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Abstract

Yield estimation of antenna systems is important to check their robustness

with respect to the uncertain sources. Since direct Monte Carlo sampling of

accurate physics-based models can be computationally intensive, this work

proposes the use of the polynomial chaos–Kriging (PC-Kriging) metamodeling

method for fast yield estimation of multiband patch antennas. PC-Kriging inte-

grates the polynomial chaos expansion (PCE) as the trend function of Kriging

metamodel since the PCE is good at capturing the function tendency and

Kriging is good at matching the observations at training points. The PC-

Kriging method is demonstrated on two analytical cases and two multiband

patch antenna cases and is compared with the PCE and Kriging metamodeling

methods. In the analytical cases, PC-Kriging reduces the computational cost

by over 40% compared with PCE and over 94% compared with Kriging. In the

antenna cases, PC-Kriging reduces the computational cost by over 60% com-

pared with Kriging and over 90% compared with PCE. In all cases, the savings

are obtained without compromising the accuracy.

KEYWORD S

antenna yield estimation, Kriging, microstrip multiband patch antenna, Monte Carlo sampling,

polynomial chaos expansions, polynomial chaos-based Kriging

1 | INTRODUCTION

Yield is the metric for checking the reliability of antenna system with respect to the uncertainties due to the
manufacturing process.1,2 In particular, yield is the percentage of designs satisfying the design specifications. The pro-
cess of yield estimation can be completed by running arbitrary number of high-fidelity simulation models,1 such as full-
wave electromagnetic (EM) model,3 using Monte Carlo sampling (MCS).4 The high-fidelity physics model evaluations
are typically time-consuming, rendering the MCS-based yield estimation computationally impractical.

Metamodeling methods5,6 are widely used to alleviate the computational burden. There are generally two types of
metamodels: data-fit metamodels7 and multifidelity metamodels.8 Data-fit metmodels utilize the high-fidelity physics-
based simulation model evaluations as training points, while the multifidelity metamodels can make use of physics-
based simulation models of varying degrees of accuracy. Multifidelity metamodels can be efficient when fast and good
low-fidelity models are available. Data-fit metamodeling is more versatile because only one level of simulation model is
needed.

Advanced data-fit metamodels have been successfully used for antenna system modeling and design at reduced
computational costs. Rama Sanjeeva Reddy et al9 introduced the radial basis function neural network into design of
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multiple function antenna arrays and obtained a success rate as high as 98%. Koziel et al10 constructed the fast data-fit
Kriging metamodel as part of multiobjective design optimization of antennas handling arbitrary number of objective
functions. Du and Roblin11 introduced the polynomial chaos expansion (PCE) method for statistical metamodeling of
the far field radiated by antennas undergoing random disturbances and validated the PCE model with a deformable
canonical antenna.

This work introduces the use of the PC-Kriging metamodeling method12 for the yield estimation of multiband patch
antenna systems. PCE13 is well known for capturing the tendency of the objective function, whereas Kriging14 handles
the observation values at training points well. The PC-Kriging method aims at integrating the advantages of both meta-
modeling methods expecting fewer training points required for constructing a reliable and fast model in lieu of the com-
putationally expensive high-fidelity simulation model. The PC-Kriging method is demonstrated on the yield estimation
of two multiband patch antenna cases, as well as two analytical test functions.

The remainder part of this paper is organized as follows. The next section provides the details of the yield estimation
for antennas. The following section describes the metamodeling methods, including Kriging, PCE, and PC-Kriging, uti-
lized in this work. Then, all metamodeling methods are demonstrated and compared with numerical examples. The
paper ends with conclusion and suggestions of future work.

2 | ANTENNA YIELD ESTIMATION

Let R(x) denote the antenna responses of interest evaluated using an EM simulation model, eg, the reflection character-
istic, and x ∈ Rm the vector containing deterministic/uncertain design parameters. Let x0 represent the nominal design
under ideal conditions. Let dx be the disturbance due to the manufacturing tolerances or uncertainties existing in the
antenna system and can be sampled using pre-define empirical probabilistic distributions. Therefore, the actual designs
taking the tolerances and uncertainties under consideration can be represented as x0 + dx. Now, a counting function H
(x) is defined as follows.2

H xð Þ= 1 if R xð Þ satisfies the design specifications
0 otherwise

�
ð1Þ

Then, the yield at the nominal design introduced above, ie, the percentage of satisfying designs out of the total
designs, is found as follows.2

Y x0
� �

=

PN
j=1

H x0 + dxjð Þ

N
, ð2Þ

where dxj, j = 1, 2, …, N are the disturbances with pre-assigned empirical probabilistic distributions as introduced
above. Estimating the yield using (2) can be computationally impractical if the model evaluation R(x) is time-
consuming.

3 | METAMODELING METHODS

In this work, the PC-Kriging12 metamodeling method is introduced to antenna yield estimation to alleviate the compu-
tational burden. This section describes the overall metamodeling process and the specific methods utilized in this work.
Specifically, Kriging,14 PCE,15 and PC-Kriging12 are described. Metrics used for model validation are defined.

3.1 | Process flow

The metamodeling5,16 process is shown in Figure 1. The construction process starts with generating a sampling
using Latin hypercube sampling (LHS)17 for the training data set, on which the physics-based model is run to

2 of 10 LEIFSSON ET AL.
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obtain the observations. With the training data set and the associated observations, the metamodel is constructed.
The metamodel is then validated using a set of testing data generated by MCS18 by comparing the root-mean-
square error (RMSE) (described in Section 3.6) with a user-defined accuracy threshold, which is set to 1% of the
standard deviation of the testing observations in this work. If the RMSE is not small enough, an arbitrary number
of training points are added to the initial sampling plan, and the iteration is continued until sufficient accuracy is
reached.

3.2 | Sampling plan

Monte Carlo sampling19 and LHS20 are the sampling tools used in this work, and a description of each follows. MCS19

is a commonly used technique of random sampling probability distributions, and the generated sampled values can be
randomly from anywhere within variability space. The process of MCS starts with random numbers within the range of
[0, 1] with replacement. The generated random numbers are used as the probabilities of associated cumulative density
functions of the variability parameters, and the corresponding values are obtained using quantile functions. MCS is
used in this work for the testing data set. LHS20 aims at randomly sampling the given probability distributions of the
variability parameters more effectively than MCS. This goal is achieved by stratifying the probability distributions into
equal intervals on the cumulative scale [0, 1] and then complete random sampling within each interval, which avoids
clustering the generated numbers. Then, the generated numbers are used as the probabilities of associated cumulative
density functions as the aforementioned process. And the last one step is to find the corresponding values using qua-
ntile functions. The training data set is generated using LHS in this work.

3.3 | Kriging

Kriging14,21 models the training data set as a Gaussian process using

MKR = fT Xð Þβ+ σ2Z Xð Þ, ð3Þ

where X ∈ Rm is the vector of m-dimensional system variability parameters, fT(X) = [f0(X), …, fp − 1(X)] ∈ Rp is the vec-
tor of p-dimension regression basis functions, both ordinary basis function f = [1, 1, 1, …, 1] and linear basis function
f = [1, X1, X2, …, Xm]

T are investigated in this work, β= β0 Xð Þ,…,βp−1 Xð Þ
h iT

∈Rp denotes the vector of corresponding
coefficients to be determined, fT Xð Þβ is called the trend function, σ2 is the constant variance of the Gaussian process,
and Z(X) represents the local deviation from the trend function and is modeled as a stationary Gaussian process with
zero mean and unit variance.

A Gaussian exponential spatial correlation function is used in this work and is defined as follows.21

sampling plan

observations

construct 
metamodel

model validation
sufficient 
accuracy?

allocate infill 
training points

no

yes

END

physics-based 
model

BEGINFIGURE 1 A flowchart of the metamodeling process
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R Xtr,Xtr
0ð Þ=exp −

Xm
k=1

hk X tr,k−X 0
tr,k

�� ��2" #
, ð4Þ

where Xtr and X0
tr are two random vectors of variability parameters within training data set and h = [h1, h2, …, hm]T

denotes the vector of unknown hyperparameters to be tuned.
The Kriging predictor for any untried X is written as follows.21

MKR Xð Þ= fTβ+ βTR−1 Ytr−Fβð Þ, ð5Þ

where Ytr is the observations of training database, Fij = fj(xi), where i = 1, 2, …, Ntr, j = 1, 2, …, Ntr + 1, Ntr is the total
number of training data, r is the vector of cross correlation between the point to be predicted (X) and each training
point, here ri =R X,Xtr,i;βð Þ , R is the correlation matrix among the training points with Rik =R X tr,i,X tr,k;βð Þ , where i,
k = 1, 2, …, Ntr, and β and σ2 are given by

β̂= FTR−1F
� �−1

FTR−1Ytr, ð6Þ

and

σ̂2 = 1=N tr Ytr−Fβ̂
� �T

R−1 Ytr−Fβ̂
� �

: ð7Þ

The maximum likelihood estimation on h is found by solving

ĥ=argmin
h

1
2
log det Rð Þð Þ+ N tr

2
log 2πσ2

� �
+N tr=2

� 	
: ð8Þ

3.4 | Polynomial chaos expansions

Polynomial chaos expansion15 has the generalized formulation

M Xð Þ=
X∞
i=1

αiΦi Xð Þ, ð9Þ

where X ∈ Rm is a vector with random independent components, described by a probability density function of X, M
(X) is a map of X, i is the index of ith polynomial term, Φi is multivariate polynomial basis, and αi is the corresponding
coefficient of the basis function. Legendre and Hermite basis13 will be used for uniform and normal distribution,
respectively.

In practice, the total number of sample points needed does not have to be infinite; instead, a truncated form of the
PCE is used and is described as

M Xð Þ≈MPC Xð Þ=
XP
i=1

αiΦi Xð Þ, ð10Þ

where MPC(X) is the truncated PCE model and P is the total number of required sample points, given by

P=
p+ nð Þ!
p!n!

, ð11Þ

where p is the required order of the PCE and n is the total number of random variables.

4 of 10 LEIFSSON ET AL.
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The observations of the training data set are constructed as summation of PCE predictions at the same design points
and the corresponding residuals as

M Xð Þ≈MPC Xð Þ+ ϵPC =
XP
i=1

αiΦi Xð Þ+ ϵPC �αTΦ Xð Þ+ ϵPC, ð12Þ

where ϵPC is the residual between M(X) and MPC(X), which is to be minimized by least-squares methods. The coeffi-
cients α can be determined by solving the least-squares minimization problem

α̂=argmin
α

 αTΦ Xð Þ−M Xð Þ
 �
: ð13Þ

The ordinary least-squares (OLS) method13 is an analytical solution to problem (13) with

α̂= ATA
� �−1

ATYtr, ð14Þ

where Ytr is vector of model responses, Ai,j = Φi(x
j), j = 1, …, n, i = 1, …, P. Another way of determining the coefficients

is by the least-angle regression (LARS),22 which is an advanced regression method for solving (13) after adding an L1
norm term of the unknown coefficients scaled by a penalty factor (λ) to favor low-rank solution23 as

α̂=argmin
α

 αTΦ Xð Þ−M Xð Þ
 �
+ λ αk k1: ð15Þ

The two main steps in the LARS method are initialization and iteration.13 The initialization step sets all PCE coeffi-
cients α as 0 making the residual of each observation the observation itself and defines a candidate set containing all
orthogonal PCE bases and an empty active set. The iteration step finds a PCE basis Φi, which is the most correlated
with current residual, and puts it into the active set; then, the optimal value of the least squares is determined and
moves the associated coefficient αi towards the optimal value until another basis Φj is found to have the same correla-
tion with current residual. The previous step is iterated until the size of active set reaches the required number of sam-
ples or the total number of observations.

Conventional PCE follows the standard form truncation scheme (10). The sparsity-of-effect principle24 claims that
the interaction terms do not have much effect on the PCE prediction. Following this idea, the hyperbolic truncation
scheme,13 which is also known as the q-norm method, is applied for sparse PCE construction. The hyperbolic trunca-
tion technique is expressed as

AM,p,q = α∈AM,p :
XN
i=1

αi
p

� 	q

≤ 1

( )
: ð16Þ

If q = 1, the hyperbolic truncation is the same as standard truncation scheme. For q < 1, the hyperbolic truncation
can reduce the interactive terms further based on standard truncation schemes.

3.5 | Polynomial chaos-based Kriging

PC-Kriging12,25 is a state-of-the-art metamodeling approach, which combines the well-established techniques Kriging
and PCE. The descriptions in Sections 3.3 and 3.4 show that the ways of constructing Kriging and PCE make these two
metamodeling techniques be regression type and interpolation type, respectively. Because of these characteristics,
Kriging captures the local variations well, while PCE captures the global behavior. PC-Kriging aims at combining the
advantages of Kriging and PCE for a more efficient metamodeling technique.

LEIFSSON ET AL. 5 of 10
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The PC-Kriging metamodel is defined as the Kriging model,21 whose trend function is used as a constructed PCE
metamodel on the same set of training data set. PC-Kriging has the generalized formula as follows:

M Xð Þ≈MPC-Kriging Xð Þ=
XP
i=1

αiΦi Xð Þ+ σ2Z Xð Þ, ð17Þ

where MPC - Kriging is the approximation using PC-Kriging, the first term of right-hand side is the truncated-form PCE,
which is used as the trend function within the universal Kriging formula, and σ and Z(X) denote the constant standard
deviation and the zero mean and unit variance stationary Gaussian process, respectively, as described in Section 3.3.

The construction of PC-Kriging consists of the following main steps:

1. Construct PCE orthogonal bases corresponding with the distributions of random inputs.
2. Reduce the total number of bases by applying hyperbolic truncation scheme.
3. Solve for PCE coefficients using LARS method to construct PCE metamodel.
4. Insert the constructed PCE model as trend function of the universal Kriging.
5. Calculate the unknown coefficients within the Kriging model in step 2 using maximum likelihood method as shown

in Section 3.3.

3.6 | Model validation

The metamodels are validated against the physics-based model observations using the RMSE, which is defined as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i=1
Ŷ i−Yi
� �2

=Nt

r
, ð18Þ

where Nt is the total number of testing data and Ŷ i and Yi are the metamodel estimation and observation of the ith test-
ing point, respectively. In this work, 1% of the standard deviation of testing points (1 % σtesting) is used as an accuracy
threshold of the RMSE value of the metamodel. Specifically, if the RMSE is smaller than 1% σtesting, the metamodel is
sufficiently accurate for further implementation. Otherwise, resampling a larger training data set is required following
(11) for a higher order PCE.

4 | NUMERICAL EXAMPLES

The PC-Kriging method is applied on two analytical test functions, the Ishigami function and the short column func-
tion, and two physics-based antenna yield estimation cases. For the purpose of demonstration, the computational cost
of each metamodel is based on the total number of training points required to reach the prescribed accuracy level.

4.1 | Ishigami function

The Ishigami function26 exhibits strong nonlinearity and nonmonotonicity and is commonly used for validating uncer-
tainty analysis methods. This work uses the version developed by Sobol' and Levitan,27 which is defined as

f Xð Þ= sin X1ð Þ+7sin2 X2ð Þ+0:1X4
3sin X1ð Þ, ð19Þ

where all three uncertain parameters X1, X2, and X3 follow a uniform distribution U(−π, π).
The RMSE values, based on 1000 MCS testing points, versus the number of LHS training points are given in

Figure 2. The results show that PC-Kriging requires only 70 training points, while Kriging and PCE require 300 and
75 samples, respectively. It can be seen that PC-Kriging has the steepest convergence rate and performs better than
Kriging and PCE metamodels at the same number of training points.

6 of 10 LEIFSSON ET AL.
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4.2 | Short column function

The short column function models a structural column with uncertainties due to the material properties. The function
is given as

f Xð Þ=1−
4X2

bh2X1
−

X2
3

b2h2X2
1

ð20Þ

where b is the width of the cross section and equals 5 mm, h is the depth of the cross section and equals 15 mm, X1, X2,
and X3 are the uncertain parameters in this case, and X1~LN (5, 0.5) MPa is the yield stress (LN represents a lognormal
distribution), X2~N(2000, 400) MNm is the bending moment (N represents a normal distribution), and X3~N
(500, 100) N is the axial force.

Figure 3 shows that all metamodeling approaches can reduce the RMSE when increasing the total number of train-
ing points. The Kriging, PCE, and PC-Kriging metamodels, however, need different number of samples to reach the 1%
testing accuracy. In particular, Kriging needs around 1200 training points, and PCE around 120 training points,
whereas PC-Kriging requires only around 70 training points. Thus, PC-Kriging needs around 42% fewer samples than
PCE and around 94% fewer than Kriging. In this case, the PC-Kriging metamodel at each number of training points uti-
lizes a 14th degree of the PCE as the trend function.

50 100 150 200 250 300

Number of training points

10-3

10-2

10-1

100

R
M

SE

10%
testing

1%
testing

PCE
Kriging
PCKriging

FIGURE 2 Metamodel construction of the Ishigami function
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Number of training points

10-4

10-3

10-2
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R
M
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10%
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testing
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PCE
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FIGURE 3 Metamodel construction of the short column function
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4.3 | Multiband patch antenna

The geometry of the microstrip dual-band patch antenna utilized in this work is given in Figure 4. The antenna is
implemented on a 0.762-mm–thick Taconic RF-35 dielectric substrate (ϵr = 3.5). The independent geometry parameters
are x = [L l1 l2 l3 l4 W w1 w2 g]T. The EM model R is implemented in CST.2 The nominal design,
corresponding to the antenna resonances allocated at the frequencies 2.4 and 5.8 GHz, is
x0 = [14.18 3.47 12.44 5.06 15.56 0.65 8.29 5.60]T (all dimensions in mm).

The antenna yield is estimated for the following specs: jS11 j ≤ − 10 dB for both 2.4 and 5.8 GHz. It is assumed that
Gaussian distribution of the geometry deviation vector dx has a zero mean and a standard deviation of 0.05 mm (case I)
and 0.08 mm (case II).

The parametric study on the convergence of the yield value versus the number of training points is shown in
Figures 5 and 6. The PCE, Kriging, and PC-Kriging metamodeling approaches are compared with the direct MCS
of the EM model involving 500 model evaluations. In case I, the direct MCS and the metamodeling approaches give
a comparable yield estimate. In case II, however, the direct MCS method gives a slightly lower yield value (0.490)
than the metamodeling methods (0.528-0.580), indicating that further samples are needed with the direct MCS
approach.

In case I (σ = 0.05 mm), the number of model evaluations needed by PCE and Kriging to reach yield estima-
tions comparable with the direct MCS approach is 300 and 100, respectively, whereas the PC-Kriging requires only
20 training points (cf Table 1). Thus, in case I, the PC-Kriging needs over 93% fewer samples than PCE and 80%

L

l
1

l
2

l
3

W

w
1

w
2

o

g

s

w
0

l
0

o

FIGURE 4 Geometry of the dual-band patch antenna. Ground plane shown with light

gray shade
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FIGURE 5 Case I convergence of yield estimation as a function of the

number of sampling points
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fewer samples than Kriging. In case II (σ = 0.08 mm), PC-Kriging still needs 20 model evaluations, but PCE
required 200, and Kriging required 50. Therefore, in case II, PC-Kriging needs 90% fewer samples than PCE and
60% fewer than Kriging.

5 | CONCLUSION

The polynomial chaos-based Kriging (PC-Kriging) metamodeling method has been applied to the yield estimation
of antennas. The PC-Kriging is constructed as a combination of PCE and Kriging. The former is utilized as a trend
function for the latter. The approach was demonstrated on the Ishigami analytical function, the short column ana-
lytical function, and the yield estimation of a dual-band microstrip patch antennas. The numerical results indicate
that PC-Kriging offers considerable reduction of the computational cost when compared with both PCE and
Kriging. Future work will be focused on the characterization of the approach for antenna yield estimation, specifi-
cally in terms of its scalability with respect to the parameter space dimension as well as statistical moments of the
input probability distribution. Future work will also consider the statistically based design of antennas using PC-
Kriging.
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TABLE 1 Computational cost of the yield estimation

Case
Parameter Deviations
σ, mm Method Estimated Yield Model Evaluations

I 0.05 MCS on EM model 0.770 500

PCE 0.776 300

Kriging 0.776 100

PC-Kriging 0.776 20

II 0.08 MCS on EM model 0.490 500

PCE 0.580 200

Kriging 0.532 50

PC-Kriging 0.528 20

Abbreviations: EM, electromagnetic; MCS, Monte Carlo sampling; PC, polynomial chaos; PCE, PC expansion.
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