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Aerodynamic Design of a Rectangular Wing in Subsonic 

Inviscid Flow by Surrogate-Based Optimization 

Xiaosong Du1, Anand Amrit2, Andrew Thelen3, and Leifur Leifsson4 
Iowa State University, Ames, Iowa 50011 

Yu Zhang5, and Zhong-Hua Han6 
National Key Laboratory of Science and Technology on Aerodynamic Design and Research, 

School of Aeronautics, Northwestern Polytechnical University, Xi’an, 710072, P. R. China 

Slawomir Koziel7 
Engineering Optimization & Modeling Center, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland 

The paper presents results of aerodynamic design of a rectangular wing in subsonic 

inviscid flow using surrogate-based local and global search algorithms. The aerodynamic 

design problem is formulated in Benchmark Cases 3 and 6 developed by the AIAA Applied 

Aerodynamics Discussion Group. Both involve lift-constrained drag minimization at a Mach 

number of 0.5 with relatively low lift coefficients (0.2625 and 0.375) with several nonlinear 

constraints and a small number design variables (up to 11). In this work, the local search is 

performed using variable-fidelity modelling and output space mapping, whereas the global 

search is performed using approximation-based surrogates. The paper presents the details of 

the computational modelling, shape parameterization, optimization algorithms, and results 

for each benchmark case. The approaches yield comparable results for Benchmark Case 3. 

Only the local search algorithm is applied to Benchmark Case 6. The results indicate the 

multimodality of that design case. 

Nomenclature 

CD = drag coefficient, [-] 

CM = pitching moment coefficient, [-] 

CL =   lift coefficient, [-] 

c =   low-fidelity model output vector 

c =   chord length, [m] 

f =    high-fidelity model output vector 

l =   lower bound, [-] 

M =   Mach number, [-] 

t =   airfoil thickness, [m] 

u =   upper bound, [-] 

V = wing volume, [m3] 

x =   design variables, [-] 

 = wing angle of attack, [deg] 

 =   trust region radius, [-] 

 = wing twist distribution, [deg] 

  

                                                           
1 Graduate Student, Department of Aerospace Engineering, Student Member AIAA. 
2 Graduate Student, Department of Aerospace Engineering, Student Member AIAA. 
3 Graduate Student, Department of Aerospace Engineering, Student Member AIAA. 
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I. Introduction 

his paper presents the results of solutions to the benchmark aerodynamic design Cases 3 and 6 (aerodynamic 

design of a rectangular wing in subsonic inviscid flow) developed by the AIAA Applied Aerodynamics technical 

committee. The original version of the problem (Benchmark Case 3) has the objective of minimizing the drag coefficient 

by optimizing the twist distribution of the wing at a fixed lift coefficient. A new version of the problem (Benchmark Case 

6) will also be solved. In this version, a lift-constrained drag minimization is performed by varying the span, sweep, 

dihedral, chord, and airfoil shape. In addition, non-linear constraints are applied to planform area, internal volume, root 

bending moment, thickness, and angle of attack. The results are presented in a special session at the annual AIAA 

Aviation 2017 conference. 

In our prior work1,2, we attempted to solve the benchmark cases using approximation-based surrogates3,4 (SAO) 

and physics based surrogate techniques5. In our first paper1, we used multi-fidelity optimization with the space 

mapping6 (SM) technique to solve the problem. When using SM, an unstructured 15.5M cell mesh was used as the 

high-fidelity model, while a VLM code served as the low-fidelity one. When using SAO, only the 15.5M cell mesh was 

used. Using both optimization methods, we observed drag reductions of just over one count. This drag reduction value is 

consistent with numerous other papers, which used varying parameterization, grid generators, flow solvers, and 

optimization methods. In the second paper2, we attempted to solve the cases using the multi-level optimization7 

technique. In our solutions, we used a family of low-fidelity models and the Stanford University Unstructured8 

(SU2) solver to optimize a high-fidelity model by the same grid generator and flow solver as the low-fidelity models 

but with a higher mesh resolution (fully grid-independent solutions). In the third paper9, we attempted to solve the 

problem using multi-fidelity techniques and improved computational models along with a new correction technique. 

The paper demonstrated that multi-fidelity optimization with physics-based models can solve the aerodynamic cases 

much faster than direct optimization with adjoint sensitivity information (see, e.g., Jameson10), and surrogate-based 

optimization2 (SBO) with data-driven surrogate models3. The second case was introduced very recently. Thus, no 

information about the optimal wing shapes is currently available. 

In this work, we use an updated aerodynamics model with minor modifications to the optimization methods. The 

unstructured mesh generator (SUMO) is replaced by separate codes that generate the solid model and structured mesh, 

respectively. In addition, the flow solver (SU2 version 4.0.0) has been updated to a newer version (version 5.0.0), which 

may have minimal effects on the result. Using a simplified set of designable geometry, this version of the problem is also 

solved using the two approaches. The multi-modality of this problem is investigated using multi-start local search with 

physics-based surrogates as well as global search with approximation-based surrogates and infill. 

The paper is organized in the following way. Section II focuses on Benchmark Case 3 giving the problem formulation, 

details of the computational modeling and parameterization, optimization methodology, and results. Section III is focused 

on Benchmark Case 6 and has the same layout as Sect. II. The paper ends with conclusion. 

II. Benchmark Case 3: Rectangular Wing Twist Optimization 

The goal of this first problem is to minimize drag of a rectangular wing at a fixed lift by adjusting the span-wise 

distribution of twist angle about the trailing edge. The purpose of this is to show that the span loading of the optimized 

wing is approximately elliptical, which, for an inviscid subsonic case, corresponds to theoretical minimum drag and a span 

efficiency factor of one.  

A. Problem Formulation 

At a Mach number of M = 0.5, minimize the drag coefficient (CD) by changing the twist distribution () of an 

unswept rectangular wing with constant-span (b), constant-chord (c), and constant-section (NACA 0012) at a fixed 

lift coefficient of 0.375 (CL) with a constraint on the twist distribution on the tip. In particular, the optimal design 

problem formulation is as follows: 

min ( )DC
 l x u

x ,

                                                                                

(1) 

subject to 

CL(x) = 0.375,                                                                                       (2) 

 

3

10 /
y c

d
c

dy





  ,                                                                             (3) 
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where x is the vector of design variables, u and l are the vector of upper and lower bounds of the design variables, 

respectively, and y is the coordinate along the wing span (cf. Fig. 1). The baseline geometry is shown in Fig. 1. 

B. Computational Modeling and Parameterization 

In order to evaluate the loads on a particular wing design, a MATLAB-based aerodynamics model executes 

several sequential steps. First, the design variables are converted to the span-wise geometric distributions (e.g. twist, 

chord, sectional shape) using B-spline parameterization. Then, using the resulting geometry, an Engineering Sketch 

Pad (ESP) script is executed to produce the solid model. This CAD model is then used by a Pointwise script, which 

generates a structured mesh with an O-type topology. Then, SU2 version 5.0.0 is used to solve the Euler equations 

on the grid at the specified Mach number. Finally, MATLAB and Tecplot are used to process the results.  

For the first problem considered, the particular B-spline parameterization uses three control points (shown in Fig. 

2), where the center point can move horizontally and vertically, and the tip control point can move vertically. While 

the root twist angle is fixed at zero, each design evaluation adjusts the angle of attack to produce the prescribed lift 

coefficient. For each design evaluation, this is done implicitly within the flow solver.  

Before initiating the optimization process, a grid convergence study was carried out for the baseline design. An 

initial mesh was selected having an off-wall spacing of 0.004, 100 cells along the span, approximately 170 cells 

around the airfoil sections, and 100 cells between the wing and far-field surface, which is located at a radius of 50. 

In total, the mesh has approximately 1.7M cells. Figure 3 shows the resulting surface mesh on the wing surface as 

well as the symmetry plane. 

A set of refinement factors, ranging from 0.25 to 1.75, in increments of 0.25, was chosen. For each refinement 

factor value, the off-wall spacing is divided by the factor, while the numbers of cells (along wing, around airfoil, 

between wing and far-field) are each multiplied by the factor. The resulting meshes had numbers of cells ranging 

from approximately 25,000 to 9M cells. Figure 4 shows the results of this study. 

 

 
Figure 1. Baseline semi-span wing geometry for Benchmark Case 3. The wing has a constant section profile, 

the NACA 0012, and the tip is rounded. 

 
Figure 2. Wing twist distribution parameterized using a B-spline curve with three control points. 
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4 

 

Figure 3. Sample mesh used for the computational fluid dynamics simulations. 

 

 
Figure 4. Grid convergence results for the baseline design at M = 0.5 and CL = 0.2625: drag coefficient versus 

number of mesh cells (top left), simulation run time using 32 processors versus number of mesh cells (top 

right), drag coefficient as a function of the inverse refinement factor, which is computed as (𝑵/𝑵𝒓𝒆𝒇)
𝟏/𝑫

, (𝑵 is 

the number of cells, 𝑵𝒓𝒆𝒇 = ~𝟏. 𝟕𝑴 is the reference number of cells, and 𝑫 = 3 is the number of physical 

dimensions) (bottom left), and estimated drag coefficient error as a function of number of cells (bottom right). 

 

In Fig. 4, the top left plot shows the resulting drag coefficient versus the number of cells, where the lift 

coefficient is fixed at 0.2625 (the value prescribed for Benchmark Case 6 (cf. Sect. III)). The reference mesh is 

indicated as well. This mesh is chosen for the optimization process because the drag coefficient is within 1 count of 

the drag computed using the next finest mesh. The top right plot shows the resulting run time of each simulation, 

where 32 processors are used for each simulation. The bottom left plot shows the drag compared to the inverse of 
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the effective refinement factor, which is computed as (𝑁/𝑁𝑟𝑒𝑓)
1/𝐷

, where 𝑁 is the number of cells, 𝑁𝑟𝑒𝑓  is the 

reference number of cells, and 𝐷=3 is the number of physical dimensions. In this plot, the extrapolated drag value 

for an infinitely fine mesh (in this case 38.5 drag counts), which was found using Richardson extrapolation19, is 

indicated as well. The same method estimates that a 7M cell mesh is required if an error of 1 drag count is needed. 

Finally, the bottom right plot shows the error of each mesh, and also provides the exponential fit used in the 

extrapolation process. 

C. Global Search by Approximation-Based Surrogates 

A typical global SBO approach, named efficient global optimization (EG11) method is used in this work. The 

EGO, proposed by Jones et al., includes two stages: first, a kriging model is built based on the initial sample points 

randomly selected by design of experiments (DoE12) techniques and corresponding responses calculated by 

numerical simulations; second, the kriging model is repeatedly updated by a specific infill sampling criterion, 

expected improvement (EI11), until the optimum is obtained. The EI criterion assumes that there is a normal 

distribution at each site; meanwhile the response and the mean squared error predicted by surrogate model serve as 

the mean value and the standard deviation. EI function is defined as the mathematical expectation of improvement at 

an arbitrary site, compared to the optimal solution observed so far. The EI method is well-known for its capability of 

balancing the need between global exploration and local exploitation of the response surface; as a result, the EGO 

method is quite efficient. 

The optimization algorithm is performed on an in-house optimization platform named “SurroOpt13”, shown in 

Figure 5. SurroOpt has built-in modern DoE well suited for computer experiments, such as Latin hypercube 

sampling (LHS)，uniform design (UD) and Monte Carlo design (MC), and we use Latin hypercube sampling (LHS) 

here. A variety of surrogate models were developed such as quadratic response surface model (PRSM), kriging, 

gradient-enhanced kriging (GEK) 14, Cokriging15, hierarchical kriging (HK) 16, radial-basis functions (RBFs), support 

vector regression (SVR), etc. Several infill sampling criteria17 and dedicated constraint handling methods were 

implemented, such as minimizing surrogate prediction (MSP), and minimizing lower confidence bounding (LCB), 

maximizing expected improvement (EI), maximizing probability of improvement (PI), and maximizing mean 

squared error (MSE). In our study, the infill criterion refers to maximizing the constrained expected improvement 

(EI). The corresponding sub-optimization is done by combining a genetic algorithm (GA) with local optimization, 

such as Hooke and Jeeves pattern search, quasi Newton’s methods (BFGS) and sequential quadratic programming 

(SQP). The iteration terminated condition of EGO is 

 ( 1) ( )
1 max or i ix x N N    ,  (4) 

where maxN  is the user-specified maximal number of CFD evaluations, and 1 1e 10   . When no new samples can 

be found, or the number of samples reaches the maximum, the round of optimization terminates. 

 

 
 

Figure 5. Framework of surrogate-based optimization in SurroOpt13. 
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D. Local Search by Physics-Based Surrogates 

A local multi-start search is performed using physics-based surrogate models constructed using variable-fidelity 

models and output space mapping6 (OSM), where the sub-optimization processes are controlled using a trust-region 

framework. OSM is applied to four different response values from the high- and low-fidelity models. These include 

the drag coefficient, root bending moment coefficient, angle of attack, and the internal volume. When using the 

high-fidelity model, the first three values are computed by SU2, while the volume is computed when generating the 

solid model using ESP.  

The low-fidelity models used in the study are of two types: a variable-fidelity physics model (simplified physics 

model) using a vortex lattice method (VLM), and a variable-resolution model (same governing physics but reduced 

discretization) using a coarse mesh and reduced flow solver convergence criteria. The VLM model computes the 

drag coefficient and angle of attack directly, as well as supplying the span loading, which is subsequently used to 

compute the root bending moment coefficient. In addition, the internal volume is computed analytically by 

integrating cross-sectional area across the span. Meanwhile, the planform areas for both the high- and low-fidelity 

models are computed analytically by projecting the wing geometry onto the XY-plane. While only the drag 

coefficient is important in the first case, the second case in Sec. (III) uses all of these space-mapping-corrected 

values for both the objective function as well as the nonlinear constraints. 

Four stopping criteria are implemented for the local search based on the design variable vector (||(x(i)–x(i-1))/(u-

l))||<1E-3), trust region size (RTR<1E-4), surrogate model resolution (|s(x(i))–f(x(i))|<1E-4), and change in objective 

function (H(x(i)) – H(x(i-1))<1E-2). In addition, the maximum number of iterations is set to Nmax = 20. 

E. Optimization Results 

Evolution of the objective functions of the optimization algorithms are given in Fig. 6. The local algorithm, shown 

in Fig. 6(a), is utilized with the two different low-fidelity models, which use different physics and different mesh 

resolution, respectively. When using OSM with different physics (VLM with Euler), the optimization requires three 

design iterations, but appears to go directly to the optimum during the first iteration. The variable-resolution 

approach (Euler with fine and coarse meshes) required 5 design iterations, shows better convergence characteristics, 

but quadrupled the optimization cost and produced a slightly worse design. The global search algorithm, shown in 

Fig. 6(b), required 24 design iterations using a slightly coarser mesh having approximately 216,000 cells, compared 

to 1.7M cells used in Fig. 6(a). For this approach, fifteen sample points generated by LHS are used to build the 

initial kriging model. Then, 9 sample points are chosen by EI method to update the kriging model. The twist and lift 

distributions of the baseline and optimized designs are given in Fig. 7. It can be seen that all of the approaches yield 

nearly elliptical lift distributions. Table 1 gives a comparison of the numerical values for those distributions. Table 2 

gives the details of the performance of the baseline and optimized shapes, as well as the computational cost. 

 

 

         
                                                      (a)                                                                              (b) 

Figure 6. Optimization convergence histories of objective function: (a) runs with output space mapping, and 

(b) runs with SurroOpt. 
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                                                            (a)                                                                         (b) 

Figure 7. Results for Benchmark Case III: (a) the initial and optimized twist distributions, (b) resulting lift 

distributions. 
 

 

 

Table 1. Comparison of twist and lift distribution of the baseline and optimized wings, where  = y/b (M = 

0.5, CL = 0.375). 

  0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0 

Baseline 
 (deg) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

2Cl/b 0.1497 0.1478 0.1418 0.1294 0.1037 0.0791 0.0594 0.0387 

SurroOpt 
 (deg) 0.0000 -0.0622 -0.2159 -0.5128 -1.0865 -1.6197 -2.0605 -3.3418 

2Cl/b 0.1599 0.1569 0.1470 0.1284 0.0953 0.0683 0.0494 0.0306 

OSM 

(VLM+Euler) 

 (deg) 0.0000 -0.1329 -0.3482 -0.6872 -1.2445 -1.6853 -1.9881 -2.4000 

2Cl/b 0.1598 0.1563 0.1455 0.1265 0.0942 0.0683 0.0499 0.0312 

OSM (Euler 

coarse+fine) 

 (deg) 0.0000 -0.2562 -0.5521 -0.9089 -1.3777 -1.7024 -1.9174 -2.2222 

2Cl/b 0.1609 0.1566 0.1448 0.1257 0.0943 0.0691 0.0508 0.0320 

Elliptical 2Cl/b 0.1592 0.1559 0.1459 0.1273 0.0955 0.0694 0.0497 0.0000 

 

 

 

 

Table 2. Benchmark Case 3 optimization results: attributes of the baseline and optimized wings, as well as the 

optimization costs. 
Parameter Baseline SurroOpt OSM 

(VLM+Euler) 
OSM 

(Euler coarse+fine) 

 (deg) 4.3157 4.8009 4.8730 5.0137 
CL (cts) 37.5002 37.5005 37.5006 37.5006 
CD (cts) 78.94 77.77 77.79 77.82 

e 0.9451 0.9593 0.9591 0.9587 

Nc*  24 95 160 
Nf  1** 4 6 

Nf,eq  4.41 4.03 16.14 
tc (hr)  1.19 0.01 3.50 
tf (hr)  0.35 1.44 2.07 

ttot (hr)  1.54 1.45 5.57 

             *SurroOpt uses a coarse mesh with ~ 216k cells, whereas the OSM coarse mesh has ~77k cells. 

              **SurroOpt uses a coarse mesh for optimization, then runs the fine mesh at the optimum. 
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III. Benchmark Case 6: Multimodal Subsonic Inviscid Optimization 

Benchmark Case 6 focuses on the same flow conditions and baseline wing design used in the previous problem, 

although both rounded and pinched wing tip shapes are acceptable. However, the design space is expanded to include 

span, chord, dihedral, sweep, and airfoil shape, making the design space more complicated and no longer convex. In 

addition, nonlinear constraints are introduced to enforce minimum values of volume and thickness, a maximum root 

bending moment, and a target planform area. This introduces further challenges when finding local or global minima. As 

such, the purpose of this problem is to locate an unknown number of local minima in hopes of uncovering unintuitive 

solutions. 

Following the previous section’s organization, the current section will begin with a problem description in Sect. III.A. 

Here, the geometry, objective function, constraint functions, and geometric limitations (i.e., bounds) of the design space 

will be described. Then, details on modeling and parameterization will be provided in Sect. III.B. Section III.C discusses 

optimization methodology that was not needed for the previous problem, and focuses particularly on how local 

optimization is applied on a global scale. Finally, Sect. III.D presents the optimization results. 

A. Problem Formulation 

The objective of this problem is to minimize drag of a wing in inviscid subsonic flow, where the flow conditions are 

consistent with the previous case. While this problem allows for higher flexibility, we consider our designable geometry to 

be span, as well as the span-wise distributions of twist, chord, and dihedral. Although the distributions of sweep and airfoil 

shape are allowed to change in the problem, we fix them to zero center-chord sweep and the NACA 0012 airfoil shape. 

This is due to the presumption that span, chord, twist, and dihedral will allow for most of the possible drag reduction while 

also displaying the multi-modality of the problem. However, our investigation into this is ongoing. 

In addition, we enforce six nonlinear constraints: one equality and five inequality. The equality constraint ensures a lift 

coefficient of 0.2625, and is enforced implicitly within the flow solver. The first inequality constraint ensures that 

planform area remains within 1% of the baseline value of 3.06, while the second ensures that the internal wing volume is 

greater than or equal to that of the baseline. The third inequality constraint limits the bending moment exerted on the wing 

root, where the maximum value is 0.1069 when using 3.06 as both the reference length and reference area. Lastly, the 

angle of attack is limited to a range of -3o to 6o. In addition, the original problem enforces a minimum thickness throughout 

the span, but we disregard this due to the fixed airfoil shape throughout the wing. 

In particular, the optimal design problem formulation is as follows: 

 

min ( )DC
 l x u

x ,

                                                                                 

(5) 

 

subject to 

 

CL = 0.2625,                                                                                        (6) 

 

     100 (
|S0−S|

S0
) –  1% ≤ 0,                                                                        (7) 

 

100 (
𝑉0−𝑉

𝑉0
)  ≤ 0,                                                                              (8) 

 

100 (
𝐶𝑀𝑥−𝐶𝑀𝑚𝑎𝑥

𝐶𝑀𝑚𝑎𝑥

)  ≤ 0,                                                                       (9) 

 

−3𝑜 − 𝛼 ≤ 0,                                                                             (10)  

and 

𝛼 − 6𝑜 ≤ 0.                                                                              (11) 

 

Here, we represent the volume, area, and moment constraints as percentages of the reference values, which, respectively, 

are the minimum volume (0.24818), target planform area (3.04110), and the maximum moment coefficient value 

(0.1069). 
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B. Computational Modeling and Parameterization 

The computational models used in Benchmark Case 6 are described in Sect. II.B. In this case, however, the wing 

shape is described using the distributions of chord, z (vertical) coordinates of the quarter-chord locations at each 

spanstation, and the twist distribution, as well as the wing semi-span. Figure 8 shows the implementation of those 

distributions using B-spline curves (similar as described in Sect. II.B). For all of the distributions shown in Fig. 8, 

the horizontal coordinates of each center control point can vary between 0.2 and 0.8. For chord, the vertical 

coordinates of the root and tip control points can vary between 0.45 and 1.55, while the center point can vary 

between 0.1 and 1.9. For z-coordinates, the tip control point can vary between -0.45 and 0.45 vertically, while this 

range for the center point is -0.8 to 0.8. Finally, for twist, the tip control point can vary between -3.12 and 3.12 

vertically, while the center point can vary from -5 to 5. Nonlinear constraints are enforced to ensure that each of 

these distributions fall within the ranges [0.45 1.55], [-0.45 0.45], and [-3.12 3.12] for chord, z-coordinates, and 

twist angle, respectively. 

C. Local Search by Physics-Based Surrogates 

The output space mapping approach used in the previous case was slightly modified for the new case. In the 

previous case, our OSM framework was driven exclusively by MATLAB’s fmincon optimization code using the 

SQP algorithm. However, for the current case, some difficulty was encountered when enforcing the constraints 

(particularly the bending moment constraint), as the SQP algorithm works well for objective function minimization 

but often yields infeasible designs. Conversely, MATLAB’s patternsearch algorithm is more costly but always 

yields feasible designs, assuming the feasible space can be located. For this reason, we used a combination of the 

two optimizers when optimizing the surrogate model, leading to a greatly increased number of low-fidelity function 

calls. However, because a VLM code is used as the low-fidelity model, a large number of function calls was not a 

concern. 

The local optimization algorithm was ran from 26 different initial designs around the design space; the first is the 

baseline design, while the other 25 were generated using Latin Hypercube Sampling (LHS). In order to avoid 

excessive clustering of the sampling plan, the LHS was optimized using the Morris-Mitchell space filling criterion, 

following Ref. 18. Moreover, the sampling plan initially had 100 different designs, but was filtered such that the 

planform area of all LHS designs were within ~6.5% of the baseline value. This percentage was varied manually 

until there were 25 designs in the filtered set of points. The target of 25 designs was selected based on the estimated 

total cost of all optimization processes. 

D. Optimization Results 

After running the optimization algorithm from all 26 initial designs, four results were selected based on 

uniqueness and feasibility (constraints ≤1%) of the optimized design. In addition, we selected only the cases that 

yielded designs with lower drag than the baseline shape (~40.8 drag counts). From this point forward, we will refer 

to the four starting points for these optimization runs as x1 through x4, while the optimized designs will be referred 

to as x1* through x4*. Provided in Fig. 9 are convergence metrics for the four selected cases. The top row provides 

the high-fidelity objective function at each OSM iteration, while the bottom row shows the three active constraints: 

internal volume, planform area, and bending moment coefficient (as defined by the aforementioned constraint 

functions). 

 

Figure 8. Wing shape distributions for Benchmark Case 6. 
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Figure 9. Convergence histories of the optimization runs. The upper row of graphs shows drag versus design 

iteration. The lower row shows the active constraint values versus design iterations. Active constraints 

include only the internal volume (black), planform area (blue), and bending moment (red), as angle of attack 

remained well within the allowed range, and thickness was not constrained because the sectional shape was 

fixed as the NACA 0012 airfoil. 
 

Based on these results, the bending moment constraint appears to be the most difficult to enforce. This is most 

likely due to the VLM model’s method of computing the bending moment coefficient, which involves integration of 

the span loading. Evidently, this method causes the high- and low-fidelity bending moment coefficient to be poorly 

correlated in this design space, which is an issue that OSM is unable to correct. This conclusion was further enforced 

by running the case without the bending moment constraint, which leads to much smoother convergence (as well as 

a greatly increased drag reduction of 12-13 counts). Furthermore, the high- and low-fidelity drag coefficient may 

also be poorly correlated near x4*, which may have caused poor convergence characteristics. 

Shown in Fig. 10 are drag reduction values during the optimization process. Shown on the x-axis is equivalent 

high-fidelity function evaluations, which is computed based on the number of high- and low-fidelity evaluations, as 

well as the average time ratio between the VLM and Euler models. In three out of four cases, the optimization 

process required under 20 equivalent high-fidelity model evaluations, which each required 20-30 minutes when 

running on 32 processors. Shown on the y-axis is the drag reduction in drag counts, which shows values ranging 

from 2 to 4 drag counts. 

 

 
Figure 10. Relative drag reduction (compared to the baseline design) versus optimization computational cost 

in terms of equivalent high-fidelity evaluations (computed based on number of high- and low-fidelity 

evaluations, as well as the average time ratio between the models). 
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Table 3 provides an optimization cost summary for the four cases. In most cases, the optimization required 12 or 

13 CFD simulations. However, starting from x4 led to the maximum number of iterations, at which point the 

optimization was halted. Meanwhile, the other cases stopped due to the step size or objective function stopping 

criteria. In terms of low-fidelity function calls, most cases required 10-20,000 VLM evaluations, which each took 

roughly a half second on average. This large number of evaluations was most likely incurred because many of the 

iterations first ran the pattern search algorithm, and then ran fmincon’s SQP algorithm after pattern search failed to 

locate a feasible design. Regardless, the optimization processes typically required 8-12 hours, which is relatively 

cheap in computational terms when considering adjoint information was not used. 

Given in Table 4 are metrics for the baseline and optimized wing designs. While the bending moment, internal 

volume, and planform area constraints are all active as expected, the angle of attack constraints (-3o ≤ α ≤ 6o) were 

never active. This may be due to the design space selected, or more specifically, the sectional shape which is fixed 

as the NACA 0012 airfoil. 

Figure 11 presents the baseline and optimized geometries for the four optimization results. For comparison, a 

separate optimization result, which did not utilize a bending moment constraint, is shown in green. This additional 

result used the same OSM algorithm and model setup as the other results, and was started from the baseline design. 

Looking at the left plot, cases x1 through x3 all converged to the same chord distribution. Optimization starting from 

x4 is not similar to the others, as it is narrowest in the center of the wing and has a smaller span. However, as 

mentioned previously, this case is most likely not converged, which may be due to the VLM model’s higher error in 

this region of the design space. The center plot shows the z-coordinate distribution of the quarter-chord line, which 

seems to show more multi-modality than chord or twist. In particular, x1* and x2* have dihedral in the inboard 

region and anhedral in the outboard region, while x3* and x4* have the opposite relationship. In terms of twist, all 

distributions are similar in that they twist downwards close to the wing tip. However, the ones with anhedral in the 

inboard region (x3* and x4*) have higher twist close to the root. Meanwhile, the result without the bending moment 

constraint is nearly linear with negative tip twist, which is intuitive as it would seem to reduce drag while also 

having a higher bending moment. 
 

Table 3. Optimization cost metrics for Benchmark Case 6 using Euler & VLM. 

 x1 x2 x3 x4 

Nf 12 12 13 21 
Nc 18,403 18,967 14,145 37,752 
Nf,eq 17.48 17.40 18.40 35.76 
tc (hr) 2.95 3.27 2.43 5.35 
tf (hr) 6.46 7.27 5.86 7.61 
ttot (hr) 9.41 10.54 8.29 12.96 
Stopping criterion Step size Objective function  Step size Number of iterations 

 

Table 4. Performance of the baseline and optimized designs for Benchmark Case 6 using Euler & VLM. 

 Baseline x1* x2* x3* x4* 

CD (cts) 40.78 36.69 37.29 38.40 38.87 
CMx 0.11369 0.10698 0.10711 0.10754 0.10682 
V (m3) 0.24818 0.24818 0.24824 0.24826 0.24828 
S (m2) 3.0411 3.0710 3.0713 3.0711 3.0700 
α (deg) 3.0532 3.1578 3.2229 2.3794 3.1308 

 
 

 
Figure 11. Shape distributions of the baseline and optimized designs for Benchmark Case 6 (Euler & VLM). 
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It is difficult to quantify how well the VLM-based low-fidelity model matches the Euler design space. Moreover, 

the unreliable optimization convergence from x4 is indicative of poor model correlation in some regions of the 

design space. This appears to be truer for bending moment than for drag. For this reason, we restarted the OSM 

optimization from the four resulting designs (x1 through x4), this time using variable mesh resolution rather than 

different physics. 

Figure 12 shows the resulting convergence histories of the restarted optimization, while Fig. 13 shows the 

convergence of drag reduction. The first column in Fig. 12 shows relatively uneventful convergence, although the 

constraints converged to slightly less infeasible values. This suggests that both low-fidelity models (and presumably, 

the high-fidelity model) have local minima at this design. The second and third columns show different stories, with 

the drag decreasing significantly during the restarted optimization. This could be indicative of VLM’s shortcomings 

(i.e., its inability to closely match Euler). Alternatively, the coarse-mesh low-fidelity model may lack the necessary 

resolution to predict dominant trends in the high-fidelity model. Finally, optimization from x4 was again stopped 

prematurely, as it was requiring a large amount of time to escape that particular region of the design space. 

In terms of constraints, the bending moment constraint now oscillates much less, which was expected. This 

suggests that, regarding bending moment, the coarse-mesh Euler simulation more closely matches the trends in the 

high-fidelity model when compared to VLM. 

 
Figure 12. Convergence histories of the optimization runs. The upper row of graphs shows drag versus design 

iteration. The lower row shows the active constraint values versus design iterations. Active constraints 

include only the internal volume (black), planform area (blue), and bending moment (red), as angle of attack 

remained well within the allowed range, and thickness was not constrained because the sectional shape was 

fixed as the NACA 0012 airfoil. 

 
Figure 13. Relative drag reduction (compared to the baseline design) versus optimization computational cost 

in terms of equivalent high-fidelity evaluations (computed based on number of high- and low-fidelity 

evaluations, as well as the average time ratio between the models). 
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Tables 5 and 6 show the resulting cost metrics and design performance metrics, respectively. In terms of 

computational cost, this restarted approach required 2-5 times more computing time than the previous approach. 

However, both of these approaches were distributed on 4 high-performance computing (HPC) jobs on 32 processors, 

so this additional step increased the total required time from roughly 2-3 days to 3-5 days. 

Figure 14 shows the resulting geometries of the optimized designs. Chord distributions still appear very similar 

among the designs, excluding the fourth starting point which was stopped prematurely. Conversely, dihedral now 

varies much less when compared to the previous results. This may suggest that, when dihedral is varied, the VLM 

model’s prediction of drag or bending moment does not closely match the Euler design space. Alternatively, this 

could also mean that the coarse-mesh Euler model is simply too coarse to capture subtle trends in the high-fidelity 

design space. 

Provided in Figs. 15, 16, 17, and 18 are the initial and final optimized wing shapes, as well as corresponding 

pressure coefficient contours. In each figure, the left two subplots show the initial design (x1, x2, x3, or x4) from the 

LHS sampling plan, while the right two subplots show the optimized shape (x1*, x2*, x3*, or x4*). In addition, the 

top subplots show the wing shapes when viewed from the trailing edge, while the bottom ones show the top surfaces 

of the wings. 

Figure 19 shows a comparison of the baseline and optimized wing shapes when viewed from the trailing edge. In 

addition, the final drag values are shown as well. It is worth noting that x1* (show in black) has both the lowest drag 

and the lowest variation in dihedral. 

Finally, Fig. 20 shows the resulting span loading of the baseline and optimized designs. It is interesting to note 

that the optimized designs have span load distributions that are nearly linear. This is to be expected, as the bending 

moment constraint necessitates higher inboard loading when compared to the baseline design. In addition, although 

x4* differs significantly from the other designs, the loading still matches closely with the other optimized designs. 

 

Table 5. Optimization cost metrics for Benchmark Case 6, restarted using Euler (coarse & fine meshes). 

 x1 x2 x3 x4 

Nf 4 9 7 10 
Nc 545 1,344 2,264 2,104 
Nf,eq 5.05 59.75 99.50 117.68 
tc (hr) 0.51 23.39 43.79 38.95 
tf (hr) 1.93 4.15 3.31 3.62 
ttot (hr) 2.44 27.54 47.10 42.57 
Stopping criterion Step size Step size  Step size Not converged 

 

Table 6. Performance of the baseline and optimized designs for Benchmark Case 6, restarted using Euler 

coarse & fine meshes. 

 Baseline x1* x2* x3* x4* 

CD (cts) 40.78 36.67 36.78 36.88 37.95 
CMx 0.11369 0.10689 0.10691 0.10668 0.10690 
V (m3) 0.24818 0.24818 0.24818 0.24819 0.24818 
S (m2) 3.0411 3.0707 3.0709 3.0690 3.0694 
α (deg) 3.0532 3.4597 3.6787 3.8690 3.2889 

 

 

 

 
Figure 14. Shape distributions of the baseline and optimized designs for Benchmark Case 6 (Euler & VLM). 
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Figure 15. Benchmark Case 6 optimized design 1 (x1): Initial (left) and optimized (right) shapes and surface 

pressure contours. The upper row shows the trailing edge view, and the lower row shows the planform view. 
 

 

 

 
Figure 16. Benchmark Case 6 optimized design 2 (x2): Initial (left) and optimized (right) shapes and surface 

pressure contours. The upper row shows the trailing edge view, and the lower row shows the planform view. 

 

 

D
ow

nl
oa

de
d 

by
 M

IS
SO

U
R

I 
U

N
IV

 O
F 

SC
IE

N
C

E
 &

 T
E

C
H

 o
n 

Fe
br

ua
ry

 9
, 2

02
3 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

7-
43

66
 



 

American Institute of Aeronautics and Astronautics 
 

 

15 

 
Figure 17. Benchmark Case 6 optimized design 3 (x3): Initial (left) and optimized (right) shapes and surface 

pressure contours. The upper row shows the trailing edge view, and the lower row shows the planform view. 
 

 

 
 

Figure 18. Benchmark Case 6 optimized design 4 (x4): Initial (left) and optimized (right) shapes and surface 

pressure contours. The upper row shows the trailing edge view, and the lower row shows the planform view. 
 

 

 

 
Figure 19. Trailing edge view of the baseline shape and all the optimized wing shapes 
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Figure 20. Span loading of the baseline and the optimized designs. 

IV. Conclusion 

Two benchmark aerodynamic design cases involving lift-constrained drag minimization of an unswept and 

untwisted rectangular wing in subsonic inviscid flow have been solved using surrogate-based optimization (SBO) 

techniques. In the first case (Benchmark Case 3), the optimization algorithms, both local and global search, were 

able to recover the ideal (elliptical) lift distribution as anticipated, although the computational cost of the algorithms 

varied significantly. In the second case (Benchmark Case 6), the multi-start local SBO algorithm converged to 

several local minima, indicating that the design space is multimodal in that case. However, further investigations are 

required since the lower fidelity model utilized in the study can be inaccurate under certain circumstances. Future 

work in this case will include global search with the high-fidelity model to verify and investigate the multimodality 

of the design space. 
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