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Minimizing the Deployment Cost of UAVs for
Delay-Sensitive Data Collection in IoT Networks

Wenzheng Xu , Member, IEEE, Tao Xiao, Junqi Zhang, Weifa Liang , Senior Member, IEEE,

Zichuan Xu , Member, IEEE, Xuxun Liu , Xiaohua Jia , Fellow, IEEE, and Sajal K. Das , Fellow, IEEE

Abstract— In this paper, we study the deployment of
Unmanned Aerial Vehicles (UAVs) to collect data from IoT
devices, by finding a data collection tour for each UAV. To ensure
the ‘freshness’ of the collected data, the total time spent in the
tour of each UAV that consists of the UAV flying time and data
collection time must be no greater than a given delay B, e.g.,
20 minutes. In this paper, we consider a problem of deploying
the minimum number of UAVs and finding their data collection
tours, subject to the constraint that the total time spent in each
tour of any UAV is no greater than B. Specifically, we study
two variants of the problem: one is that a UAV needs to fly to
the location of each IoT device to collect its data; the other is
that a UAV is able to collect the data of an IoT device if the
Euclidean distance between them is no greater than the wireless
transmission range of the IoT device. For the first variant of
the problem, we propose a novel 4-approximation algorithm,
which improves the best approximation ratio 44

7
for it so far.

For the second variant, we devise the very first constant factor
approximation algorithm. We also evaluate the performance of
the proposed algorithms via extensive experiment simulations.
Experimental results show that the numbers of UAVs deployed
by the proposed algorithms are from 11% to 19% less than those
by existing algorithms on average.

Index Terms— Mobile data collection, multiple UAV schedul-
ing, minimum numbers of UAV deployments, minimum cycle
cover with neighborhoods, approximation algorithms.

Manuscript received April 2, 2021; revised September 23, 2021; accepted
October 24, 2021; approved by IEEE/ACM TRANSACTIONS ON NETWORK-
ING Editor T. He. Date of publication November 5, 2021; date of current
version April 18, 2022. The work of Wenzheng Xu was supported in
part by the National Natural Science Foundation of China (NSFC) under
Grant 61602330 and in part by the Sichuan Science and Technology Program
under Grant 2018GZDZX0010 and Grant 2017GZDZX0003. The work of
Weifa Liang was supported by the City University of Hong Kong under
Project CityU 9380137/CS. The work of Xiaohua Jia was supported by the
Research Grants Council of Hong Kong under Project CityU 11214316. The
work of Sajal K. Das was supported in part by NSF Grants under Award
CCF-1725755, Award CNS-1818942, Award SCC-1952045, and Award
SaTC-2030624. (Corresponding author: Zichuan Xu.)

Wenzheng Xu, Tao Xiao, and Junqi Zhang are with the College of
Computer Science, Sichuan University, Chengdu 610065, China (e-mail:
wenzheng.xu3@gmail.com; xt980124@163.com; junqizhangscu@163.com).

Weifa Liang and Xiaohua Jia are with the Department of Computer
Science, City University of Hong Kong, Hong Kong, China (e-mail:
weifa.liang@cityu.edu.hk; csjia@cityu.edu.hk).

Zichuan Xu is with the School of Software, Dalian University of Technol-
ogy, Dalian 116024, China (e-mail: z.xu@dlut.edu.cn).

Xuxun Liu is with the College of Electronic and Information Engineering,
South China University of Technology, Guangzhou 510641, China (e-mail:
liuxuxun@scut.edu.cn).

Sajal K. Das is with the Department of Computer Science, Missouri
University of Science and Technology, Rolla, MO 65409 USA (e-mail:
sdas@mst.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2021.3123606, provided by the authors.

Digital Object Identifier 10.1109/TNET.2021.3123606

I. INTRODUCTION

DUE to their flexibility and cost-efficiency, Unmanned
Aerial Vehicles (UAVs) now are widely used in many

applications including goods delivery, target tracking, emer-
gency aid, charging wireless sensor networks [14], [20], [22],
[27], [28], [31]–[33], [35], [40], [41], [43], and so on. On the
other hand, millions of Internet of Thing (IoT) devices, such
as various sensors and smart monitoring devices, have been
deployed in many IoT networks in the past years for various
applications.

In this paper, we study the data collection of IoT devices in a
large-scale IoT network, e.g., ten square kilometers, where IoT
devices are only sparsely deployed at some strategic locations
to monitor important Points of Interest (PoIs) in the network.
Due to the large scale of the network and limited energy
supplies of IoT devices, sometimes it is unrealistic to allow
the IoT devices to directly transmit or relay their sensing data
to a base station via multihop relays.

We consider the deployment of multiple light-weight UAVs
to collect data from IoT devices, where a UAV can fly to a
location nearby an IoT device to collect its data, thereby saving
the energy consumption of the IoT device. Fig. 1(a) shows that
two UAVs are deployed to collect data of IoT devices along
their data collection flying tours, respectively.

To ensure the ‘freshness’ of the collected data, a strict
requirement is that the total time spent in the tour of each UAV,
which consists of the UAV flying time and data collection
time, should be no greater than a given delay B, e.g., 20
minutes [4]. Otherwise, the collected data is somewhat ‘stale’.
For example, consider networks in which IoT devices are
deployed to monitor bushfires in a forest [18] or PM 2.5
pollution in a city [34], it is important to collect sensing data
as timely as possible.

In this paper, we study a novel minimum UAV deployment
problem, which is to determine the minimum number of UAVs
to-be-deployed and find their the data collection tours, such
that the data of each IoT device is collected by one of the
UAVs, subject to that the total time spent by any UAV in
its tour is no greater than a given delay B. Specifically,
we consider two variants of the minimum UAV deployment
problem: One is termed as the minimum UAV deployment
problem without neighborhoods, in which a UAV needs to
fly to the location of each IoT device to collect its data,
see Fig. 1(a). In this case, the wireless transmission range
of the IoT device is much shorter than the scale of the
network, or the device cannot transmit data in a wireless way.
One application example is that each IoT device is an RFID
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Fig. 1. Data collection by UAVs in two scenarios.

tag. To collect the data of the tag, a UAV must be equipped
with an RFID reader and the reader can read the data of the tag
only when their distance is very short, e.g., a few meters [42].
Other applications include the scheduling of UAVs to monitor
survivals in a disaster area [14], [32], and the deployment of
UAVs to monitor traffic jams on congested cross roads in a
smart city, where no IoT devices are deployed at all in such
application scenarios.

The other is referred to as the minimum UAV deployment
problem with neighborhoods, an IoT device is able to transmit
its data to a UAV through wireless data transmission and the
data then can be received by the UAV when the Euclidean
distance between the device and the UAV is no greater
than a given communication range, see Fig. 1(b). Unlike the
wireless communication between two devices on the ground
that wireless signals degrade very quickly due to various
shadowing and scattering, the radio signals from a ground
device to a UAV in the air, or vice visa, degrade much slower,
due to less obstacles between them [1], [5]. Therefore, the
wireless communication range between a ground IoT device
and a UAV usually is much longer than the communication
range between two ground IoT devices, e.g., 500 m vs. 50 m
[1], [2], [5]. It then can be seen that by exploiting the long
communication range between an IoT device and a UAV,
the number of deployed UAVs may be significantly reduced.
For example, Fig. 1(a) shows that two UAVs are deployed
when a UAV must fly to the location of each IoT device to
collect its data, while Fig. 1(b) demonstrates that only one
UAV is deployed when taking the communication range into
consideration.

The novelties of this paper are as follows. We propose a
4-approximation algorithm for the minimum UAV deployment
problem without neighborhoods, improving the best approx-
imation ratio 4 4

7 so far [37]. The techniques adopted in the
algorithm are also different from existing ones including the
one in [37]. Specifically, the algorithm in [37] first obtains
some connected components by removing edges greater than
a given edge weight threshold, then merges the minimum
spanning trees of the connected components, and decom-
poses the merged trees into subtrees such that the weight
of each decomposed subtree is no greater than B/2, finally
obtains closed tours by doubling edges in the decomposed
subtrees. In contrast, the proposed 4-approximation algorithm

first obtains some connected components by removing edges
greater than some edge weight threshold and the optimal
value of the edge weight threshold needs to be searched, then
finds minimum spanning trees of the connected components,
respectively, and obtains closed tours by adding edges in the
minimum weighted perfect matching of odd degree nodes in
the trees, finally splits each tour into subtours such that the
length of each subtour is no greater than B. We formally
estimate non-trivial upper bounds on the total weight of the
minimum spanning trees and the weight of the minimum
weighted perfect matching in Sections IV-C.1 and IV-C.2,
respectively. In addition, we devise the very first constant
approximation algorithm for the minimum UAV deployment
problem with neighborhoods. Experimental results show that
much less numbers of UAVs are deployed when taking the
wireless communication range (i.e., neighborhoods) of IoT
devices into consideration.

The main contributions of this paper are summarized as
follows. (i) We study a novel minimum UAV deployment
problem, which is to determine the minimum number of UAVs
to-be-deployed and find the data collection tour for each of
the UAVs, subject to that the total time spent by each UAV
per tour is no greater than a given delay B. (ii) For the
first variant of the problem – the minimum UAV deployment
problem without neighborhoods where a UAV needs to fly
to the location of each IoT device for its data collection,
we propose a 4-approximation algorithm, which improves
the best approximation ratio 4 4

7 for the problem so far. (iii)
For the second variant of the problem – the minimum UAV
deployment problem with neighborhoods where a UAV can
collect the data of an IoT device as long as their Euclidean
distance is no greater than a given communication range,
we devise the first constant factor approximation algorithm
for it. (iv) Experimental results show that the numbers of
UAVs deployed by the proposed algorithms are around from
11% to 19% less than those by existing algorithms on
average.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces the network
and data collection models, and defines the problems. Sec-
tions IV and V propose approximation algorithms for the
minimum UAV deployment problem with and without neigh-
borhoods, respectively. Section VI evaluates the performance
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of the proposed algorithms. Finally, Section VII concludes
the paper.

II. RELATED WORK

Some existing studies considered a scenario of dispatching
a mobile sink to collect data from sensors in an IoT network.
For example, Xu et al. [29] studied the problem of dispatching
a mobile sink to collect data from sensors such that the lifetime
of the network is maximized. Ren et al. [26] investigated the
problem of using a mobile sink to collect data in a renewable
sensor network deployed on a roadside, such that the amount
of data collected from all sensors is maximized. On the other
hand, there are also some studies focusing on deploying mul-
tiple mobile sinks to collect data from sensors. For example,
Konstantopoulos et al. [17] studied the problem of dispatching
multiple mobile sinks to collect sensor data to maximize
the data throughput, while ensuring network connectivity and
balancing energy consumption among sensors. They proposed
algorithms to cluster sensors in a network, find cluster heads,
and determine the rendezvous nodes, followed by dispatching
mobile sinks to collect data from rendezvous nodes. However,
due to various obstacles in the ground such as rocks, rivers
and buildings, mobile sinks cannot move freely and they may
not be able to reach to the locations of some sensors.

There are several recent studies on the deployment of
UAVs for data collection in an IoT network. For example,
Zhan et al. [38] studied the problem of dispatching a UAV
to collect data from sensors so as to minimize the maximum
energy consumption among sensors, while ensuring that sensor
data are reliably collected. Ebrahimi et al. [12] considered
the problem of clustering densely-located sensors, constructing
a data collection tree for each cluster, and finding a flying
trajectory for a UAV to gather data from cluster heads, so that
the UAV flying distance is minimized. Liang et al. [20] studied
a problem of finding an optimized tour for a UAV such that
the quality of photos taken during the tour is maximized,
subject to energy capacity on a UAV. They proposed a novel
approximation algorithm and a fast yet scalable heuristic
algorithm for the problem. Zhan et al. [39] studied the
problem of dispatching a UAV which starts from and ends at
a given location so that the number of sensors with their data
collected by the UAV within a given duration is maximized.
Li et al. [19] considered the problem of deploying an energy
constrained UAV to collect data in an IoT network in different
data collection models: one is that the hovering coverage of
different sensors do not overlap with each other, the other
is that there are coverage overlapping. They also considered
a partial data collection maximization problem. Unlike those
mentioned studies, You and Zhang [35] considered a scenario
that a UAV can change its altitude to collect data from different
sensors, and studied the problem of deploying a UAV to collect
sensor data, such that the minimum average data collection rate
from all sensors is maximized, under a prescribed reliability
constraint for each sensor. Unlike existing studies, in this paper
we focus on dispatching the minimum number of UAVs for
data collection in an IoT network, subject to that the maximum
time spent by each UAV per tour is no greater than a given
delay B.

We also note that there are several studies on the mini-
mum cycle cover problem without neighborhoods, which is

to find the minimum number of cycles to cover all nodes
in a graph, such that the length of each cycle is no more
than a given bound B, which are closely related to the
work in this paper. For example, Arkin et al. [3] proposed
the very first 6-approximation algorithm for the problem.
Khani and Salavatipour [15] then devised a 5-approximation
algorithm. Yu et al. [37] recently further improved the result
by proposing two approximation algorithms for the problem:
one with approximation ratio 4 2

3 and time complexity O(n3);
the other with approximation ratio 4 4

7 and time complexity
O(n5), respectively, where 4 4

7 < 4 2
3 . In contrast, the proposed

algorithm in this paper can deliver a 4-approximate solution
in time O(n4). On the other hand, for the single-rooted
minimum cycle cover problem with each cycle must contain
a root node, Nagarajan and Ravi [23] proposed an O(log B)-
approximation algorithm, where B is the length constraint of
each tour. Dai et al. [7] studied the problem of deploying
the minimum number of charging vehicles to fully charge a
set of energy-critical sensors, by utilizing the approximation
algorithm in [23]. However, the cost of each obtained tour by
the algorithms in [7] and [23] may exceed the length bound.
In contrast, Zhang et al. [43] and Liang et al. [21] proposed
approximation algorithms for the single-rooted minimum cycle
cover problem, such that the length of each obtained tour is
no greater than the length bound B.

The minimum UAV deployment problem without
neighborhoods considered in this paper is closely related to
the min-max cycle cover problem that is to find K closed
tours to visit nodes in a graph such that the length of
the longest tour among the found K tours is minimized,
where K is a given positive integer. For the min-max cycle
cover problem, Arkin et al. [3] proposed the first constant
approximation algorithm with an approximation ratio of
8, and Khani and Salavatipour [15] later improved the
approximation ratio to 6. Xu et al. [30] further improved
the result by devising a 5 1

3 -approximation algorithm. Yu and
Liu [36] further reduced the approximation ratio to 5. When
K is a small constant (e.g., K = 5), Guo et al. [14] proposed
an improved 4 1

3 -approximation algorithm to minimize
the longest tour time among K UAVs for disaster area
surveillance. It can be seen that, given an approximation
algorithm for the min-max cycle cover problem, we can find
the minimum number of UAVs deployed by invoking the
algorithm multiple times, through increasing the value of
K from 1 to n until the longest tour length is no greater
than B, where n is the number of IoT devices. However, this
method does not deliver a constant approximate solution to
the minimum UAV deployment problem.

The study in this paper is also closely related to the
studies on the Traveling Salesman Problem with Neighbor-
hoods (TSPN) in a 2D Euclidean space that is to find a single
shortest tour such that at least one location in each disk is
visited. When the radii of all disks are identical, Dumitrescu
and Mitchell [9] first proposed a 7.62-approximation algorithm
and recently improved the ratio to 6.75 [10]. On the other hand,
when the radii of different disks are different, Dumitrescu and
Tóth [11] devised a constant factor approximation algorithm.
In addition, Deng et al. [8] recently studied the problem of
finding K closed tours to visit all disks in a 2D space, such that
the length among the K found tours is minimized, for which
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they proposed approximation algorithms. Furthermore, Elbas-
sioni et al. [13] devised a constant approximation algorithm
for the TSPN problem with intersecting fat convex regions
and the ratio of the largest radius of all regions to the smallest
radius is upper bounded by a constant.

III. PRELIMINARIES

A. Network Model

We consider an IoT application scenario where many IoT
devices are deployed in an area to monitor important Points
of Interest (PoIs) in the area. For example, IoT devices are
used to monitor PM 2.5 pollution in a smart city [34] or
monitor bushfires in a forest [18]. Assume that there are n
devices v1, v2, . . . , vn deployed at some strategic locations in
the monitoring area, where n is a positive integer. Let V be
the set of IoT devices, i.e., V = {v1, v2, . . . , vn}. Denote
by (xi, yi, 0) the coordinates of device vi with 1 ≤ i ≤ n.
We assume that the coordinates of each device vi are given,
which can be obtained when the device is deployed.

Notice that a monitoring area may be very large. For
example, in the case an IoT network is deployed for mon-
itoring forest fires, the monitored forest area may be tens
of square kilometers [18], and the IoT devices usually are
sparsely deployed. To form a connected IoT network, a tradi-
tional solution is to deploy relay devices among the deployed
devices. However, since the transmission range between two
devices on the ground usually is only dozens of meters, a large
number of relaying devices need to deploy in order to form
a connected network, thereby incurring high deployment cost.
In contrast, in this paper we consider the deployment of UAVs
to collect data from IoT devices, because UAVs are flexible
and no relaying devices need to be deployed, thus saving the
deployment cost.

B. Data Collection Models

We consider two data collection scenarios. One is referred to
as the data collection without neighborhoods. That is, a UAV
needs to fly to the location of each IoT device to collect its
data. One application example of this model is that each device
is an RFID tag. To collect the data of the tag, a UAV must
be equipped with an RFID reader to read the data of the tag
when the Euclidean distance between them is very short, e.g.,
a few meters. The other is referred to as the data collection
with neighborhoods. That is, each IoT device can send its data
to a UAV wirelessly, and the UAV can collect the data from
the device as long as their Euclidean distance is no greater
than a given wireless transmission range. In the following,
we introduce the data collection models for these two scenarios
accordingly.

Assume that K UAVs are deployed to collect data from n
IoT devices, where the value of K is unknown and will be
determined later. The set V of the n IoT devices is partitioned
into K disjoint subsets V1, V2, . . . , VK , where UAV k collects
the data from the devices in Vk with 1 ≤ k ≤ K . Let Vk =
{v1, v2, . . . , vnk

}, where nk = |Vk|. Denote by Δi the amount
of data of device vi in V to be collected. Assume that each
UAV can collect data from vi at a data rate b. Then, it takes
ρ(vi) = Δi

b time to collect all data of vi. Also, denote by

η the flying speed of each UAV, assuming that each UAV is
equipped with a GPS module [25].

1) Data Collection Model in the Scenario Without Neigh-
borhoods: We first introduce the data collection model in a
scenario without neighborhoods, where a UAV must fly to
the location of each device to collect its data. Assume that
UAV k collects the data from devices in Vk in the order of
v1, v2, . . . , vnk

, where 1 ≤ k ≤ K . The data collection flying
tour Ck of UAV k is defined as follows. UAV k first collects
the data of device v1 at the location of v1, it then flies to
collect the data of device v2, and so on. After finishing the data
collection from device vnk

, UAV k returns to the location of
v1. That is, the data collection trajectory of UAV k is a closed
tour Ck = v1 → v2 → · · · → vnk

→ v1 with 1 ≤ k ≤ K . The
data collection trajectory of each UAV is a closed tour, since
the UAV usually needs to periodically collect data from the
deployed IoT devices, rather than only once. After collecting
the data from each IoT device vi, UAV k can forward the
data to a base station immediately via 4G/5G communications.
We assume that the base station is located at a place nearby the
disaster area. Fig. 1(a) shows that 17 IoT devices are deployed
in a monitoring area and two UAVs are dispatched to collect
the data of the devices.

The total time spent by UAV k in its flying tour Ck consists
of its flying time between IoT devices and the data collection
time of devices in Vk. Denote by tf (vi, vi+1) the flying time
of UAV k between devices vi and vi+1, i.e., tf (vi, vi+1) =
d(vi,vi+1)

η , where d(vi, vi+1) is the Euclidean distance between
devices vi and vi+1, and η is the flying speed of UAV k. The
flying time of UAV k in tour Ck then is

∑nk

i=1 tf (vi, vi+1),
where vnk+1 = v1.

The total time w(Ck) spent by UAV k in its tour Ck under
the scenario without neighborhoods then is

w(Ck) =
nk∑
i=1

tf (vi, vi+1) +
nk∑
i=1

ρ(vi), (1)

where ρ(vi) is the data collection time of device vi.
It is important to collect data from devices in Vk as quickly

as possible. Otherwise, the collected data will become ‘stale’,
and lose its value. Denote by B a given delay, e.g., 20
minutes [4]. Then, the total spent time w(Ck) of UAV k in
its flying tour Ck for any k must be no greater than B, i.e.,
w(Ck) ≤ B with 1 ≤ k ≤ K .

2) Data Collection Model in the Scenario With Neighbor-
hoods: We then introduce the data collection model with
neighborhoods, where a UAV can collect the data of each IoT
device when their Euclidean distance is no greater than a given
communication range R, e.g., R = 600 m [1], [5].

Assume that all UAVs fly at the same altitude h such that
the coverage range of each UAV is maximized, where h < R
and the optimal altitude h can be obtained from the work
in [1], e.g., h = 300 meters. Specifically, the air-to-ground
wireless signal propagation consists of two main propagation
components: the Line-of-Sight (LoS) propagation, and the
non-LoS propagation with strong reflections and diffractions.
It can be seen that, the higher the altitude is, the larger the LoS
propagation loss is, but the smaller the non-LoS propagation
loss is, due to higher LoS probability. Then, there is an optimal
altitude h for the maximum coverage from the sky.
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Denote by D(vi) the set of locations that a UAV can collect
data from a device vi at altitude h, i.e., D(vi) = {(x, y, h) |
(x− xi)2 + (y − yi)2 + (h− 0)2 ≤ R2}, where (xi, yi, 0) are
the coordinates of device vi. It can be seen that D(vi) is a disk
centered at point (xi, yi, h) with a radius R0 =

√
R2 − h2 at

altitude h.
Recall that we assumed that UAV k collects the data

of devices in set Vk in the order of v1, v2, . . . , vnk
, where

Vk = {v1, v2, . . . , vnk
}, nk = |Vk|, and 1 ≤ k ≤ K . The

data collection flying tour Ck of UAV k in the scenario with
neighborhoods is defined as follows. UAV k first collects data
of device v1 at a location p1 in D(v1), it then flies to a
location p2 in D(v2) and collect the data of device v2, and
so on. After having collected the data from device vnk

at a
location pnk

in D(vnk
), the UAV finally returns to the starting

location p1. The flying tour Ck of UAV k can be represented
as Ck = p1 → p2 → · · · → pnk

→ p1, where pi is a location
in the neighborhood D(vi) of device vi with 1 ≤ i ≤ nk, and
1 ≤ k ≤ K . Fig. 1(b) shows the flying tour of a UAV, where
dotted circles represent the neighborhoods of devices. Similar
to Eq. (1), the total time wN (Ck) spent by UAV k in its flying
tour Ck is

wN (Ck) =
nk∑
i=1

tf (pi, pi+1) +
nk∑
i=1

ρ(vi), (2)

where tf (pi, pi+1) is the UAV flying time between locations pi

and pi+1, pi and pi+1 are located in the neighborhoods D(vi)
and D(vi+1), respectively, and ρ(vi) is the data collection time
of device vi. Notice that the total spent time wN (Ck) of UAV
k in its flying tour Ck must be no greater than the given delay
B, i.e., wN (Ck) ≤ B with 1 ≤ k ≤ K .

C. Problem Definitions

In this paper, we study a novel minimum UAV deployment
problem, which is to minimize the number of deployed UAVs
to collect data from all devices, subject to the constraint that
the total time spent by each UAV in its tour is no greater than
a given delay B. Specifically, we consider the problem under
two different data collection models: the data collection with
and without neighborhoods.

We first formulate the problem under the data collection
model without neighborhoods. Given an IoT network G =
(V, E; tf : E �→ R

≥0, ρ : V �→ R
≥0) and a maximum data

collection delay B, a UAV needs to fly to the location of each
IoT device to collect its data. The minimum UAV deployment
problem without neighborhoods in G is to determine the
minimum number K of UAVs to be deployed, and to find the
flying tours C1, C2, . . . , CK for the K UAVs to collaboratively
collect data from all devices in V , subject to the constraint that
the total time w(Ck) spent in each tour Ck with 1 ≤ k ≤ K is
no greater than B. The minimum UAV deployment problem
without neighborhoods is NP-hard [36].

The other variant of the problem under the data collection
model with neighborhoods can be formulated similarly. Specif-
ically, given an IoT network G = (V, E; tf : E �→ R

≥0, ρ :
V �→ R

≥0), a maximum data collection delay B, and a disk
D(vi) of each device vi which centers at the location of vi with
a radius R0 at altitude h, the data of device vi can be collected
by a UAV when the UAV hovers at any location in D(vi).

The minimum UAV deployment problem with neighborhoods in
G is to determine the minimum number K of deployed UAVs
and to find the flying tours C1, C2, . . . , CK of the K UAVs
to collect the data from all devices, subject to the constraint
that the total time spent wN (Ck) by UAV k in its tour Ck is
no greater than B for any k with 1 ≤ k ≤ K .

Lemma 1: The minimum UAV deployment problem with
neighborhoods is NP-hard.

Proof: The proof is given in Section 1 of the
supplementary file. �

IV. APPROXIMATION ALGORITHM FOR THE MINIMUM

UAV DEPLOYMENT PROBLEM WITHOUT

NEIGHBORHOODS

In this section, we deal with the minimum UAV deploy-
ment problem without neighborhoods, by proposing a
4-approximation algorithm for it.

A. Algorithm Framework

Given an IoT network G = (V, E; tf : E �→ R
≥0,

ρ : V �→ R
≥0), an auxiliary complete graph G� = (V, E; w� :

E �→ R
≥0) is constructed from G, and the weight of each edge

(vi, vj) in G� is w�(vi, vj) = tf (vi, vj) + ρ(vi)+ρ(vj)
2 , where

tf (vi, vj) is the flying time between devices vi and vj , ρ(vi)
and ρ(vj) are the durations for collecting data from vi and vj ,
respectively. Following a similar analysis in the work [43], the
optimal solutions to the minimum UAV deployment problem
in G and G� are equal. Notice that the original graph G is
both edge-weighted and node-weighted, while graph G� is only
edge-weighted.

Let δi = B
i with 2 ≤ i ≤ n, where δi is referred to as

an edge weight threshold. The basic idea of the proposed
algorithm is that, the algorithm finds a set Ci of tours that
visit nodes in G� based on a given edge weight threshold δi,
subject to the constraint that the cost of each found tour in
Ci is no greater than B. The final solution C to the problem
then is the set with the minimum number of tours, i.e.,
|C| = min2≤i≤n{|Ci|}. The approximation algorithm for the
minimum UAV deployment problem without neighborhoods is
presented in Algorithm 1.

Algorithm 1 Algorithm for the Minimum UAV Deployment
Problem Without Neighborhoods (approAlgNoNei)

Input: an IoT network G = (V, E; tf : E �→ R
≥0, ρ : V �→ R

≥0),
and a maximum data collection delay B

Output: a set C of tours to visit all devices in V , such that the total
spent time of each tour in C by a UAV is no greater than B.

1: Construct a graph G� = (V, E; w� : E �→ R
≥0) from G;

2: Construct a trivial solution C = {C1, C2, . . . , Cn}, where each
tour Ci consists of only a single node vi in V , and n = |V |;

3: for i← 2 to n do
4: Let δi ← B

i
; /* set an edge weight threshold */

5: Find a set Ci of tours to visit all nodes in G� based on the edge
weight threshold δi, subject to that the cost of each tour in Ci

is no greater than B, by invoking Algorithm 2;
6: if |Ci| < |C| then
7: Let C ← Ci; /* find a better solution */
8: end if
9: end for
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Fig. 2. An illustration of the execution of Algorithm 2.

B. Algorithm

We now show how to find a set Ci of tours that visit all
devices in G�, based on a given edge weight threshold δi.
Recall that graph G� = (V, E; w� : E �→ R

≥0) is constructed
from G, where w�(vi, vj) = tf (vi, vj) + ρ(vi)+ρ(vj)

2 for each
edge (vi, vj) in E.

We first remove the edges with weights strictly greater than
δi from G�. Assume that there are q connected components
CC1, CC2, . . . , CCq in the resulting graph after the edge
removals, where q ≥ 1 is a positive integer.

We then find a minimum spanning tree (MST) Tj in each
connected component CCj with 1 ≤ j ≤ q, see Fig. 2(a). For
each tree Tj , denote by V o

j the set of odd degree nodes in
Tj . Notice that the number of nodes in V o

j is even. Let V o be
the set of odd degree nodes in the q trees T1, T2, . . . , Tq, i.e.,
V o =

⋃q
j=1 V o

j .
We thirdly construct a complete graph Go = (V o, Eo; wo :

Eo �→ R
≥0), where there is an edge (u, v) in Eo for any two

nodes u and v in V o and the weight wo(u, v) of edge (u, v)
in Go is equal to its weight w�(u, v) in G�, i.e., wo(u, v) =
w�(u, v). Since Go is a complete graph and the number of
nodes in Go is even, we can find a minimum weighted perfect
matching Mo in graph Go, see Fig. 2(b).

We fourthly obtain a graph GE by adding the edges in
Mo to the q trees T1, T2, . . . , Tq, i.e., GE = Mo

⋃
(
⋃q

j=1 Tj),
see Fig. 2(c). Assume that there are q� connected components
CC�

1, CC�
2, . . . , CC�

q� in GE . Notice that the two endpoints
of some edge in M may lie in two different trees. Therefore,
the number q� of connected components in GE is no greater
than q, i.e., q� ≤ q. For each connected component CC�

j

in GE with 1 ≤ j ≤ q�, it can be seen that the degree of
each node in CC�

j is even. Then, there is a Eulerian circuit
Ce

j in CC�
j [36]. A closed tour C�

j that visits each node in
connected component CC�

j only once then can be obtained,
by shortcutting duplicated nodes in Ce

j , see Fig. 2(d).
We finally split tour C�

j into, say nj , subpaths
Pj,1, Pj,2, . . . , Pj,nj such that the cost of each subpath is
no greater than B/2, and the number nj of split subpaths

is no more than �w�(C�
j)

B/2 �, i.e., nj ≤ �w�(C�
j)

B/2 � [16]. Then,
nj subtours Cj,1, Cj,2, . . . , Cj,nj can be derived from the nj

subpaths, where subtour Cj,l is derived from subpath Pj,l

by connecting its two endpoints, where 1 ≤ l ≤ nj . It can
be seen that the cost of each subtour Cj,l is no more than
twice the cost of subpath Pj,l, thus no more than B, i.e.,

w�(Cj,l) ≤ 2 · w�(Pj,l) ≤ 2 · B
2 = B with 1 ≤ l ≤ nj .

Fig. 2(e) shows that two subtours C1,1 and C1,2 are derived
from the tour C�

1 in Fig. 2(d).
The detailed algorithm for finding a set Ci of tours that visit

all nodes in G� based on a given edge weight δi is presented
in Algorithm 2.

One may notice that there are some similarities between
the proposed algorithm and Christofides’ algorithm for the
TSP problem [6]. An alternative method for the problem of
concern is to find closed tours in the q connected compo-
nents CC1, CC2, . . . , CCq by directly applying Christofides’
algorithm to each of the q components, which first finds a
minimum spanning tree Tj in each component CCj , then
obtains a minimum weighted perfect matching Mj of odd
degree nodes in Tj , and finally obtains a Eulerian circuit by
adding edges in Mj to tree Tj , where 1 ≤ j ≤ q. There are two
main differences between the proposed algorithm in this paper
and the Christofides method. (i) The weighted sum of edges
in matching Mo is no greater than the weighted sum of the
edges in the q matchings M1, M2, . . . , Mq, i.e., w�(Mo) =∑

e∈Mo w�(e) ≤ ∑q
i=1 w�(Mj) =

∑
e∈�q

j=q Mj
w�(e), since

the edges in
⋃q

j=q Mj also form a perfect matching of nodes
in V o while Mo is the minimum weighted one. We estimate
an upper bound on w�(Mo) (see Ineq. (9) in Section IV-C.2).
However, the upper bound may less than, rather than larger
than,

∑q
i=1 w�(Mj). (ii) Some edge in Mo may connect two

odd degree nodes that lie in different minimum spanning trees,
whereas every edge in matching Mj connects odd degree
nodes only in tree Tj with 1 ≤ j ≤ q. We show that
less numbers of closed tours are delivered by the proposed
algorithm with an example in Section 2 of the supplementary
file.

C. Algorithm Analysis

Lemma 2: Given a complete graph G� = (V, E) and an
edge weight function w� : E �→ R

≥0, assume that the edge
weights in G� satisfy the triangle inequality. For any closed
tour C in G� with w�(C) ≤ B, there are no more than i − 1
edges in C with their edge weights strictly greater than B

i ,
where i is a given integer with i ≥ 1.

Proof: We show the claim by distinguishing into two
cases: (1) there are no more than i − 1 edges in C; and (2)
there are no less than i edges in C. Case (1) where C contains
no more than i − 1 edges, the lemma immediately follows.
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Algorithm 2 Algorithm for Finding a Set of Tours That Visit
All Nodes in G� Based on a Given Edge Weight Threshold δi

Input: A graph G� = (V, E; w� : E �→ R
≥0), a maximum cost B

of each UAV tour, and an edge weight threshold δi

Output: A set Ci of tours so that the cost of each tour in Ci is no
greater than B

1: Remove the edges with weights greater than δi from G�. Assume
that there are q connected components CC1, CC2, . . . , CCq in
the resulting graph after the edge removals;

2: Find an MST Tj in each connected component CCj with
1 ≤ j ≤ q;

3: Let V o be the set of odd degree nodes in the q MSTs;
4: Construct a complete graph Go = (V o, Eo; wo : Eo �→ R

≥0);
5: Find a minimum weighted perfect matching Mo in Go;
6: Graph GE is constructed by adding the edges in Mo to the q trees

T1, T2, . . . , Tq , i.e., GE = Mo
�

(
�q

j=1 Tj). Assume that there
are q�(≤ q) connected components CC�

1, CC�
2, . . . , CC�

q� in GE;
7: Let Ci ← ∅; /* the set of obtained tours */
8: for j ← 1 to q� do
9: Find a Eulerian circuit Ce

j in connected component CC�
j

and obtain a tour C�
j visiting nodes in CC�

j by shortcutting
duplicated nodes in Ce

j ;
10: Split tour C�

j into nj subtours Cj,1, Cj,2, . . . , Cj,nj so that the

cost of each subtour is no greater than B and nj ≤ �w�(C�
j)

B/2
�;

11: Let Ci ← Ci ∪ {Cj,1, Cj,2, . . . , Cj,nj};
12: end for

Consider Case (2) where C contains no less than i edges.
Suppose that there are at least i edges in C with edge weights
greater than B

i . Then, the weighted sum w�(C) of edges in
C is larger than i · B

i = B, which contradicts the assumption
w�(C) ≤ B. The lemma then follows. �

Following the similar argument as the one in [43], the
values of the optimal solutions to the problem in G and G�

are equal. We here only show that Algorithm 1 delivers a
4-approximate solution to the problem in G�, which also is a
4-approximate solution to the problem in G.

Assume that an optimal solution to the problem in G�

consists of K∗ tours C∗
1 , C∗

2 , . . . , C∗
K∗ . We estimate an

upper bound on the number |Ci| of delivered tours by
Algorithm 2 with an edge weight threshold δi = B

i , where
2 ≤ i ≤ n. Following Algorithm 2, the number |Ci| of
delivered tours is

|Ci|

≤
q�∑

j=1

�w�(C�
j)

B/2
� ≤

∑q�

j=1 w�(C�
j)

B/2
+ q, as q� ≤ q

=
w�(GE)

B/2
+q, as w�(C�

j) ≤ w�(Ce
j ), w�(GE)=

q�∑
j=1

w�(Ce
j )

=

∑q
j=1 w�(Tj) + w�(Mo)

B/2
+ q, as GE = Mo

⋃
(

q⋃
j=1

Tj).

(3)

In the following, we estimate the upper bounds of weights∑q
j=1 w�(Tj) and w�(Mo), respectively.
1) Estimate an Upper Bound on

∑q
j=1 w�(Tj): Following

Lemma 2, each of the optimal K∗ tours C∗
1 , C∗

2 , . . . , C∗
K∗

contains no more than i − 1 edges with weights greater than

Fig. 3. An illustration of estimating the upper bounds on
�q

j=1 w�(Tj) and

w�(Mo), when δi = B
5

.

B
i . We partition the K∗ tours into i groups C∗

0 , C∗
1 , . . . , C∗

i−1,
where a tour C∗

l is contained in a group C∗
j if C∗

l contains
exactly j edges with weights greater than B

i , where 1 ≤
l ≤ K∗. Let kj = |C∗

j | with 0 ≤ j ≤ i − 1. Then,∑i−1
j=0 kj = K∗. For example, Fig. 3(a) shows K∗ = 3 optimal

tours C∗
1 , C∗

2 , C∗
3 , where C∗

1 contains no edges with edge
weights greater than B

i = B
5 with i = 5, C∗

2 contains two such
edges, and C∗

3 contains three such edges. In this case, k0 = 1,
k1 = 0, k2 = 1, k3 = 1, k4 = 0, and

∑5−1
j=0 kj = 3 = K∗.

We now estimate the upper bound on
∑q

j=1 w�(Tj), where
Tj is a minimum spanning tree of component CCj at Step 1
of Algorithm 2. Following Algorithm 2, within each
tour C∗

l in a group C∗
j , j edges with edge weights greater

than B
i will be removed with 1 ≤ j ≤ i−1. Then, there are j
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segments C∗
l,1, C

∗
l,2, . . . , C

∗
l,j after the removals of the j edges

from C∗
l . We can see that the total weight of the j segments

is no more than B − j · B
i , i.e.,

j∑
s=1

w�(C∗
l,s) < B − j · B

i
=

i − j

i
B. (4)

It also can be seen that the number of segments after the
removals of edges with weights greater than B

i from the K∗

optimal tours is nseg = k0 +
∑i−1

j=1 j ·kj , where kj = |C∗
j | and

each tour C∗
l in C∗

j are removed j edges. On the other hand,
the total weight of the nseg segments is no more than

k0 · B +
i−1∑
j=1

kj · i − j

i
B, by Ineq. (4). (5)

We now construct a spanning forest of the q connected com-
ponents CC1, CC2, . . . , CCq at Step 1 of Algorithm 2.
Since the nseg segments are contained in the q con-
nected components, we can obtain a spanning forest F =
{T �

1, T
�
2, . . . , T

�
q} of the q connected components, by adding

(nseg − q) edges to the nseg segments such that the
weight of each added edge is no greater than B

i . Fig. 3(b)
shows q = 4 connected components CC1, CC2, CC3, CC4

after the edge removals, and Fig. 3(c) shows that q =
4 spanning trees T �

1, T
�
2, T

�
3, T

�
4 of connected components

CC1, CC2, CC3, CC4 are obtained by adding 2(= nseg−q =
6 − 4) edges with edge weights no greater than B

4 . Since Tj

is a minimum spanning tree of connected component CCj ,
we have

q∑
j=1

w�(Tj)

≤ w�(F) =
q∑

j=1

w�(T �
j)

≤ k0B +
i−1∑
j=1

kj
i − j

i
B + (nseg − q)

B

i
, by Eq. (5)

= k0B +
i−1∑
j=1

kj
i − j

i
B + (k0 +

i−1∑
j=1

jkj − q)
B

i

= k0
i + 1

i
B +

i−1∑
j=1

kjB − qB

i
. (6)

2) Estimate an Upper Bound on w�(Mo): We then esti-
mate an upper bound on w�(Mo), where Mo is a minimum
weighted perfect matching of the nodes in V o, and V o is the
odd degree nodes in the q trees T1, T2, . . . , Tq .

We construct two perfect matchings M1 and M2 in graph
Go as follows. Having the forest F = {T �

1, T
�
2, . . . , T

�
q}, we

first duplicate the (nseg − q) edges with the weight of each
duplicated edge no greater than B

i , see the edges in Fig. 3(d)
plotted with black dotted lines. We then add back those
removed edges in the optimal tours of the first �i/2� groups
C∗
0 , C∗

1 , . . . C∗
�i/2�−1. It can be seen that now no edges in the

optimal tours of the �i/2� groups are removed, see the edges
in Fig. 3(d) plotted with blue dotted lines. Finally, consider an
optimal tour C∗

l in a group C∗
j with �i/2� ≤ j ≤ i− 1, recall

that there are j segments C∗
l,1, C

∗
l,2, . . . , C

∗
l,j after the removals

of edges with edge weights greater than B
i . For each segment

C∗
l,s with 1 ≤ s ≤ j, the structure of C∗

l,s is a path. We obtain
a closed tour from path C∗

l,s, by connecting the two endpoints
of C∗

l,s, see the edges in Fig. 3(d) plotted with red dotted lines.
Denote by Ge the resulting graph. Assume that Ge consists
of q�� connected components CC��

1 , CC��
2 , . . . , CC��

q�� . It can be
seen that each connected component CC��

l is a Eulerian graph,
as the degree of each node in CC��

l is even, see Fig. 3(d). Also,
it can be seen that the set V o

j of odd degree nodes in each
tree Tj is contained in some connected component CC��

l , and
|V o

j | is even.
Consider a Eulerian circuit Ceu

l in each connected compo-
nent CC��

l . We can obtain a closed tour C��
l that visits only

nodes in V o by shortcutting nodes not in V o, see Fig. 3(e).
We finally derive two perfect matchings M1 and M2 from
the q�� tours C��

1 , C��
2 , . . . , C��

q�� , see Fig. 3(e). Since Mo is a
minimum weighted perfect matching of nodes in V o, we have
w�(Mo) ≤ w�(M1) and w�(Mo) ≤ w�(M2). Then,

w�(Mo)

≤ w�(M1) + w�(M2)
2

=
∑q��

l=1 w�(C��
l )

2
, as w�(M1) + w�(M2) =

q��∑
l=1

w�(C��
l )

≤
∑q��

l=1 w�(Ceu
l )

2
, as w�(C��

l ) ≤ w�(Ceu
l )

=
w�(Ge)

2
, as w�(Ge) =

q��∑
l=1

w�(Ceu
l ). (7)

Following the construction of graph Ge, it can be seen
that Ge consists of (i) the optimal tours in the first �i/2�
groups C∗

0 , C∗
1 , . . .C∗

�i/2�−1, as no edges are removed, where
the weight of each optimal tour is no greater than B; (ii) the
(
∑i−1

j=�i/2� jkj) segments derived from the optimal tours in the
rest groups C∗

�i/2�, C∗
�i/2�+1, . . . C∗

i−1, where the total weight

of the segments is no greater than
∑i−1

j=�i/2� kj
i−j

i B by
Ineq. (4); (iii) the added edges between two endpoints of the
(
∑i−1

j=�i/2� jkj) segments, where the total weight of the added

edges is no greater than the total weight of the (
∑i−1

j=�i/2� jkj)
segments, as edge weights in the graph satisfy the triangle
inequality; and (iv) 2(nseg − q) edges with the weight of each
edge no greater than B

i . Then,

w�(Ge)

≤
�i/2�−1∑

j=0

kjB +
i−1∑

j=�i/2�
kj

i − j

i
B

+
i−1∑

j=�i/2�
kj

i − j

i
B + 2(nseg − q)

B

i

=
�i/2�−1∑

j=0

kjB+
i−1∑

j=�i/2�
kj

i − j

i
2B+2(k0 +

i−1∑
j=1

jkj − q)
B

i

=
i + 2

i
k0B +

�i/2�−1∑
j=1

i + 2j

i
kjB +

i−1∑
j=�i/2�

2kjB − 2qB

i
.

(8)
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An upper bound of w�(Mo) thus is

w�(Mo)

≤ w�(Ge)
2

, by Ineq. (7)

≤ i + 2
2i

k0B +
�i/2�−1∑

j=1

i + 2j

2i
kjB +

i−1∑
j=�i/2�

kjB − qB

i
. (9)

3) Approximation Ratio Analysis:
Theorem 1: Given an IoT network G = (V, E; tf : E �→

R
≥0, ρ : V �→ R

≥0) and a maximum data collection delay B,
there is a 4-approximation algorithm, Algorithm 1, for the
minimum UAV deployment problem without neighborhoods,
which takes time O(n4), where n = |V |.

Proof: By combining Inequalities (6) and (9), we have
q∑

j=1

w�(Tj)+w�(Mo) ≤ (1.5+2/i)k0B+
i−1∑
j=1

2kjB − 2qB

i
.

(10)

By combining Ineq. (3) and Ineq. (10), we upper bound the
number of delivered tours in Ci as

|Ci| ≤ (3 + 4/i)k0 + 4
i−1∑
j=1

kj − 4q

i
+ q. (11)

Consider the case where i = 4, we have
|C4| ≤ 4

∑3
j=0 kj = 4K∗, as K∗ =

∑3
j=0 kj .

Recall that the number of tours in C delivered by
Algorithm 1 is |C| = minn

i=2{|Ci|} ≤ |C4| ≤ 4K∗. This
indicates that C is a 4-approximation solution.

We finally analyze the time complexity of Algorithm 1,
which is dominated by invoking Algorithm 2 no more than
n − 1 times. Note that the most time-consuming operation in
Algorithm 2 is the finding of a minimum weighted perfect
matching Mo in Go, which takes time O(n3). Therefore, the
time complexity of Algorithm 1 is (n−1)·O(n3) = O(n4).

�

V. APPROXIMATION ALGORITHM FOR THE MINIMUM UAV
DEPLOYMENT PROBLEM WITH NEIGHBORHOODS

In this section, we consider the minimum UAV deployment
problem with neighborhoods, where a UAV can collect the
data of each IoT device when their Euclidean distance is
within a given communication range, and we propose a novel
approximation algorithm for the problem.

A. Algorithm Framework

Given an IoT network G = (V, E; tf : E �→ R
≥0, ρ : V �→

R
≥0), neighborhoods of IoT devices in V , and a maximum

data collection delay B, the algorithm framework for the
problem with neighborhoods is similar to the one without
neighborhoods in the previous section. That is, it finds a set Ci

of tours that visit devices in G based on a given edge weight
threshold δi = B

i , subject to the constraint that the cost of
each tour in Ci is no greater than B, where 2 ≤ i ≤ n. The
final solution C to the problem is the set with the minimum
number of tours, i.e., |C| = min2≤i≤n{|Ci|}. The algorithm for
the minimum UAV deployment problem with neighborhoods
is presented in Algorithm 3.

Algorithm 3 Algorithm for the Minimum UAV Deployment
Problem With Neighborhoods (approAlgNei)
Input: a network G, the neighborhood D(vi) of each device vi in

V , and a maximum data collection delay B
Output: a set C of tours to visit the neighborhoods of nodes in V ,

so that the total spent time of each tour in C is no more than B.
1: Construct a trivial solution C = {C1, C2, . . . , Cn}, where each

tour Ci consists of only a single node vi in V , and n = |V |;
2: for i← 2 to n do
3: Let δi ← B

i
; /* set an edge weight threshold */

4: Find a set Ci of tours to visit neighborhoods of nodes in G
based on δi, subject to that the cost of each tour in Ci is no
greater than B, by invoking Algorithm 4;

5: if |Ci| < |C| then
6: Let C ← Ci; /* find a better solution */
7: end if
8: end for
9: return C.

B. Algorithm

We now show how to find a set Ci of tours visiting
neighborhoods of all devices in G, which is different from the
one in Section IV-B for the problem without neighborhoods,
as the data of an IoT device can be collected by a UAV as
long as the Euclidean distance between them is no more than
their communication range.

For any two nodes vj and vl in V , recall that their
neighborhoods are D(vj) and D(vl), respectively. Denote by
c(Dj , Dl) the minimum flying time between the neighborhoods
D(vj) and D(vl), which is defined as follows. If the two
neighborhoods D(vj) and D(vl) overlap with each other, i.e.,
the Euclidean distance d(vj , vl) between nodes vj and vl is
no greater than 2R0, we define c(Dj , Dl) = 0, where R0

is the disk radius of each neighborhood. On the other hand,
if D(vj) and D(vl) do not overlap with each other, we define
c(Dj , Dl) = d(vj,vl)−2R0

η , where η is the flying speed of a
UAV. That is,

c(Dj , Dl) =

{
0, if d(vj , vl) ≤ 2R0
d(vj,vl)−2R0

η , if d(vj , vl) > 2R0
(12)

We partition the IoT devices in V into several disjoint
subsets as follows. We first construct an auxiliary graph
G� = (V, E; w� : E �→ R

≥0) from G, where the weight
w�(vj , vl) of each edge (vj , vl) in E is the minimum flying
time c(Dj , Dl) between neighborhoods D(vj) and D(vl), i.e.,
w�(vj , vl) = c(Dj , Dl). We then obtain a graph G�� = (V, E��)
from G�, by removing the edges with weights strictly greater
than the given edge weight threshold δi = B

i from G�. Assume
that there are q connected components CC1, CC2, . . . , CCq in
G��, where q ≥ 1 is a positive integer. Accordingly, the set V
of devices is partitioned into q disjoint subsets V1, V2, . . . , Vq ,
where Vj is the set of nodes in connected component CCj

with 1 ≤ j ≤ q. Let Vj = {v1, v2, . . . , vnj}, where nj is the
number of nodes in Vj .

Having found the q disjoint subsets V1, V2, . . . , Vq , we can
find an approximate shortest tour Cj to visit all neighborhoods
of nodes in each subset Vj , by invoking the best approximation
algorithm so far for the Traveling Salesman Problem with
Neighborhoods (TSPN) [10], where 1 ≤ j ≤ q. Assume
that Cj = p1 → p2 → · · · → pnj → p1, where pl is a
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hovering location in the neighborhood D(vl) of a node vl

with 1 ≤ l ≤ nj .
Recall that wN (Cj) is the total time of a UAV spent in

tour Cj , where wN (Cj) =
∑nj

l=1 tf (pl, pl+1) +
∑nj

l=1 ρ(vl),
tf (pl, pl+1) is the flying time between pl and pl+1, ρ(vl) is
the duration of data collection from device vl. Denote by r
the flying time of a UAV for a distance of R0, i.e., r = R0

η ,
where R0 is the radius of each neighborhood D(vl) and η is
the UAV flying speed. Following the work in [10], we have
wN (Cj) ≤ 6.75 · wN (C∗

j ) + 20.4 · r, where C∗
j is an optimal

(i.e., shortest) tour for the TSPN problem.
We assign the weight w�

N (pl, pl+1) of each edge (pl, pl+1)
in Cj as w�

N (pl, pl+1) = tf (pl, pl+1)+
ρ(vl)+ρ(vl+1)

2 . It can be
seen that w�

2(Cj) =
∑nj

l=1 w�
2(pl, pl+1) =

∑nj

l=1(w(pl, pl+1)+
ρ(vl)+ρ(vl+1)

2 ) =
∑nj

l=1 w(pl, pl+1) +
∑nj

l=1 ρ(vl) = w2(Cj)
We finally obtain, say sj , subtours Cj,1, Cj,2, . . . , Cj,sj

from Cj by the tour splitting procedure in [16], such that the
cost of each subtour Cj,l is no greater than B, and the number
sj of subtours is no more than �w�

N (Cj)
B/2 �, i.e., sj ≤ �w�

N (Cj)
B/2 �.

The set Ci of obtained tours based on a given edge weight
δi then is Ci =

⋃q
j=1(

⋃bj

l=1 Cj,l). The detailed algorithm
for finding a set Ci of tours that visit neighborhoods of
nodes in G based on a given edge weight δi is presented in
Algorithm 4.

Algorithm 4 Algorithm for Finding a Set of Tours That Visit
All Neighborhoods of Nodes in G Based on a Given Edge
Weight Threshold δi

Input: A graph G = (V, E; tf : E �→ R
≥0, ρ : V �→ R

≥0),
a maximum delay B, and an edge weight threshold δi

Output: A set Ci of tours so that the cost of each tour in Ci is no
greater than B

1: Construct an auxiliary graph G� = (V, E; w� : E �→ R
≥0) from

G, where the weight w�(vj , vl) of each edge (vj , vl) in E is the
minimum flying time c(Dj , Dl) between neighborhoods D(vj)
and D(vl);

2: Graph G�� = (V, E��) is derived from G� by removing the edges
with weights greater than δi from G�. Assume that there are q
connected components CC1, CC2, . . . , CCq in G��. Denote by
Vj the set of nodes in CCj with 1 ≤ j ≤ q.

3: Let Ci ← ∅; /* the set of obtained tours */
4: for j ← 1 to q do
5: Find an approximate tour Cj to visit all neighborhoods of nodes

in Vj , by invoking the algorithm in [10] for the TSPN problem;
6: Split tour Cj into, say sj , subtours Cj,1, Cj,2, . . . , Cj,sj so

that the cost of each subtour is no greater than B and sj ≤
�w�

N (Cj)

B/2
�;

7: Let Ci ← Ci ∪ {Cj,1, Cj,2, . . . , Cj,sj};
8: end for
9: return Ci.

C. Algorithm Analysis

Assume that an optimal solution to the problem in G�

consists of K∗ tours C∗
1 , C∗

2 , . . . , C∗
K∗ . Following Lemma 2,

each of the optimal K∗ tours contains no more than i−1 edges
with weights greater than B

i . We partition the K∗ optimal tours
into i groups C∗

0 , C∗
1 , . . . , C∗

i−1, where a tour C∗
l is contained in

a group C∗
j if C∗

l contains exactly j edges with weights greater
than B

i , where 1 ≤ l ≤ K∗. Let kj = |C∗
j | with 0 ≤ j ≤ i−1.

Then,
∑i−1

j=0 kj = K∗.

Following Algorithm 4, there are q connected compo-
nents CC1, CC2, . . . , CCq in G�� after the removals of the
edges with weights strictly greater than δi from G�. Denote
by C∗

j the optimal closed tour for visiting the neighborhoods
of nodes in connected component CCj with 1 ≤ j ≤ q.

We first estimate an upper bound on the total weight∑q
j=1 w�

N (C∗
j ) of the q tours C∗

1 , C∗
2 , . . . , C∗

q by the following
lemma.

Lemma 3: The total weight
∑q

j=1 w�
N (C∗

j ) of the q tours
C∗

1 , C∗
2 , . . . , C∗

q with a given edge weight threshold δi = B
i

is upper bounded by k0
i+2

i B +2
∑i−1

j=1 kjB− 2qB
i +8r(k0 +∑i−1

j=1 j · kj − q), where kj is the number of optimal tours in
group C∗

j with 0 ≤ j ≤ i− 1, B is the maximum cost of each
tour, r is the flying time for a distance of R0 by a UAV, and
R0 is the radius of each neighborhood.

Proof: The proof body can be seen in Section 4 of the
supplementary file. �

We now estimate the upper bound on the number of tours
delivered by Algorithm 3 as follows.

Theorem 2: Given an IoT network G = (V, E; tf : E �→
R

≥0, ρ : V �→ R
≥0), a maximum data collection delay B, and

the radius R0 of each neighborhood, there is an approximation
algorithm, Algorithm 3, for the minimum UAV deployment
problem with neighborhoods, such that the number of deliv-
ered tours is no greater than (27+108λ)·K∗−(67.2λ+12.5),
where K∗ is the minimum number of tours, λ = r

B , and r is
the UAV flying time for a distance of R0, which usually is a
very small constant.

Proof: The proof body can be seen in Section 5 of the
supplementary file.

Remark: Notice that the value of λ usually is small. For
example, a DJI Phantom 4 Pro UAV can fly at a speed of
η=10 m/s [24]. Assume that the radius of each neighborhood
is R0 = 500 meters [1] and the maximum data collection
delay B is 30 minutes. Then, the value of λ is

λ =
r

B
=

R0
η

B
=

500 m
10 m/s

30 min
=

1
36

. (13)

In this case, the number |C| of closed tours delivered by
Algorithm 3 can be upper bounded as

|C| ≤ (27 + 108λ)K∗ − (67.2λ + 12.5)

≤ 30K∗ − 14.36, where λ =
1
36

. (14)

We thus have that |C| ≤ 30K∗ − 15, as |C| is a positive
integer. �

VI. PERFORMANCE EVALUATION

A. Simulation Environment

We consider an IoT network area in a 5 km×5 km×1 km
three-dimensional Euclidean space. There are from 100 to 500
IoT devices randomly deployed on the ground of a monitoring
area. The amount of data Δi of each IoT device vi is randomly
chosen from an interval from 5 MB to 10 MB [38]. The
data transmission rate b is 1 Mb/s [26]. The flying speed η
of each UAV is 10 m/s [24]. The maximum data collection
delay B ranges from 20 minutes to one hour. On the other
hand, when the data of each IoT device can be collected by
a UAV with wireless transmissions, we assume that all UAVs
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Fig. 4. Performance of different algorithms for the minimum UAV deployment problem without neighborhoods.

hover at an altitude h = 300 m and the transmission range R
ranges from 400 meters to 600 meters [1]. Then, the radius of
each neighborhood is R0 =

√
R2 − h2 meters.

To evaluate the performance of the proposed algorithm
approAlgNoNei for the minimum UAV deployment
problem without neighborhoods, we consider four exist-
ing benchmarks. (i) Algorithm BTCAlg [15] proposed a
5-approximation algorithm for the problem. (ii) Algorithm
MCCPAlg1 [37] delivered an improved 4 2

3 -approximate solu-
tion to the problem. (iii) Algorithm MCCPAlg2 [37] found
a 4 4

7 -approximate solution, by better refining the algo-
rithm MCCPAlg1. Notice that 4 4

7 < 4 2
3 . (iv) Algorithm

minMaxNoNei [36] finds a given number K of closed tours
to visit the n nodes such that the longest length among the
K found tours is minimized. We find the minimum number
K of UAVs deployed by invoking algorithm minMaxNoNei
multiple times through increasing the value of K from 1 to n
until the longest tour length is no greater than B, where n is
the number of IoT devices.

On the other hand, to evaluate the performance of the
proposed algorithm approAlgNei for the minimum UAV
deployment problem with neighborhoods, in addition to
the four algorithms BTCAlg, MCCPAlg1, MCCPAlg2, and
minMaxNoNei that ignore neighborhoods, we compare with
another benchmark algorithm minMaxNei [8] that takes the
neighborhoods into consideration, which is to find a given
number K of closed tours to visit the neighborhoods of n
nodes such that the longest length among the K found tours
is minimized, where at least one location in each neighborhood
must be visited by a tour.

Each value in the figures is the average of the results by
applying each algorithm to 100 different network topologies
with the same network size.

B. Algorithm Performance for the Minimum UAV
Deployment Problem Without Neighborhoods

We first evaluate the performance of different algorithms
by varying the number of IoT devices n from 100 to 500,
while fixing the maximum delay B at 30 minutes and the UAV
flying speed η at 10 m/s. Fig. 4(a) shows that the number of
UAVs deployed by each algorithm on average increases with
the growth of the number of IoT devices n, as more UAVs need
to be deployed in a large network. Fig. 4(a) also demonstrates

that the average number of UAVs by the proposed algorithm
approAlgNoNei is around from 11% to 19% less than those
by the three benchmark algorithms BTCAlg, MCCPAlg1 and
MCCPAlg2. For example, the average numbers of UAVs
by algorithms approAlgNoNei, BTCAlg, MCCPAlg1 and
MCCPAlg2 are about 19.1, 24.4, 23.9, and 22.6, respectively,
when there are n = 300 IoT devices in the network.

We then study the performance of different algorithms by
varying the maximum data collection delay B from 20 minutes
to one hour, when n = 300 and η = 10 m/s. Fig. 4(b) plots
the performance of algorithms approAlgNoNei, BTCAlg,
MCCPAlg1 and MCCPAlg2, from which it can be seen that
the average number of UAVs deployed by each algorithm
decreases quickly with the increase of the maximum data
collection delay B. Fig. 4(b) also shows that the average
number of UAVs by algorithm approAlgNoNei is around
from 9.5% to 15.5% less than those by algorithms BTCAlg,
MCCPAlg1 and MCCPAlg2.

We finally investigate the performance of the four mentioned
algorithms by varying the UAV flying speed η from 6 m/s
to 14 m/s, when B = 30 minutes and n = 300. Fig. 4(c)
demonstrates that less number of UAVs are deployed in the
solution delivered by each algorithm when each UAV flies at a
higher speed. Fig. 4(c) further shows that the average number
of UAVs by algorithm approAlgNoNei is about from 11%
to 15.5% less than those by algorithms BTCAlg, MCCPAlg1
and MCCPAlg2.

C. Algorithm Performance for the Minimum UAV
Deployment Problem With Neighborhoods

We now evaluate the performance of different algorithms for
the minimum UAV deployment problem with neighborhoods.
Fig. 5(a) plots the performance of different algorithms by
varying the number of IoT devices n from 100 to 500,
when B = 30 minutes, R = 500 m and η = 10 m/s.
It can be seen that the numbers of UAVs by both algorithms
approAlgNei and minMaxNei are much smaller than
those by the four algorithms approAlgNoNei, BTCAlg,
MCCPAlg1 and MCCPAlg2, as the first two algorithms take
the transmission range of each IoT device into consideration,
i.e., a UAV can collect the data of the IoT device when their
Euclidean distance is no greater than the transmission range,
whereas the rest of the four algorithms do not consider the
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Fig. 5. Performance of different algorithms for the minimum UAV deployment problem with neighborhoods.

transmission range and a UAV needs to fly to the location
of the IoT device to collect its data. In addition, Fig. 5(a)
shows that the average number of UAVs deployed by the
proposed algorithm approAlgNei is around from 14.5% to
18% less than that by algorithm minMaxNei. For example,
the average numbers of UAVs by algorithms approAlgNei
and minMaxNei are around 5.5 and 6.6, respectively, when
there are n = 100 IoT devices.

Fig. 5(b) demonstrates the performance of different algo-
rithms by varying the maximum data collection delay B
from 20 minutes to one hour, from which it can be seen that the
average number of UAVs by each algorithm decreases quickly
with the growth of B. Fig. 5(b) also shows that the number of
UAVs by the proposed algorithm approAlgNei is around
from 9.5% to 18% less than that by algorithm minMaxNei,
and at least 40% less than those by the other four algorithms
approAlgNoNei, BTCAlg, MCCPAlg1 and MCCPAlg2.

Fig. 5(c) compares the performance of different algorithms
by varying the UAV flying speed η from 6 m/s to 14 m/s,
when B = 30 minutes, n = 300 and R = 500 meters.
Fig. 5(c) shows that the average number of UAVs by algorithm
approAlgNei is at least 11% less than those by the other
five algorithms.

Fig. 5(d) shows the performance of different algorithms by
varying the transmission range R of each IoT device from
400 meters to 600 meters, when B = 30 minutes, n = 300
and η = 10 m/s. It can be seen that the numbers of UAVs by
both algorithms approAlgNei and minMaxNei decreases
with the growth of the transmission range R, as the flying

distance of each UAV is shorter with a larger transmission
range R and the saved UAV flying time can be used for
collecting data from more IoT devices, thereby deploying less
UAVs. In contrast, Fig. 5(d) demonstrates that the numbers
of UAVs by the other four algorithms approAlgNoNei
BTCAlg, MCCPAlg1 and MCCPAlg2 do not change with the
increase on the transmission range, since the four algorithms
do not consider the transmission range and each UAV flies to
the location of each IoT device to collect its data. Finally,
Fig. 5(d) plots that the average number of UAVs by the
proposed algorithm approAlgNei is around from 6.5% to
15.5% less than that by algorithm minMaxNei.

VII. CONCLUSION

In this paper, we first formulated the minimum UAV deploy-
ment problem, which is to determine the minimum number K
of UAVs and to find the data collection tours for the K UAVs
to collect data from IoT devices in an IoT network, subject to
that the total time spent by each UAV per tour is no greater
than a given delay. We then proposed a 4-approximation
algorithm for the problem without neighborhoods, which
improves the best approximation ratio 4 4

7 for the problem
so far. We also devised the very first constant approximation
algorithm for the problem with neighborhoods. We finally
evaluated the performance of the proposed algorithms via
simulation experiments, and experimental results showed that
the number of deployed UAVs by the proposed algorithms are
around 11% to 19% less than those by existing algorithms on
average.
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