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Stable Matching Based Resource Allocation
for Service Provider’s Revenue Maximization

in 5G Networks
Ajay Pratap ,Member, IEEE and Sajal K. Das , Fellow, IEEE

Abstract—5G technology is foreseen to have a heterogeneous architecturewith the various computational capability, and radio-enabled

service providers (SPs) and service requesters (SRs), working altogether in a cellular model. However, the coexistence of heterogeneous

networkmodel spawns several research challenges such as diverse SRswith uneven service deadlines, interferencemanagement, and

revenuemaximization of non-uniform computational capacities enabled SPs. Thus, we propose a coexistence of heterogeneous SPs and

SRs enabled cellular 5Gnetwork and formulate the SPs’ revenuemaximization via resource allocation, considering different kinds of

interference, data rate, and latency altogether as an optimization problem and further propose a distributedmany-to-many stablematching

based solution. Moreover, we offer an adaptive stablematching based distributed algorithm to solve the formulated problem in a dynamic

networkmodel. Through extensive theoretical and simulation analysis, we have shown the effect of different parameters on the resource

allocation objectives and achieves 94 percent of optimumnetwork performance.

Index Terms—Service provider, service requester, stable matching, 5G, IoT, smart healthcare

Ç

1 INTRODUCTION

COMPARED to the 4G networks, 5G communications aim at
higher capacity (up to 10 Gbps), allows an increase in

the number of smart device users, supports more reliable
Device-to-Device (D2D) communication and massively
deployed Fog Access Point (FAP) in the cellular networks [1],
[2]. Moreover, 5G aims to offer lower latency, lower battery
consumption, and higher data rates to satisfy the require-
ments of online gaming, video streaming, mobile comput-
ing, content sharing, and better implementation of Internet
of Things (IoT) paradigm [3].

Keeping computational capacity, latency, and power con-
straints of IoT devices into deliberation, CISCO proposed an
idea of Fog Computing, as a Service Provider (SP) to serve the
requested services near to Service Requester (SR) IoT devices [4].
FAP is enabled with computation capability, and it can reuse the
limited available radio resources from the cellular network to
transmit the requested content to IoT devices. Moreover, FAP
encapsulates not just the edge processing, but also provides the
network connections needed to bring the data from IoT devices
or distribute the data to IoT devices in cellular network [5].
Moreover, an IoT device can act as an SP to share the requested
content to another IoT device in D2D mode [6]. An IoT device

can act as SR or SP based on requirement or availability of serv-
ices. However, in this work we have assumed that SPs and SRs
do not change their behavior while requesting for resources
underlying cellular 5Gnetwork.

Similar to the conference version of thiswork [7],we consider
that FAP always works as an SP. SPs reuse available radio
resources from the cellular 5G network to serve the IoT request.
Moreover,we assume revenue as an incentive thatmakes SPs to
provide better services to SRs. In other words, SPs aim to maxi-
mize the overall earning by serving SRs. Cellular resources are
dedicated to different priorities IoT uses, so to serve a request,
an SP has to follow the availability of resources and interference
constraints at other SRs. An SP only be allowed to reuse the
radio resource if it does not create interference to other high pri-
ority SRs. However, to serve the increasing number of IoT devi-
ces by reusing the limited available cellular resources while
avoiding interference, altogether result as a challenging prob-
lem to be solved in 5G for enabling real time applications.

Let us consider a smart-health IoT network designed to
serve stroke patients in a rehabilitation center. While it is
necessary to continuously monitor various signals (e.g.,
blood pressure, heart rate and blood sugar levels) in multi-
ple patients, there are other tasks such as fall detection (typi-
cally detected using gyroscopes, accelerometers and
surveillance cameras) that play a crucial role in the avoid-
ance of accidents during the rehabilitation period. There-
fore, tasks such as fall detection take precedence over
processing blood sugar readings. At the same time, the
latency and bandwidth requirements for video streaming in
surveillance cameras are significantly larger than those
needed to communicate and process fall detection data. In
other words, IoT devices typically generate heterogeneous
demands (multi-priority tasks) that require diverse resource
requirements (e.g., bandwidth, computational power) in the
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presence of non-identical latency constraints. In such a sce-
nario, Macro Base Station (MBS) should prioritize tasks that
need to be served and allocate necessary resources accord-
ingly to different SPs, via integrating heterogeneous con-
straints and dynamic network environments [8].

Most of the decentralized and centralized resource alloca-
tion schemes for IoT-enablednetwork focused on the IoT serv-
ices or task provisioning [9], [10], [11] rather than considering
the actual interference, SPs revenue maximization via
resource allocation procedure in 5G networks. In a typical cel-
lular network, the optimization [12] and game theoretic
approach in fog enabled network [13] are often subjected to a
different application-specific domain. However, in D2D-IoT
enabled fog architecture, it is essential to consider not only on-
time service delivery but also the re-usability of radio resour-
ces, interference constraints, and SPs’ revenue via allocating
limited available resources in the network.

For the above circumstances, we formulate an optimization
problem to maximize the SPs’ revenue via allocating radio
resources while considering various interferences different
priorities SRs altogether. Due to high cardinality of the formu-
lated problem, we first provide an algorithm for static scenario
based on distributed many-to-many stable matching approach.
We further propose an adaptive resource allocation algorithm
based on an adoptive distributedmany-to-many stablematch-
ing concept. Our proposed algorithm is distributed in a sense
that all nodes (IoTs, FAPs, and MBS) take independent deci-
sions (though they are correlated), unlike the case where only
one agent (MBS or Cloud) is the central entity perform the cal-
culation for the resource allocation procedure. Once all the
nodes are discovered using control signals (e.g., beacons [14]),
they exchange different messages among themselves to
achieve the resource allocation objective without being solely
dependent on any other central entities. However, there are
several reasons for using stable matching approach, such as
stable matching terminates for every given preference profile.
It provides an ultimate solution in terms of stability and utility
maximization, which can accurately reflect several system
objectives (e.g., revenue, interference, resource constraints,
deadlines) within a feasible computational complexity unlike
other non-cooperative or Stackelberg gamemodel.

Different from traditional game, in proposedmatchingbased
model each agent (IoT, FAPandMBS) selects a strategy by repli-
cation and adapt its selection for a better payoff. This strategy is
different from the traditional rationality assumption used in
Stackelberg or non-cooperative game to obtain Nash equilib-
riumwhere rationality implies complete information and strong
computation capability of each player to calculate the best
response to other players’ strategies. Moreover, the proposed
matching basedmodel focuses on dynamics of strategy adapta-
tion and reduces the amount of information exchange among
the network nodes. Inmatching theory, different agents are free
to set their objectives, prepare utility functions and accordingly
negotiatewith other agents to achieve stable outcome.

The contributions of this paper are summarized as:

1) Formulate SPs’ revenue maximization via resource
allocation while considering SR priorities and inter-
ference in 5G network as an optimization problem.

2) Solve the formulated problem efficiently by propos-
ing a distributed Stable Matching based Static Resource

Allocation (SMSRA) algorithm in OðKNLÞ time,
where K, N and L represent the total number of SPs,
available Physical Resource Blocks (PRBs) and set of
power levels, respectively.

3) Keeping in mind the adaptive network behavior,
design a distributed Stable Matching based Dynamic
Resource Allocation (SMDRA) algorithm having
OðKNLÞ time complexity.

4) Prove that the SMSRA and the SMDRA schemes ter-
minate and accord a stable resource allocation in dif-
ferent network scenarios within a finite time.

5) Through simulation study, demonstrate that our pro-
posed approach outperforms existing schemes, achiev-
ing 94 percent of optimumnetwork performance.

The rest of the paper is organized as follows. Section 2
reviews relevant work. The problem statement is intro-
duced in Section 3. The SMSRA and the SMDRA algorithms
are presented in Sections 4 and 5, respectively. Simulation
results are discussed in Section 6. Section 7 offers conclu-
sions and future research directions.

2 BACKGROUND AND RELATED WORK

In recent years, 5G got huge attention to improve the data rate,
maximize the revenue alongwith significant balance over inter-
ference scenarios and re-usability of limited available radio
resources in heterogeneous networkmodel. SPs, revenuemaxi-
mization in the Fog-enabled cellular model, is one of the prom-
ising research challenges concerning resource allocation and
interference management problems. However, the use of
matching theory acts as an essential tool to solve the resource
allocation problem in such heterogeneous network architecture
[15]. In the following we review the closely related works with
revenuemaximization and resource allocation perspective.

2.1 SP’s Revenue Maximization

In [16], authors have formulated joint radio and computa-
tional resources concerning cost performance per user as an
optimization problem. Furthermore, a many-to-one match-
ing based algorithmic model was proposed to offload the
task to FAP with the help of a Cloud SP. However, this
approach is not suitable for avoiding various interferences
while re-using the limited available radio resources in 5G
networks. In [17], authors have proposed prospect theory-
based SPs’ revenue maximization framework concerning
5G technology. This work does not talk about the interfer-
ence constraint that can profoundly affect the densely
deployed low computational IoT devices in the network. In
[18], authors have described the market oriented analysis of
IoT network for smart-city application. Authors have pro-
posed a scheme based on utility model of different vendors
and IoT users in the network. However, this method does
not consider the actual scenario of radio resource allocation
while modeling the game-theoretic based scheme.

2.2 Radio Resource Allocation

In [20], the authors have proposed a computation offloading
and resource allocation for themobile-edge computing frame-
work. The authors have formulated a combinatorial nature of
the multi-user offloading decision and proposed a sub-opti-
mal scheme by splitting it into two parts, i.e., computation
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offloading decision and resource allocation scheme. The
authors have proposed two matching algorithms to enable
distributed computation offloading. However, the transmit
power of offloading users is found using a bisection method
with approximated inter-cell interference, and the computa-
tion resources allocated for users offloading is achieved via
the duality approach. In [21], a computation offloading
scheme for precedence-constrained tasks in a base station-
assisted D2D scenario for information-centric IoT was pro-
posed. This work jointly aimed to minimize the weighted
sum of task processing delay and resource rental fee, consid-
ering the task delay, association states, and availability of
resources altogether. The authors employed Hungarian algo-
rithm to find lightest sub-task-helper pairs by updating the
cost matrix in each time interval.

In [22], authors have designed Lagrange approximation Sup-
ple Radio controller (LaSR), multi-connectivity scheduler that
assigns radio resources to users in an OFDMA-based multi
Radio Access Technology (RAT)while considering real time sys-
tem constraints- delay to activate/deactivate heterogeneous
RATs, discrete modulation, the way scheduling choices
encoded onto signaling protocol (e.g., LTE/NR’s DCI), and
imperfect available information. However, this approach has
not discussed the revenue and interference model in ultra-
dense networks, where different priority users can demand
non-uniform resources to heterogeneousRAT. In [23], authors
have proposed graph coloring based interference mitigation
technique in dense small cell networks. However, the pro-
posed centralized approach have not discussed revenue, pri-
ority and availability of D2D link in the network.

2.3 Matching Theory in Resource Allocation

Acomprehensive tutorial on the use ofmatching theory in lim-
ited available resources is presented in [15]. Authors of [24]
provided applications and comprehensive survey on applica-
bility ofmatching theory, its variant, and significant properties
suitable for wireless networks. In [25], authors have first
reported the concept of matching theory in general interfer-
ence network. In [26], authors have presented an energy-effi-
cient resource allocation scheme based on a one-to-one
matching approach. The authors employed the Gale-Shapley
algorithm for matching of macrocell UEs with D2D pairs.
Based on a one-to-one matching approach, a content delivery
mechanism in D2D enabled cellular model was proposed in
[27]. In [28], Wang et al. proposed a matching based model by
integrating cluster in hyper-graph theory in local storage-
basedD2D communication underlying cellular networks. This
approach is unable to find a stable matching and needs quite a
large number of iterations to converge. In [29], authors have
discussed outage-aware matching game for cell selection in
LTE/WLANMulti-RAT.Users approach to RATbasedon cer-
tain utility function, further RATs accept the request based on
availability of resources. In [30], authors have proposedmany-
to-many stablematching based concept to enable the reliability
level of maximum users in multi-user and multi-cellular net-
works. In [6], a hierarchicalmatching basedmodel is presented
for D2D framework in IoT-enabled network. This model con-
sidered homogeneous SR and SP framework. However, this
method does not evaluate the case where more than one SR
request content at the same time to an SP. In [31], the authors

proposed a low-latency and reliable communication comput-
ing system for enabling mission-critical applications. Authors
have formulated user-server association as a many-to-one
matching game with externalities and further addressed via
the notion of swap matching. In [32], a matching based
resource allocation problem in a heterogeneous network was
proposed. Authors have considered a multi-tier architecture
where D2D devices try to reuse the spectrum of base station to
improve the data rate in the system. The authors have consid-
ered the resource allocation for D2D pairs with a single
resource requirement. However, in a real scenario, the
resource requirement can be more than one depending on the
services that are being transmitted betweenD2Dpairs.

In [33], authors have proposed matching based concept
for Ultra-Reliable Low-Latency Communications (URLLC) with
multi users considering a single cell and small-scale fading.
In [34], authors have explored the concept of URLLC in
multi-connectivity scenario. Authors’ developed analytical
model explores that single-connectivity can perform better
than multi-connectivity mode in presence of interference and
competition for limited resources. Furthermore, authors have
evaluated resource allocation approach based on stable
matching theory to enable wireless URLLC. Authors have
applied an extended many-to-one stable matching procedure
by employing optimal connectivity approach for each user
and optimizing the maximum number of matched resources
in the network. However, priority model of different request
is missing from the paper. Authors have not discussed cost
and earned revenue in the proposed framework.

2.4 Shortcomings of Existing Methods

IDifferent from the traditional cellular networks, the main
challenge to analyze the performance of the underlying SPs
model is that SPs are often deployed in random order, and
the severe interference may drastically deteriorate the per-
formance of different SRs. The existing D2D network model
is not directly applicable in D2D-IoT, and FAP enabled het-
erogeneous SPs’ network because IoT devices have limited
battery power, and they are much concerned about latency
while requesting for services to SPs. However, some SPs can
serve more than one SR at a time; therefore, they may need
an increased number of radio resources compared to other
SPs that serve just one SR. Specifically, to the best of our
knowledge, there does not exist any work concerning SPs’
revenue maximization via resource allocation with an actual
characterization of SRs and interferences in 5G networks.

3 PROBLEM STATEMENT

We consider 5G cellular model that contains a set of SPs and
SRs, working underlying MBS. Two types of IoT users are
considered, one which provides requested services (i.e., SP)
and second, which requests services (i.e., SR). IoT users can
form aD2D connection, given that they arewithin the proxim-
ity range to each other.We consider FAPs as SPs in ourmodel,
which delivers the requested services to IoT users. An FAP
offers services to SR if both lie within the proximity range.
However, an SP serves respective SR given that this service
complieswith interference and availability of radio resources.

IoT users request for services and SPs contest for required
5G radio resources available at MBS to serve the respective
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services. We have assumed that the association of SRs with
SPs has been completedwith the help of control signals before
serving the request.1 SPs re-use the limited available radio
resources (i.e., PRBs) to serve the respective services. How-
ever, an PRB is the smallest unit that can be assigned to a
device in the 5G network. It refers to 0.5 ms time slot and 180
kHz frequency band [35]. Due to the limited availability of
PRBs, SPs re-use themwhile serving a request. Moreover, the
re-usability of limited available PRBs creates a severe problem
of interference at different SRs (as shown in Fig. 1), and this
phenomenon leads to a requirement of an efficient resource
allocationmechanism in IoT-enabled 5G network.

3.1 System Model

Let the sets of SPs, SRs and PRBs are represented as K ¼
f1; . . . ; kg, S ¼ f1; . . . ; Sg, and N ¼ f1; . . . ; Ng, respectively.
SP selects an appropriate power from a finite power level
set L ¼ f1; . . . ; Lg. However, power level L banks on device
density within the network. Furthermore, SPs select an
appropriate set of PRB-power level combination (we refer as
a resource throughout this paper) to transmit the requested
services to respective SRs given that the selected resource
comply with different interference constraints.

Different services may have different Quality of Service
(QoS) provisioning based on requested data size, required
data rate, and latency, as shown in Table 1 [19]. In this
work, we consider that QoS for a given SR is dependent on
requested service deadline and required radio resources.2

Specifically, let each service request belongs to one Service
Class (SC), and SP aims to allocate radio resources, to serve
the following three different SCs[17]. (Class I): high-
rate and delay-sensitive communications; (Class II): ultra-
reliable and low-latency communications; and (Class III):
low-rate and delay-tolerant communications.

Depending on the criticality of services, the priority levels
of different SCs are arranged as Class I > Class II > Class III.
This categorisation is also applicable inWireless BodyArea Net-
works (WBANs) domain where health data is ranked into

three different classes such as emergency call, vital health
data, and regular health data [36], [37]. As a consequence,
emergency call have given the highest priority in resource
allocation procedure compared to other two service classes.
Moreover, SPs earn revenue by serving the different classes of
services in various domains [38]. To maximize the profit, SP
has to accomplish the SR’s service request. Each SC has a
deadline d associated with it and this deadline has to be met
while serving the request. In other words, service accomplish-
ment is necessary condition to earn revenue. Depending on
the SC and accomplishment of services, SP earns higher fig-
ures. Without loss of generality, we formulate a function
between revenue earned by SPK 2 K and SC as follows:

MðSCKÞ ¼
R1; if SCK 2 Class I;
R2; if SCK 2 Class II;
R3; if SCK 2 Class III:

8<
: (1)

We have considered a relation among earned revenues as
R1 > R2 > R3 depending on the priorities of requests and
QoS levels. Particularly, for the sake of simplicity we have
considered the values of R1, R2 and R3 as 200, 180 and 140
units, respectively [17]. The aim of these values is to priori-
tize the resource allocation procedure for higher paying SRs
compared to lower paying ones’.

In order to serve SRs, there is a need to allocate the desired
number of resources between SPs and SRs. In this regard, we
have assumed that an SP can ask qK number of resources to
accomplish the different service requests generated by SRs. For
each PRB, there exists a predefined threshold of maximum
aggregated interference enforced to high priority SC requester.
LetMBSoperates at fixedpowerPn

M > 0; 8n 2 N. The transmit
power vector of SP K 2 K over the PRBs is given by P ¼
½P 1

K;P
2
K; . . . ; P

N
K �T . Pn

K > 0, if PRB n is allocated to SPK, Pn
K ¼

0 otherwise. We introduce a binary variable decision, X
ðn;lÞ
K ,

which checks the allocation of power levels and PRBs to an SP
K. X

ðn;lÞ
K ¼ 1, if SP K transmits at PRB n and power level l ¼

Pn
K , otherwise X

ðn;lÞ
K ¼ 0 (description of notations is given in

Table 2). However, multiple SPs can transmit on the same PRB
by selecting appropriate power levels. Moreover, different
applications need different data rate for achieving theQoS crite-
ria as shown in Table 1. Furthermore, required data rates of
ECG, Pulse-oximeter, gyroscope insulin actuator, temperature
sensor and accelerometer are 71-288 kbps, 16 bps, 1600 bps, 120
bps, and 35 kbps, respectively to achieve the desired QoS levels
inWBANsdomain [39]. Following the requiredQoS criterion of
different applicationswe estimate the desired data rate between
SP and SR to deliver the requested task. Let IK 2 S be an SR

TABLE 1
QoS Provisioning [19]

SC Services Data Rate
[kbps]

Required No. of
PRBs

Delay
[ms]

Class I Real-time gaming 128�384 5�13 50
Live streaming 128�700 5�24 100

Class II IP multimedia
signaling

128�384 5�13 100

Conventional video 64�700 3�24 150

Class III File sharing 8�3400 1�110 300
Web 8�3400 1�110 300

Fig. 1. System model.

1. The session setup and synchronization among the various devices
can be done by synchronization or reference signal, i.e., beacons [14].

2. Identification of the QoS as a parameter is absolutely a rough
approximation. However, a multidimensional QoS model definitely
represents a complete approach. Unfortunately, this solution requires a
broader characterization of service types that is out of the scope of our
work in its current form.
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IoT-device that receives service from SP K 2 K. Thus, the
achievable data rate of an IoT IK corresponding to SPK (using
Shannon-Hartley theorem [40]) can be computed as follows:

RIK ¼
X
n2N

X
l2L

X
ðn;lÞ
K B log2

�
1þ G

ðnÞ
IK

�
; (2)

where, B be bandwidth corresponding to an PRB3 and G
ðnÞ
IK

be Signal-to-Interference-Plus-Noise Ratio (SINR),4 which is
computed as follows:

G
ðnÞ
IK
¼ Gn

K;IK
Pn
KP

K02K;K0 6¼K
P

l02L X
ðn;l0Þ
K0 Gn

K0;IKP
n
K0 þ s2

; (3)

where, s2 ¼ NtherB and,Nther denotes thermal noise.Gn
K;IK

be
link gain between SP K and SR IK . However, Gn

K0;IK is the
interference gain between any other SP K0 and SR IK . The
interference model is also applicable in intra-WBANs

application where sharing of the same resources by excessive
patients causes severe interference, incurring low transmission
rates [37]. Moreover, limited resources result in slow transmis-
sion rates, and dramatically increasing interference cost in
OFDMA model. Thus, based on the above Eqs. (2) and (3) we
can conclude that the achievable data rate between any SP K
and SR IK also depends upon the choice of other SPs’ resour-
ces that has not a null link gain with SPK. We use the concept
of reference IoT user to calculate the aggregated interference
on the nth PRB [44]. Aggregated interference experienced by
Class I SR on the nth PRB iswritten as follows:

IðnÞ ¼
X

K02K;K0 6¼K

X
l02L

X
ðn;l0Þ
K0 Gn

K0;m�
K0
Pn
K0 ; (4)

where, m�K0 ¼ argmax
m

Gn
K0;m ; 8m 2 Class I. In other words,

for any PRB n, the interference caused by SP K0 is deter-

mined by the highest gain between SP K0 and SR of Class I,

i.e., Class I SR m�K0 , who is the mostly affected by the SP K0.
Accordingly, we can write the interference experienced by

Class II SR at the nth PRB as follows:

JðnÞ ¼
X

K02K;K0 6¼K

X
l02L

X
ðn;l0Þ
K0 Gn

K0;s�
K
Pn
K0 ; (5)

where, s�K ¼ argmax
s

Gn
K0;s ; 8s 2 Class II. Interference caused

by underlay SPs to Class I andClass II SRs should satisfy a pre-
defined maximum interference threshold IðnÞ < IðnÞmax and

JðnÞ < JðnÞmax , 8n 2 N. However, in this work specifically we

have assumed that the maximum threshold values are known

to each underlay-tier through feedback control signal [45].

Moreover, if an IoT user IK requests a content file of size DIK

to SPK then the service latency can be calculated as follows:

tIK ¼
DIK

RIK

: (6)

In the real scenario, PRBs are allocated in groups to achieve
the desired QoS in the different applications (see, Table 1). For
example, LTE usesDownlink Control Indicator (DCI) to fulfil the
signaling constraints [46]. Moreover, use of DCI in the Physical
Downlink Control Channel (PDCCH) enables information such
that which PRB carry data for which user [22], [46]. As
depicted in Fig. 2 of [22], the resource allocation in LTE’s DCI
can be done in three ways: type 0, 1 and 2. In type 0, consecu-
tive PRBs are grouped into Resource Block Groups (RBGs) and
the scheduler takes the same action for all the PRBs in a group.
Type 1 groups RBGs into subsets using standard modulo and
users get individual PRBs allocated within one subset. How-
ever, in type 2 any number of virtually continuous PRBs can
be allocated via an offset/length pair. Furthermore, these
PRBs can either be physically continuous or distributed by
standard perpetuation functions [22]. However, in any cases,
the scheduler is constrained to assign the PRBs in the groups.

Inspired by type 2modeling of DCI format, in thisworkwe
have assumed that an SP K may need qK number of PRBs to
fulfill the required service demand. In other words, an SP can
be assigned with an RBG consisting of qK number of PRBs.
However, the PRBs in an RBG need not to be in continuous

TABLE 2
Description of Notations

Variables Description

K Set of SPs
k Number of SPs
S Set of SRs
S Number of SRs
N Set of PRBs
N Number of PRBs
L Power level set
L Number of power levels
MðSCKÞ Function between SP and SC
Ri Earned revenue by serving SCi

Pn
M Power level of MBS

P Transmit power vector of SPs
Pn
K Binary variable of power level

X
ðn;lÞ
K Binary variable of resource allocation

IK SR that receive services from SPK
RIK Achievable data rate of IK
B Bandwidth of a PRB
G
ðnÞ
IK

SINR
Nther Thermal noise
Gn

K;IK
Link gain betweenK and IK

Gn
K0;IK Interference gain betweenK0 and IK

IðnÞ Interference experienced by Class I SR on the
nth PRB

JðnÞ Interference experienced by Class II SR on the
nth PRB

IðnÞmax Interference threshold on Class I SR
JðnÞmax Interference threshold on Class II SR
DIK Content size of IK
tIK Service latency of IK
qK Maximum demand of resources
Thdr Data rate threshold
dIK Deadline threshold
"elec Energy spent in transmitter electronic circuitry
eamp Energy spent in amplifiers
ETx Transmission energy consumption
ERx Reception energy consumption

3. We have considered the fixed bit-rate for the same PRB at differ-
ent users [35]. However, different MIMO configuration that yield dif-
ferent data rates for the same PRB [41], [42] can also be taken into
consideration by modifying respective parameters.

4. For the sake of simplicity, we assume that the channel exhibits flat
fading. However, this can be extended to frequency-selective fading
[43] and fast fading [29] channels as well.
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order. In ourmodel, to select the most appropriate qK PRBs in
the group, SP follows the utility function given in Section 4.2.

3.2 Problem Formulation

The aim of this work is to maximize SPs’ revenue by allocat-
ing proper resources at SP levels, in order to minimize the
different interferences in the network. Moreover, increasing
the number of resource-allocated SPs in the system, a higher
level of revenue can be achieved while complying with a
specific set of constraints, as stated in the following:

P :max
X
ðn;lÞ
K

X
K2K

X
n2N

X
l2L

X
ðn;lÞ
K MðSCKÞ; (7)

Subject to the constraints

X
l2L

X
n2N

X
ðn;lÞ
K 4qK ; 8K 2 K; (8)

RIK > Thdr ; 8K 2 K; (9)

tIK < dIK ; 8K 2 K; (10)

IðnÞ < IðnÞmax ; 8n 2 N; (11)

JðnÞ < JðnÞmax ; 8n 2 N; (12)

X
ðn;lÞ
K 2 f0; 1g ; 8n 2 N; 8K 2 K; 8l 2 L: (13)

The objective of the formulated problem P is to maximize
the revenue of SPs via allocating resources, subject to the set
of constraints given in Eqs. (8), (9), (10), (11), (12), and (13).
Eq. (8) shows that an SP can ask qK number of resources
based on the number of requested services and the required
data rate to deliver them. Since an SP (specifically, FAP) can
serve more than one SR at a time, thus it can demand more
than one resource to be allocated. However, if an SP has to
send a large video clip within a certain deadline, then that
SP can also bid for more number of resources. Eq. (9) shows
that the data rate for serving an SR should be at least the
minimum threshold value to deliver the requested content
successfully. Eq. (10) signifies that the service latency
between any SP and SR should be less than the threshold
value. Eq. (11) indicates a predefined interference threshold
value IðnÞmax at service Class I requester by limiting the reus-
ability of resources at other SPs. Eq. (12) shows the aggre-
gated interference at service Class II requester by other SPs
serving request of the Class III category SRs. Eq. (13) shows
a binary variable for PRB and power level alignment.

A centralized solution of the formulated problem P is
strongly computational hard especially for the large set of
K, N and L. The complexity to solve the problem using cen-
tralized exhaustive search is of O ðNLÞK� �

even if each SP
selects a single resource i.e., qK ¼ 1, 8K 2 K [7]. Due to high
dimensionality and ill-posed nature of the formulated prob-
lem (7), (8), (9), (10), (11), (12), and (13), and the fact that
Eq. (10) may not be satisfied for each class of services, this
work proposes a complete framework to provide a sub-

optimal solution based on the interaction among different
agents (namely SPs, PRBs, and power levels) using a distrib-
uted stable matching approach in the following section.

4 STATIC RESOURCE ALLOCATION

The resource allocation mechanism involves many decision-
making processes. The confirmation of matching request
depends on the preference profiles, i.e., each resource and
underlay SP holds preference over the opposite set. The out-
come of the matching yields a mutually beneficial assignment
between resources and SPs’ revenue. In heterogeneous SRs
and SPs enabled 5G networks, preference could be based on
parameters like Channel Quality Information (CQI) and achiev-
able SINR between SR and SP [47]. In fact, the assignment of
PRBs and power-level are coupled and motivated us to treat
the (PRB, power-level) pairs as one individual entity. All possi-
ble combinations of these two types of resources can be enu-
merated and mapped the SP sets to resource pair sets.
However, this process of enumerating and mapping can be
under the assistance of MBS, which is responsible for the con-
trol signal communication with SRs and SPs. An appropriate
matching model that offers this structure is the many-to-many
stablematching approach,where SPswill be assignedwith var-
ious resources and vice-versa. In this section, we first intro-
duced the mapping of the proposed problem with many-to-
many matching solution in Section 4.1 followed by utility and
preference model in Section 4.2. The proposed algorithm is
introduced in Sections 4.3 and further, an illustrative example
and analysis of proposed scheme are given in Sections 4.4 and
4.5, respectively.

4.1 Basic Property of Matching Theory

Matching is defined as an assignment of resources to underlay
SPs forming the set fK;n; lg 2 K�N� L. Each underlay SP
can be assigned with multiple PRBs, and multiple SPs can
transmit on the same PRB to improve the resource utilization.
This scheme naturally falls tomany-to-manymatching theory.

Definition 1. A matching ’ is defined as a function, i.e.,
’ : K�N� L! K�N� L such that,

iÞ ’ðKÞ 2 N� L and j’ðKÞj 2 f1; 2; . . . ; qKg
iiÞ ’ðnÞ 2 K� L [ ffg and j’ðnÞj 2 f1; 2; . . . ;Kg

�
;

where ’ðKÞ ¼ fn; lg , ’ðnÞ ¼ fK; lg; 8n 2 N; K 2 K; l 2
L and j’ð:Þj denotes the cardinality of matching-outcome ’ð:Þ.
The above definition implies that ’ results in a many-to-

many matching between SPs and PRBs. The value of ’ðnÞ ¼ f

indicates that some PRB n 2 N may be unused by any under-
lay SPs under the matching ’. The outcome of our proposed algo-
rithm determines a set of allocated PRB and corresponding power
level, e.g., ’�X, where,

X ¼ X
ð1;1Þ
1 ; . . . ;X

ð1;LÞ
1 ; . . . ;X

ðN;1Þ
1 ; . . . ;X

ðN;LÞ
jKj

h iT
: (14)

In the following subsection, we define the utility function
for each agent.
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4.2 Utility and Preference Model

Let the achievable SINR of an SR IK 2 S on resource ðn; lÞ is
denoted as the parameter g

ðn;lÞ
IK
¼D Gn

IK jPn
K
¼l, where Gn

IK
is

defined in above Eq. (3). We express the data rate as a function

of SINR. In particular, let Rðgðn;lÞIK
Þ ¼ B log2ð1þ g

ðn;lÞ
IK
Þ be the

achievable data rate of an SPK over resource ðn; lÞ. The utility
of an SP for a resource ðn; lÞ is ascertained by; (i) achievable
data rate for a given ðn; lÞ, and (ii) cost function that represents
the aggregated interference caused to SRs on that PRB. How-
ever, inspired by the work [16] the data rate instead of service
delay is considered because actual delay is strongly related to
the requested data size to be transmitted fromSP to SR.5 There-
fore, data rate is a more fair measurement for utility than the
delay value if comparingwith other SRs. Thus, the utility of SP
K 2 K at resource ðn; lÞ is estimated as follows:

#
ðn;lÞ
K ¼ w1R g

ðn;lÞ
IK

� �
� w2 IðnÞ � IðnÞmax

� �
� w3 JðnÞ � JðnÞmax

� �
;

(15)

where w1, w2, andw3 are the biasing factors that can be envis-
aged according to the status of PRBs to be prioritized for
resource allocation among different SCs. Inspired by the
existing works [49], [50], the units of w1, w2 and w3 have been
respectively selected to have the inverse units of the first
(data rate) and, the second and third (interference) compo-
nents of the utility function. In this case the utility would end

up being unitless. Moreover, the numeric values of w1, w2

and w3 are highly subjective to the network parameters and
how much significance operators want to give to each com-
ponent. Particularly, we have considered numeric values of
biasing factors such as w1 > w2 > w3, that means, any SPs
can reuse an PRB if they do not violate the interference con-
straint at Class I requester, and SPs which serve Class III
requester, are allowed to re-use the PRBs if they do not vio-
late the interference constraint at Class II requester based on
our problem setting. The Eq. (15) asserts that the PRB can not
be re-used by the lower priority classes if this re-usability
severely affect the interference at the higher priority classes
(e.g., in cases IðnÞ > IðnÞmax and JðnÞ > JðnÞmax). Moreover, the
preference ordering of different SCs is mentioned in Section 3.
The preference profile of an underlay SPK on the sets N and
L can be obtained using the concept of utility function. The
preference profile of SP K is defined as a vector of linear
orderPKðN;LÞ ¼ ½#ðn;lÞK �n2N;l2L. The notion ðn1; l1Þ 	K ðn2; l2Þ
denotes that SP K prefers transmission alignment ðn1; l1Þ to
ðn2; l2Þ and this results #

ðn1;l1Þ
K > #

ðn2;l2Þ
K . Similarly, we can

write the preference of PRBs over SPs and power levels as
PnðK;LÞ ¼ ½#ðn;lÞK �K2K;l2L. The notion ðK1; l1Þ 	n ðK2; l2Þ
denotes that PRB n prefers alignment ðK1; l1Þ to ðK2; l2Þ and
this results #

ðn;l1Þ
K1

> #
ðn;l2Þ
K2

. Hence, in-order to solve the
resource allocation problem in heterogeneous IoT-enabled
fog networks, there is need to keep utility value for monitor-
ing the dynamic behavior of entities. Thus, in the following
subsection we propose a distributed Stable Matching based
Static Resource Allocation (SMSRA) algorithm to solve the for-
mulated problem based on above described utility function.

The proposed SMSRA algorithm is applicable in the
domain where SPs monitor continuous data request from
static SRs. For instant, there is need of continuousmonitoring
of stroke patients in a rehabilitation centre along with vari-
ous readings received from sensorsmounted on the patient’s
body. To enable the monitoring, a set of allocated resources
is needed between the SPs and the sensors. Since, this kind of
applications needs a fixed number of resources for continu-
ous monitoring. Thus, the above continuous monitoring
kind of applications where SRs and SPs are static and need a
fixed number of radio resources, can be allocated with the
resources by applying the following SMSRA algorithm.

4.3 Proposed SMSRA Algorithm

The proposed SMSRA exploits the concept of a many-to-many
mapping, which is a modified version of Gale Shapley’s one-
to-one matching algorithm [51]. However, our proposed
many-to-many model adds new contribution in the matching
theory as follows:Unlike the puremany-to-many stablematch-
ing, our approach additionally combines resource allocation
with leveraging individual PRB and power level selection for
each SP and optimizing the total earned revenue in the net-
works. Required number of resources at each SP, preference
profile of SPs, and PRBs are the inputs to the algorithm. A list
of resource-allocated SPs is the output of the algorithm. The
SMSRA works in three phases; lines 1–3 initialize all the
parameters that will be used in the update phase (lines 4-30).
Line 31 allocates the resources to each SP based on the final
matching obtained from the update phase. Two kinds of mes-
sages are sent, such as the CONmessage to request the highest
priority entity and DEN message to reject a request. Each

Fig. 2. Flow chart of proposed algorithm.

5. Identifying the actual delay due to packet loss or holding it in the
buffer due to unavailability of resources will definitely give a complete
approach [48]. However, this solution requires a broader characteriza-
tion of service delays that is out of scope of our work in its current form.
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message msg 2 fCON;DENg has the following formats
msg < SID;DID; ðn; lÞ > , where, SID, DID, n and l repre-
sent source node ID, destination node ID, PRB andpower level,
respectively. In 5G, Physical Uplink Control Channel (PUCCH)
[52] andPhysical Downlink Control Channel [53] can be exploited
for exchanging the messages between MBS and SPs. Working
flowof the proposed algorithm is also shown in Fig. 2.

In initialization phase, preference profiles of SPs and PRBs
are estimated. MBS prepares a preference list of SPs on
behalf of PRBs. Four-set of variables ðAK;BK;QK;ZKÞ is
used to demonstrate Algorithm 1. In line 3, AK represents a
set of PRBs to whom SP K has sent a connection request.
BK keeps the information of PRBs, which approaches SP K
with a CON request, and QK keeps list of allocated resour-
ces. ZK is initialized with a preference profile of each SP K.

The update phase is repeated until un-allocated pairs of PRBs
and SPs exist (line 4). SPK selects the most preferred resource
fromsetZK and sends aCON message for allocation (lines 5-6).

Upon receiving the CONmessage,MBS executes lines 7-15.
If the most preferred PRB receives CON message from an SP
that has interference more than or equal to the prede-
fined threshold value, then MBS sends a CON message
to respective SP and removes all its least preferred SPs

(based on biasing factor w) that cause interference to this
SP K; and accordingly updates the preference profile of
PRBs (lines 8-14). However, if SP K does not violate any
constraints, then MBS sends a CON message to respec-
tive SP K (line 15).

When an SP receives a message fromMBS, it executes the
set of actions given in lines 16-29. If received message is
CON, then the PRB is added to set BK (line 18). However, if
an SP receives a DEN message, it sends a new connection
request to next possible resource and removes the respec-
tive PRB from the sets AK and ZK (lines 19-23).

If there exists a resource that is not allocated to an SP K,
and accepts a connection request, then that resource is
assigned to the SP K (i.e., added to the set QK and removed
from sets BK and ZK) as shown in lines 24-25. Lines 26-28,
explain that if qK resources are allocated to an SP K, then that
SP sends a denial request to the remaining resources in its
preference profile and, consequently, the while loop termi-
nates (ZK  f). SPK is assigned with the resources of set QK

(line 29). Each SP andMBS updates its preference profile based
on current iteration and allocated resources (lines 29-30). Since
the preference list is updated in an iterative manner, thus the
proposed algorithm ends up at a local stable matching.

Algorithm 1. Stable Matching Based Static Resource Allocation

Input: Preference profilesPKðN;LÞ, 8K 2 K andPnðK;LÞ, 8n 2 N, qK
Output: X ¼ ½Xð1;1Þ1 ; . . . ; X

ð1;LÞ
1 ; . . . ; X

ðN;1Þ
1 ; . . . ; X

ðN;LÞ
jKj �T

Initialization:
1: Each SP estimates CQI
2: PKðN;LÞ andPnðK;LÞ are preference profiles prepared by each SPK 2 K and PRB n 2 N based on Eq. (15).
3: QK  f, AK  f, BK  f, ZK  PKðN;LÞ /*Initialize variables*/
Update:
4: While (9K with jQK j < qK) or (9nwith X

ðn;lÞ
K ¼ 0; 8K 2 K; 8l 2 L andPnðK;LÞ 6¼ 0) do /*Until allocated*/

5: AK  MostPreferredðZKnAKÞ /*Select most preferred resources*/
6: Forall ðnmp; lmpÞ 2 AK do sendðCON; ðnmp; lmpÞÞ /* Send CON to most preferred resources*/
7: When MBS receives ðCON; ðnmp; lmpÞÞ from SPK
8: If IðnmpÞ 
 I

ðnmpÞ
max or JðnmpÞ 
 J

ðnmpÞ
max then /*Interference constraints */

9: Repeat
10: (Klp; llpÞ  least preferred SP of nmp at power level llp /*Select least preferred resource*/
11: sendðDEN; ðKlp; llpÞÞ /*Send DEN to least preferred resource*/
12: Pnmp

ðK;LÞ  Pnmp
ðK;LÞnðKlp; llpÞ,PKlp

ðN;LÞ  PKlp
ðN;LÞnðnmp; lmpÞ /*Update preference lists*/

13: Update IðnmpÞ and JðnmpÞ based on Eqs. (4) and (5) /*Update interference values*/
14: Until Eqs. (9), (10), (11), and (12) are satisfied /* Validate set of constraints*/
15: Else sendðCON; ðnmp; lmpÞÞ toK /*Send CON to SPK*/
16: While ZK 6¼ f /*Repeat until preference list of SPK becomes empty*/ do
17: When SPK receives ðmsg; ðnmp; lmpÞÞmessage fromMBS
18: Ifmsg ¼ CON then BK  BK [ ðnmp; lmpÞ /*Upon receive CON, update set BK*/
19: Ifmsg ¼ DEN then
20: ZK  ZKnðnmp; lmpÞ /*Upon receive DEN, remove resource from set ZK*/
21: If ðnmp; lmpÞ 2 AK then /*Check if most preferred resource is in set AK*/
22: AK  AKnðnmp; lmpÞ, ðn0mp; l

0
mpÞ  MostPreferredðZKnAKÞ, AK  AK [ ðn0mp; l

0
mpÞ /*Update the sets*/

23: send (CON, ðn0mp; l
0
mpÞ) /*Send CON to next preferred resource*/

24: If 9ðnmp; lmpÞ 2 ðAKnQKÞ \BK then /*If temporarily allocated resources are available*/
25: ZK  ZKnðnmp; lmpÞ , BK  BKnðnmp; lmpÞ, QK  QK [ ðnmp; lmpÞ /*Update the sets*/
26: If jQK j ¼ qK then /*Quota for resources*/
27: Forall ðnlp; llpÞ 2 ZK do send (DEN,ðnlp; llpÞ) /*Send DEN to lower priority resources*/
28: ZK  f /*Reset the preference profile of SPK*/
29: Forall ðnmp; lmpÞ 2 QK doX

ðnmp;lmpÞ
K = 1 /*Set the binary variable as 1 for all resources available in the set QK*/

30: UpdatePKðN;LÞ andPnðK;LÞ based on J
ðnÞ
K , I

ðnÞ
K /* Update preference lists based on interferences */

Allocation:
31: For each underlay SP, allocate resources (i.e., PRB and power) based on result obtained from above update phase.
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4.4 Illustrating the SMSRA Algorithm

Let there be three SPs fK1; K2; K3g and six resources
fðn1; l1Þ; ðn2; l2Þ; ðn3; l3Þ; ðn4; l4Þ; ðn5; l5Þ; ðn6; l6Þg in a system.
The required number of connections at each SP is:
fqK1

; qK2
; qK3
gwhere, qK1

¼ 3, qK2
¼ 2 and qK3

¼ 2.
Let at some iteration an allocated pairs resulted as

{X
ðn3;l3Þ
K1

, X
ðn6;l6Þ
K2

, X
ðn4;l4Þ
K3

, X
ðn1;l1Þ
K3

} (Fig. 3a) and in the same iter-
ation, we obtained the preference and constraints of SPs;
and preference profile of resources such as given in Tables 3
and 4, respectively.

In the given Table 3, Yes represents that a particular SP
and resource combination satisfy the constraints, and No
represents that they do not satisfy the constraints as per the
above allocation. For the sake of simplicity, we have
assumed that the above relations (i.e., Yes and No) do not
change with the choice of other SPs. As SP K1 and resource
ðn3; l3Þ comply with constraints, hence this allocation is
matched. In the same way, K2 and ðn6; l6Þ are matched
because this allocation also follows the constraints. As K3

and ðn4; l4Þ do not abide by constraints, the resource
ðn4; l4Þ looks for other lower-priority SP compared to K3

but there is no other SP in lower priority list. Thus, MBS
sends a DEN message to SP K3 on behalf of resource
ðn4; l4Þ. Hence, SP K3 and resource ðn4; l4Þ do not paired
up. However, K3 and ðn1; l1Þ follow constraints, hence
these two agents are paired up.

In the next iteration each SP sends a CON message to
higher priority unallocated resource. Thus, a temporary allo-
cation results as {X

ðn2;l2Þ
K1

, X
ðn3;l3Þ
K1

, X
ðn4;l4Þ
K2

, X
ðn6;l6Þ
K2

, X
ðn1;l1Þ
K3

}

(Fig. 3b). The allocation X
ðn4;l4Þ
K2

does not follow the con-
straints; and as ðn4; l4Þ is not assigned to any other lower pri-
ority SP, hence MBS sends DEN message for this allocation.
In the next iteration the temporary resource assignment
results such as {X

ðn2;l2Þ
K1

, X
ðn1;l1Þ
K1

, X
ðn3;l3Þ
K1

, X
ðn6;l6Þ
K2

, X
ðn1;l1Þ
K3

,

X
ðn6;l6Þ
K3

}, (Fig. 3c). Quotas of K1 and K3 are fulfilled and this
particular allocation also followed the constraints criteria.
Since K2 still needs one more assignment thus it sends CON
request to MBS. Hence, in the next iteration K2 sends the
CON request to its higher priority resource ðn2; l2Þ. This allo-
cation follows the constraints criteria. Thus, by the end of

third iteration a valid match is found such as {X
ðn1;l1Þ
K1

, X
ðn2;l2Þ
K1

,

X
ðn3;l3Þ
K1

,X
ðn2;l2Þ
K2

,X
ðn6;l6Þ
K2

,X
ðn1;l1Þ
K3

,X
ðn6;l6Þ
K3

} as shown in Fig. 3d.

4.5 Analysis of SMSRA Algorithm

This section explains the theoretical analysis of the pro-
posed SMSRA algorithm. Particularly, termination, stabil-
ity, and time complexity of the proposed SMSRA algorithm
are explained in the following.

Lemma 1. SMSRA scheme terminates for every SPK 2 K.

Proof. SMSRA terminates for SP K when MBS replies for
each resource with either a connection request or a denial
one, i.e., ZK ¼ f or when qK number of resources are allo-
cated to each SP, i.e., QK ¼ qK , 8K 2 K. The algorithm
does not terminate only when the SPs keep on resending
the CON request in the future for the resources to whom
it has previously received the DEN message. Now, if we
prove by contradiction that this dependency cannot exist,
it would be enough for us to prove that the algorithm
always terminates. In the proposed algorithm, the allo-
cated pairs are formed, if and only if the allocation of SP
K and resources ðn; lÞ does not violate constraints men-
tioned in Eqs. (9), (10), (11), and (12). Otherwise, to make
a connection, the most preferred resource removes the
least preferred SP from its preference profile until a spe-
cific threshold value is satisfied. Since an SP removes the
respective resource from its preference list once it receives
the DEN message and it does not resend CON message
for that particular resource in the future; thus, it contra-
dicts the fact that the mentioned dependency would be
formed. So, the proposed algorithm always converges. tu
The term stability in the matching ’ means that neither

SPs nor resources prefer to alter the allocation obtained in ’.
Formally, we define stability as follows:

Definition 2. Matching ’ is individually rational if there does
not exist any SP or resource which would prefer to remain
unallocated than to be matched with their current allocation.

Definition 3. A matching ’ is blocked by a pair of any SP and
any resource which would both prefer to be matched with each
other than with their current allocation, i.e., ðn; lÞ 	K ’ðKÞ
andK 	ðn;lÞ ’ðn; lÞ.

Definition 4. Matching ’ is stable if it is individually rational
and is not blocked by any pair of SPs and resources.

The above definitions can be fathomed with WBAN
application where local devices (e.g., SPs) collect data from
the sensors mounted on the body of patients [37]. Further,
local devices report the data to Mobile Edge Computing
(MEC) server by selecting the appropriate radio resources
while satisfying different constraints. The matching

Fig. 3. Illustration of SMSRA. (a) initial allocation, (b) first iteration,
(c) second iteration and (d) third iteration.

TABLE 3
Preference Profile of SPs

K1 K2 K3

ðn2; l2Þ : 1 : Yes ðn4; l4Þ : 1 : No ðn1; l1Þ : 1 : Yes
ðn3; l3Þ : 2 : Yes ðn6; l6Þ : 2 : Yes ðn5; l5Þ : 2 : No
ðn1; l1Þ : 3 : Yes ðn2; l2Þ : 3 : Yes ðn6; l6Þ : 3 : Yes
ðn6; l6Þ : 4 : No ðn1; l1Þ : 4 : Yes ðn2; l2Þ : 4 : No
ðn5; l5Þ : 5 : Yes ðn3; l3Þ : 5 : No ðn3; l3Þ : 5 : No
ðn4; l4Þ : 6 : Yes ðn5; l5Þ : 6 : Yes ðn4; l4Þ : 6 : No

TABLE 4
Preference Profile of Resources

ðn1; l1Þ ðn2; l2Þ ðn3; l3Þ ðn4; l4Þ ðn5; l5Þ ðn6; l6Þ
K3 : 1 K2 : 1 K1 : 1 K1 : 1 K2 : 1 K3 : 1
K1 : 2 K1 : 2 K3 : 2 K2 : 2 K3 : 2 K2 : 2
K2 : 3 K3 : 3 K2 : 3 K3 : 3 K1 : 3 K1 : 3
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between local devices and resources can be obtained by
applying SMSRA algorithm. The resultant outcome ’ forms
stable matching between devices and resources within feasi-
ble polynomial computational time complexity as proven in
the following Theorems 1 and 2, respectively.

Theorem 1. SMSRA results in stable resource allocation.

Proof. Let us prove the theorem by contradiction saying that
theredoesnot exist stable allocation. Let ðn; lÞ be inhigherpri-
ority order of SPK but they are notmatched in’. Thus, based
on this assumption, ðK;n; lÞwill block ’. Let, ðn; lÞ 	K ðn0; l0Þ
and ’ðKÞ ¼ ðn0; l0Þ. This signifies that ðn; lÞ is not
assigned to SP K and ðK; n0; l0Þ is a valid better assign-
ment. Thus, ðK; n; lÞ will never block ’ and this contra-
dicts the assumption. Thus, matching ’ results in a
valid assignment. tu

Theorem 2. Time complexity of SMSRA scheme is OðKNLÞ.
Proof. The preference profiles of resources and SPs can be

sorted out using any sorting method in time complexity
of OðNLlogNLÞ and OðKLlogKLÞ, respectively (line 5
and line 30). The update section executes until all the SPs
are allocated to at most qK number of resources. Since,
the update section terminates in a finite time (proved in
above Lemma 1) and the total input length of the algo-
rithm is equal to summation of both preference profiles,

i.e., PKðN;LÞ and PnðK;LÞ result as PK
K¼1 jPKðN;LÞj þPN

n¼1 jPnðK;LÞj ¼ 2KNL=OðKNLÞ. Using the suitable
data structure (as shown in [54]), it can be proved that the
update section linearly depends upon K, N and L.
Lines 8-15 will take OðKNLÞ iteration in the worst case
scenario. Similarly, lines 16-28 are linearly related to
KNL because the maximum number of iterations could
increase to KNL, i.e., the total input length. Therefore,
the overall time complexity of proposed SMSRA is
OðKNLÞ. tu
The proposed SMSRA works for the static deployment of

networks. However, the SMSRA does not describe the
dynamic scenario of the system where an SP arrives/leaves
or change its preference order to select the most preferred
resources. Thus, in the following, we propose a dynamic
approach where an SP can leave/join or change the prefer-
ences of its currently allocated resources, which in turn dis-
turb the result of the SMSRA algorithm.

5 DYNAMIC RESOURCE ALLOCATION

The proposed dynamic approach exploits the three specific
cases of the network, such as when an SP joins, leaves, or
changes its current allocated resources. In the case of join-
ing, newly arrived SP prepares a preference list for resour-
ces, and MBS develops a preference list on behalf of

Algorithm 2. Stable Matching Based Dynamic Resource Allocation

Input: Initial resource allocated vector, X ¼ ½Xð1;1Þ1 ; . . . ; X
ð1;LÞ
1 ; . . . ; X

ðN;1Þ
1 ; . . . ; X

ðN;LÞ
jKj �T

Phase 1: Execution at SP
Case 1: Arrival of new SP
1: Estimate PKðN;LÞ  preference of newly arrived SP K based on CQI and Equation (15); MBS updates K K [K and

PnðK;LÞ, qK
2: QK  f, AK  f, BK  f, RK  f, ZK  PKðN;LÞ
3: While (jZK �AK �BK �RK j 6¼ 0) or (jQK j < qK) do
4: ðnmp; lmpÞ  MostPreferredðZK �AK �BK �RKÞ
5: sendðCON; ðnmp; lmpÞÞmessage to MBS and update AK  ðnmp; lmpÞ
6: When SPK receives ðmsg; ðnmp; lmpÞÞmessage fromMBS /*After execution of Phase 2*/
7: Ifmsg ¼ CON then BK  BK [ ðnmp; lmpÞ
8: Ifmsg ¼ REL and ðnmp; lmpÞ 2 ZKnRK then sendðCON; ðnmp; lmpÞÞ to MBS and AK  AK [ ðnmp; lmpÞ
9: Ifmsg ¼ DEN then RK  RK [ ðnmp; lmpÞ
10: If 9ðnmp; lmpÞ 2 ðAKnQKÞ \BK then QK  QK [ ðnmp; lmpÞ
11: If jQK j ¼ qK then 8ðnmp; lmpÞ 2 QK doX

ðnmp;lmpÞ
K = 1 and 8ðnlp; llpÞ 2 fZKnQK} sendðDEN; ðnlp; llpÞÞ

12: EndWhile

Case 2: Release of Resource or Departure of SP
13: A SPK, sendðDEN; ðnmp; lmpÞÞmessage to release allocated resource ðnmp; lmpÞ and resetX

ðnmp;lmpÞ
K ¼ 0.

Case 3: Change in Preference
14: When SPK, receives ðREL; ðnmp; lmpÞÞmessage fromMBS
15: If #

ðnmp;lmpÞ
K > #

ðnpre;lpreÞ
K then SPK, sendðCON; ðnmp; lmpÞÞmessage

16: Upon receive of ðCON; ðnmp; lmpÞÞmessage fromMBS
17: SPK sendðDEN; ðnpre; lpreÞÞmessage and resetX

ðnpre;lpreÞ
K ¼ 0, andX

ðnmp;lmpÞ
K ¼ 1

Phase 2: Execution at MBS
18: When MBS receives ðmsg; ðnmp; lmpÞÞ from SPK
19: Ifmsg ¼ CON then
20: If Eqs. (9), (10), (11), and (12) are not satisfied then ðsendðDEN; ðnmp; lmpÞÞ to SPK /*Validation of constraints*/
21: Else sendðCON; ðnmp; lmpÞÞ to SPK
22: Ifmsg ¼ DENthen update K KnK,PnðK;LÞ and sendðREL; ðnmp; lmpÞÞ to allK 2 K

Output: Updated resource allocated vector X ¼ ½Xð1;1Þ1 ; . . . ; X
ð1;LÞ
1 ; . . . ; X

ðN;1Þ
1 ; . . . ; X

ðN;LÞ
jKj �T .
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resources regarding newly-arrived SP. In the case of depar-
ture, MBS deletes the respective SP from the resources’ pref-
erence list. However, when an SP updates its preference list,
no update takes place at the resources’ preference list level,
but various interferences may transform radically. We pro-
pose a distributed Stable Matching based Dynamic Resource
Allocation (SMDRA) algorithm to solve the above-stated
challenges in the following.

The SMDRA algorithm uses five-set of variables
(QK;AK;BK;RK; ZK) and three kinds of messages (CON,
DEN, REL), to execute the resource allocation procedure.
Here, AK represents a set of resources to whom SP K has
sent a connection request, BK keeps the information of
resources which approached SP K with the CON message,
QK keeps the list of allocated resources and RK stores
resources which sends DEN message to SP K. ZK is initial-
ized with the preference profile PKðN;LÞ. REL message has
the same format as CON and DEN messages depicted in the
SMSRA algorithm. SMDRA works in two phases. Phase 1
executes at SP level (lines 1-17) and Phase 2 (lines 18-22) at
the MBS level. Phase 1 is further divided into three cases.
Case 1, case 2, and case 3 exploit the arrival of new SP,
departure of SP, or release of resources and change in the
preference list of SPs, respectively.

Newly arrived SP prepares a preference list of resources
based on Eq. (15), and MBS updates the total number of SPs
and the preference list of resources, accordingly (line 1). Var-
iablesQK;AK;BK;RK; are initialized to f andZK as the pref-
erence list of SP K (line 2). The set (jZK �AK� BK �RK j)
contains the set of resources that were either never
approached and rejected by an SPK or never rejected SPK.

If the number of resources in set QK is less than qK or the
set (jZK �AK �BK �RK j) is not empty, then lines 4-12 will
execute. The most preferred resource ðnmp; lmpÞ is chosen
from the set (jZK �AK �BK �RK j), sent CON request,
and this is added to the set AK . After sending connection
request, SP waits for response fromMBS (Phase 2).

Upon receiving messages from SP K, MBS takes the ulti-
mate decision by sending the respective replies. If MBS gets
a connection request for resource ðnmp; lmpÞ, then it verifies
if this particular allocation violates the constraints. If so,
then MBS sends a DENmessage to respective SP; otherwise,
it sends a CON message for this allocation (lines 19-21).
However, if MBS receives a denial message for resource
ðnmp; lmpÞ, then it sends a REL message to inform the exist-
ing SPs. Moreover, this REL message is sent to notify the
availability of resources.

When an SP K receives a message from MBS, it executes
lines 6-11 of the SMDRA algorithm. If the received message
is CON, then it updates BK variable. If SP K receives a

(REL; ðnmp; lmpÞ) message and this particular resource is
also available in its preference list then SP K sends CON
message and updates the set AK . If SP K receives
(DEN; ðnmp; lmpÞ) message from MBS then it adds the
resource ðnmp; lmpÞ in rejected set RK . However, if selected
resource ðnmp; lmpÞ is available in sets AK and BK but not
included in the set QK then it is added to set QK . Moreover,
if the number of allocated resources to SP K becomes its
required number of resources qK , then all QK resources get
allocated to SP K, and SP K sends DEN message for other
lower-priority resources in the set ðZKnQKÞ.

An SP K releases resource either upon completion of
content delivery or if it moves away from the network
(Case 2). However, in these two cases, SP K sends
ðDEN; ðnmp; lmpÞÞ message to release the resource ðnmp; lmpÞ
and reset the allocationX

nmp;lmp

K .
Case 3 describes the scenario of change in the preference

list. An SP changes its preference list based on the availabil-
ity of better resources compared to the presently allocated
ones’. Upon receiving REL message fromMBS, SP compares
the utility values of presently allocated resource ðnpre; lpreÞ
and newly released resource ðnmp; lmpÞ. If there is an advan-
tage in the utility value with newly released resource then
SPK sends ðCON; ðnmp; lmpÞÞmessage to MBS. Upon receiv-
ing the ðCON; ðnmp; lmpÞÞ message from MBS SP K releases
its currently allocated resource and forms a pair with newly
released resource ðnmp; lmpÞ.

5.1 An Illustrative Example of SMDRA Algorithm

We employed Fig. 3d as an input to SMDRA scheme. Based
on Tables 3 and 4, SMSRA results a final allocation (see
Fig. 3d) such as {X

ðn1;l1Þ
K1

, X
ðn2;l2Þ
K1

, X
ðn3;l3Þ
K1

, X
ðn2;l2Þ
K2

, X
ðn6;l6Þ
K2

,
X
ðn1;l1Þ
K3

, X
ðn6;l6Þ
K3

}. We demonstrate all three cases i.e., arrival,
departure and change in preference order of SPs. Let in the
above allocation (Fig. 3d), a new SPK4 arrives (say, qK4

¼ 2)
andK2 departs from the network (Fig. 4a). As K2 departs from
the network so it sends DEN message and resets X

ðn2;l2Þ
K2

¼ 0,
and X

ðn6;l6Þ
K2

¼ 0. Let, there be no change in the preference
lists due to new arrival but K1 receives better proposal for
released (n6; l6) resource as shown in updated Tables 5 and
6. SPs K1 and K4 both send a CON message. K1 sends
ðCON; ðn6; l6ÞÞ message to MSB and, as this allocation fol-
lows the constraints hence, MBS sends CON message to SP
K1. Thus, K1 sends DEN message to lower preference
resource (n1; l1) and forms a pair with (n6; l6). In the same
iteration SP K4 sends CON message to the most preferred
resource ðn2; l2Þ. Since, this allocation follows the constraints
thus they are paired-up, i.e., X

ðn2;l2Þ
K4

= 1 (Fig. 4b). Since, still
QK � 2 thus, SP K4 chooses the next resource, i.e., ðn4; l4Þ
and sends CON message. This allocations follows the

Fig. 4. Example, (a) initial allocation, (b) first iteration, and (c) second
iteration.

TABLE 5
Preference Profile of SPs

K1 K3 K4

ðn2; l2Þ : 1 : Yes ðn1; l1Þ : 1 : Yes ðn2; l2Þ : 4 : Yes
ðn6; l6Þ : 2 : Yes ðn5; l5Þ : 2 : No ðn4; l4Þ : 2 : Yes
ðn3; l3Þ : 3 : Yes ðn6; l6Þ : 3 : Yes ðn3; l3Þ : 3 : Yes
ðn1; l1Þ : 4 : Yes ðn2; l2Þ : 4 : No ðn1; l1Þ : 1 : No
ðn5; l5Þ : 5 : Yes ðn3; l3Þ : 5 : No ðn6; l6Þ : 5 : No
ðn4; l4Þ : 6 : Yes ðn4; l4Þ : 6 : No ðn5; l5Þ : 6 : No
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constraints, hence, receives a CON message for it and gets
paired-up i.e., X

ðn4;l4Þ
K4

= 1. Thus, the final allocation is
resulted {X

ðn2;l2Þ
K1

, X
ðn6;l6Þ
K1

, X
ðn3;l3Þ
K1

, X
ðn1;l1Þ
K3

, X
ðn6;l6Þ
K3

, X
ðn4;l4Þ
K4

,
X
ðn2;l2Þ
K4

} as shown in Fig. 4c.

5.2 Analysis of SMDRA Algorithm

We demonstrate termination, stability and time complexity
of the proposed SMDRA algorithm in the following:

Lemma 2. SMDRA scheme terminates for every SPK 2 K.

Proof. For the dynamic case, any changes may cause some
allocation to be abrogated and reissued on SPs. As three
cases are mentioned in the SMDRA algorithm to monitor
the arrival of new SPs, departure of SPs, or release of
resources and change in the preference list of SPs, thus
we prove that any of the above-stated changes takes a
finite amount of time in the following.

Case 1: Newly arrived SP prepares a preference list and
sends a CONmessage to the most preferred resource. The
algorithm does not terminate only if the newly arrived
node keeps on posting a CON message to whom it has
previously received the DEN message. We prove by con-
tradiction that this dependency does not occur in the pro-
posed SMDRA algorithm. Upon receiving a CON request,
MBS corroborates the constraints (Eqs. (9), (10), (11), and
(12)). If constraints are not fulfilled, then MBS sends a
DEN message; otherwise, it sends a CON message to
respective SP. Since an SP adds the respective resource in
rejected list RK and it does not resend CON message for
that resource in the future. Thus, it contradicts the fact
that the mentioned dependency would be formed. So, the
proposed algorithm always converges for case 1.

Case 2: An SP releases the allocated resources before
its departure, andMBS updates the total number of avail-
able SPs in the network; consequently, this scenario takes
a constant number of iterations to converge.

Case 3: This case elaborates the scenario of any
changes in the preference list. Upon receiving REL mes-
sage from MBS, an SP checks if the newly released
resource adds in the utility. If the recently released
resource results in more utility then the SP requests for it
and upon receiving CON message, it releases the allo-
cated resources and gets assigned with the newer ones’.
This phenomenon takes a finite number of iteration.
Hence case 3 terminates in a fixed amount of repetitions.

Thus, the proposed SMDRA terminates for every SP
K 2 K in a finite number of iterations. tu

Theorem 3. SMDRA results in stable resource allocation.

Proof. Let ðnmp; lmpÞ be in a higher priority order of SPK but
they are not matched in ’. This scenario arises upon release
of resource ðnmp; lmpÞ. However, upon release of any

resource, MBS informs each SP and consequently each SP
estimates utility value. If ðnmp; lmpÞ is higher in priority then
it results in better utility compared to allocated resource
ðnpre; lpreÞ. If so, then SP K sends CON message and upon
getting approval from MBS, it releases resource ðnpre; lpreÞ
and matches with the higher priority resource ðnmp; lmpÞ.
Hence there will never be blocking in the final matching.
Thus, matching ’ results in a stable assignment. tu

Theorem 4. Time complexity of SMDRA scheme is OðKNLÞ.
Proof. The arrival of new SP prepares the preference list of

all possible resources, i.e., N� L, and these resources can
be sorted in time complexity of OðNLlogNLÞ. However,
let us consider the worst-case scenario where all K SPs
arrive at a time and request for resources. In this scenario,
worst-case time complexity to execute the case 1 be the
summation of time taken by SPs and MBS. Hence, the
worst-case time complexity in case 1 be summation of
both preference profiles, i.e., PKðN;LÞ and PnðK;LÞ to bePK

K¼1 jPKðN;LÞj þ
PN

n¼1 jPnðK;LÞj ¼ 2KNL=OðKNLÞ. In
the case 2, an SP releases the resource (Oð1Þ), and MBS
deletes the respective SP from preference profile (OðKÞ).
Thus, this phenomenon takes OðKÞ time complexity in
the worst-case scenario. Case 3 works upon the release of
resources. A respective update takes place at the MBS
level if the released resource adds utility in the current
allocated resource. However, in the worst-case, all SPs
send CON request for newly released resources; hence it
ends up in case 1 for which we have already proved time
complexity as OðKNLÞ. Thus, the worst-case time com-
plexity of the proposed SMDRA algorithm is OðKNLÞ. tu

6 PERFORMANCE STUDY

In this section, we present the performance of the proposed
algorithms through simulation experiments. SPs and SRs are
randomly deployed underlying MBS. We have used a dis-
tance-dependent transmission model, such as given in [55].
Simulation environment is shown in Table 7. The total number
of PRBs is considered as 100 for 20 MHz bandwidth, thermal
noise as -174 dBm/Hz. Operational power of MBS, is consid-
ered as 46 dBm. The distance between the D2D-IoT pair is
assumed 10 m. The path loss between D2D-IoT and SR con-
nected with FAP, MBS and SR connected with FAP, FAP and
other SR are considered as %oðlÞ ¼ 15:3þ 40� logðRÞ þEfs þ
gr, path loss between FAP and SR connected with FAP, MBS
and D2D-IoT, D2D-IoT and other SR are considered as %iðlÞ ¼
38:46þ 20� logðRÞ þ Efk and path loss between any two SRs
connected with FAPs is considered as %mðlÞ ¼ 148þ 40�
logðRÞ þ Efq. The outdoor wall loss gr is set to 2 dB. Variable
R denotes the distance between any two devices. The values
of Efs, Efk and Efq are set at 6 dB, 10 dB and 6 dB, respec-
tively. The deployment probabilities of Class I, Class II, and
Class III SRs are denoted as pm, pf , and pd, respectively. More-
over, delay requirements, data size, and the required number
of resources are determined by specific service request types.

We have compared our findings with the existing works
[16], [34] and the optimal solution obtained using the “ILOG
CPLEX” solver [56]. We have denoted Student-Project Alloca-
tion (SPA) and Single-Connectivity (SC) for implying the pro-
posed algorithms in [16] and[34], respectively. We have

TABLE 6
Preference Profile of Resources

ðn1; l1Þ ðn2; l2Þ ðn3; l3Þ ðn4; l4Þ ðn5; l5Þ ðn6; l6Þ
K3 : 1 K4 : 1 K4 : 1 K1 : 1 K3 : 1 K3 : 1
K4 : 2 K1 : 2 K1 : 2 K4 : 2 K1 : 2 K1 : 2
K1 : 3 K3 : 3 K3 : 3 K3 : 3 K4 : 3 K4 : 3
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applied the same framework to compare all algorithms. The
preference models and executions of the algorithms are done
based on the respective approaches given in the works. Spe-
cifically, both existing approaches have applied Many-to-
One matching concept. However, SC has considered quota at
user level and SPA at SP and resource levels while finding
the stable matching. Particularly, we have compared SC
model given in [34] due to fact that SC assignment constitutes
an upper bound compared to other Multi-Connectivity
assignment as proven in Theorem 1 of [34]. Moreover, to
compare our proposed algorithm with others methods, we
have assumed that the SPs collect request from SRs and
respectively approach for resources. We have compared with
the existing approaches only when the deployment probabili-
ties or number of SRs (or UEs) in different classes are equally
likely in-order to make a fair observation.

6.1 Experimental Results Based on SMSRA
Algorithm

We explained the simulation results based on our proposed
SMSRA algorithm for static network scenario.

Revenue and Satisfaction Analysis. We plot the relation
between SPs’ revenue and the number of SRs in the net-
work. We set the interference threshold values as one dBm,
deployment probabilities as pm ¼ pf ¼ pd ¼ 0:333 and qK ¼
4. From Fig. 5a, we can see that even in a dense network sce-
nario, our proposed SMSRA reaches 94 percent to the opti-
mal solution compared to 67 and 58.91 percent of SPA [16]
and SC [34] on an average. The reason for the better perfor-
mance of the proposed SMSRA scheme compared to exist-
ing works is that SMSRA facilitates the re-usability of
limited resources and D2D communication paradigm
between IoT devices that consequently results in a better
revenue earned by SPs in the network. However, the reason
for getting better revenue from SPA compared to SC is that,

SPA always gives priority to higher paying users while con-
structing preference list for SPs unlike SC, which just
focuses on the SINR value.

We have compared the SRs’ satisfaction with respect to
the ratio of SRs whose actual service latency meet their
requirements. Apparently, there is a trade-off between a
number of SRs and SRs’ satisfaction, as shown in Fig. 5b. The
initial satisfaction ratio of all approaches is one, and after
that, the existing schemes drops faster than the other two
methods. Moreover, SC performs better than SPA scheme
due to fact that while allocating resource to SRs, SC allocates
minimum required resources to each SR unlike SPA which
primarily focuses on revenue along with minimum required
latency. From Figs. 5a and 5b,we conclude that our proposed
algorithm not only consider SPs revenue but also each IoT
user’s satisfactionwhile allocating resources in the network.

System Throughput. In Fig. 6a, we have shown a compari-
son between the number of SRs and system throughput.
Parameters are set as qK ¼ 2, pm ¼0.2, Imax= -95 dBm and
Jmax= -98 dBm. As we can see from the result that with an
increase of pf , the total throughput of the system increases.
On the other hand, it can be concluded, with an increase in
the ratio of pf=pd total system throughput increases. The
reason behind this finding is that SRs connected with FAPs
achieve higher data rates compared to SR and SP IoT devi-
ces connected in D2D mode.

In Fig. 6b, we have shown a relation between Imax and
system throughput at Jmax=-98dBm. The values of qK , Class
I, and Class II requesters are set at 2, 20, and 30, respectively.
We can observe that with an increase in the threshold value,
system throughput increases. The reason behind this is that
with a rise in the threshold value, the re-usability of resour-
ces increases. On the other hand, with an increase of
Class III SRs, total system throughput increases at a fixed
interference threshold value.

Analysis of Latency and PRB Efficiency. In Fig. 7a, we com-
pare the service latency concerning different SRs and
respective data sizes at Imax= -95 dBm, Jmax= -98 dBm. We
have considered that an SR can request to SP for services of
maximum 500 Mb size. Based on the achievable data rate
between SP and SR devices, we calculated the service
latency, a ratio of requested file size to achievable data rate (

Fig. 5. Revenue and satisfaction analysis.

TABLE 7
System Specification

Parameters Details

Cellular layout One MBS
Modulation scheme 64 QAM
Carrier frequency 2 GHz
Macro Cell radius 1 KM
qK [1-15]
Total PRBs, N 100
Bandwidth 20 MHz
PRB bandwidth 180 kHz
MBS transmit power 46 dBm
Transmission power of SR-IoTs 20 dBm
Thermal noise density -174 dBm/Hz
Outdoor Wall Loss 2 dB
Proximity Distance 10 meters
w1, w2 and w3 0.5, 0.3 and 0.2
Power-level Set L {20, 24, 30, 36, 42} dBm
Dara rate bound Thdr [0.002-2] Mbps
R1, R2 and R3 200, 180 and 140
Latency bound dIK [0.5-200] seconds
Constant propagation loss exponent b 2
Distance between MBS and SPs $ {0.01-1}KM
Energy spent in trans. elec. circ. "elec 50 nJ/bit
Energy spent in amplifiers eamp 100 pJ/bit/m2

Fig. 6. Throughput analysis.
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Eq. (6)). From the simulation result we conclude that our
proposed re-usability based heuristic performs better than
other existing approaches and close to optimal solution.
However, SC achieves slight better average latency com-
pared to SPA due to fact that SC allocates resources in itera-
tive way and users with lower quota of resources get their
requirement fulfilled at the early unlike SPA which depends
on earned revenue of SPs as a primary goal.

In Fig. 7b, we have shown a comparison between the total
number of underlay SPs and average PRB efficiency consid-
ering different values of qK at Imax=-95 dBm, Jmax=-98 dBm.
PRB efficiency is defined as an ¼

P
i2K;j2P X

ðn;jÞ
i . As can be

seen, with an increase in resource demand of SPs average
PRB efficiency increases. The reason is due to an increase in
the re-usability of PRBs. The same PRB is reused by many
SPs with an increase in resource demand while adhering to
interference constraint.

Fairness and Convergence Analysis. Regarding the given
results, it is important to assess if resources are fairly dis-
tributed between SRs. In Fig. 8a, we have shown Jain’s fair-
ness index calculation as the average for all the networks by
setting pm ¼ pf ¼ pm ¼ 1=3. However, Jain fairness index is
a well known metric for evaluation of equatability of
resource allocation mechanism, spanning from 1 (best case
i.e., equal share) to 1=S, where S is the number of SRs in the
system [57]. We distinguish between different SRs and then
show the average for all of that. Although the existing
approaches apply the same mechanism for lower priority
SRs allocation, the improvement over existing is due to the
fact that the relocation of unused resources by rejected high
priority SPs allows better distribution of that at remaining
lower priority SPs.

In Fig. 8b, we have shown conversant of the SMSRA and
compared with the optimal method and existing approaches
at Imax=-95 dBm, Jmax=-98 dBm.We set the number of SPs at
5. We observed the system throughput achieved by optimal
method is high compared to SMSRA method. However, the
proposed SMSRA approach converges in less number of
rounds compared to any other methods. Moreover, the aver-
age number of iterations becomes constant after a certain
round; this is because the different entities receive the most
preferred resourceswhile avoiding interferences.

Energy Consumption due to Message Overhead. As discussed
in the above Section 4.3, msg 2 fCON;DENg has following
formatmsg < SID;DID; ðn; lÞ > for communication between
MBS and SPs. Total number of SID=DID=total numbers of SPs
and MBSs. We have assumed the deployment of SPs underly-
ing a single MBS. Thus, the total number of required bits n ¼
log2ðkþ 1Þd e þ log2ðkþ 1Þd e þ log2ðNÞd eþ log2ðLÞd e for the
msg. Energy consumption for transmission and reception of n
bits of msg over a distance $ is given by ETx ¼ n� ð"elec þ
eamp �$bÞ and ERx ¼ n� "elec, respectively [58], [59]. Here,

"elec= 50 nJ/bit, eamp= 100 pJ/bit/m2 and b= 2 represent
energy spent in transmitter electronic circuitry, energy spent
in amplifiers, and constant propagation loss exponent, respec-
tively [59]. Distance $ between SPs and MBS is randomly
selected between {0.01-1} KM.

In Fig. 9, we have compared energy consumption per
round due to message overhead. Outcome concludes that
with increase of SPs, total energy consumption increases.
The reasons behind this finding is that with increase of SPs
different interferences and competition for selection of lim-
ited resources increases, consequently more messages over-
head needed which results in higher energy consumption.
However, with increase of rounds energy consumption
decreases and further reaches to zero. This is because, after
a certain number of rounds all SPs select the most appropri-
ate resources (Lemma 1) and message overhead becomes
zero in subsequent rounds.

6.2 Experimental Results Based on SMDRA
Algorithm

In this subsection, we explained the results obtained based
on SMDRA algorithm for dynamic networks. We have con-
sidered the scenarios where SPs join/leave or change their
preferences in the network.

Re-Convergence Analysis. We examine the proposed
SMDRA in rounds. Three cases are considered for execu-
tion, such as join, leave, and change in the preference of SPs,
as shown in Fig. 10. We varied the number of affected SPs
from 10 to 50 percent in our simulation model. We have con-
sidered a dense network of 1500 SPs. Deployment probabili-
ties are set as pf ¼ pd ¼ pm ¼ 0:333. The maximum resource
demand qK for each SP is set randomly between 1 and 3.

In the join operation (Fig. 10a), an SP arrives and prepares
the list of available resources, and tries the best one by send-
ing the CONmessage as described in the SMDRA algorithm.
With an increase in the percentage of newly arrival nodes,
the total number of convergence rounds increases. The rea-
son for this finding is that with an increase in the number of
SPs, the total number of competitors increases for limited
available resources, and consequently, the total number of

Fig. 8. Fairness and convergence analysis.

Fig. 9. Energy consumption per round (in nJ).

Fig. 7. Analysis of latency and PRB efficiency.
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rounds increases. However, the number of required rounds
in our proposed heuristic is far less than optimal, SPA and
SC schemes due to distributed localized nature of SMDRA
approach for selection of appropriate resources unlike other
centralized schemeswhich search all possible pairing.

In the case of departure (Fig. 10b), an SP sends a DEN
message to inform the MBS regarding the release of allo-
cated resources. Upon availability of resources, MBS
sends a REL message to SPs. Moreover, release of the
resources becomes an attractive point for all SPs to
improve the utility, and consequently, the number of
rounds increases. However, leave operation poses a chal-
lenge because the allocated resources to the departing
SPs may be at a higher priority list of other SPs. Noticed
through the simulation of SMDRA, optimal and existing
works, when the substantial number of SPs depart (more
than 35 percent), the remaining SPs get the most appro-
priate resources in early rounds. The reason is that, with
the departure of SPs, remaining SPs have more available
choices for resources than established ones.

In the case of a change in preference (Fig. 10c), an SP
releases the allocated resources, and that gets assigned
with the newer one. However, change in preference of a
large number of SPs affects a higher number of SPs to
get it assigned the most referred resources. Thus, with
an increase of affected SPs, the number of required
rounds to re-converse the SMDRA algorithm increases.
However, this effect completes in early rounds using
SMDRA algorithm compared to optimal, SPA and SC
schemes because SPs are already assigned with valid
resources, and MBS sends a CON message to the most
appropriate ones. Moreover, compared to existing works,
our proposed algorithm selects most appropriate pairing
while avoiding interference and keeping a wide search-
ing range for minimizing number of rounds among
already configured PRBs as well as updated preference
list unlike other centralized approaches.

Efficiency of SMDRA Algorithm. We estimates the effi-
ciency of proposed SMDRA algorithm as follows:

Efficiency ¼
P

K2K
P

n2N
P

l2L X
ðn;lÞ
KP

K2K qK
: (16)

We compared the joining of new SPs concerning effi-
ciency in Fig. 11a. We varied the percentage of newly joined
SPs from 5 to 20 percent and the number of existing SPs
from 200 to 1,400 in the network. From the outcome, we con-
clude that with a higher percentage of newly joined SPs,
efficiency goes down. Moreover, with an increase of SPs,
efficiency decreases. In other words, there is a trade-off
between efficiency and the number of SPs. The reason for
this trade-off is that increase of SPs creates interference to
other SRs, consequently efficiency decreases.

In Fig. 11b, we have shown a correlation between the per-
centage of affected SPs and efficiency concerning preference
change and departure of SPs. We varied the rate of affected
SPs by fixing the total number of SPs at 800 and 1700. From
the outcome, we conclude that efficiency does not depend
upon the percentage of affected SPs. However, an increase of
SPs could result in a decrease of efficiency, as found in the
cases of 800 and 1700 SPs. The reason for this finding is that
with an increase in SPs, interference increases, and conse-
quently, efficiency decreases. Moreover, the departure of SPs
may help to improve efficiency, as shown in a case where
1700 SPs leave the network. The reason is that when SPs
leave the system, theMBS reassigns the released resources to
other waiting SPs, consequently efficiency increases. How-
ever, if all the SPs are already assigned with valid resources,
then there does not occur any change at efficiency level con-
cerning leave and change in the preference of SPs.

7 CONCLUSION AND FUTURE WORKS

In this work, we proposed many-to-many stable matching
based resource allocation algorithms for service providers’
revenue maximization in 5G wireless (heterogeneous) net-
works, while achieving a guaranteed level of quality for the
requested services. Each SP/resource is free to build its
preference list according to the utility function. We have
found that the proposed algorithms terminated and suc-
ceeded in maximizing the throughput of the network. Our
proposed approach outperforms state-of-the-art schemes
and achieves 94 percent of the optimal value.

The current form of the manuscript has considered only
three priority classes. However, n-level of priority classes
is more practical model to be considered in our future
work. Moreover, we would like to formulate the resource
allocation in IoT enabled fog architecture as an online

Fig. 10. Re-convergence analysis of different schemes.

Fig. 11. Efficiency analysis of proposed SMDRA.
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optimization problem where SRs and SPs can switch their
behaviours while requesting for resources and serving to
requests underlying cellular 5G networks. Furthermore,
the dynamic mapping of varying interference threshold
and revenue model is another dimension need to be
explored. The proposed scheme has considered single con-
nectivity with fixed modulation scheme and uniform data
rate per PRB. However, to fulfill the requirement of highly
dense upcoming network, there is need for multi-connec-
tivity [22] framework with adaptive modulation and cod-
ing scheme having heterogeneous MIMO configuration
[43] at SPs and SRs levels to achieve the higher data rate
between them. Identification of multidimensional Quality
of Experience (QoE) as a sole parameter while maximizing
SP’s revenue is an interesting topic to be explored. Deriv-
ing approximation ratio and finding the trade-off with
existing schemes are other directions where we’ll be focus-
ing on. In our future work, we’ll jointly optimize the radio
resource allocation and cache placement in an IoT-enabled
5G network. Finally, exciting paths of future research
would be to develop a variation of the proposed scheme
that can guarantee latency and freshness of data con-
straints [37] for the Internet of Medical Things in WBAN
underlying cellular 5G networks.
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