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Abstract—The PC-Kriging metamodeling method is proposed 

for yield estimation of multi-band patch antennas. PC-Kriging is a 

combination of polynomial chaos expansion (PCE) and Kriging 

metamodeling, where PCE is used as a trend function for the 

Kriging interpolation metamodel. The method is demonstrated on 

the Ishigami analytical function and a dual-band patch antenna. 

The PC-Kriging is shown to reach the prescribed accuracy limit 

with significantly fewer training points than both PCE and 

Kriging. This translates into considerable computational savings of 

yield estimation over alternative metamodel-based procedures and 

direct EM-driven Monte Carlo simulation. The saving are 

obtained without compromising evaluation reliability. 

Keywords—Dual-band patch antenna, yield estimation, 

polynomial chaos expansion, Kriging, PC-Kriging. 

I. INTRODUCTION  

 Manufacturing tolerances, especially those pertinent to 
geometry parameters may seriously affect performance of the 
antenna systems. Accounting for these requires uncertainty 
quantification. One of the important metrics is the yield [1], i.e., 
the expected percentage of designs that satisfy the prescribed 
performance requirements [2]. Because reliable antenna 
evaluation can only be achieved through expensive full-wave 
electromagnetic (EM) analysis [3], conventional statistical 
analysis (e.g., Monte Carlo simulations [4]) necessarily 
involving massive EM simulations is computational prohibitive. 

The cost-related difficulties can be alleviated by 
metamodel-assisted techniques such as response surface 
approximation (RSA) [5], Kriging metamodel [6], Gradient 
Enhanced Kriging [7], and polynomial chaos expansion (PCE) 
[8]. Unfortunately, all these methods are seriously limited due 
to a rapid growth of the number of training samples necessary 
to construct the model as a function if increasing parameter 
space dimensionality. 

In this work, the PC-Kriging metamodeling method [9], 
combining PCE and Kriging, is introduced into the field of 
antenna design, aiming at fast estimation of the yield at the 
expense of a possibly small number of EM analyses of the 
structure at hand. PCE [10] is known to be convenient at 
capturing the tendency of the objective function, whereas 
Kriging [11] handles the model response at the training points. 
PC-Kriging utilizes PCE as the trend function for the Kriging 
model, supposedly combining the advantages of both 
metamodels. The PC-Kriging scheme is demonstrated on the 
Ishigami function and a dual-band patch antenna. 

The paper is organized as follows. Formulation of the yield 

estimation problem is described in Section II. Section III gives the 

details of the metamodeling methods. The proposed approach is 

illustrated and compared to the PCE and the Kriging metamodels 

in Section IV. Section V concludes the work. 

II. ANTENNA YIELD ESTIMIATION 

 Let R(x) denote the antenna responses of interest evaluated 

using an EM simulation model, e.g., the reflection 

characteristic; xℝm is a vector of designable parameters. The 

nominal design is denoted by x0 = [x1
0, x2

0,…, xn
0]T. Due to the 

manufacturing tolerances or uncertainties existing in the 

antenna system, the actual parameters are x0+dx, where dx is a 

random vector drawn according to a pre-assigned probability 

distribution. 

Let H(x) be a function defined as [1] 

 
1,  if ( ) satisfied the design specifications

( )
0,  otherwise

H


 


R x
x     (1) 

The yield at the nominal design x0, i.e., the probability of 

satisfying the specifications, is given by 

0 0

1
( ) [ ( )] / ,

N j

j
Y H d N


 x x x                       (2) 

where dxj, j = 1, 2, …, N, are the random deviations as 
described above. 

In this work, for the sake of computational efficiency, the 

yield is estimated using a response feature approach [1]. This 

allows us to “flatten” highly nonlinear antenna responses 

which facilitates construction of the metamodels while being 

sufficient to determine satisfaction/violation of the design 

specs. 

III. METAMODELING 

 We start by outlining the two relevant state-of-the-art 

metamodeling techniques, PCE and Kriging. This puts us in a 

position do describe the process of constructing a PC-Kriging 

metamodel. 

A. Polynomial Chaos Expansions 

 Polynomial chaos expansion (PCE) metamodels are 

generally formulated as [10] 
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where xℝm is a vector with random independent components 

described by a probability density function fX, M(x) is a map 

of the features with respect to x, i is the index of ith 

polynomial term, Ψi are multivariate polynomial basis 

functions, whereas αi are their corresponding expansion 

coefficient. In practice, a truncated form of the PCE is used 
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where MPC(x) is the approximate truncated PCE model, and P is 

the total number of sample points, which can be calculated as 

( )!
,

! !

p n
P

p n


                                     (5) 

where p is the order of the PCE, and n is the total number of 
random input variables. 

The coefficient vector α is found by solving a least-squares 
minimization problem 

ˆ argmin [ ( ) ( )].TE M  α α x x                    (6) 

 In this work, the least-angle regression (LARS) method is 
used to solve (6) by adding an L1 penalty term 

1
ˆ argmin [ ( ) ( )]TE M    α α x x α ,             (7) 

where λ is a penalty factor, ||α||1 is the L1 norm of the 
coefficients of PCE. 

B. Kriging Interpolation 

 Kriging interpolation [11], belonging to a class of Gaussian 
process regression, is an interpolation technique, in which the 
training points are treated as realizations of the unknown 
random process. The Kriging coefficients (referred to as hyper-
parameters) are found by minimizing the mean square error 
(MSE). The model is a sum of a low-order polynomial (the 

trend function) fT(x), and a Gaussian deviations Z(x) 

( ) ( ) ( )TM Z x f x β x ,                         (8) 

where f(x) = [f0(x), …, fp-1(x)]T  ℝp is defined with a set of the 

regression basis functions,  = [ꞵ0(x), …, ꞵp-1(x)]T  ℝp 
denotes the vector of the corresponding coefficients, and Z(x) 
denotes a stationary random process with zero mean, variance 
and nonzero covariance. In this work, Gaussian exponential 
correlation function is adopted, thus the nonzero covariance is 
of the form 

  2

1

( ), ( ') exp ' k

n
p

k k k

k

Cov Z Z x x 


 
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 
x x ,     (9) 

where θ = [θ1, θ2, …, θm]T, p = [p1, p2, …, pn]T, with 1 < pk ≤ 2, 
denote the vectors of unknown hyperparameters to be tuned. 
The Kriging predictor for any untried x can be written as [8, 9] 

1ˆ ˆ( ) ( ) ( ) ( ),Kr T T

SM   x f x β r x R M Fβ           (10) 

where β̂  comes from generalized least squares estimation, r is 

the correlation vector between x and training set points, R is 
the correlation matrix, MS is the model response of the training 
points, and F is a matrix of the trend function values at the 
training points. 

C. PC-Kriging 

PC-Kriging [9] is a recently developed class of 
metamodels that integrates PCE and Kriging metamodels. In 
particular, PCE is utilized as the trend function for the Kriging 
metamodel. The modeling flow can be described as follows: 

1. Obtain observations (training points) from the physics-
based simulation model. 

2. Generate a PCE model following Section III.A. 
3. In Step 2, LARS technique selects the “important” basis 

terms, meaning those most correlated with the model 
response. 

4. Plug those “important” basis terms into (10), then 
construct the Kriging model. 

IV. NUMERICAL EXAMPLES 

A. Ishigami Function 

 The Ishigami function is commonly used to demonstrate 
modeling under uncertainty, because of its strong nonlinearity 
and non-monotonicity. The analytical form of the Ishigami 
function is  

f(x) = sin(x1) + 7sin2(x2) + 0.1x3
4sin(x1),            (11) 

where x1, x2, and x3 are uniformly distributed on [-π, π]. 

Figure 1 shows the root mean squared error (RMSE), as a 
function of the number of training points. It can be seen that 
the PC-Kriging metamodel requires around 70 training points, 
which is over four times fewer training points than the Kriging 
metamodel in this case, to reach the desired accuracy level. 
PCE metamodel requires around 75 training points. Here, the 
PC-Kriging utilizes 10th, 11th, and 12th order PCE as trend 
function, when provided 60, 65, and 70 training points, 
respectively. 

 
Fig. 1. Metamodel setup for the Ishigami test case. 
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B. Dual-Band Patch Antenna 

Figure 2 shows the geometry of the microstrip dual-band 
patch antenna used in this work as a benchmark example. The 
antenna is implemented on a 0.762 mm thick Taconic RF-35 
dielectric substrate (εr = 3.5). The independent geometry 
parameters are x = [L l1 l2 l3 l4 W w1 w2 g]T. The EM model R is 
implemented in CST. The nominal design, corresponding to 
the antenna resonances allocated at the frequencies 2.4 GHz 
and 5.8 GHz is x0 = [14.18 3.47 12.44 5.06 15.56 0.65 8.29 
5.60]T (all dimensions in mm). 

The antenna yield has been estimated for the following 
specs: |S11| ≤ –10 dB for both 2.4 GHz and 5.8 GHz. Three 
cases were considered assuming Gaussian distribution of 
geometry deviation vector dx with zero mean and variance σ of 
0.05 mm. The parametric study on the convergence of the yield 
value versus the number of training points has been shown in 
Fig. 3. The PCE, Kriging and PC-Kriging metamodels are 
compared with the direct Monte Carlo analysis involving 500 
EM evaluations of R, utilized as a reference. 

As shown in Table 1, to reach satisfactory estimations, PCE 
and Kriging require around 300 and 100 training points, 
respectively. The proposed PC-Kriging requires only 20 
training points, which is a dramatic reduction over both PCE 
(by a factor of fifteen) and Kriging (by a factor of five).  

 

 
Fig. 2. Geometry of the dual-band patch antenna. Ground plane shown with 

light gray shade. 

 

Fig. 3. Convergence of yield estimation as a function of the number of 
training points for the considered metamodeling techniques as well as direct 

EM-based Monte Carlo simulation. 

Table 1. Computational cost of the yield estimation. 

Geometry 
Estimation 

Method 

Estimated 

Yield 

Sampling 

Cost 

Gaussian 

σ = 0.05 mm 

EM 0.770 500 

PCE 0.776 300 

Kriging 0.776 100 

PC-Kriging  

(this work) 
0.776 20 

V. CONCLUSION 

The PC-Kriging metamodel has been proposed in this work 
for yield estimation of antennas. The PC-Kriging is constructed 
as a combination of PCE and Kriging. The former is utilized as 
a trend function for the latter. The approach was demonstrated 
on the Ishigami analytical function and a dual-band microstrip 
patch antenna. The numerical results indicate that PC-Kriging 
offers considerable reduction of the computational cost of yield 
estimation as compared to individual metamodels, both PCE 
and Kriging. Future work will be focused on further 
characterization of the approach proposed in this paper, 
especially in terms of its scalability with respect to the 
parameter space dimension as well as statistical moments of 
the input probability distribution.  
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