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Abstract—Model-assisted probability of detection (MAPOD) 

and sensitivity analysis (SA) are widely used for measuring the 

reliability of nondestructive testing (NDT) systems, such as 

ultrasonic testing (UT), and understanding the effects of 

uncertainty parameters. In this work, a stochastic expansion-

based metamodel is used in lieu of the physics-based NDT 

simulation model for efficient uncertainty propagation while 

keeping satisfactory accuracy. The proposed stochastic 

metamodeling approach is demonstrated for MAPOD and SA on 

a benchmark case for UT simulations on a fused quartz block 

with a spherically-void defect. The proposed approach is 

compared with direct Monte Carlo sampling (MCS), and MCS 

with Kriging metamodels. The results indicate that around one 

order of magnitude reduction in the number of model 

evaluations required for MAPOD analysis can be obtained. 

Moreover, the results indicate around two orders of magnitude 

reduction of the number of model evaluations for the 

convergence of the statistical moments and obtaining the 

problem sensitivities. 

Keywords—MAPOD; sensitivity analysis; nondestructive 

testing; NDT; stochastic metamodeling; MCS; Kriging metamodels 

I. INTRODUCTION 

The concept of probability of detection (POD) [1] was 
initially proposed for experimentally measuring the reliability 
of nondestructive testing (NDT) systems, such as ultrasonic 
testing (UT) and eddy current testing. Sensitivity analysis (SA) 
[2, 3] on the other hand is mainly used for quantifying the 
effects of each uncertainty parameter has on the model 
response. With the development of accurate physics-based 
NDT models, such as the full wave ultrasonic model, model-
assisted POD (MAPOD) [4, 5] and SA can be utilized for 
reducing the amount of experimental information required in 
traditional POD analysis. 

Current state-of-the-art methods for both MAPOD and SA 
rely heavily on the Monte Carlo sampling (MCS) method on 
the true physics-based model [4, 5]. The MCS-based 
uncertainty propagation (UP) is computationally costly because 
it requires large numbers of model evaluations, and it can 
become impractical when each model evaluation is time-
consuming. In order to alleviate the computational burden, 
metamodeling approaches, such as Kriging interpolation 
metamodeling, and polynomial chaos expansion (PCE) 
methods [6, 7], have recently been introduced to the NDT area. 

In this work, we apply the PCE-based metamodel with the 
least-angle regression sparse (LARS) technique [7] for efficient 
MAPOD and SA of NDT systems. The approach is 
demonstrated on a benchmark case for ultrasonic testing of a 
fused quartz block with a spherically-void defect. The results, 
including POD analysis, convergence on statistical moments 
and sensitivity analysis, are compared against state of the art 
approaches in the NDT area, i.e., MCS of the true physics-
based model, MCS with Kriging interpolation metamodels, and 
PCE-based metamodel with the ordinary least squares (OLS) 
method [6]. 

This paper is organized as follows. Section II describes 
NDT, MAPOD, and sensitivity analysis using Sobol’ indices. 
Section III gives the details of Kriging metamodeling, and the 
PCE metamodels, including the proposed PCE-based LARS 
metamodel. Section IV gives the results of the numerical 
results of demonstration case. The paper ends with conclusion. 

II. MAPOD AND SOBOL’ INDICES 

A. Nondestructive Testing 

Nondestructive testing (NDT) refers to the process of 

inspecting, testing, or evaluating materials, components or 

assemblies for discontinuities, or differences in characteristics 

without destroying the serviceability of the part or system. 

Modern NDT systems are widely used for manufacturing, 

fabrication, and in-service inspections to ensure product 

integrity and reliability, in order to control the manufacturing 

process, reduce production costs, and maintain uniform 

quality level. 

Varieties of NDT techniques have been developed, such as 

ultrasonic, electromagnetic, and radiographic. In this work, the 

focus is ultrasonic testing, which has the same principle with 

naval SONAR. Ultra-high frequency sound is introduced into 

the part or system being inspected, and if the sound hits a 

material with a different acoustic impedance (density or 

acoustic velocity), some of the sound will reflect back to the 

sending unit and can be presented on a visual display. Based 

on the strength of the signal, the defect size or degree of 

damage can be characterized. 
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B. Model-Assisted Probability of Detection 

Model-assisted probability of detection (MAPOD) is 
developed for reducing experimental budgets for measurement 
of the reliability of NDT systems. Commonly used 
terminologies in probability of detection (POD) analysis are 
“90% POD” and “90% POD with 95% confidence interval”, 
which are written as a90 and a90/95, respectively [3]. 

In this work, POD is calculated from the correlation of “ â  

vs. a” data, where â  is the model response and a is the defect 

size. Based on experimental observations a log-log scale 

relationship between â  and a is modeled, or 
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where the coefficients ꞵ0 and ꞵ1 can be determined by the 

maximum likelihood method, and the δ has a Gaussian 

distribution with zero mean and standard deviation σδ, 

Gaussian (0, σδ). This standard deviation can be determined by 

the residuals of the observed data. 

The POD can be obtained as the probability that the 

obtained ultrasonic signal lies above arbitrary user-defined 

threshold ˆ
thresholda , or 
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where Φ is the standard normal distribution function. 

From the equation above, it is straightforward to obtain 
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which is the cumulative density function of a log-normal 
distribution with mean μ and standard deviation σ given by 
 

0

1

ˆln
,thresholda 





                                 (4) 

 

1

,


                                          (5) 

 

where the parameters ꞵ0, ꞵ1, and σδ can be obtained by 

maximum likelihood method. 

C. Sobol’ Indices 

Sobol’ indices (also known as variance-based sensitivity 

analysis) work as a global sensitivity analysis approach which 

is popularly used and proved to be robust, interpretable and 

efficient in various areas including NDT field [2]. It 

decomposes model response as  
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where X is design variable, f0 is a constant, and fi is orthogonal 

function in terms of conditional expected value of Xi. 

Further simplification can be made, to make the first-order 

and total-order Sobol’ indices as 
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where X~i indicates the set of all variables except Xi. 

III. METAMODELING METHODS 

Metamodeling methods, such as Kriging and polynomial 

chaos expansions (PCE), have been successfully introduced to 

NDT area for efficient uncertainty propagation [4-6]. This 

section describes the generalized Kriging metamodel and PCE 

integrated with state-of-the-art regression techniques. 

A. Kriging interpolation 

Kriging interpolation is a type of deterministic metamodel 
widely used, because it can model highly-nonlinear functions 
with multiple extremes well. The basic function of Kriging 
interpolation can be written as the sum of a global trend 
function, fT(x)ꞵ, and a Gaussian random function, Z(x), as 
follows [8] 
 

( ) ( ) ( ),Ty Z x f x β x                             (9) 

 

where ,mx  and fT(x)ꞵ is taken as either constant or low-

order polynomials, and Z(x) denotes a stationary random 
process with zero mean, variance σ2 and nonzero covariance. 

From the derivation by Sacks [8], the Kriging predictor for 
untried x can be written as 
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where the generalized least squares estimation of ꞵ0 is 
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where 1 is a vector filled with ones, and R, r are the correlation 
matrix and the correlation vector, respectively. 

B. Polynomial Chaos Expansions 

Polynomial chaos expansions (PCEs) are stochastic 
metamodels consisting of orthogonal bases corresponding with 
the statistical distributions of random inputs. The PCE 
metamodel has a generalized format of 
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where, X  ℝM is a vector with M random independent 
components, described by a probability density function fX, Y ≡ 
M(X) is a map of X, i is the index of ith polynomial term, Ψ is 
multivariate polynomial basis, α is corresponding coefficient of 
basis function, and P is the truncated number of polynomial 
terms calculated as 
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where, p is the required order of PCE, and n is the total number 
of random variables. 

Solving for the coefficients α is the core of constructing a 
PCE model, and is typically formulated as a least-squares 
minimization problem 
 

ˆ argmin [ ( ) ( )].TE M  α α X X                (14) 

 
This work refers to this approach as ordinary least-squares 
(OLS) with the coefficients obtained by solving 
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where Y is vector of model response, Aji = Ψi(xj), j = 1, …, n, i 

= 1, …, P. 

The proposed method of this work is the least-angle 
regression (LARS) method which modifies (14) by adding a 
regularization term to favor low-rank solution 
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where λ is a penalty factor, ||α||1 is L1 norm of α. 

Comparing (6) and (12), allows the PCE-based models to 

give the Sobol’ indices without additional computational 

efforts as 
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where D is the total variance of model response, α1st is 

coefficients of terms containing only kth parameter, αtotal is 

coefficients of any terms containing kth parameter. 

IV. TEST CASE 

The proposed approach is demonstrated on the spherically-
void-defect benchmark problem, as shown in Fig. 1. In this 
work, the physics-based ultrasonic testing model consists of 
Thompson-Gray model for transmission and reception process, 
multi-Gaussian beam model, and separation of variable model 
for the scattering process. The validation of the physics model 
is shown in Fig. 2, showing satisfactory match with the 
experimental results. 

Three uncertainty parameters are considered: the probe 
angle (θ), the probe F number (F), and the x location of the 
transducer (x). Here, the following distributions are assumed: θ 
~ N(0, 1) deg., F ~ U(13, 15), and x ~ U(0, 1) mm. 

Comparison of the metamodels, based on the root mean 
squared error (RMSE) and the normalized RMSE (NRMSE), is 
shown in Fig. 3. It can be seen that the proposed LARS-based 
PCE outperforms the traditionally used Kriging interpolation 
metamodel and the OLS-based PCE method. In particular, to 
reach 1%σ of the testing points, LARS-based PCE reduces the 
number of sample points by around one order of magnitude, 
compared with the state-of-the-art MCS and Kriging. 

After constructing the PCE metamodels, the POD curves 
are calculated as shown in Fig. 4. The Sobol’ indices for this 
case are given in Figs. 5 and 6. The results indicate that the 
probe angle θ has a significantly larger impact on the model 
response than the probe F number and probe x location. In fact, 
the probe F number has an insignificant impact on the model 
response in this case. Furthermore, the results indicate that 
there is not much interaction effects of the random input on the 
model response since the first order and total Sobol’ indices are 
of comparable absolute values for each variable. 

 

Fig. 1. Spherically void defect under focused transducer. 

 

Fig. 2. Validation on physics model (analytical solution). 
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Fig. 3. Validation and comparison of metamodels on RMSE, a = 0.5mm. 

 

Fig. 4. POD curves generated by LARS PCE. 

 

Fig. 5. 1st order Sobol’ indices. 

 

Fig. 6. Total order Sobol’ indices. 

CONCLUSION 

In this paper, the proposed LARS PCE metamodel is 

demonstrated on a model-assisted probability of detection 

analysis using the spherically-void-defect benchmark problem 

under ultrasonic testing. The proposed approach outperforms 

the current state-of-the-art methods in terms of computational 

efficiency in terms of uncertainty propagation and sensitivity 

analysis. Future work will consider industry-relevant problems 

of higher complexities. 
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