganization is U, =
256N (40 + 1.4) + 2(11.1N + 13.6N) = 10647.8N. Only if U,
< U,, which means 258(40N + 33) < 10647.8N = N > 26
(the simulation needs to at least outputs data 26 times), the
resource utilization of on-the-fly reorganization will be less
than the post-hoc reorganization.

If we fix ¢, = 20 seconds (i.e., the simulation outputs data
every 200 steps), then ¢,(n =256,p=6,m =2,¢=32,5 =
256) + ty(m = 2,q = 32,8 = 256) = 19.4 + 13.6 = 33 > t,.
The resource utilization of on-the-fly reorganization is U, =
(256 +2)[20 + N(19.4 + 13.6)] = 258(33N + 20). The resource uti-
lization of post-hoc reorganization is U, = 256N (20 4 1.4)+
2(11.1N + 13.6N) = 5527.8N. Since 258(33N + 20) > 5527.8N,
we always have U, > U,, meaning the resource utilization of
on-the-fly reorganization will always be more than that of
post-hoc reorganization if ¢, = 20. In fact, to make U, < U, in
this case, we need t, > FC2 > limy_. e020k = 31. 66
Thus, we need to choose t. such that 31.66 < . < 33.

If the user wants the simulation to output at least 50 out-
puts (N > 50) and the simulation is not slowed down by
the on-the-fly reorganization (¢, > 33), t. needs to be: U, <
U, = 258(Nt. + 33) < 256N (t. + 1.4) +49.4N = t, < L85
= t. < 150.26, to make resource utilization of on-the-fly
reorganization less than in the post-hoc approach.

Finally, we evaluate read performance after data layout
reorganization and compare it with that achieved with other
approaches. As shown in Fig. 15, after data layout reorganiza-
tion, read performance is notably improved compared to other
approaches with less than 16 concurrent readers. In particular,
when reading with a 2x1x1 decomposition, the read time is
reduced by 85 percent compared to other approaches. How-
ever, as the number of concurrent readers increases, the perfor-
mance improvement provided by data layout reorganization
reduces; with more than 64, the read performance after data
layout reorganization becomes worse than other approaches.
Because the reorganized data has 64 chunks; with more than
64 concurrent readers, one chunk might be accessed by multi-
ple readers, leading to contention.

6 RELATED WORK

Data layout is a crucial determining factor for I/O access
latency and bandwidth on parallel computers. Arranging
data accesses so as to increase I/O system performance,
either for specific cases or as a general goal, has been stud-
ied for over two decades [24], [25], [26]. Historically, parallel
I/0 middleware and file systems have been developed sep-
arately, to simplify implementations and enhance transpar-
ency between parallel I/O components. However, recent
studies have investigated data layout-aware optimization

HEEE chunking+sub-filing
B chunking+sub-filing+intra-process-merging
B with reorganization

Q9 u R
g o 4 oL
@ ﬁv "

43’ & + SOy + + + o SN
ar qr gt gf gf gf gF xF s W u
different decomposition schemes when readlng

read tlme (s)

Fig. 15. Read performance after data layout reorganization: Reading a
whole 3D variable in WarpX data.

strategies that promote a better integration of parallel 1/0O
middleware and file systems, with promising results [27].

As the performance gap between processors and storage
devices keeps increasing, more studies have focused on bet-
ter understanding the I/O patterns of applications and the
potential benefits of pre-arranging data in different layouts.
Liu et al. [28] investigate the impact on read performance in
data analysis tasks when the read pattern does not conform
with the original organization of the data. Based on the find-
ings, the authors propose a method for automatically reor-
ganizing previously written data to conform with the
known read patterns. Tang et al. [29] extend this work by
adding a dynamically component to the method, allowing it
to recognize data usage patterns and to replicate the data of
interest in multiple reorganized layouts that would benefit
common read patterns at runtime.

More recent work focuses on optimizing the most currently
used I/O libraries in large-scale data centers for the frequent
patterns within HPC applications. He et al. [30] focus on MPI-
IO, creating methods to reorganized data replica for each
access pattern on HDD-based or SSD-based servers for low or
high I/0O concurrency applications depending on their pat-
terns. Similarly, Tsujita et al. [31] investigate the performance
benefits of aggregation methods for collective communica-
tions through the MPI-1O layer.

The performance of the HDF5 I/0O library has been studied
extensively and multiple methods have been proposed on top
of it to optimize the data access. Ji et al. [32] propose several
strategies to optimize HDF5 I/O operations, including chunk
storage, parallel read/write, on-demand dump, and stream
processing for the Five-hundred-meter Aperture Spherical
Radio Telescope project. Mehta et al. [33] develop a new
HDFS5 plugin in order to use the parallel file system to convert
the single-file layout into a data layout that is optimized and
stores data in a unique way that enables semantic post-proc-
essing on data. Mu et al. [34], design a storage interface based
on data containers that provides data chunking and takes
advantage of multiple storage tiers.

The ADIOS library uses chunking for data access and can
use the block range index technique for scientific datasets,
which only records the value range of all records in a data
block [35]. Lofstead et al. [5] compare the ADIOS log-based
BP format to the logically contiguous NetCDF or HDF5 for-
mats, taking into account different patterns, layouts, and
data sizes. Another similar study [36] focuses on large-scale

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

888

gyrokinetic toroidal simulations. It introduces a new approach
for reducing metadata overhead in ADIOS when the chunking
and sub-filing layout strategy are enabled.

Besides the I/O libraries, the object stores have also
drawn a lot of attention from the HPC community. The
object stores such as Intel’'s DAOS [37] and Seagate’s Cor-
tex [38], are potential solutions for the metadata challenge
exascale applications are facing.

7 CONCLUSION

We have presented a comprehensive study of common data
layout strategies for parallel I/O. We show that due to the
complex I/O patterns of scientific codes with dynamic load-
balancing and/or AMR, no standard data layout strategies
used in existing I/O libraries can achieve both satisfactory
write and read performance at the same time.

Knowing the limitations of existing data layouts, we pro-
pose two online data layout reorganization approaches, with
the aim of enabling good tradeoffs between write and
read performance for these complex I/O patterns. The first
approach leverages spatial locality in data to cluster and merge
data blocks within each process or compute node; we show
that for most common read patterns, this strategy can signifi-
cantly improve read performance while incurring only mimi-
mal write overhead. Performance results for this method,
using realistically complex application I/O patterns, are read-
ily applicable without any change to the application code.

The second approach is to fully reorganize the data layout
by leveraging the existing staging techniques. Due to a higher
degree of freedom in the reorganization, potential gains for
read performance brought by this approach are even larger
than in the first approach. Since large number of data blocks
need to be moved among processes during the online data
layout reorganization which might cause significant over-
head, we build a model to understand when and how to use
the staging-based data layout reorganization can achieve bet-
ter resource utilization compared to the post-hoc approach.

ACKNOWLEDGMENTS

This work was supported in part by the Exascale Comput-
ing Project under Grant 17-SC-20-SC, a collaborative effort
of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, in part by the
Center of Advanced Systems Understanding (CASUS),
Germany’s Federal Ministry of Education and Research
(BMBEF), and in part by the Saxon Ministry for Science, Cul-
ture and Tourism (SMWK), with tax funds on the basis of
the budget approved by the Saxon State Parliament. This
research used resources of the Oak Ridge Leadership Com-
puting Facility, a DOE Office of Science User Facility sup-
ported under Contract DE-AC05-000R22725.

REFERENCES

[1] D. Bradbury, “Hard drive capacity emphasized over performance
for future enterprise hard drives,” Computer Weekly, 2010.

[2] P.Thibodeau, “Coming by 2023, an exascale supercomputer in the
U.S.” [Online]. Available: http://spectrum.ieee.org/computing/
hardware/when-will-we-have-an-exascale-supercomputer

[3] I Foster ef al., “Computing just what you need: Online data analy-
sis and reduction at extreme scales,” in Proc. Eur. Conf. Parallel
Process., 2017, pp. 3-19.

[4]

[5]

[6]

(7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

I. Foster et al., “Online data analysis and reduction: An important
co-design motif for extreme-scale computers,” Int. |. High-Perform.
Comput. Appl., to be published, doi: 10943420211023549.

J. Lofstead et al., “Six degrees of scientific data: Reading patterns
for extreme scale science 10,” in Proc. 20th Int. Symp. High Perform.
Distrib. Comput., 2011, pp. 49-60.

Y. Tian et al., “EDO: Improving read performance for scientific
applications through elastic data organization,” in Proc. Int. Conf.
Cluster Comput., 2011, pp. 93-102.

J.-L. Vay et al., “Modeling of a chain of three plasma accelerator
stages with the WarpX electromagnetic PIC code on GPUs,” Phys.
Plasmas, vol. 28,2021, Art. no. 023105.

W. Zhang et al., “AMReX: A framework for block-structured adaptive
mesh refinement,” J. Open Source Softw., vol. 4, 2019, Art. no. 1370.

J. Gueet al., “Querying large scientific data sets with adaptable I/O
system ADIOS,” in Proc. Asian Conf. Supercomput. Front., 2018,
pp- 51-69.

L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Kla-
sky, “Comprehensive measurement and analysis of the user-per-
ceived I/O performance in a production leadership-class storage
system,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017,
pp- 1022-1031.

L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Kla-
sky, “Analysis and modeling of the end-to-end I/O performance
in OLCF's titan supercomputer,” in Proc. IEEE 19th Int. Conf. High
Perform. Comput. Commun., IEEE 15th Int. Conf. Smart City, IEEE
3rd Int. Conf. Data Sci. Syst., 2017, pp. 1-9.

F. Tessier, V. Vishwanath, and E. Jeannot, “TAPIOCA: An 1/0O
library for optimized topology-aware data aggregation on large-
scale supercomputers,” in Proc. IEEE Int. Conf. Cluster Comput.,
2017, pp. 70-80.

S. Kumar et al., “Spatially-aware parallel I/O for particle data,” in
Proc. 48th Int. Conf. Parallel Process., 2019, pp. 1-10.

W. F. Godoy et al., “ADIOS 2: The adaptable input output sys-
tem. A framework for high-performance data management,”
SoftwareX, vol. 12, 2020, Art. no. 100561.

A. Huebl ef al., “On the scalability of data reduction techniques in
current and upcoming HPC systems from an application
perspective,” in Proc. High Perform. Comput., 2017, pp. 15-29.

S. Byna et al., “Tuning HDF5 subfiling performance on parallel file
systems,” in Proc. CUG, 2017.

OLCF, “Alpine IBM spectrum scale filesystem,” May 2, 2021.
[Online]. Available: https://docs.olcf.ornl.gov/data/storage
overview.html#alpine-ibm-spectrum-scale-filesystem

M. E. Rowan et al., “In-situ assessment of device-side compute
work for dynamic load balancing in a GPU-accelerated PIC code,”
Under Rev., 2021.

F. Koller et al., “C++ & Python API for scientific I/O with openPMD,”
2018. [Online]. Available: https:/ /doi.org/10.14278 /rodare.27

M. J. Berger and I. Rigoutsos, “An algorithm for point clustering
and grid generation,” IEEE Trans. Syst., Man, Cybern., vol. 21,
no. 5, pp. 1278-1286, Sep./Oct. 1991.

H. Abbasi ef al., “DataStager: Scalable data staging services for
petascale applications,” in Proc. 18th ACM Int. Symp. High Perform.
Distrib. Comput., 2009, pp. 39-48.

S. Kannan ef al., “Using active NVRAM for I/O staging,” in Proc.
2nd Int. Workshop Petascal Data Analytics: Challenges Opportunities,
2011, pp. 15-22.

R. Wang, “SSC: Strong staging coupler,” May 2, 2021. [Online].
Available: https:/ /adios2.readthedocs.io/en/latest/engines/
engines.html#ssc-strong-staging-coupler

D. Kotz, “Disk-directed I/O for MIMD multiprocessors,” ACM
Trans. Comput. Syst., vol. 15, pp. 41-74, 1997.

J. M. May, Parallel I/O for High Performance Computing. San Fran-
cisco, CA, USA: Morgan Kaufmann, 2001.

L. Wan et al,, “Optimizing checkpoint data placement with
guaranteed burst buffer endurance in large-scale hierarchical stor-
age systems,” J. Parallel Distrib. Comput., vol. 100, pp. 16-29, 2017.
Y. Chen et al., “Improving parallel I/ O performance with data lay-
out awareness,” in Proc. IEEE Int. Conf. Cluster Comput., 2010,
pp- 302-311.

J. Liu et al., “Model-driven data layout selection for improving
read performance,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp. Workshops, 2014, pp. 1708-1716.

H. Tang et al., “Usage pattern-driven dynamic data layout reor-
ganization,” in Proc. 16th IEEE/ACM Int. Symp. Cluster, Cloud Grid
Comput., 2016, pp. 356-365.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

http://spectrum.ieee.org/computing/hardware/when-will-we-have-an-exascale-supercomputer
http://spectrum.ieee.org/computing/hardware/when-will-we-have-an-exascale-supercomputer
http://dx.doi.org/10943420211023549
https://docs.olcf.ornl.gov/data/storage_overview.html#alpine-ibm-spectrum-scale-filesystem
https://docs.olcf.ornl.gov/data/storage_overview.html#alpine-ibm-spectrum-scale-filesystem
https://doi.org/10.14278/rodare.27
https://adios2.readthedocs.io/en/latest/engines/engines.html#ssc-strong-staging-coupler
https://adios2.readthedocs.io/en/latest/engines/engines.html#ssc-strong-staging-coupler

WAN ETAL.: IMPROVING I/0 PERFORMANCE FOR EXASCALE APPLICATIONS THROUGH ONLINE DATA LAYOUT REORGANIZATION 889

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

S. He et al., “Optimizing parallel I/O accesses through pattern-
directed and layout-aware replication,” IEEE Trans. Comput., vol.
69, no. 2, pp. 212225, Feb. 2020.

Y. Tsujita et al., “Improving collective MPI-IO using topology-
aware stepwise data aggregation with I/O throttling,” in Proc. Int.
Conf. High Perform. Comput. Asia-Pacific Region., 2018, pp. 12-23.

Y. Jiet al., “/HDF5-based 1/O optimization for extragalactic HI data
pipeline of FAST,” in Proc. Algorithms Archit. Parallel Process., 2020,
pp. 656-672.

K. Mehta et al., “A plugin for HDF5 using PLFS for improved I/O
performance and semantic analysis,” in Proc. High Perform. Com-
put., Netw. Storage Anal., 2012, pp. 746-752.

J. Mu et al., “Interfacing HDF5 with a scalable object-centric stor-
age system on hierarchical storage,” Concurr. Comput. Pract. Expe-
rience, vol. 32, no. 20, 2020, Art. no. e5715.

T. Wu et al., “Apply block index technique to scientific data analy-
sis and I/O systems,” in Proc. 17th IEEEJACM Int. Symp. Cluster,
Cloud Grid Comput., 2017, pp. 865-871.

L. Wan et al., “Data management challenges of exascale scientific
simulations: A case study with the Gyrokinetic Toroidal Code
and ADIOS,” in Proc. 10th Int. Conf. Comput. Methods, 2019,
pp- 493-503.

Intel, “DAQOS: Revolutionizing high-performance storage,” May 2,
2021. [Online]. Available: https://daos-stack.github.io/

Seagate, “Intelligent object storage software,” May 2, 2021. [Online].
Available: https://www.seagate.com/products/storage/object-
storage-software/

Lipeng Wan received the PhD degree in com-
puter science from the University of Tennessee,
Knoxville in 2016. He is currently a computer sci-
entist with the Computer Science and Mathemat-
ics Division, Oak Ridge National Laboratory. His
research interests include scientific data manage-
ment and high-performance computing.

Axel Huebl (Member, IEEE) received the PhD
degree in physics from Technical University Dres-
den, Germany in 2019. He is currently with the
Accelerator Technology and Applied Physics Divi-
sion, Berkeley Lab. His research interests include
laser-plasma based particle acceleration, high-
performance computing, scalable, and datadriven
science.

Junmin Gu received the dual master’s degrees in
mathematics and computer science from the Uni-
versity of Wisconsin-Madison. She is currently a
computer system engineer with the Computational
Research Division, Lawrence Berkeley National
Laboratory. Her research interests include data
management, resource management, distributed
systems, and high-performance computing.

Franz Poeschel received the Master of Science
degree in 2020 from the Technical University of
Dresden, Germany. He is currently a computer
scientist with the CASUS Center for Advanced
Systems Understanding. He is a developer and
maintainer for the openPMD-api. His research
interests include high-performance computing,
large-scale 10, and data staging.

Ana Gainaru received the PhD degree from the
University of lllinois at Urbana-Champaign. She
is currently a computer scientist with the CSM
Division, Oak Ridge National Laboratory. She has
experience in HPC working primarily on optimiz-
ing the execution of scientific applications, from
data-aware runtime design to scheduling, fault
tolerance and code optimization.

Ruonan Wang received the PhD degree from the
University of Western Australia in 2018. He is cur-
rently a software engineer with the Computer Sci-
ence and Mathematics Division, Oak Ridge
National Laboratory. His research interests include
extremely large-scale I/O middleware design and
data staging techniques.

Jieyang Chen (Member, |IEEE) received the
master’'s and PhD degrees in computer science
from the University of California, Riverside, in
2014 and 2019, respectively. He is currently a
computer scientist with the Computer Science
and Mathematics Division, Oak Ridge National
Laboratory. His research interests include high-
performance computing, parallel and distributed
systems, and big data analytics.

Xin Liang (Member, IEEE) received the PhD
degree from the University of California, River-
side, in 2019. He is currently an assistant profes-
sor with the Department of Computer Science,
Missouri University of Science and Technology.
His research interests include high-performance
and distributed computing, data management
and reduction, and cloud computing.

Dmitry Ganyushin received the PhD degree in
theoretical chemistry from the Technical University
of Munich, Germany, in 2004. He is currently a
senior software developer with the CSM Division,
Oak Ridge National Laboratory. His research inter-
ests include parallel and distributed systems, high-
performance computing, and performance optimi-
zation for scientific applications.

Todd Munson received the PhD degree from the
University of Wisconsin at Madison in 2000. He is
currently a senior computational scientist with
Argonne National Laboratory and the Software
Ecosystem and Delivery Control Account Manager
for the U.S. DOE Exascale Computing Project. His
research interest include numerical methods to
workflow optimization for online data analysis and
reduction.

https://daos-stack.github.io/
https://www.seagate.com/products/storage/object-storage-software/
https://www.seagate.com/products/storage/object-storage-software/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 4, APRIL 2022

lan Foster (Fellow, IEEE) is currently a senior sci-
entist, distinguished fellow, and the director of Data
Science and Learning Division, Argonne National
Laboratory, and the Arthur Holly Compton distin-
guished service professor of computer science
with the University of Chicago. His research inter-
ests include distributed, parallel, and data-intensive
computing technologies.

Jean-Luc Vay (Senior Member, IEEE) received the
PhD degree in physics from the University of Paris,
France. He heads the Accelerator Modeling Pro-
gram with the ATAP Divison, Berkeley Lab. His
research interests include the development of algo-
rithms, their optimization on supercomputers, and
their application to particle accelerator modeling.

Norbert Podhorszki received the PhD degree in
information technology from the Eotvos Lorand
University of Budapest. He is currently a senior
research scientist with CSM Division, Oak Ridge
National Laboratory. He is one of the key develop-
ers of ADIOS. His research interests include cre-
ating 1/0O and staging solutions for in-situ
processing of data on leadership class computing
systems.

Kesheng Wu received the PhD degree in com-
puter science from the University of Minnesota.
He is currently a senior computer scientist with
Lawrence Berkeley National Laboratory. He is the
key developer of FastBit bitmap indexing soft-
ware, which has been used in a number of appli-
cations. His research interests include improving
bitmap index technology with compression,
encoding, and binning.

Scott Klasky (Senior Member, IEEE) received
the PhD degree in physics from the University of
Texas at Austin. He is currently a distinguished
scientist and group leader with the CSM Division,
Oak Ridge National Laboratory. He has a joint
faculty appointment with the University of Tennes-
see, Knoxville, and an adjunct position with Geor-
gia Institute of Technology. His research interests
include HPC, data management, workflow auto-
mation, data reduction, visualization, and
physics.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 21,2023 at 21:17:56 UTC from IEEE Xplore. Restrictions apply.

	Improving I/O Performance for Exascale Applications through Online Data Layout Reorganization
	Recommended Citation

	Improving I/O Performance for Exascale Applications Through Online Data Layout Reorganization

