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MGARD+: Optimizing Multilevel Methods for
Error-Bounded Scientific Data Reduction

Xin Liang ,Member, IEEE, Ben Whitney , Jieyang Chen ,Member, IEEE, Lipeng Wan ,

Qing Liu , Dingwen Tao , James Kress, David Pugmire , Matthew Wolf ,

Norbert Podhorszki, and Scott Klasky, Senior Member, IEEE

Abstract—Nowadays, data reduction is becoming increasingly important in dealing with the large amounts of scientific data. Existing

multilevel compression algorithms offer a promising way to manage scientific data at scale, but may suffer from relatively low

performance and reduction quality. In this paper, we propose MGARD+, a multilevel data reduction and refactoring framework drawing

on previous multilevel methods, to achieve high-performance data decomposition and high-quality error-bounded lossy compression.

Our contributions are four-fold: 1) We propose to leverage a level-wise coefficient quantization method, which uses different error

tolerances to quantize the multilevel coefficients. 2) We propose an adaptive decomposition method which treats the multilevel

decomposition as a preconditioner and terminates the decomposition process at an appropriate level. 3) We leverage a set of

algorithmic optimization strategies to significantly improve the performance of multilevel decomposition/recomposition. 4) We evaluate

our proposed method using four real-world scientific datasets and compare with several state-of-the-art lossy compressors.

Experiments demonstrate that our optimizations improve the decomposition/recomposition performance of the existing multilevel

method by up to 70� , and the proposed compression method can improve compression ratio by up to 2� compared with other

state-of-the-art error-bounded lossy compressors under the same level of data distortion.

Index Terms—High-performance computing, lossy compression, multilevel decomposition, error control, scientific data

Ç

1 INTRODUCTION

WITH the extreme amounts of data produced by today’s
large-scale scientific simulations on leadership high-

performance computing (HPC) systems and scientific
instruments, data reduction has become a serious problem.
On the one hand, not all the data can be stored in the paral-
lel file systems. They have to be moved to relatively slow
storage devices such as archives, where the data transfer
time will become prohibitive because of the limited I/O
bandwidth. On the other hand, even if the full data could be
stored, post hoc analysis on the entire data would be too
costly to conduct. For instance, the DCA++ code [1] produ-
ces 100 TB of data in a single run, but only a small subset
(100 MB) is written in order to lower the cost of post hoc

analysis. In particular, scientists reduce their seven dimen-
sional tensor down to a two dimensional subset, thus reduc-
ing the data by a factor of 106. This operation makes it
possible for scientists to conduct data analysis on a laptop,
but valuable information not captured in the reduced data
set is often lost.

Error-bounded lossy compression techniques [2], [3], [4],
[5], [6], [7], [8], [9] have been proposed and developed in the
last decade to address the storage issue. These techniques
aim to significantly reduce data size while controlling dis-
tortion in the decompressed data. However, they usually
suffer from large distortion when the required compression
ratio is relatively high (e.g., 30�) – a common demand
for data-intensive HPC applications. For example, ZFP [3]
exhibits visual artifacts when the compression ratio reaches
64� according to previous studies [7]. SZ [7] generates visu-
ally better results thanks to its multi-algorithm design, but
it may still cause undesired data distortion as the compres-
sion ratio is increased to relatively high levels. The hybrid
model proposed in [9] significantly improves the compres-
sion quality by integrating ZFP’s orthogonal transform in
the SZ compression framework. This integration comes at a
high computational cost, though, and in practice a qualified
compressor must achieve not only high compression ratios
but also high compression and decompression speeds.

Recently, the applied math community has proposed a
new method, MultiGrid Adaptive Reduction of Data
(MGARD) [10], [11], for compression of scientific data.
Drawing on the theories of wavelet analysis, finite element
methods, and multigrid linear solvers, MGARD decom-
poses multidimensional datasets into a collection of
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components of varying scale and resolution. The coefficients
for these components are then adaptively quantized to
achieve error-bounded compression. Like multigrid linear
solvers, MGARD makes use of a sequence of nested grids to
achieve a separation of scales, and adapts its treatment of
each component to that component’s scale. It is not, how-
ever, a linear solver, and the wide variety of improvements
made to the multigrid method are not immediately transfer-
able to the domain of data compression. In addition to the
general point-wise error control offered by existing
approaches [3], [7], [9], MGARD is unique for providing
strict error control for derived quantities [12].

Besides data reduction, multilevel decomposition as
implemented in MGARD can also be used for data refactor-
ing. Both data reduction and data refactoring aim to shrink
input datasets, but they differ in how the compressed repre-
sentations can subsequently be used. The output of a gen-
eral lossy data reduction method can only be decompressed
in full resolution, resulting in a lossy reconstruction having
the same size as the original input. The output of a data
refactoring method, by contrast, can be partially decom-
pressed to produce reconstructions of intermediate size.
This may be accomplished, by example, by decomposing
the original data into a hierarchical sequence of compo-
nents, a subset of which may be summed to produce a
reconstruction comprising fewer degrees of freedom than
the original input. Post hoc analysis may then be carried out
on this reduced representation, at a reduced cost. This is
especially valuable if, for example, the original input dataset
is too large to be analyzed by the available computational
resources (a laptop, rather than a cluster, for instance).
Although data refactoring methods may incur larger distor-
tion at a given compression ratio than data reduction meth-
ods, they have two particular advantages:

1) they allow for progressive reconstruction of data,
with precision improving as more storage space is
allocated, and

2) they can be used to generate coarse-grained repre-
sentations on which post hoc data analysis may be
performed with greatly reduced computational
complexity.

The main contribution of this paper is to design and eval-
uate tailored optimizations toMGARD, which, despite offer-
ing an elegant approach to the problem of scientific data
reduction, suffers from fairly low throughput and subopti-
mal compression ratios. Specifically, we improve compres-
sion ratios under the same distortion with two efficient
methods. In addition, we develop a series of optimization
strategies for the multilevel methods, which can substan-
tially boost the performance of both data decomposition and
recomposition. Such optimizations are also important for
data refactoring use cases, as will be demonstrated in our
evaluation. In summary, our contributions are as follows:

� Adaptive error-based coefficient quantization: We use
different error tolerances to quantize the multilevel
coefficients at each level in the previous multilevel
algorithm, which can significantly improve the com-
pression ratios under given distortions in terms of
Peak Signal-to-Noise Ratio (PSNR). To this end, we

carefully analyze the impact of the quantization
method and choose the best-fit scaling factor deter-
mining the relationship of error tolerance across dif-
ferent levels.

� Adaptive data decomposition termination: We treat the
multilevel data decomposition as a preconditioner,
unlike the traditional multilevel compressor,
MGARD, which totally relies on the data decomposi-
tion for the whole compression procedure. In our
approach, the multilevel decomposition would termi-
nate at an appropriate level, and the remaining coarse-
grained representation is compressed via external
error-bounded lossy compressors. This can further
improve compression ratios over the first strategy.

� A series of performance optimizations: With algorithmic
improvements, we significantly improve the perfor-
mance of our error-bounded lossy compression
method over the traditional baseline. Specifically, we
adopt a level-centric data reordering strategy and
batched operations to improve cache coherence and
memory efficiency. We also revise the correction
computation kernel (one of the most important steps
in MGARD) to reduce computational cost.

� Thorough evaluation: We evaluate our method with
respect to both performance and quality using four
real-world datasets from different scientific applica-
tions. We first demonstrate the effectiveness of the
proposed optimizations compared to original multi-
level approach [11], and then compare our method
to state-of-the-art error-bounded lossy compressors
including SZ [7], ZFP [3], and the hybrid model [9].
Experiments show that our proposed method has a
20 � 70� performance improvement over the previ-
ous multilevel method in terms of decomposition/
recomposition speed, and the evaluation results on
the iso-surface mini-analysis indicate that conduct-
ing scientific analysis on the coarse-grained repre-
sentations could significantly improve the analysis
performance. Furthermore, our method yields 2�
compression ratio improvement over state-of-the-art
error-bounded lossy compressors [3], [7], [9] at the
same distortion, especially in the high compression
ratio cases, showing great potential in mitigating the
storage pressure.

The rest of the paper is organized as follows. In Section 2,
we summarize the main operations of MGARD. In Section 3,
we specify the metrics for evaluation. In Section 4, we pres-
ent the methods we leverage to improve the quality of
error-bounded lossy compression. In Section 5, we intro-
duce a set of optimization techniques applied to our imple-
mentation. In Section 6, we evaluate our method using real-
world simulation data from scientific applications. Finally,
we discuss related work in Section 7 and conclude with a
vision for future work in Section 8.

2 BACKGROUND

In this section, we describe the central decomposition and
recomposition routines of MGARD, which serves as the
starting point for the multilevel method in this work. This
description focuses on the computational steps involved.
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For a full mathematical treatment, please check [10], [11].
Some frequently used symbols are summarized in Table 1.

The input is an array (multidimensional in general) u of
floating-point numbers. We interpret u as the values taken
by a function u on a grid N L having the same dimensions
as u. For example, if u has shape n1 � � � � � nd, then N L

might be fðj1h; . . . ; jdhÞ : 0 � ji < nig. Each element x 2
N L is a point in the domain of u; the corresponding entry
u½ðj1; . . . ; jdÞ� of the array is the value uðxÞ taken by the
function at that point.

We decompose u using a sequence N L�1; . . . ;N 0 of sub-
grids of N L. We require that the sequence be decreasing,
i.e., that N lþ1 	 N l. See Fig. 1 for an example. The blue
nodes comprise N l, the blue and orange nodes comprise
N lþ1, and the blue, orange, and grey nodes comprise N lþ2.
Denote by N
l the set N l n N l�1, with N�1 ¼ ;. We define
for 0 � l � L operators Ql and Pl, each outputting an array
of values defined on N l. Ql is an L2 projection operator. It is
applied by computing a matrix–vector product and then
solving a linear system. Pl is a multilinear interpolation
operator. It leaves values on N l�1 unchanged; values on N
l
are determined by interpolating values onN l�1. Mathemati-
cally, we can interpret the arrays output by these operators
as functions in appropriately defined function spaces. See
[10], [11] for details. For a given level l, we refer to nodes in
N l�1 as nodal nodes and to those inN
l as coefficient nodes.

The decomposition routine transforms the input function
u to the multilevel components fðI �Pl�1ÞQlu : 0 � l � Lg.
This is accomplished by the following iterative procedure,
with l ¼ L for the first iteration.

1) Start with Qlu, with QLu ¼ u.
2) Compute the interpolant Pl�1Qlu.
3) Subtract the interpolant Pl�1Qlu from Qlu, obtaining

the multilevel component ðI �Pl�1ÞQlu.
4) Compute the projection Ql�1ðI �Pl�1ÞQlu of the

multilevel component. It can be shown that this pro-
jection, which we call the correction, is equal to
Ql�1u�Pl�1Qlu.

5) Add the correction Ql�1u�Pl�1Qlu to the interpo-
lant Pl�1Qlu, obtaining Ql�1u.

6) If l ¼ 0, stop. Otherwise, decrement l and repeat.
We call Step 4 the correction computation and Step 5 the

correction application. Steps 2 and 3 are combined in the
implementation into a single operation which we call coeffi-
cient computation. The coefficients in question are the nodal
values fðI �Pl�1ÞQluðxÞ : x 2 N 
l g. The output of the
decomposition routine is an array containing these coeffi-
cients for each level l. We call these values themultilevel coef-
ficients and denote the collection u mc. u mc is indexed by the
nodes of the finest grid N L: given x 2 N L, if l is the least
grid index such that x 2 N l, then u mc½x� ¼ ðI �
Pl�1ÞQluðxÞ. Following decomposition, the next step in
MGARD is to quantize u mc. See Section 4.1.

The recomposition procedure is the inverse of the
decomposition procedure. We start with multilevel compo-
nents fðI �Pl�1ÞQlu : 0 � l � Lg. We recover u by the fol-
lowing iterative procedure, starting with l ¼ 0.

1) Start with Ql�1u, with Q�1u ¼ 0.
2) Compute the projection Ql�1ðI �Pl�1ÞQlu of the

multilevel component. As in the decomposition rou-
tine, we call this projection the correction. It is again
equal to Ql�1u�Pl�1Qlu.

3) Subtract the correction Ql�1u�Pl�1Qlu from Ql�1u,
obtaining the interpolant Pl�1Qlu.

4) Add the interpolant Pl�1Qlu to the multilevel com-
ponent ðI �Pl�1ÞQlu, obtaining Qlu.

5) If l ¼ L, stop. Otherwise, increment l and repeat.
The recomposition and decomposition procedures

require a very similar set of subroutines. The correction is
computed in Step 2 and applied in Step 3, though it is sub-
tracted rather than added here. Step 4 is a simple inverse of
the coefficient computation. The hierarchical nature of the
multilevel algorithm leads to strided memory access in
these operations, as seen in Fig. 1. An approach to mitigate
this problem is detailed in Section 5.1.

3 METRICS

In this paper, we focus on improving the performance and
quality of the previous multilevel method [11]. We briefly
introduce our metrics for the two objectives in this section.

3.1 Performance

We measure the performance of multilevel operations in
terms of throughput, which is evaluated by size=t, where
size is the original data size and t is the time used for the
operation (such as decomposition, recomposition, compres-
sion, or decompression). The overall throughput on a

TABLE 1
Description of Frequently Used Symbols

Symbol Description

u Input data array.
~u Reconstructed data array.
u mc Multilevel coefficients.
~u mc Quantized multilevel coefficients.
L Maximummultilevel decomposition level.
d Spatial dimension.
ni Number of elements along the ith dimension.
N l Level l subgrids (nodal nodes in level lþ 1).
N
l Level l displaced nodes (coefficient nodes).
Ql The L2 projection operator.
Pl The piecewise multilinear interpolation operator.
I Identity operator.
hl Internode spacing in level l.
t User-specified error tolerance.
k Scaling factor for level-wise quantization.
CL2 Derived constant in [12] for L2 error guarantee.
CL1 Derived constant in [11] for L1 error guarantee.

Fig. 1. Data layout in MGARD and the strided dependencies (l ¼ L� 1).
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dataset (which may contain multiple fields, each operated
on separately) is computed by dividing the total size by the
total time.

3.2 Quality

We measure the quality of data reduction using rate–distor-
tion graphs [13], which give a visual representation of how
much compression can be achieved using lossy compres-
sion methods. The rate (a.k.a. the bit-rate), on the X axis of
the graph, is the average number of bits per data point in
the reduced representation. It is equal to the number of bits
per field in the original dataset divided by the compression
ratio. As mentioned before, we adopt PSNR as the distortion
metric, on the Y axis of the graph, because it is computed by
the commonly used mean squared error and often serves as
an indicator of visual quality. PSNR has been widely used
in much previous work, including [2], [3], [7], [9], [14].
PSNR is computed as follows:

PSNR ¼ 20log 10ðmaxðuiÞ �minð~uiÞÞ
� 10log 10ð

PN
i¼1 ðui � ~uiÞ2=NÞ;

where fu1; u2; . . . ; uNg and f~u1; ~u2; . . . ; ~uNg are the original
and decompressed data, respectively (N is the number of
data points). Higher PSNR indicates less error, and thus
higher quality. So, our target in improving data reduction
quality turns out to be maximizing the PSNR of the decom-
pressed data at a fixed compression ratio, or, conversely,
maximizing the compression ratio at a fixed PSNR. As
PSNR is computed over the sum of squared differences
between the original and decompressed data (i.e.,
1
N

PN
i¼1 ðui � ~uiÞ2), we focus on minimizing the squared L2

norm in our analysis.

4 MULTILEVEL REDUCTION WITH LEVEL-WISE

QUANTIZATION AND ADAPTIVE DECOMPOSITION

We present two methods to improve the compression ratios
of the multilevel method at the same PSNR. First, in Sec-
tion 4.1, a level-wise quantization method significantly
improves the compression ratios when error tolerance is
high. Second, in Section 4.2, an adaptive decomposition
method automatically terminates the multilevel decomposi-
tion process at an appropriate level and compresses the
remaining coarse-grained representation with external com-
pressors, which further improves the compression ratios.

4.1 Level-Wise Quantization

As detailed in Section 2, the first step in MGARD’s compres-
sion stage is the decomposition of the input u into a set of
multilevel coefficients u mc. Each entry of u mc is then quan-
tized, yielding a quantized set of multilevel coefficients
~u mc. Just as u mc encodes the input function u, ~u mc encodes
an approximation ~u to u. Care must be taken when quantiz-
ing that the error ku� ~ukL2 between the two is not greater
than the error tolerance tL2 prescribed by the user. It is
therefore useful to relate the individual quantization errors
u mc½x� � ~u mc½x� to the overall approximation error u� ~u.
Such a relationship is given in [12], where it is proved that,
in the case of uniform grids, for CL2 a constant depending
on the grid hierarchy,

if
XL
l¼0

X
x2N
l

hd
l ju mc½x� � ~u mc½x�j2 � t2

L2

CL2
;

then ku� ~ukL2 � tL2 :

Here d is the spatial dimension and hl is the spacing
between nodes in N l (assumed to be uniform across dimen-
sions). In view of this condition, the quantizer has an error
‘budget’ of tL2=C

1=2

L2 to be distributed among the Lþ 1 levels
fu mc½x� : x 2 N 
l g.

The next task is to quantize each coefficient u mc½x�. This
can be accomplished by splitting the range of the multilevel
coefficients into labelled bins of uniform width q. u mc½x�
can then be mapped to the label of the bin containing it.
That label encodes ~u mc½x�. If we choose ~u mc½x� to be the
center of the bin, then ju mc½x� � ~u mc½x�j � q=2, since the bin
has width q and contains u mc½x�. If the range of the multi-
level coefficients has size R ¼ maxðu mcÞ �minðu mcÞ, then
dR=qe labels suffice to quantize all of the multilevel coeffi-
cients with error at most q=2. After quantization, the labels
are passed to a lossless encoder for compression.

How many bits are required to store the labels produced
by quantization? The exact answer will depend on the dis-
tribution of the multilevel coefficients and the lossless
encoder used, but we can estimate the cost using Shannon
entropy [15]. Informally and in brief, the cost in bits per
symbol to encode a stream is bounded below by the Shan-
non entropy of the source, and this rate can be matched
asymptotically. Here, where the symbol alphabet has size
dR=qe, the entropy is at most log 2ðdR=qeÞ. So, for quantiza-
tion with bin width q, the cost in bits to store the quantized
coefficients can be estimated by #N Llog 2ðR=qÞ if the same
bin width is used for all coefficients.

We seek to improve on this cost by more effectively dis-
tributing the error ‘budget.’ To do this, we quantize the
coefficients separately by level. We call this strategy level-
wise quantization. Suppose the coefficients fu mc½x� : x 2 N 
l g
are quantized with bin width ql. ThenX

x2N
l
hd
l ju mc½x� � ~u mc½x�j2 � hd

l#N
l ðql=2Þ2

and the estimated cost of encoding the quantization labels
for the level is #N
l log 2ðR=qlÞ. Summing over l, we define
an estimated cost function cost by

costðq0; . . . ; qLÞ ¼
XL
l¼0

#N
l log 2ðR=qlÞ:

Consider the optimization problem

minimize costðq0; . . . ; qLÞ

subject to
XL
l¼0

hd
l#N
l ðql=2Þ2 ¼

t2
L2

CL2
:

(The cost decreases as the bin widths increase, so nothing is
lost by making the error condition constraint an equality.) A
straightforward application of Lagrange multipliers and
the convexity of cost, which we omit to save space, shows
that the solution this problem is given by ql ¼ 2tL2=
ðCL2hd

l#N LÞ1=2. The estimated cost of this quantization
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strategy is

costðq0; . . . ; qLÞ ¼
XL
l¼0

#N
l log 2

 
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL2hd

l#N L

q
2tL2

!
:

For ease of notation in subsequent sections, it will be con-
venient to describe our quantization strategy in terms of
quantization error tolerances, rather than quantization bin
widths, for each level. That is, we will quantize fu mc½x� :
x 2 N 
l g so that

maxx2N
l ju mc½x� � ~u mc½x�j � tl

for some quantization error tolerance tl. The bin widths ql
found above correspond to tl ¼ tL2=ðCL2hd

l#N LÞ1=2. With
an archetypical grid hierarchy used by MGARD, the grid
resolution doubles in each dimension from one level to the
next, and so hl ’ 2�l. Then the quantization error tolerance
grows from one level to the next by a factor of

tlþ1
tl
¼

tL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL2hd

l#N L

q
tL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CL2hd

lþ1#N L

q ¼
ffiffiffiffiffi
hd
l

q
ffiffiffiffiffiffiffiffiffi
hd
lþ1

q ’
ffiffiffiffiffiffiffiffi
2�ld
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðlþ1Þd
p ¼

ffiffiffiffiffi
2d
p

:

We denote by k this scaling factor
ffiffiffiffiffi
2d
p

.
To be consistent with existing works [3], [7], [9], which

aim at maximizing PSNR (minimizing L2 error) while
respecting an absolute error tolerance (a bound on the L1

norm of the error), we next adapt this quantization strategy
to control L1 error. It is shown in [11] that, for CL1 a con-
stant depending on the grid hierarchy,

if
XL
l¼0

maxx2N
l ju mc½x� � ~u mc½x�j � tL1

CL1
;

then ku� ~ukL1 � tL1 :

(1)

The optimal quantization bin widths in this scenario, found
by taking this error condition as a constraint and minimiz-
ing costðq0; . . . ; qLÞ as before, are ql ¼ 2tL1=CL1 �
#N
l =#N L. We note these values only for completeness; in
our implementation we will use the geometric scaling tl ¼
klt0 obtained in the L2 case. We next choose t0 so that the
L1 error is bounded by tL1 . We have

XL
l¼0

maxx2N
l ju mc½x� � ~u mc½x�j

�
XL
l¼0

tl ¼
XL
l¼0

klt0 ¼ 1� kLþ1

1� k
t0:

The righthand term is equal to tL1=CL1 when t0 ¼
ð1� kÞ=ð1� kLþ1Þ � tL1=CL1 . So, using Eq. (1), if we set the
level l quantization error tolerance to

tl ¼ ð1� kÞkl
1� kLþ1

tL1

CL1
for l ¼ 0; 1; . . . ; L;

then ku� ~ukL1 � tL1 , as desired. In the rest of the paper,
we use t for tL1 for simplicity unless specifically noted.

4.2 Adaptive Decomposition

We further propose to perform multilevel decomposition in
an adaptive fashion, i.e., terminating the decomposition
procedure at an appropriate level instead of decomposing
all the way to the end. The reason is two-fold. On the one
hand, we note that the piecewise multilinear interpolation
is not always better than existing prediction methods such
as the Lorenzo predictor used in SZ [7], [14], especially
when the user-specified error tolerance is relatively low. On
the other hand, the tolerance for the level coefficients is sup-
posed to exponentially decay as the level increases, as we
derived in the last subsection.

As for the remaining coarse-grained representation, we
propose to leverage existing error-bounded compression
methods [3], [7], [9] to deal with them, so that the multilevel
approach is used as a preconditioner instead of a standalone
compressor. In particular, we select SZ [7], [14] as our exter-
nal compressor, because

1) it is one of the state-of-the-art error-bounded lossy
compressors, leading to high compression quality;

2) it yields the best compression ratio given a fixed
error tolerance, according to existing studies [14];
and

3) its Lorenzo predictor is complementary to the piece-
wise multilinear interpolation used in the multilevel
decomposition in terms of prediction efficiency, as
will be detailed later in this subsection.

We compare the effectiveness of the Lorenzo predictor
and piecewise multilinear interpolation to determine the
appropriate level at which to terminate the multilevel
decomposition, because they are the most critical compo-
nents in the SZ compressor and multilevel compressor,
respectively. In the following text, we first discuss the pros
and cons of the Lorenzo predictor used in SZ and the piece-
wise multilinear interpolation used in the multilevel decom-
position. Note that we do not discuss the regression-based
predictor used in the current SZ implementation [7], as we
observed its prediction accuracy to usually be lower than
that of piecewise multilinear interpolation. We will then
introduce our error estimation method and the adaptive
mechanism to automatically terminate the multilevel
decomposition.

4.2.1 Lorenzo Versus Piecewise Multilinear

Interpolation

The Lorenzo predictor [16] estimates the value for a given
data point using its immediate neighbors that have already
been processed. The data value is predicted by the d� 1
degree polynomial determined by 2d � 1 neighboring val-
ues for d-dimensional data, and it is proved that the pre-
dicted value can be represented as a signed combination of
the neighboring values. Thus, the neighboring nodes can be
divided into two groups: positive nodes, with sign coeffi-
cient 1, and negative nodes, with sign coefficient �1. For
example, as shown in Fig. 2a, the 3D Lorenzo predictor pre-
dicts the value for current node u111 with the following
formula:

predLorenzo111 ¼ u110 þ u101 þ u011 � u100 � u010 � u001 þ u000:
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One characteristic of the Lorenzo predictor is that its predic-
tion accuracy relies heavily on the user-specified error toler-
ance. Specifically, it has to use reconstructed data with
certain errors (i.e., ~u instead of u) in its prediction, in order
to ensure that the predicted values are exactly the same
between the compression and decompression stages. This
inevitably results in inaccurate predictions, especially when
the user-specified error tolerance is relatively high. On the
other hand, the Lorenzo predictor features a high-order
data approximation (e.g., using quadratic polynomials for
3D data), which offers accurate prediction, especially when
the user-specified error tolerance is low [14], [16], since the
impact of using reconstructed rather than original values is
tiny in this situation.

In comparison with the Lorenzo predictor, the piecewise
multilinear interpolation is relatively insensitive to errors in
the reconstructed data, but has lower prediction accuracy
due to the low order of its approximation function. Specifi-
cally, the piecewise multilinear interpolation approximates
the value of a data point linearly using the nodal nodes
which are present in the next-level subgrid. Because the
multilevel decomposition uniformly selects half of the
nodes in the current level along each dimension as the nodal
nodes, it yields independent prediction for each 3n grid. For
the 3D case illustrated in Fig. 2b, the 19 coefficient codes
within the 3� 3� 3 grid can be classified into 3 main cate-
gories: edge nodes, which are located on the edge connect-
ing two nodal nodes (e.g., u001); plane nodes, which are
located in the middle of four nodal nodes (e.g., u011); and
cube nodes, which are located in center of eight nodal nodes
(e.g., u111). The prediction formulas for one example of each
category are as follows:

predinterp001 ¼ 1

2
ðu000 þ u002Þ

predinterp011 ¼ 1

4
ðu000 þ u002 þ u020 þ u022Þ

predinterp111 ¼ 1

8
ðu000 þ u002 þ u020 þ u022

þ u200 þ u202 þ u220 þ u222Þ: (2Þ

Such characteristics of the two prediction methods inspire
us to select the better in between while accounting for the
impact of reconstructed data, which determines the most
appropriate level to terminate themultilevel decomposition.

4.2.2 Penalty Estimation

We use penalty factors to efficiently compare the
effectiveness of different prediction methods without
computing the reconstructed values. The penalty factor
is defined as the expected difference between the predic-
tion made using the original data and that made using
the reconstructed data. It indicates the degree to which
the prediction accuracy will be affected by the user-spec-
ified error tolerance.

We briefly introduce the penalty factor for the Lorenzo
predictor as follows, as it has been presented in [7]. Denote
t as the required error tolerance. Assuming a uniform distri-
bution Uð�t; tÞ for the errors of decompressed data (which
is usually true due to the linear-scaling quantization [14]),
the penalty factor can be computed via Monte-Carlo
method. According to [7], the 3D Lorenzo predictor yields a
penalty factor of 1:22t. Thus, the prediction error of the 3D
Lorenzo predictor can be estimated from the original data
and the penalty factor as

ELorenzo ¼ jðu110 þ u101 þ u011 � u100 � u010 � u001

þ u000Þ � u111j þ 1:22t:
(3)

In the following, we propose the penalty factor for piece-
wise multilinear interpolation. Following the previous
approach, we assume a uniform distribution of errors
Uð�t; tÞ for all the nodes in the current level, such that we
can compare the two prediction methods under the same
compressibility. Let Pedge, Pplane, and Pcube be the penalty
terms for the coefficient nodes belonging to edge, plane,
and cube nodes, respectively. According to the prediction
formulas in Eq. (2), the penalty terms for multilinear inter-
polation turn out to be

Pedge ¼
X1
i¼0

�i
2
; Pplane ¼

X3
i¼0

�i
4
; and Pcube ¼

X7
i¼0

�i
8
;

where f�ig are the random variables indicating the errors of
the nodal nodes.

The errors of nodal nodes in the multilinear decomposi-
tion consist of both quantization errors of these nodes and
correction errors that are incurred by the quantization errors
of coefficient nodes in the current level. Using the statistical
method, we find that the correction errors for 3D data can
be approximated by a Gaussian distribution with mean 0
and standard deviation 0:283t when errors of the coefficient
nodes are drawn from Uð�t; tÞ, and they are independent
from the number of nodes along each dimension. These cor-
rection errors are then added to the quantization errors on
the nodal nodes, which are also drawn from Uð�t; tÞ, to
model the penalty. Based on our experiments, the penalty
factors for coefficient nodes in the three categories on 3D
datasets are EðjPedgejÞ ¼ 0:369t, EðjPplanejÞ ¼ 0:259t, and
EðjPcubejÞ ¼ 0:182t. Accordingly, the prediction error of the
multilinear approach for the cube node u111 in Fig. 2b, for
instance, can be estimated as:

Einterp ¼
�� 1
8
ðu000 þ u002 þ u020 þ u022 þ u200 þ u202

þ u220 þ u222Þ � u111

��þ 0:182t: (4Þ

Fig. 2. Illustration of lorenzo predictor and trilinear interpolation.
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With the computed penalty factors, we can use the origi-
nal data to estimate the prediction accuracy of the two meth-
ods. We can also infer that the Lorenzo predictor will be
affected more than piecewise multilinear interpolation by
using reconstructed data because it has a larger penalty fac-
tor, which is consistent with our observation that Lorenzo
predictor suffersmore on relatively high error tolerance.

4.2.3 Adaptive Decomposition Based on Error

Estimation

We then use a sampling approach to determine the most
appropriate decomposition level based on the estimated
accuracy of the two prediction methods. In particular, we
uniformly sample the data at the current level in the granu-
larity of 3d blocks and estimate the prediction errors of coef-
ficient nodes for both the Lorenzo predictor and piecewise
multilinear interpolation. Note that we need to apply the
penalty factors computed above to account for the impact of
reconstructed data. In our implementation, we sample one
out of four blocks along each dimension and aggregate the
estimated prediction errors for each of the two prediction
methods. If the aggregated prediction error of the Lorenzo
predictor is lower than that of piecewise multilinear inter-
polation, we terminate the multilevel decomposition and
compress all of the data in the current level using SZ (which
uses the Lorenzo predictor); otherwise, we will continue to
perform the multilevel decomposition.

Algorithm 1.Multilevel Data Reduction with Level-Wise
Quantization and Adaptive Decomposition

Input: d-dimensional data u, required global error tolerance t
Output: compressed data s
1: QL  I, ~l 0, k 

ffiffiffiffiffi
2d
p

2: for l ¼ L! 0 do

3: t0  ð1�kÞt
ð1�kLþ1�lÞCL1

4: û block based samplingðQluÞ
5: ELorenzo  0; Einterp  0
6: for x 2 N
l \ û do
7: ELorenzo  ELorenzo þ estimate Lorenzo errðx; t0Þ
8: Einterp  Einterp þ estimate interp errðx; t0Þ
9: end for
10: if ELorenzo < Einterp then
11: ~l ¼ l
12: break
13: else
14: Ql�1u; u mc½N 
l �  multi grid decompositionðQluÞ
15: end if
16: end for
17: t~l  ð1�kÞt

ð1�kLþ1�~lÞCL1
18: s0  external lossy compressðQ~lu; t~lÞ
19: for l ¼ ~lþ 1! L do
20: tl  ktl�1
21: ~u mc½N 
l �  quantizeðu mc½N 
l �; tlÞ
22: end for
23: s1  lossless compressð~u mcÞ
24: s concatðs0; s1Þ
25: return s

Algorithm 1 presents the pseudo-code of our proposed
compression algorithm, which is described as follows. After

initializing the necessary variables (line 1), we perform the
adaptive multilevel decomposition level by level
(lines 2�16). Before performing the decomposition, we com-
pute the theoretical error tolerance t0 and perform block-
based sampling for data in the current level (lines 3 and 4,
respectively). Then, we iterate through all the coefficient
nodes in the sampled data (line 6) and accumulate the pre-
diction errors of the Lorenzo predictor (line 7) and multilin-
ear interpolation (line 8), with the estimation functions in
Eqs. (3) and (4). If the prediction error of the Lorenzo predic-
tor is less than that of multilinear interpolation, we will stop
the decomposition and switch to an external compressor
(SZ in this case) to compress the remaining coarse represen-
tation. Otherwise, we will decompose data with the multi-
level method [11] and move on to the next level.

After the multilevel decomposition terminates, we per-
form the level-wise quantization (lines 17�23). Specifically,
we derive the error tolerance for the coarse-grained repre-
sentation and compress it with an external compressor
(lines 17�18). After that, we iterate through all the decom-
position levels, multiply the current error tolerance with the
scaling factor and use the updated error tolerance to quan-
tize multilevel coefficients u mc in each level. Finally, the
quantized multilevel coefficients ~u mc are compressed loss-
lessly and concatenated with the compressed coarse-
grained representation to generate the compressed format.

5 IMPLEMENTATION AND OPTIMIZATIONS

Besides quality, performance is another important aspect
for large-scale scientific data compression. In this section,
we introduce a series of optimizations that we adopt to
improve the performance and efficiency of multilevel data
decomposition/recomposition algorithms.

5.1 Level-Centric Data Reordering

We leverage a data reordering algorithm to deal with the
strided memory access in the multilevel method, inspired
by the de-interleaving phase in wavelet decomposition. Spe-
cifically, we rearrange the input data in a level-centric man-
ner to put the nodal nodes in coherent memory space, so
that the memory accesses in the next level can be efficient.
In what follows, we first identify the data dependencies and
memory access patterns in the multilevel decomposition
and introduce the reordering algorithm thereafter.

We illustrate the data dependencies of the key steps (coef-
ficient computation, correction computation, and correction
application) of the multilevel decomposition in Fig. 1 using a
2D example. In each iteration, coefficient computation com-
putes the piecewise multilinear interpolations for all the
coefficient nodes using their adjacent nodal nodes in the cur-
rent level, and updates the values of these coefficient nodes
with the difference between their original values and the
piecewise multilinear interpolations. After that, correction
computation performs a row sweep to compute the row cor-
rection, followed by a column sweep on the resulting row
correction to obtain the overall correction. At last, the overall
correction is applied to the nodal values in the correction
application. As we can see from the figure, almost all the oper-
ations here involve strided memory access which skips the
processed nodes, leading to inefficient cache utilization
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because values of processed nodes are fetched but never
accessed. In other words, only the first level of the decompo-
sition makes efficient use of the cache. Furthermore, a stride
larger than the number of elements that a cacheline can hold
will result in cachemisses everywhere.

To enable efficient cache utilization, we reorder the data
in order to cluster the nodal nodes (i.e., the nodes that will
be used for decomposition at the next level) in the current
level together. We implement this by a horizontal reorder-
ing and a vertical reordering. For a 2D grid of ð2n1 þ 1Þ �
ð2n2 þ 1Þ, the horizontal reordering essentially moves the
ð2iþ 1Þth column to the ith column and the 2ith column to
the ð2iþ 1Þth column, where i ranges from 1 to n2, such that
the nodal columns are moved together. Then, the vertical
reordering applies similar operations to the rows in order to
cluster the nodal rows together. Denote nodal_nodal_-

node as nodes in both nodal rows (i.e., rows that will be
present in the next-level subgrid) and nodal columns (i.e.,
columns that will be present in the next-level subgrid),
nodal_coeff_node as nodes in nodal rows but coefficient
columns (i.e., columns that will be absent in the next-level
subgrid), coeff_nodal_node as nodes in coefficient rows
(i.e., rows that will be absent in the next-level subgrid) but
nodal columns, and coeff_coeff_node as nodes in both
coefficient rows and coefficient columns. Fig. 3 shows how
the reordering algorithm works for 5� 5 2D data.

Fig. 4 shows the data dependencies in the multilevel
method after reordering. Compared with the original data,
the reordered data requests memory access in a more coher-
ent way, which promises higher performance.

Given the reordered data, we then perform sliding win-
dow update for efficient coefficient computation. Specifi-
cally, we locate the starting positions of different groups of
nodes (e.g., nodal_nodal_node, nodal_coeff_node,
coeff_nodal_node, and coeff_coeff_node for the 2D
case), and compute their coefficients simultaneously. In this
way, coefficient computation can be performed more effi-
ciently with relatively high cache utilization.

During recomposition, data is already ordered in a level-
centric manner. In this case, we perform correction compu-
tation, inverse correction application, and inverse coefficient
computation on the ordered data directly, followed by an
inverse reordering operation to put recomposed data to the
correct positions of the finer level.

5.2 Direct Load Vector Computation

We next derive a formula for load vector computation in the
correction computation to reduce computational cost, which
was computed by fine-grained mass matrix multiplication
followed by a restriction transform in previous multilevel
method. The load vector is defined as the function
expressed in terms of nodal displacements, and it is com-
puted by the inner product of the function representing
interpolation difference and the nodal basis functions.
Although the multidimensional load vector computation
boils down to multiple 1D computations along each dimen-
sion, it is not exactly the same as that of 1D cases as dis-
played in Fig. 5. Specifically, non-zero interpolation
differences only appear on the coefficient nodes in 1D case,
because the interpolations on nodal nodes are equal to the
nodal values. However, this is not the case for the multidi-
mensional cases, because the coefficient nodes may be nodal
nodes along a certain dimension during the computation
(e.g., nodal_coeff_node in Fig. 3). To tackle this issue,
we generalize the direct load vector computation with the
following lemma.

Lemma 1. Denote the values of nodes in the current level as
c0; c1; . . . ; c2n as shown in Fig. 5. Further denote c�2 ¼ c�1 ¼
c2nþ1 ¼ c2nþ2 ¼ 0 and the internode spacing in the current
level as hl. The ith entry of the load vector in generalized case
can be computed by

fi ¼ 1

12
c2i�2 þ 1

2
c2i�1 þ 5

6
c2i þ 1

2
c2iþ1 þ 1

12
c2iþ2

� �
hl:

We omit the proof as it is derived via direct computa-
tion of the corresponding integrals. When the nodal val-
ues fc2ig are all 0, the lemma degrades to the 1D case
derived in [10].

5.3 Batched Correction Computation

We use batch operations to further improve the memory
access efficiency for the intermediate corrections, in addi-
tion to that for the node values optimized in Section 5.1. As
indicated by the green arrows in Figs. 1 and 4, the column
sweep that computes the load vector and solves the corre-
sponding tridiagonal linear system for each separate col-
umn of the row corrections requires strided memory access.

Fig. 3. 2D data reordering.

Fig. 4. Reordered data layout and dependencies (l ¼ L� 1).

Fig. 5. 1D and generalized load vector computation.
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This problem is exacerbated on 3D datasets, which have
such memory access patterns along two discontiguous
dimensions. Fortunately, the column sweep needs to be
applied to all the columns in the current level and thus can
be optimized through batch operations. Specifically, denot-
ing by b the batchsize, we perform direct load vector com-
putation on b contiguous nodes simultaneously. In other
words, the ith entries of the load vectors for b columns are
computed together to achieve high cache efficiency. After
that, a slightly modified Thomas algorithm is used to solve
the tridiagonal linear systems in batch.

This optimization requires bmaxni=
Q

i ni extra memory
to store the column load vectors, where ni is the number of
data points along the ith dimension. Because the batchsize b
is usually small, such memory overhead is indeed negligi-
ble for multi-dimensional cases. In our experiments, we
observe that b ¼ 16 already yields good performance that is
similar to that of any larger batch sizes. To account for varia-
tions on different systems while limiting memory overhead,
we use b ¼ 32 as our default configuration.

5.4 Intermediate Variable Elimination & Reuse

We identify and eliminate the common multipliers as well
as repeat computation of intermediate variables in the mul-
tilevel algorithm for more efficient computation.

First, we found that the internode spacing hl is the com-
mon multiplier in the tridiagonal linear system solving for
the correction computation. Specifically, the target linear
system can be written as follows:

2
3hl

1
3hl 0 . . . 0 0 0

1
3hl

4
3hl

1
3hl . . . 0 0 0

0 1
3hl

4
3hl . . . 0 0 0

..

. ..
. ..

. . .
. ..

. ..
. ..

.

0 0 0 . . . 1
3hl

4
3hl

1
3hl

0 0 0 . . . 0 1
3hl

2
3hl

2
66666666664

3
77777777775

x0

x1

x2

..

.

xn�2
xn�1

2
6666666664

3
7777777775
¼

F0hl

F1hl

F2hl

..

.

Fn�2hl

Fn�1hl

2
6666666664

3
7777777775
;

where fFi ¼ 1
12 c2i�2 þ 1

2 c2i�1 þ 5
6 c2i þ 1

2 c2iþ1 þ 1
12 c2iþ2g are the

entries of the load vector derived in Lemma 1, hl is the inter-
node spacing, and fxig are the corrections that need to be
solved. Thus, the common multiplier hl can be extracted
and cancelled from the mass matrix generation and load
vector computation to save computational cost.

We also reuse the intermediate variables to avoid
repeated computation, where the auxiliary arrays used in
solving the tridiagonal linear systems are typical examples.
Because the tridiagonal mass matrix is fixed for each dimen-
sion, we compute the related auxiliary arrays at the very
beginning of the multilevel decomposition/recomposition
algorithm and pass the precomputed results as parameters.
This adjustment reduces the computational complexity on
these variables from OðQd

i¼0 niÞ to OðPd
i¼0 niÞ, with merelyPd

i¼0 ni additional memory.

6 EVALUATION

In this section, we present the performance evaluation
results to demonstrate the effectiveness of our method for
scientific data reduction and refactoring. Specifically, we

compare both compression/decompression performance
and rate–distortion of our method (MGARD+) with four
state-of-the-art error-bounded lossy compressors –
MGARD [11], SZ [7], ZFP [3], and the hybrid model pro-
posed in [9] – using four real-world datasets from Scientific
Data Reduction Benchmarks [17]. We also show how our
approach improves the efficiency of scientific analysis using
the iso-surface mini-application widely used in scientific
visualization.

6.1 Experimental Setup

We conducted our experimental evaluations on the Rhea
cluster [18] at Oak Ridge National Laboratory. Each node on
the system has two 8-core Intel Xeon E5-2650 processors and
128 GB of memory. The datasets we use for evaluation are
from various domains, including Hurricane Isabel climate
simulation [19], NYX cosmology simulation [20], SCALE-
LETKF weather simulation [21], and QMCPACK [22] quan-
tum Monte Carlo simulation. The details of the datasets are
listed in Table 2. Note that the data size in the table only
accounts for data in a single core. The total data size goes up
to 2.4 TB, 6 TB, 12.6 TB, and 1.2 TB when 2k cores are used in
our scalability evaluation.

6.2 Performance

We evaluate the performance of our framework in terms of
throughput regarding both decomposition/recomposition
and compression/decompression. Specifically, we first
present the performance improvement on the multilevel
decomposition/recomposition from the proposed optimiza-
tions with detailed breakdown, and how it can be used to
accelerate scientific data analytics. After that, we compare
the overall compression/decompression performance
among the state-of-the-art error-bounded lossy compres-
sors. At last, we conduct a parallel experiment to demon-
strate the scalability of the algorithm.

6.2.1 Decomposition/Recomposition

Fig. 6 illustrates the decomposition/recomposition perfor-
mance improvement of our framework with respect to the
optimizations in Section 5 when compared with existing
approach (the blue bar in the figure). DR, DLVC, BCC, IVER
are the abbreviations for data reordering (Section 5.1), direct
load vector computation (Section 5.2), batched correction
computation (Section 5.3), and intermediate variable elimi-
nation/reuse (Section 5.4), respectively. We evaluate the
impact of the four optimizations by including them incre-
mentally (corresponding to the orange bar, the green bar,
the red bar, and the purple bar in the figure).

TABLE 2
Datasets for Evaluation

Dataset #Fields Dimensions Size

Hurricane Isabel 13 100� 500� 500 1.21 GB
NYX 6 512� 512� 512 3 GB
SCALE-LETKF 12 98� 1200� 1200 6.31 GB
QMCPACK 1 288� 115� 69� 69 0.59 GB
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From this figure, we observe that the optimizations
adopted in our method significantly improve the efficiency
of the multilevel method for both decomposition and
recomposition. In particular, the decomposition perfor-
mance of our method is 20� , 28� , 39� and 71� that of the
existing multilevel method on the four datasets, respec-
tively. Similarly, the recomposition performance of our
method is over 22� , 30� , 41� and 80� that of the existing
implementation. These performance improvements demon-
strate the effectiveness of the proposed optimizations.

6.2.2 Use Case: Accelerating ISO-Surface

Computation

We further show how our method benefits scientific analysis
by performing analysis on the decomposed representations,
using iso-surface computation in scientific visualization as
an example. An iso-surface is a 2D surface in 3D space, which
represents the collection of points whose values equal to a
specified iso-value. It can be used to study specific features
around objects, such as features of fluid flows around aircraft
wings in computational fluid dynamics. In what follows, we
first show the accuracy of iso-surface computation using
MGARD and our method with different levels of decom-
posed representations. After that, we demonstrate the per-
formance improvement of conducting analysis with those
decomposed representations.

We use the area of the iso-surface, which is the outcome
of the analysis, to measure the accuracy of different level
representations. Two representative fields (velocity_x and
temperature) from NYX datasets are evaluated with desig-
nated iso-values. The iso-value is set to 0 for velocity_x
because there are specific property scientists would like to
see when velocity equals 0. As for temperature, the iso-
value is set to the mean of data. We perform the multilevel

decomposition for 3 times, which leads to 4 levels of repre-
sentations. According to our definitions in Section 2, level 3
is the finest-grained representation (original data) while
level 0 is the coarsest-grained one. Tables 3 and 4 display
the relative errors on the area of iso-surface for the desig-
nated iso-value using the different representations. Note
that the relative errors of MGARD and our method are not
exactly the same because of the different treatments on the
non-dyadic cases when data dimensions are not in the form
of 2k þ 1 where k is an integer. To avoid the expensive pre-
processing steps for such cases in MGARD, we introduce
extra dummy nodes while performing the data reordering,
which leads to slightly different decomposition results.
From the two examples, we can see that our method has
similar errors to those of MGARD while offering signifi-
cantly higher decomposition/recomposition performance.

Fig. 7 displays the overall time spent on analysis, which
includes both time for decomposition and time for conduct-
ing analysis on the decomposed representation, when using
MGARD and our method. The black dashed line indicates
the time for performing the analysis on the original data, and
the green and red dashed lines show the time for conducting
strong-scaling experiments with 8 cores and 64 cores, respec-
tively. It is observed that MGARD suffers from high decom-
position overhead, which leads to minor performance gain
(temperature) and may even be more costly when the analy-
sis is fast (velocity_x). On the other hand, our method signifi-
cantly improves the performance of the scientific analysis:
performing the analysis on level 0 representation with single
core can lead to comparable performance to that of strong-
scaling with 64 cores. Also, such performance gain would be
more significant when multiple iso-values need to be com-
puted (and so the analysis becomesmore expensive).

Fig. 6. Decomposition/recomposition performance with optimizations.

TABLE 3
Relative Error on ISO-Surface Area and Decomposition

Performance (NYX Velocity_x)

Level 2 1 0

Rel. Error MGARD 1.61% 0.07% 5.23%
MGARD+ 1.65% 0.10% 5.21%

Perf. (MB/s) MGARD 8.95 7.27 6.90
MGARD+ 226.63 203.72 202.67

TABLE 4
Relative Error on ISO-Surface Area and Decomposition

Performance (NYX Temperature)

Level 2 1 0

Rel. Error MGARD 5.72% 7.58% 6.86%
MGARD+ 5.79% 7.64% 6.89%

Perf. (MB/s) MGARD 8.69 7.04 6.68
MGARD+ 226.39 204.60 202.66

Fig. 7. Overall analysis time (decomposition time plus analysis time on
reduced representation) of iso-surface evaluation on two representative
fields in the NYX dataset. Dashed lines indicate the strong-scaling result
of performing iso-surface analysis with 1 core (black), 8 cores (green)
and 64 cores (red).
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6.2.3 Compression/Decompression

We then present the compression/decompression perfor-
mance of our method and compare it with state-of-the-art
lossy compressors in Fig. 8. According to this figure, ZFP
leads all the evaluated compressors in terms of both com-
pression and decompression performance, but its advantage
decreases as the error tolerance becomes low. Our method
improves the performance of the previous multilevel
approach (MGARD), leading to compression performance
comparable to that of SZ. The decompression performance
of our method is lower than SZ, because decompression in
our approach is as costly as compression due to the symmet-
ric operations, while SZ has higher decompression perfor-
mance than compression performance. The hybrid model
has slightly higher decompression performance than our
method, but its compression performance is only one half
that of ourmethod inmost cases.

6.2.4 Scalability

Because most data compression methods are designed in an
embarrassingly parallel fashion, they are expected to have
linear speedup when executed in parallel. We validate this
by evaluating our method on 256, 512, 1024, and 2048 cores,
respectively, with error bound 0.001 for purposes of demon-
stration. This corresponds to 2.4 TB, 6 TB, 12.6 TB, and
1.2 TB of data with respect to the four datasets when 2k
cores are used. As shown in Fig. 9, we observe almost linear
speedup for both compression and decompression, which

demonstrates the scalability of embarrassingly parallel data
compression methods. Such characteristics promise high
performance when scale increases, which is very important
for exascale data management.

6.3 Compression Quality

We evaluate compression quality in terms of rate–distortion
as introduced in Section 3. In what follows, we first evaluate
the effect of the level-wise quantization (LQ) and the adap-
tive decomposition (AD) presented in Section 4, and compare
ourmethodwith existing error-bounded lossy compressors.

6.3.1 Impact of Level-Wise Quantization

and Adaptive Decomposition

We present the impact of the proposed techniques in Fig. 10.
The cyan line in this figure shows the rate–distortion curve
of MGARD with uniform quantization across levels and
extensive decomposition, which is the baseline. The yellow
line (LQ) and green line (AD) display the rate–distortion
curves after independently applying the level-wise

Fig. 8. Compression/decompression performance of the error-bounded lossy compressors.

Fig. 9. Scalability of the proposed compression method.
Fig. 10. Impact of level-wise quantization and adaptive decomposition on
rate–distortion.
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quantization method proposed in Section 4.1 and the adap-
tive decomposition method introduced in Section 4.2,
respectively. We also include the rate–distortion curve of SZ
(the blue line) as another baseline for the adaptive decom-
position method. The red line illustrates the result of our
method, which incorporates both level-wise quantization
and adaptive decomposition.

From this figure, we can observe that both AD and LQ
have stable improvements over MGARD on all bit-rates
with different emphasises. Specifically, LQ provides more
advantages in small bit-rates (e.g., [0, 1]) while AD offers
more improvements in large bit-rates (e.g., [1, 4]). This is
consistent with our analysis in Section 4.2 that the multilin-
ear interpolation leveraged by the multilevel decomposition
is more efficient for high error tolerance (i.e., small bit-rates)
but less efficient for low error tolerance (i.e., large bit-rates)
compared with the Lorenzo predictor used in SZ. With large
bit-rates, when the Lorenzo predictor is always better, the
approaches with adaptive decomposition degrade to SZ
because they switch the prediction method at the starting
level. Our final solution, which integrates and takes advan-
tages of both strategies, yields the best rate–distortion
curves on the four datasets.

6.3.2 Comparison with State-of-the-Art Compressors

Next, we compare the rate–distortion curves of our method
with the other three state-of-the-art error-bounded lossy
compressors in Figs. 11 and 12. We present the rate–distor-
tion curve with bit-rate in ½0; 4�, which corresponds to com-
pression ratios � 8, and an enlarged view with bit-rate in
½0; 1�, or equivalently compression ratios � 32. According to
Fig. 11, our method leads to the least distortion at most bit-
rates in most of the datasets. One exception is QMCPACK
with large bit-rates, where both the piecewise multilinear
interpolation in the multilevel decomposition and the Lor-
enzo predictor in SZ are not as good as the transform-based
de-correlation method used in ZFP and the hybrid model.
Nevertheless, our method can adapt to such scenarios as
well by using either ZFP or the hybrid model as our external
compressor in adaptive decomposition, which is our future

work. Compared with the other methods, our method
improves the distortion in most cases for bit-rate range [0, 1]
as shown in Fig. 12, thanks to the robustness (against high
error tolerance) of the piecewise multilinear interpolation
used in the multilevel decomposition and the level-wise
quantization method.

We further show the compression ratios and perfor-
mance of the evaluated error-bounded lossy compressors
on the four datasets when tuning them to have almost the
same distortion in Table 5. We use a PSNR of around 60 for
demonstration purposes, because such PSNR is able to pro-
vide valid data for visualization purposes, as displayed in
Fig. 13. This figure visualizes the original data of NYX
velocity_x field, as well as the decompressed data using our
compression method, which shows almost no visual differ-
ence even under such a high compression ratio. Although
the performance of our method is slower than that of ZFP, it
offers 2� � 20� improvements on the compression ratios

Fig. 11. Rate–distortion curves of error-bounded lossy compressors on
the four datasets (bit-rate 2 [0, 4]).

Fig. 12. Rate–distortion curves of error-bounded lossy compressors on
the four datasets (bit-rate 2 [0, 1]).

TABLE 5
Compression Ratios (CR) and Performance (Perf.) when

PSNR � 60

Datasets Compressors PSNR CR Perf. (MB/s)

Hurricane SZ 59.97 74.08 105.02
ZFP 59.68 73.01 335.63
HybridModel 59.99 110.66 43.73
MGARD+ 60.22 119.78 96.03

NYX SZ 59.84 722.72 115.84
ZFP 59.44 130.44 346.47
HybridModel 59.20 834.49 87.95
MGARD+ 60.12 2525.93 94.23

SCALE-LETKF SZ 59.42 91.1 108.22
ZFP 57.49 79.14 287.78
HybridModel 59.38 176.38 57.78
MGARD+ 59.82 252.53 104.82

QMCPACK SZ 59.73 128.26 106.11
ZFP 57.76 99.08 291.72
HybridModel 59.53 148.09 39.70
MGARD+ 60.42 457.85 100.30
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under the same distortion. Also, our method has similar
compression performance compared to that of SZ, which is
almost 2� as fast as the hybrid model in most cases. Gener-
ally speaking, our method has up to 2� compression
improvement over that of the best existing methods, which
could be a very good option to reduce the storage require-
ment and I/O intensity for exascale systems.

7 RELATED WORKS

Storage limitations and I/O bottlenecks have become seri-
ous problems for large-scale scientific applications. Data
compression is a direct way to address such problems, and
many approaches have been proposed in literature.

Lossless compressors [23], [24], [25], [26] are developed
to recover exact data while reducing the size, but they only
achieve limited compression ratios for floating-point scien-
tific data. According to recent studies [27], their compres-
sion ratios are usually less than 3, which is insufficient for
today’s large-scale scientific simulations and experimental
devices. General lossy compressors [28], [29], [30] are able
to provide decent compression ratios. But they are not pre-
ferred for scientific data analysis because they do not
respect specific error requirements from application users.

Error-bounded lossy compression [2], [3], [4], [5], [6], [7],
[8], [9] is proposed to trade off data accuracy for compres-
sion ratio, which features in offering high compression
ratios while controlling data distortion. General error-
bounded lossy compressors can be divided into two catego-
ries, namely prediction-based ones and transform-based
ones, based on how they decorrelate original data. Predic-
tion-based lossy compressors such as [2], [7], [9] leverage
prediction models to decorrelate original data, while trans-
form-based ones such as [3] rely on invertible transforms to
do so. According to previous work [31], SZ [7] and ZFP [3]
are the two best error-bounded lossy compressors of their
kinds. They usually lead to higher compression quality
under the same distortion when compared with other
approaches. As a multi-algorithm prediction-based com-
pressor, SZ decomposes data into small blocks (e.g., 6� 6�
6 blocks for 3D datasets), and adaptively selects the best-fit
prediction method between the Lorenzo predictor and a lin-
ear-regression based predictor for data in each block. The
prediction differences are then fed to a pipeline of linear-
scaling quantization, customized variable-length encoding,
and lossless compression to generate the compressed
byte streams. ZFP, a transform-based lossy compressor,

processes data in 4d blocks following the order of exponent
alignment, fixed-point alignment, nonorthogonal transform,
and embedded encoding. Generally speaking, none of these
compressors can be always better than the others according
to the literature [9].

Attempts have been made to combine SZ and ZFP for
better compression ratios under the same distortion in terms
of PSNR. A previous approach [9] proposed to use the non-
orthogonal transform in ZFP as a predictor in SZ, but it suf-
fered from high overhead in terms of performance because
of a costly iterative sampling strategy for best-fit predictor
selection. Another approach [32] tried to select the better
one between the best of SZ and ZFP, but it at most provides
the same compression quality as either SZ or ZFP.

Recently, multilevel data reduction [10], [11], [12] has
been proposed by the applied math community for error-
bounded lossy compression. However, such algorithm is
not tailored for both reduction performance (throughput)
and quality (compression ratios under a given distortion).
In this work, we leverage two methods to improve the
compression ratios of the multilevel data reduction algo-
rithms under the same distortion, along with a series of
optimizations to achieve high compression/decompres-
sion throughput. The level-wise quantization strategy
accounts for the different impacts of errors in each level,
and the adaptive decomposition strategy is, to the best of
our knowledge, the first to combine multilevel method
with other compressors to form a new error-bounded lossy
compressor.

8 CONCLUSION

In this paper, we present two efficient methods to enhance
the compression quality of multilevel data reduction, as
well as a series of optimizations to improve its perfor-
mance. The proposed approach leads to up to 2� compres-
sion ratio gain compared to state-of-the-art error-
controlled lossy compressors under the same distortion
and tens of performance improvement over the existing
multilevel method. In future work, we plan to further
improve the quality of multilevel data reduction by explor-
ing higher-order basis functions and adapting them in dif-
ferent regions of data.
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