
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Mechanical and Aerospace Engineering Faculty 
Research & Creative Works Mechanical and Aerospace Engineering 

23 Oct 2018 

Multifidelity Modeling of Ultrasonic Testing Simulations with Multifidelity Modeling of Ultrasonic Testing Simulations with 

Cokriging Cokriging 

Leifur Leifsson 

Xiaosong Du 
Missouri University of Science and Technology, xdnwp@mst.edu 

Slawomir Koziel 

Follow this and additional works at: https://scholarsmine.mst.edu/mec_aereng_facwork 

 Part of the Systems Engineering and Multidisciplinary Design Optimization Commons 

Recommended Citation Recommended Citation 
L. Leifsson et al., "Multifidelity Modeling of Ultrasonic Testing Simulations with Cokriging," 2018 IEEE MTT-
S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization, 
NEMO 2018, article no. 8503399, Institute of Electrical and Electronics Engineers, IEEE, Oct 2018. 
The definitive version is available at https://doi.org/10.1109/NEMO.2018.8503399 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Mechanical and Aerospace Engineering Faculty Research & Creative Works by an 
authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use 
including reproduction for redistribution requires the permission of the copyright holder. For more information, 
please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng_facwork
https://scholarsmine.mst.edu/mec_aereng
https://scholarsmine.mst.edu/mec_aereng_facwork?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F4908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=scholarsmine.mst.edu%2Fmec_aereng_facwork%2F4908&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/NEMO.2018.8503399
mailto:scholarsmine@mst.edu


XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Multifidelity Modeling of Ultrasonic Testing 

Simulations with Cokriging 
 

Leifur Leifsson 

Dep. of Aerospace Engineering 

Iowa State University 

Ames, IA 50011, USA 

leifur@iastate.edu 

Xiaosong Du 

Dep. of Aerospace Engineering 

Iowa State University 

Ames, IA 50011, USA 

xiaosong@iastate.edu 

Slawomir Koziel 

Eng. Opt. & Modeling Center 

Reykjavik University 

Reykjavik, Iceland 

koziel@ru.is 

 
Abstract—Multifidelity methods are introduced to the 

nondestructive evaluation (NDE) of measurement systems. In 

particular, Cokriging interpolation metamodels of physics-based 

ultrasonic testing (UT) simulation responses are utilized to 

accelerate the uncertainty propagation in model-assisted NDE. 

The proposed approach is applied to a benchmark test case of 

UT simulations and compared with the current state-of-the-art 

techniques. The results show that Cokriging captures the physics 

of the problem well and is able to reduce the computational 

burden by over one order of magnitude compared to the state of 

the art. To the best of the author’s knowledge, this the first time 

multifidelity methods are applied to model-assisted NDE 

problems. 

Keywords—nondestructive evaluation; ultrasonic testing; 

simulations; metamodeling; polynomial chaos expansions; kriging; 

cokriging. 

I. INTRODUCTION  

Uncertainty propagation (UP) plays an important role in 
model-assisted nondestructive evaluation (NDE) [1]. In 
particular, UP is needed in model-assisted probability of 
detection (MAPOD), and defect characterization to quantify 
the influence of uncertain input parameters on nondestructive 
testing (NDT) systems [2, 3]. Examples of NDT systems 
include ultrasonic testing (UT) and eddy current testing. 

Current state-of-the-art UP techniques used in NDE use 
Monte Carlo sampling (MCS) either on the true physics-based 
simulation model or on metamodel approximations of the 
physics-based simulations [4]. Recent development in 
modeling of NDT systems have realized accurate simulation 
models [5]. However, these models are time-consuming to 
evaluate, often on the order of six hours on a high-performance 
computing clusters. Moreover, the NDT systems under 
consideration typically have a large number uncertain input 
parameters, anywhere from a handful to tens or even hundreds. 
Clearly, MCS on the true model can then be impractical. In 
some cases, even the use of metamodels, such as Kriging 
interpolation [6], can be challenging. 

In this work, multifidelity methods are introduced to NDE 
area for the first time, to the best of the author’s knowledge, 
and applied to the uncertainty propagation of UT simulation 
models. Multifidelity methods are used to fuse information of 
varying degrees of fidelity. In particular, multifidelity methods 
leverage the speed of low-fidelity models to reduce the 
computational burden, while guaranteeing that the accuracy of 

the results are at the high-fidelity level. The work presented in 
this paper uses the fusion-based Cokriging metamodel [7] to 
construct a fast and accurate multifidelity model of high- and 
low-fidelity UT simulations. 

The paper is organized as follows. The UT simulation 
models are described in Section II. Section III gives the details 
of the metamodeling methods. The proposed approach is 
applied to two-parameter test case and compared to state-of-
the-art methods in Section IV. The paper ends with conclusion. 

II. ULTRASONIC TESTING SIMULATIONS 

In tfhis work, a benchmark UT problem is utilized to evaluate 

the proposed approach. The benchmark problem involves a 

spherically-void-defect in a fused quartz block. The ultrasonic 

testing is carried out in water using a spherically focused 

transducer of radius 6.23 mm and a frequency range of 0 Hz to 

10MHz. Figure 1 shows the setup of the benchmark case. 

The high-fidelity UT simulation is the Thompson-Gray 
model based on the paraxial approximation of the incident and 
scattered ultrasonic waves [8]. The model computes the 
spectrum of voltage at the receiving transducer in terms of the 
velocity diffraction coefficients of the transmitting/receiving 
transducers, scattering amplitude of the defect and a frequency-
dependent coefficient known as the system-efficiency function. 
Here, the velocity diffraction coefficients are calculated using 
the multi-Gaussian beam model, and the scattering amplitude 
of the spherical-void is calculated using the method of 
separation of variables. The system efficiency function, which 
is a function of the properties and settings of the transducers 
and the pulser was taken from the WFNDEC archives. The 
time-domain pulse-echo waveforms are computed by 
performing fast Fourier transform on the voltage spectrum. 

The low-fidelity UT simulation model is based on the same 
model as the high-fidelity one but with a simplified physics 
model. In particular, the low-fidelity model uses the Kirchhoff 
approximation to calculate the scattering [9]. This simplifies 
the computation and speeds it up. However, the resulting 
model is not as accurate 

To validate the models on the benchmark problem 
mentioned above, they are compared against experimental data, 
shown in Fig. 2. The high-fidelity model (denoted as SOV) 
matches well with the experimental data, whereas the low-
fidelity one (denoted by KA) captures the overall trend well 
but is not as accurate. 

2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)

978-1-5386-5204-6/18/$31.00 ©2018 IEEEAuthorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 09,2023 at 22:00:50 UTC from IEEE Xplore.  Restrictions apply. 



 
Fig. 1. Setup of the spherically-void defect benchmark test case. 

 
Fig. 2. Comparison of the amplitude responses of the UT simulation models 
with expermental measurements of a defect of 0.34 mm diameter. Here, SOV 

is the high-fidelity model response and KA is the low-fidelity one. 

III. METAMODELING 

This section starts by describing two of the current state-of-the-
art metamodeling techniques used for UT simulations, PCE 
with ordinary least squares (OLS) regression and Kriging, 
before describing the proposed multifidelity approach. 

A. Polynomial Chaos Expansions 

Polynomial chaos expansion (PCE) metamodels have the 

generalized formulation [10] 

1
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where X  ℝm is a vector with random independent 

components described by a probability density function fX, Y ≡ 

M(X) is a map of X, i is the index of ith polynomial term, Ψ is 

multivariate polynomial basis, and α is corresponding 

coefficient of basis function. In practice, a truncated form of 

the PCE is used 
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where MPC(X) is the approximate truncated PCE model, and P 

is the total number of sample points and can be calculated as 
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where p is the order of the PCE, and n is the total number of 
random input variables. 

Solving for the coefficients α is formulated as a least-
squares minimization problem 

ˆ argmin [ ( ) ( )].TE M  α α X X                (4) 

In this work, the ordinary least-squares (OLS) method is used 
to solve (4) using 

1ˆ ( ) ,T Tα A A A Y                           (5) 

where Y is the vector of model responses, and Aji = Ψi(xj), j = 1, 
…, n, i = 1, …, P. 

B. Kriging 

Given the training set XB.KR = {xKR
1, xKR

2, …, xKR
NKR}  XR be the 

base (training) set and s(XB.KR) the corresponding surrogate model 

responses. The kriging interpolant is derived as [11] 

1
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    s x Mα r x Ψ s X Fα ,        (6) 

where M and F are Vandermonde matrices of the test point x 

and the base set XB.KR, respectively. The coefficient vector  is 

determined by generalized least squares. r(x) is an 1NKR 

vector of correlations between the point x and the base set 

XB.KR, where the entries are ri(x) = (x,xKR
i), and  is a 

NKRNKR correlation matrix, with the entries given by i,j = 

(xKR
i, xKR

j). In this work, the exponential correlation function 

is used, i.e., (x,x’) = exp(k=1,...,n –k|xk-x’k|), where the 

parameters 1, ..., n are identified by maximum likelihood 

estimation (MLE). The regression function is chosen as 

F = [1 ... 1]T and M = (1). 

C. Cokriging 

The generation of the cokriging model is carried out through a 
sequential construction of two kriging models: the first model 
sKR composed from the physics-based metamodel training 
samples (XB.KR, sKR(XB.KR)), and the second sKRd model 
generated on the residuals of the high- and low-fidelity samples 

(XB.KRf, sd), where sd = f(XB.KRf) – sKR(XB.KRf). The parameter 

 is a part of MLE of the second model. 
The cokriging model sCO(x) is defined as [12] 

1( ) ( ) ( )CO d CO

    s x Mα r x Ψ s F α ,              (7) 

where the block matrices M, F, r(x) and  can be written as a 
function of the two underlying Kriging models sKR and sKRd:  

2 2 2 2

.( ) [ ( ), ( , ) ( )]
fB KR d d       r x σ r x σ r x X σ r x , 

0
CO

d d

 
  

 

F
F

F F

, [ ]c dM M M  ,  

and 

water focused transducer 

spherically-void-defect fused quartz block 

v(
t)

 (
m

V
) 

2018 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO)

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on February 09,2023 at 22:00:50 UTC from IEEE Xplore.  Restrictions apply. 



2 2

. .

2 2 2

. .

( , )

0 ( , )

f

f f

B KR B KR

B KR B KR d d





  
 

     

σ Ψ σ Ψ X X
Ψ

σ Ψ X X σ Ψ

, 

where (F, , , M) and (Fd, d, d, Md) are matrices obtained 

from the sKR and sKRd, respectively. Generally, 2 and d
2 are 

process variances, while (,) and d(,) stand for correlation 

matrices of two datasets with the optimized k parameters and 
correlation function of sKR and sKRd, respectively. 

IV. NUMERICAL EXAMPLE 

A. Problem Setup 

The proposed approach is illustrated on the spherically-void-
defect benchmark problem (Fig. 1) with two uncertain input 
parameters, the probe angle, θ, and the probe F-number, F, 
which are distributed as N(0, 1) deg. and U(13, 15), 
respectively. The objective is to model the peak amplitude of 
the UT simulation response as a function of the uncertain input 
parameters, and perform the uncertainty propagation. 

The PCE metamodel with OLS and the Kriging 
metamodels are constructed using the high-fidelity model, 
whereas the Cokriging uses both the high- and the low-fidelity 
models. The metamodel construction is performed for defect 
sizes of 0.1 to 0.5 mm in increments of 0.1 mm. Latin 
hypercube sampling is used as the sampling scheme. 

B. Results 

Figure 3 shows the root mean squared error (RMSE), in mV, as 
a function of the number of samples of the high-fidelity model 
for a defect size of 0.5 mm. It can be seen that the Cokriging 
metamodel requires over one order of magnitude fewer high-
fidelity samples than the current state-of-the-art metamodeling 
technique, Kriging in this case, to reach the desired accuracy 
level. The Cokriging model was setup using 1,000 low-fidelity 
model samples, which was determined by a parametric study. 
Figure 4 shows the variation of the normalized RMSE 
(NRMSE) with the defect size, indicating that the Cokriging 
metamodel is capable of reaching the same level of accuracy as 
the other two techniques across the defect size range. 

Figures 5 and 6 show the convergence of the statistical 
moments in the uncertainty propagation for a defect size of 0.5 
mm. The results show that the PCE metamodeling approach 
converges quickly towards the mean and the standard 
deviation. Note that the convergence of the PCE metamodel is 
achieved with using MCS. MCS using the Cokriging 
metamodel needs a large number of samples to converge. 
However, the Cokriging metamodel is fast to evaluate and the 
cost of the MCS is negligible compared to the cost of setting 
up the model. Moreover, MCS with the Cokriging metamodel 
is very similar to the MCS on the true model, which indicates 
that the Cokriging model captures well the output space of the 
true model. MCS with the Kriging metamodel requires 
significantly more samples to reach a converged result. 

 

Fig. 3. Metamodeling setup cost for a defect size of 0.5 mm. 

 

Fig. 4. Normalized error of the metamodels for different defect sizes. 

 

Fig. 5. Convergence on the mean for uncertainty propagation. 
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Fig. 6. Convergence on the standard deviation for uncertainty propagation. 

V. CONCLUSION 

Multifidelity modeling of ultrasonic testing simulations has 
been proposed in the context of model-assisted nondestructive 
evaluation (NDE). In particular, the multifidelity models were 
constructed using cokriging interpolation to accelerate the 
uncertainty propagation in the NDE process. The results show 
that the multifidelity method is promising for significantly 
reducing the computational burden of model-assisted NDE. 
Future work will consider NDE problems of higher complexity 
in terms of simulation model fidelity and parameter space 
dimensionality to further characterize the proposed approach. 
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