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Efficient Inverse Design of Transonic Airfoils Using 

Variable-Resolution Models and Manifold Mapping 

Xiaosong Du1, and Leifur Leifsson2 
Computational Design Laboratory, Iowa State University, Ames, Iowa 50011 

Slawomir Koziel3 
Engineering Optimization & Modeling Center, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland 

This paper presents an efficient approach for simulation-based inverse design of airfoil 

shapes using variable-fidelity computational fluid dynamics models and manifold mapping 

(MM). Inverse design involves determining an airfoil shape fulfilling a given target 

performance characteristic. In particular, the pressure coefficient distribution is typically 

used in aerodynamic inverse design. Such a task can be challenging when using 

computationally expensive simulations. In the context of local optimization, the MM 

technique searches for a new design in the vicinity of the current design by constructing a 

fast multi-fidelity model, which is setup by the available evaluations of each of the high- and 

low-fidelity models at the current design. The MM-based multi-fidelity model predicts the 

high-fidelity model response at the new design by evaluating the low-fidelity model at the 

new design and applying the MM mapping. The MM-based multi-fidelity model is 

embedded within the trust-region algorithm and terminates based on the convergence of the 

argument, objective, and trust-region radius to yield the optimal design. The MM-based 

multi-fidelity algorithm only needs one high-fidelity model evaluation per design iteration. 

The proposed approach is illustrated on the inverse design of airfoils in transonic inviscid 

flow with the NACA 2412 airfoil as baseline and the pressure distribution of the RAE 2822 

airfoil at Mach 0.734 and lift coefficient 0.824 as the target. Using eight B-spline design 

variables, the results indicate the MM technique is able to reach the target distribution at a 

low computational cost when compared to derivative-free local search. 

Nomenclature 

A   = non-dimensional cross-section area of current design, scalar, [ - ] 

Amin  = non-dimensional minimum cross-section area, scalar, [ - ] 

c   = coarse model (low-fidelity model) 

Cd   = drag coefficient, scalar, [ - ] 

   = d/(1/2ρV
2S) 

Cl   = lift coefficient, scalar, [ - ] 

   = l/(1/2ρV
2S) 

Cl
t   = target lift coefficient, scalar, [ - ] 

Cp   = pressure distribution of current design, vector, [ - ] 

   = (p-p∞)/(1/2ρ∞V∞
2)  

Cp
t   = vector containing target pressure distribution, units: 1 

d.c   = drag count 

   = Cd = 1E-4 

f   = fine model (high-fidelity model)  

d   = drag force, scalar, [N] 

l   = lift force, scalar, [N] 
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g   = vector containing inequality constraints 

h   = vector containing equality constraints 

H   = scalar valued objective function 

i   = index of optimal design found within each optimization step 

l   = vector containing lower bounds 

l.c.   = lift count 

   = Cl = 1E-2 

M∞   = scalar valued free-stream Mach number, [ - ] 

Nc   = number of coarse model evaluations 

Nf   = number of fine model evaluations 

p   = static pressure at evaluated point, scalar, [Pa] 

p∞   = free-stream static pressure, scalar, [Pa] 

ρ∞   = free-stream fluid density, scalar, [kg/m3] 

s   = surrogate model 

S   = reference area, scalar, [m2] 

S   = correction matrix in manifold mapping method 

u   = vector containing upper bounds 

u   = speed relative to fluid, units: m/s 

V∞   = free-stream velocity, units: m/s  

x   = vector of design variables 

α   = scalar valued angle of attack, scalar, [deg] 

ρ   = mass density of fluid, scalar, [kg/m3] 

Abbreviation 

HPC  = High-Performance Computation 

MM  = Manifold Mapping 

PS   = Pattern Search 

I. Introduction 

raditional airfoil design optimization1 can be broadly classified into direct design optimization2 and inverse 

design3. The direct optimization aims at maximizing or minimizing one (or a set of) specific performance 

parameter(s), such as the lift and drag coefficient(s). The other type of design method, inverse design, combines the 

simulation model with the experience of the designer by design the shape to yield desired characteristics. For both 

types of optimizations, many advanced methods, such as gradient-based search4 and adjoint-based search5,6, have been 

developed. Many of these methods need gradient information from model solver, which may or may not be available.  

Surrogate-based methods are useful for speeding up simulation-based design optimization8,9. Multi-fidelity 

modeling techniques10 are particularly efficient for local optimization. Those types of techniques reduce the amount 

of high-fidelity model information required to setup a reliable model compared to approximation-based methods by 

encoding knowledge of the system physics within the multi-fidelity model using a hierarchy of low- and high-

fidelity models. This reduces the overall optimization cost. 

This work describes an efficient approach for aerodynamic inverse design optimization with variable-fidelity 

models and the manifold mapping technique11. The paper gives the technical details of the approach, and illustrates 

it on a design problem involving inverse design of airfoils in inviscid transonic flow. 

II. Formulation of the Inverse Design Problem 

This work considers nonlinear PDE-constrained optimization problems of the form12 

* argmin ( ( )) s.t. ( ) 0, ( ) 0,H
 

  
l x u

x f x g x h x                                                     (1) 

where x is the design variable vector, x* is the optimized design, H is a scalar valued objective function, f(x) is a vector 

with the figures of merit, g(x) is a vector with the inequality constraints, h(x) is a vector with the equality constraints, 

and l and u are the design variable lower and upper bounds, respectively. 

T 
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In inverse airfoil design, the goal is to determine the airfoil shape x* yielding a given target pressure coefficient 

distribution Cp
t (which describes the non-dimensional pressure acting normal to the surface of the airfoil). In this 

work, the objective function is written as 

2

( ( )) ( ) t

p pH C C f x x ,                                                                   (2) 

where Cp(x) is the pressure coefficient distribution for the current design x. The constraints of interest may include 

restrictions on the airfoil cross-section due to structural or volume requirements. This work considers an inequality 

constraint on the cross-sectional area as 

min( ) ( ) 0g A A  x x ,                                                                      (3) 

where Amin is the minimum non-dimensional cross-sectional area, and A(x) is the non-dimensional cross-sectional 

area of the current design x. The lift of the airfoil depends on the angle of the attack of the flow onto the airfoil. 

Since the lift can be calculated directly from the target pressure coefficient distribution, an equality constraint is 

considered of the form 

( ) ( , ) 0t

l lh C C   x x ,                                                                     (4) 

where Cl
t is the target lift coefficient (based on the target pressure), Cl(x,) is the lift coefficient of the current 

design x at the angle of attack . This equality constraint is handled by using  as a dummy variable during the 

simulation process. This way the constraint (4) can be easily fulfilled for the current design x. 

The design problem (1) with the formulation (2)-(4) is challenging since computationally expensive simulations 

are needed, and the dimensionality of the design space can be large. Moreover, gradient information through 

efficient adjoint methods5,6 may not be available. Therefore, this work utilizes efficient surrogate-based optimization 

with a hierarchy of multi-fidelity models. 

 

III. Multi-Fidelity Design Optimization with Manifold Mapping 

Solving (1) is accelerated using a multi-fidelity optimization algorithm of the form 

( 1) ( )arg min ( ( ))i iH

 


l x u

x s x ,                                                                  (5) 

where x(i), i = 0, 1, …, is a sequence of approximate solutions to (1), l and u are the lower and upper bounds on x, 

respectively, and s(i)(x) is the multi-fidelity model at design iteration i. The objective function H for inverse design is 

defined in the next section. The algorithm (5) is embedded within the trust-region framework13-15. The algorithm (5) 

is driven by the pattern search algorithm12,16. 

Manifold mapping5,6 (MM) is used in this work to construct the multi-fidelity model s(x). The MM model is 

defined at each iteration i as 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i  s x f x S c x c x ,                                                       (6) 

where S(i) is the correction matrix at each iteration, defined as 

( ) †i  S ΔF ΔC ,                                                                         (7) 

where 
( ) ( 1) ( ) (max{ ,0})[ ( ) ( ) ... ( ) ( )]i i i i n   ΔF f x f x f x f x ,                                             (8) 

and 
( ) ( 1) ( ) (max{ ,0})[ ( ) ( ) ... ( ) ( )]i i i i n   ΔC c x c x c x c x ,                                          (9) 

where n denotes dimensionality of the design space, and 

† † T ΔC ΔC ΔCΔC V Σ U                                                                      (10) 

is the pseudoinverse of C, and UC, C, and VC are the factors in the singular value decomposition of the matrix 

C. The matrix C
†
 is the result of inverting the nonzero entries in C, leaving the zeroes invariant. 
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IV. Numerical Example 

The proposed approach is illustrated on a numerical example involving the inverse design of transonic airfoil shapes. 

This section gives the details of the problem statement, modeling approach, and optimization results. 

A. Problem Statement 

Inverse design of airfoils in transonic inviscid flow is considered using the NACA 2412 airfoil as a baseline and the 

pressure distribution of the RAE 2822 airfoil as the target. The Mach number is M = 0.734, and the lift coefficient is Cl = 

82.4 l.c. (where 1 l.c. = 1 lift count = 1.0E−2). The objective is to minimize the norm of the difference between the target 

distribution and the pressure distribution of the given airfoil shape (cf. (2)). The design variables are the vertical 

coordinates of eight control points in a B-spline airfoil shape parameterization constrained to be within upper and lower 

bounds of 0.1 and −0.1, respectively (Fig. 1a). 

B. Computational Modeling 

The compressible Euler equations are solved on an O-type mesh (Fig. 1b) using the Stanford University Unstructured 

code17. This O-type method, generated from Pointwise, has the far-field boundary as 55 chord lengths away from the 

airfoil surface, and the first-layer mesh thickness as 0.0004 chord length. The high-fidelity model (f(x)) uses a 512  512 

mesh, due to fixed-Cl grid convergence study on RAE2822, where difference of drag coefficient between 512  512 mesh 

and 1024  1024 mesh is within 0.1 drag counts. In contrast, the low-fidelity model (c(x)) uses a 64  64 mesh, due to its 

efficiency, taking only 1.1 minutes in grid convergence study case, and better accuracy than 32  32 mesh. 

C. Optimization Results 

The optimization problem is solved using the MM technique, taking 512  512 mesh as high-fidelity model and 64  

64 mesh as low-fidelity model, as well as directly applying the pattern search (PS)12,16 algorithm, using 512  512 

mesh only. Both approaches do not use gradients. Figure 2 gives the evolution of the optimization run, as well as the 

initial and optimized shapes and responses. Figure 3 gives contour plots of the Mach number in the vicinity of the 

airfoil shapes. Table 1 summarizes the computational cost. 

It can be observed that the MM algorithm converges relatively smoothly, but the PS algorithm does not converge 

fully (Fig. 2). The MM optimum matches closely to the target distribution, whereas the PS optimum is far away 

from the target (Fig. 3). The MM needed 8 high-fidelity simulations and 1,635 low-fidelity model evaluations, 

taking around 47 hours on a 32-processor high-performance computation (HPC) cluster (Table 1). PS was 

terminated after 15 design iterations using 781 high-fidelity simulations, taking around 482 hours. In this case, the 

physics-based search is more than an order of magnitude faster than the direct one. 

 

0 0.2 0.4 0.6 0.8 1
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-0.06

-0.04

-0.02
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      (a)                (b) 

Figure 1. Airfoil problem setup: (a) airfoil shape parameterization, (b) O-type computational mesh. 
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(a) Norm of the argument (b) Objective function

MM
PS

Baseline

MM

PS

MM

PS

Target

(c) Shapes   (d) Pressure coefficient distributions  
 

Figure 2. Optimization histories and characteristics of the designs. 

 

Table 1: Optimization results. 

Parameter/Method 
Baseline 

(NACA 2412) 

Target 

(RAE 2822) 

Pattern Search 

(PS) 

Manifold Mapping 

(MM) 

Cd (d.c.) 331.8 76.3 120.7 76.3 

A 0.0817 0.0779 0.0812 0.0780 

Nc    1,635 

Nf   781 8 

CPU Time (hours)   481.7 47.0 
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(a) Baseline                                                                  (b) Target 

        
(c) PS optimum                                                            (d) MM optimum 

Figure 3. Mach number contour plots in the vicinity of the baseline, target, and optimized airfoils. 

V. Conclusion 

The manifold mapping technique is used for aerodynamic inverse design optimization with variable-resolution 

computational fluid dynamics models, multi-fidelity trust-region algorithm, and a local search technique. The results 

of the numerical example show that the approach yields satisfactory designs at low cost. Sensitivity information is 

not required in the optimization process. Future work will investigate the scalability of the approach to large-scale 

simulation problems. 
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