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A Convolutional Neural Network Model Based on Multiscale
Structural Similarity for the Prediction of Flow Fields

Yifu An∗, Xiaosong Du†, and Joaquim R. R. A. Martins‡

University of Michigan, Ann Arbor, MI, 48109, USA

We have seen the emerging applications of deep neural networks for flow field predictions
in the past few years. Most of the efforts rely on the increased complexity of the model itself or
take advantage of novel network architectures, such as convolutional neural networks (CNN).
However, reaching low prediction error cannot guarantee the quality of the predicted flow
fields in terms of the perceived visual quality. This work introduces the multi-scale structural
similarity (MS-SSIM) index method for flow field prediction. First, we train CNN models
using the commonly used root mean squared error (RMSE) loss function as the reference.
Then we introduce the SSIM loss function to capture the high-level features. Furthermore, we
investigate the effects of theMS-SSIMweights on the predictive performance. Our results show
that while the pixel-wise prediction error of RMSE-based models is as low as 1.3141 × 10−2,
the perceived visual quality of the predicted flow fields, such as contour-line smoothness, is
poorly represented. In contrast, the MS-SSIM models significantly improve the perceived
visual quality with an SSIM loss value as low as 7.370× 10−3, although having a slightly higher
prediction error of 1.3912×10−2. These values are 41.7% lower in the SSIM loss and 5.9% higher
in the RMSE than the best RMSE model. In particular, we report that a weight combination
of 0.3 and 0.7 for the MS-SSIM loss function provides the best predictive performance in our
case. Our study has pointed out a possible future endeavor to invent a quality metric based on
structural similarity, which should excel in flow-field-related approximations.

I. Introduction
Computational fluid dynamics (CFD) simulations play a crucial role in engineering industry. State-of-the-art CFD

solvers such as ADflow [1] and OpenFOAM [2–4] facilitate the use of high-fidelity flow field solutions in risk analyses
and design optimizations. Still, such a process normally requires costly computational time on high-performance
computing resources. Among the branches of research that address this problem is surrogate modeling. Surrogates
require potentially costly training, but once trained, they are fast and computationally efficient, and repeatedly running
them for predictions will pay off the training expense [5].

Traditional surrogate modeling methods include multi-fidelity models [6], where a combination of high- and
low-fidelity models balances the computational cost and accuracy; hierarchical kriging [7], where the kriging model of a
low-fidelity function improves the accuracy of the kriging model of the corresponding high-fidelity function; mixture of
experts [8] fuses multiple surrogates which model different parts of the input space independently.

As the application of artificial neural networks (ANN) attracts interests in other research areas [9, 10], works using
ANN models as surrogates also turn out to be an interesting topic. Papila et al. combined the radial basis neural network
(RBNN) with polynomial models in the optimization of a supersonic turbine [11]. They trained RBNN models on a
small set of CFD solutions and then generated a larger set using the RBNN to augment the polynomial model. Zhang
et.al used a convolutional neural network (CNN) to predict the lift coefficient of an airfoil with respect to the freestream
conditions and airfoil geometry [12]. Sekar et al. successfully used deep multilayer perceptron (MLP) models to predict
the flow field over an airfoil [13]. The MLP models had 8-12 hidden layers that consisted of 800-1200 neurons each.
These models predicted flow field information as a function of the G, H coordinates, the angle of attack, the Reynolds
number, and 16 parameters for the airfoil geometry. The models also used the mean !2-norm of the point-wise errors as
the loss function. Bouhlel et al. used modified Sobolev training for artificial neural networks (mSANN) to predict
aerodynamic force coefficients for subsonic and transonic regimes [14]. To improve the model’s performance, they
gradually introduced gradient information during the training. The model had six hidden layers and involved four
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different activation functions. The training process incorporated gradient information by using a weighted sum of the
!2-norm of the output error and that of the partial derivatives’ error as the loss function.

While many of the recent works used ANN to predict scalar outputs (e.g. lift coefficient, velocity at a point),
some also studied the prediction of 2-D (or higher-dimensional) flow fields. These works utilized CNN-based models
because CNN reduces the total number of trainable weights and respects the topology of graphical data [15]. Guo et
al. used an autoencoder architecture to learn the CFD solutions of flow fields over various objects at low Reynolds
numbers [16]. The architecture consisted of an encoder and a decoder: the encoder extracted high-level geometry
features, and the decoder predicted the surrogate solution. Bhatnagar et al. extended Guo et al.’s work to the prediction
of flow field solutions over airfoils [17]. They improved the autoencoder model by sharing the decoding layers among
output variables. The architecture they proposed had 6 convolutional layers in total, each having 300 feature maps. They
trained and validated the CNN on a dataset of 252 RANS simulations: the input spaced was sampled uniformly for 4
Reynolds numbers, 21 angles of attack, and 3 different airfoils. They made few attempts to generalize the model to
arbitrary airfoil shapes, as this was not the focus of the work.

Most of the previous works used the mean squared error (MSE) [16, 18] or root mean squared error (RMSE)
(including the !2-norm, which is proportional to the RMSE) [14, 19] as the loss functions. However, predictions given
by models using such loss functions suffer from non-smooth contour lines and spurious bumps in regions that should be
flat and smooth. Previous works [17, 20] addressed this problem by adding a term for gradient difference loss [21]
to the MSE/RMSE loss functions. This term measures the error in the difference between adjacent pixels. Hence,
the modified loss function is dependent on a neighborhood of a radius of one pixel. Meanwhile, Zhao et al.’s study
in image restoration inspired a new direction: metrics for image quality, the structural similarity (SSIM) index, and
the multi-scale structural similarity (MS-SSIM) index [22] outperformed the !2 error as the loss function for various
image-processing CNNs [23].

Our work utilizes the framework laid by Bhatnagar et al. but also experiments with loss functions that are novel
in flow field prediction, i.e. the SSIM and MS-SSIM. The primary contribution is to show the promise of improving
the quality of flow field predictions by using structural-similarity-based loss functions. “Quality” here refers to how
good the predictions appear to a human observer, or perceived visual quality [24]. In our case, a predicted flow field
of “high quality” would refer to one with smooth contours that highly resemble the simulation results. High-quality
predictions are favorable, especially for this work’s possible applications, such as real-time flow field feedback in
web-based interactive airfoil optimization. Secondly, we incorporate the state-of-the-art generative adversarial network
(GAN) architecture [25] into the model. We realize this by replacing the decoder in previous works [16, 17] with
pre-defined BSplineGAN airfoil parameterization [26]. This reduces the number of parameters of the architecture by
eliminating the need for decoding layers. Finally, we train the model on a dataset of 44,000 RANS simulations.

The remainder of this paper is organized as follows. In Section II, we introduce our overall methodology and the
general workflow. Then we present and interpret the results of the study, including the average error and graphical
output of the models in Section III. Finally, we conclude this paper and discuss possible extensions in Section IV.

II. Methodology
This section describes the general process to obtain structural-similarity-based CNNmodels for flow field predictions.

We detail here the key components, i.e., RANS simulations, image postprocessing, model training and verification, and
model comparison.

A. General Workflow
Figure 1 shows the workflow of the proposed approach using the Extended Design Structure Matrix (XDSM) [27],

which consists of the following five components:
1) After running ADflow simulations on the random input parameters (GA=3), i.e.,B-spline generative adversarial

networks (BSplineGAN) [26] parameters (G1B60=), angle of attack (U), Reynolds number ('4), and the Mach
number (M), we have over 44,000 instances of flow fields.

2) We then process the contour plots of the raw flow field data (denoted by �"�), which have a resolution of
450×450. We lower the resolution of the images down to 150×150 with the guidance of a parametric study
provided in the following subsection.

3) We then train various CNN models with different loss functions and numbers of feature maps per layer. The
models take the random input parameters, GA=3 , as the input, and return contour plots of the Mach number,
�"�150×150, where the subscript means the images are 150 pixels in width and height respectively. This step
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xrnd xrnd, Lossfun

RANS Simulations IMG

Image Postprocessing IMG150×150

Model Training M

Model Verification

Fig. 1 The XDSM of the workflow. The gray line represents passing of variables, and the black lines with
arrow indicate the direction of the work flow.

generates a series of models, M.
4) We verify the model by computing its RMSE and SSIM errors on a testing data set. The former is the typical

metric for pixel-wise prediction accuracy; the latter indicates how well a human observer can perceive the
image [24].

The same workflow applies to all the tested network architectures with varied neuron setups and loss functions.

B. RANS Simulations
In this work, we use pyHyp∗ as the mesh generator and ADflow† as the flow solver for the Reynolds-averaged

Navier–Stokes equations. The pyHyp toolbox implements hyperbolic volume mesh marching schemes to extrude
structured surface meshes into volume meshes [28], achieving mesh orthogonality and cell volume specification. In
addition, pyHyp adds spatially-variable advanced techniques, i.e., spatially-variable smoothing coefficient, metric
correction procedures, local treatment of severe convex corners, extrapolation treatment of floating and axis boundaries, to
improve the quality of the hyperbolic mesh [28]. ADflow is a finite-volume structured multiblock and overset mesh CFD
solver distributed under an open-source license [1]. The key advanced methodology implemented in ADflow includes a
discrete adjoint solver for efficient gradient calculation [29, 30] and a Python application programming interface for
the convenience of case setup. ADflow integrates three numerical schemes to discretize the inviscid fluxes, the scalar
Jameson–Schmidt–Turkel artificial dissipation scheme, a matrix dissipation scheme and a monotone upstream-centered
scheme. ADlow computes the viscous flux gradients using a Green–Gauss approach and simultaneously solves the
mean equations defined by the continuity of mass, momentum, and energy. The turbulence models, including the
one-equation Spalart-Allmaras model and the two-equation shear stress transport model can be solved separately or with
the mean flow equations. ADflow implements a few algorithms for the residual equation convergence. In this work, we
use the fast and robust approximate Newton-Krylov algorithm as a globalization scheme for the full Newton–Krylov
solver, which converges rapidly within the Newton basin of attraction.

We provide the pyHyp and ADflow with airfoil shapes generated by BSplineGAN model [26] and flight conditions
sampled within broad ranges. BSplineGAN, a type of generative adversarial network (GAN) [25], intelligently generates
practical airfoils by matching the data pattern and characteristics in an existing airfoil data set [31]. BSplineGAN,
inspired by the Bezier-based GAN model [32, 33], adds a b-spline layer as the last layer of the generator networks. We
direct the readers who have interests to the paper by Du et al. [26] for more details. The considered ranges of flight
conditions include U within [0 deg, 3 deg],M within [0.3, 0.6] and log10'4 within [4, 10], where " and '4 are sampled
by Gaussian copula dependence sampling [26].

C. Image Post-processing
We represent the solutions of the RANS simulations with the Mach number contours in a rectangular region around

the airfoil, (G, H) ∈ [−1, 2] × [−1.5, 1.5], where the most important physics information exists. The Mach numbers
in the physical space are normalized into [0, 1] using minmax scaler such that the neuron networks consider them as
gray-scale images. The original images have a resolution of 450 × 450. We notice the increase in predictive accuracy is

∗https://github.com/mdolab/pyhyp
†https://github.com/mdolab/adflow
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diminishing with the increasing number of pixels, while the size of the data grows quadratically. Therefore, we conduct
a convergence study of image resolution to reduce the size of the data effectively. Results (Fig. 2) show lowering the
resolution by a factor of 3(×3), i.e. using images with a resolution of 150 × 150, balances the computational cost and
loss in accuracy. The success of previous work [17] supports this choice.

In this case, the average root mean square error due to postprocessing is 0.035. Note that, since the pixel-wise
grayscale values are normalized into the range of [0, 1], this error corresponds to a 3.5% relative error due to
down-sampling. The postprocessing yields a training validation set of 44,000 instances of the flow field and a testing set
of 120 instances.

D. Model Training
We train the neural network models on the training-validation data set. The training and validation sets follow a

90%–10% split of the training-validation set. We implement and train the models following different neuron setups,
and loss functions within TensorFlow [34]. We train the neural network models for the Mach number fields on one
“Skylake” computing node with 48 cores [35].

1. Neuron Setups
We test three types of neuron setups, namely, “Simple”, “Plain”, and “Complex”. These aliases are a straightforward

description of the complexity of the model: the simple model has less than 20,000 trainable parameters, the plain one
has around 70,000, and the complex one has more than 272,000. Table 1 shows the architecture of the models we
test. All three types of models have a similar structure: a dense layer is fully connected to the input layer, which is
then reshaped into the form of feature maps. Three convolutional layers follow, with increasing numbers of feature
maps. One final convolutional layer then returns a 150×150 array as the prediction corresponding to the input. The
convolutional layers work similarly as an autoencoder network model. In fact, we replace the encoder with 26 parameters
from BSplineGAN parameterization, concatenated with three parameters for the freestream condition. This is unlike
commonly used autoencoder networks, where the model first encodes the geometry of an airfoil in the form of a signed
distance function [16, 17]. Such an improvement reduces the number of parameters of the model by eliminating the
need for encoding layers (1/2 of the original architecture).

22521502752502102
Number of pixels

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Av
er
ag

ed
 R
M
SE

Fig. 2 Convergence study of resolution reduction for the Mach number. The H axis is the training set average
RMSE value of the reduced image with respect to the original 450 × 450 image. The G axis is the number of
pixels.
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Table 1 The architecture of models we test. For the “input”, “dense” layer, and “reshape” operation, we list the
shape of the intermediate tensor and the activation function where applicable; for the convolutional operations,
we list the number of featuremaps, the size of upsampling, and the activation function. For example, for the plain
network, the input layer has the shape (29, ). It is fully connected to a dense layer of shape (64, ) and reshaped
into a tensor of shape (2, 2, 16). The three convolutional layers have 16, 32, 64 feature maps, respectively, and the
upsampling sizes ensure that these layers will end up with a tensor with the expected shape (resolution). The last
convolutional layer is the output layer, so upsampling is not used here. We use A4;D as the activation function
for the dense layer and B86<>83 for the convolutional layers.

Operation/layer Model Alias and Architecture
“Simple” “Plain” “Complex”

Input (29, ) (29, ) (29, )

Dense (32, ) (64, ) (128, )
relu relu relu

Reshape (2, 2, 8) (2, 2, 16) (2, 2, 32)

Conv2D, 1
8 16 32
3 × 3 3 × 3 3 × 3
sigmoid sigmoid sigmoid

Conv2D, 2
16 32 64
5 × 5 5 × 5 5 × 5
sigmoid sigmoid sigmoid

Conv2D, 3
32 64 128
5 × 5 5 × 5 5 × 5
sigmoid sigmoid sigmoid

Conv2D, Output
1 1 1
/ / /
sigmoid sigmoid sigmoid

2. Loss Functions
We train models with different loss functions: the RMSE, the SSIM, and the MS-SSIM based on 2 scales. The

RMSE loss function is given as

L'"(� =

√√√
1
#

#∑
8=1

(
Htrue,8 − Hpred,8

)2
, (1)

where Htrue,8 , Hpred,8 are the true and predicted values at the 8-th pixel, and # is the total number of pixels. The SSIM
loss function is given as [22]

LSSIM =
1
#

#∑
8=1

1 − SSIM (8)

=
1
#

#∑
8=1

1 −
2`true`pred + �1

`2
true + `2

pred + �1
·

2ftrue,pred + �2

f2
true + f2

pred + �2

=
1
#

#∑
8=1

1 − ; (8) · 2B (8) ,

(2)

where ; (8) is called the luminance comparison, and 2B(8) the product of the contrast comparison and structure comparison
at pixel 8. The local statistics, ` and f, are computed using a smooth windowing approach [24]. We use the same values
of the constants �1 = 1−4, �2 = 9−4 as those in the original paper. We highlight a property of the SSIM loss function
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here, that LSSIM = 0 if and only if pred = true. The MS-SSIM loss function is [22]

LMS−SSIM =
1
#

#∑
8=1

1 −MSSSIM (8)

=
1
#

#∑
?=8

1 − ;" (8) ·
"∏
9=1

2B
F9

9
(8) ,

(3)

where we compute the product of the contrast and structure comparison on " scales and F 9’s adjust the relative
weight of the scales. The image at one of the intermediate scales is an image downsampled by a factor of 2
from the previous scale. In contrast, the first scale (" = 1) is the original resolution. In our 2-scale case,
(F1, F2) ∈ {(1, 0), (0.9, 0.1), (0.8, 0.2), . . . , (0, 1)}. We keep the sum of the weights to one to study the relative
importance of the first and second scales while searching through the space discretely.

3. Hyperparameter Setups
We train all models with the Adam optimizer [36] with a learning rate of 10−3, and parameters (V1, V2) = (0.9, 0.999).

We train them using a batch size of 16. We train simple models for 140 epochs, plain ones for 160 epochs, and complex
ones for 80 epochs. After these numbers of epochs, the corresponding models converge in terms of the training and
validation errors, without overfitting, under such settings.

E. Model Verification
We verify the models on the testing set of 120 flow field instances. We compute the RMSE and SSIM values on the

whole set to measure the quality of the model. For the individual cases to be shown in the next section, we will also
compute its RMSE and SSIM values for richer predictive insights. When comparing models trained using different loss
functions, one has to refer to the two metrics simultaneously. This is because models naturally perform better when
evaluated with the loss function it is trained with.

III. Results and Discussion
This section compares the models trained using the SSIM and MS-SSIM as the loss function with the baseline

models trained via RMSE loss function. We complete studies on the predictive performance with respect to increasing
numbers of feature maps. We also investigate the effects of the MS-SSIM weights on 2 scales. At the end of this section,
we compare the trained models on a series of example cases. All neural networks models predict the Mach fields.

A. Loss Function Comparison
We train a plain model and a complex one using the RMSE loss function and similarly using the SSIM loss function

(refer to Section II.D.3 for the other hyperparameters; this statement will be omitted from now on). Table 2 summarizes
the performance of the four models in terms of their RMSE and SSIM errors on the testing set. All the models have an
RMSE value around 0.015, which translates to about 5% relative error if we normalize with the minimum freestream
Mach number 0.3, The best model comes from the complex architecture: the complex RMSE model has a 4.4% relative
error, whereas the complex SSIM model has a 5.1% relative error. The models trained with the RMSE loss function
have a lower average RMSE on the testing set, while those trained with the MS-SSIM loss function with a lower SSIM.
However, switching to the SSIM loss function on a plain model reduces the SSIM loss by 41.2%, at the cost of increasing
the RMSE by a mere 16.3%; the numbers are 40.1% and 16.9% for the complex architecture. Figure 3 shows the
results of an arbitrary case. The results explain our motivation to find new loss functions for the CNN: the RMSE-based
models, while more accurate pixel-wise, systematically fail to generate smooth contours and produce “splotchy artifacts”
in “flat” regions between adjacent contour levels [23]. The SSIM loss function remedies this by using statistics around a
pixel (Eqn. 2), rather than only the pixel itself. Due to the smoothened contours, the predictions appear better to human
viewers even with a slight decrease in pixel-wise accuracy. This is also an illustration of the aforementioned report on
changes in model accuracy: the benefits of the SSIM loss over the RMSE loss are substantial, but the penalty is minor.
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Table 2 Prediction errors of various models on the testing set.

Model '"(� (10−2) 1 − ((�" (10−2)
Plain RMSE 1.4755 1.3301
Plain SSIM 1.7153 0.7818
Complex RMSE 1.3141 1.2633
Complex SSIM 1.5367 0.7570

(a) Truth (from ADflow).

0.000 0.152 0.305 0.457 0.609 0.762 0.914
Mach

(b) The color bar.

(c) '"(� = 1.0843 · 10−2,
((�" = 1.5540 · 10−2.

(d) '"(� = 1.4452 · 10−2,
((�" = 0.9931 · 10−2.

(e) '"(� = 0.9795 · 10−2,
((�" = 1.4097 · 10−2.

(f) '"(� = 1.1714 · 10−2,
((�" = 0.9424 · 10−2.

Fig. 3 Truth and model prediction for the Mach numbers over a test case. The freestream conditions are
�>� = 2.1142◦, '4 = 9.0791 · 104,M = 0.50511. (c) is the plain RMSE model; (d) the plain SSIM model; (e) the
complex RMSE model; (f) the complex SSIM model.
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B. Model Complexity Study
In our attempts to improve the model accuracy, the plain models do not capture the complex physics. Figure 4

reveals that the model accuracy achieved through the SSIM loss function increases with the increasing numbers of
feature maps. Meanwhile, the number of parameters also increases super-linearly, increasing the computational cost.
Figure 4 also suggests that the benefits we get by increasing the numbers of feature maps diminish. Therefore, we will
use the complex model as our most accurate architecture. However, we may further increase the number of feature maps
in future work.

Figure 5 shows the performance of the simple, plain, and complex models in the same case. We observe that
increasing the model complexity decreases both the SSIM error and the RMSE simultaneously. The shapes of the
contours also appear to be more and more visually realistic.

C. Multi-Scale Structural Similarity
We study the effects that MS-SSIM weights have on the flow field prediction. The weighting factor of the first scale

(F1) sweeps uniformly in [0, 1], while F2 equals 1 − F1 to maintain unity. Note that when F1 = 1.0, we obtain the
original SSIM loss function. Table 3 lists the accuracy of the 2-scale, complex models on the testing set, as well as the
result of using the weighting factors proposed by Wang et al. [22]. The latter corresponds to a 5-scale loss function,
whose weighting factors are calibrated using a cross-scale calibration that subjectively depends on human interviewees.
Table 3 shows that some pair of weight factors do not improve the accuracy at all, while others improve one of RMSE
and SSIM, if not both. We show the extreme case of (0, 1.0), which is the SSIM on a low-resolution (25%) version
of the original image, as well as the original MS-SSIM proposed by Wang et al. [22], which leads to a 36% higher
RMSE compared with the single scale version. The original weighting factors do not work well in our case because the
calibration in the original paper does not involve images of abstract objects, such as a flow field solution. On the other
hand, weight factors (0.3, 0.7) reduces the RMSE the most, by 9.5%. Figure 6 shows the predictions of these models on
an arbitrary test case. We exclude three models with the highest RMSE to accommodate the rest.

We observe that not only does the weights (0.3, 0.7) perform the best on the testing set in terms of the RMSE,
it also produces the most visually pleasing result on such an individual case (Fig. 6i). Therefore, we will use
(F1, F2) = (0.3, 0.7) to represent 2-scale SSIM loss function family in this work. Note that we do not refer to the SSIM
loss value for model quality because it is biased for being in the same family as the MS-SSIM.

(8,16,32) (16,32,64) (32,64,128)
Number of feature maps

0.0076

0.0078

0.0080

0.0082

0.0084

0.0086

SS
IM

50000

100000

150000

200000

250000

Nu
m
be

r o
f p

ar
am

et
er
s

Fig. 4 The SSIM on the tesing set (left) and the number of parameters (right) as a function of the number of
feature maps.
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(a) Truth (from ADflow).

0.000 0.152 0.305 0.457 0.609 0.762 0.914
Mach

(b) The color bar.

(c) '"(� = 1.5328 · 10−2,
((�" = 0.6796 · 10−2.

(d) '"(� = 1.3514 · 10−2,
((�" = 0.6464 · 10−2.

(e) '"(� = 1.2104 · 10−2,
((�" = 0.6375 · 10−2.

Fig. 5 Truth and model prediction for the Mach number over an airfoil for the freestream conditions �>� =

1.3427◦, '4 = 9.2386 · 106, M = 0.32178. (c) the simple SSIM model; (d) the plain SSIM model; (e) the complex
SSIM model.

Table 3 Prediction errors of complex models with MS-SSIM as the loss function on the testing set.

Loss function (Weights (F1, F2)) '"(� (10−2) 1 − ((�" (10−2)
Wang et al. [22]

2.0863 0.8880
(0.0448, 0.2856, 0.3001, 0.2363, 0.1333)
SSIM (1.0, 0) 1.5367 0.7570
(0.9, 0.1) 1.7424 0.7732
(0.8, 0.2) 1.5977 0.7473
(0.7, 0.3) 1.4951 0.7447
(0.6, 0.4) 1.4717 0.6972
(0.5, 0.5) 1.3926 0.7364
(0.4, 0.6) 1.4448 0.7528
(0.3, 0.7) 1.3912 0.7370
(0.2, 0.8) 1.5257 0.7368
(0.1, 0.9) 1.5391 0.7673
(0, 1.0) 6.9201 7.7780
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(a) Truth (from ADflow).

0.000 0.152 0.305 0.457 0.609 0.762 0.914
Mach

(b) The color bar.

(c) SSIM. '"(� = 1.2110 ·
10−2, ((�" = 1.1168 · 10−2.

(d) (0.8, 0.2). '"(� = 1.2278 ·
10−2, ((�" = 1.0196 · 10−2.

(e) (0.7, 0.3). '"(� = 1.1722 ·
10−2, ((�" = 1.1341 · 10−2.

(f) (0.6, 0.4). '"(� = 1.3753 ·
10−2, ((�" = 1.1072 · 10−2.

(g) (0.5, 0.5). '"(� = 1.0170 ·
10−2, ((�" = 1.0645 · 10−2.

(h) (0.4, 0.6). '"(� = 1.1639 ·
10−2, ((�" = 1.1456 · 10−2.

(i) (0.3, 0.7). '"(� = 1.0935 ·
10−2, ((�" = 1.0656 · 10−2.

(j) (0.2, 0.8). '"(� = 1.0661 ·
10−2, ((�" = 1.0504 · 10−2.

(k) (0.1, 0.9). '"(� = 1.2345 ·
10−2, ((�" = 1.1555 · 10−2.

Fig. 6 Truth and model prediction for the Mach numbers of a test case. The freestream conditions are
�>� = 0.7558◦, '4 = 1.0624 · 107, M = 0.46393. (c) through (k) are the best 9 models listed in Table 3, which
are denoted by their weight factors.
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Table 4 Comparison of representative models.

Model '"(� (10−2) 1 − ((�" (10−2)
Complex RMSE 1.3141 1.2633
Complex SSIM 1.5367 0.7570
Complex MS-SSIM, weights (0.3, 0.7) 1.3912 0.7370

D. Comparison of Models
To further demonstrate our results, we present predictions of the complex RMSE model, the complex SSIM model,

and the complex 2-scale SSIM model with weights (0.3, 0.7). As the prediction is a stochastic process, it is important to
note that a model with a lower RMSE on the entire testing set may perform worse than a model with a higher RMSE on
the testing set for an arbitrary individual case. Therefore, to make the visual results as unbiased as possible, we find the
case on which the models have a low normalized total standard deviation (f̂), defined as

f'"(� =

√√√
1
3

3∑
8=1

(
n'"(�,8 − n̄'"(�,8

)2
,

f((�" =

√√√
1
3

3∑
8=1

(
n((�",8 − n̄((�",8

)2
,

f̂ =

√
f̂2
'"(�

+ f̂2
((�"

,

(4)

where n̄�AA ,8 is the “�AA” (�AA ∈ {'"(�, ((�"}) error of model 8 on the testing set, n�AA ,8 is the case-specific “�AA”
error; f�AA is the (absolute) standard deviation in the corresponding loss function (�AA ∈ {'"(�, ((�"}) for the
three models and f̂�AA is the min-max normalized standard deviation. We need such a normalization to combine the
two metrics of model quality because the two absolute f’s are not of the same level of magnitude. Following Eqn. 4,
the lower f̂ is, the closer the predictions of a specific model are to the average; thus, the more representative the case is.
Figure 7 shows the predictions of the three models on the case with f̂ = 0.04455, f'"(� = 0.00086, f((�" = 0.00058.
Figure 8 shows the absolute RMSE of the predictions in Fig. 7.

We observe that the plain RMSE model yields pixel-wise-accurate predictions, but they are plagued by spiky
contours and bumps in supposedly flat regions. Switching to the SSIM loss function smoothens the contours while
sacrificing a little accuracy. Introducing a second scale to the loss function and assigning appropriate weights improve
the predictions further in terms of both the RMSE and SSIM. Figure 8 supports this observation in that using the SSIM
loss eliminates bad predictions outside the wake region and that using the MS-SSIM loss with weight factors (0.3, 0.7)
further reduces the magnitudes of the error. We also list the models that appear in Fig. 7 in Table 4. We quantify our
observations as follows: we improve the SSIM loss by 40.0% by switching from the RMSE to the SSIM loss function,
at the cost of having a 14.5% higher RMSE. By introducing a second scale, it is possible to improve the RMSE by 9.5%,
and the SSIM loss by 2.6%. Finally, compared with the best (complex) RMSE model, the complex MS-SSIM model
has a 5.9% higher RMSE and a net 41.7% decrease in the SSIM loss.

IV. Conclusion
This work shows that the MS-SSIM loss function improves the perceived visual quality of flow field predictions.

Results show that the predictive performance of autoencoder-based CNN models increases with the increasing network
architecture complexity. The accuracy metrics considered to measure predictive performance include root mean squared
error (RMSE) and the structural similarity (SSIM) value. The MS-SSIM-based models predict smooth contours, which
the RMSE models fail systematically. With the same neuron setup, the MS-SSIM model with appropriate weight factors
achieves a much lower SSIM loss by slightly sacrificing the RMSE loss.

We see the following possible extensions for this work: (1) Our work has achieved satisfactory accuracy compared
with the results reported in the work of Sekar et al. [13]. Compared with their architecture, ours have fewer hidden
layers. Some hyperparameters such as the learning rate have not been systematically investigated. It is possible further
to improve the accuracy of our models by fine-tuning. For example, the effects of sharing the decoder for various
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(a) Truth (from ADflow).

0.000 0.152 0.305 0.457 0.609 0.762 0.914
Mach

(b) The color bar.

(c) RMSE. '"(� = 1.1896 ·
10−2, ((�" = 1.1255 · 10−2.

(d) SSIM. '"(� = 1.5864 ·
10−2, ((�" = 0.7050 · 10−2.

(e) MS-SSIM, (0.3, 0.7).
'"(� = 1.3338 · 10−2,
((�" = 0.6384 · 10−2.

Fig. 7 Truth and complex model predictions for the Mach numbers of a test case. The freestream conditions
are �>� = 2.0612◦, '4 = 1.1055 · 107, M = 0.58986. (a) through (c) are predictions of the 3 models for
comparison.

0.000 0.010 0.020 0.030 0.040 0.050 0.060
Mach

(a) The color bar for the absolute RMSE error.

(b) Absolute RMSE error for
the complex RMSE model.

(c) Absolute RMSE error for
the complex SSIM model.

(d) Absolute RMSE error for
the complex MS-SSIM model
with weight factors (0.3, 0.7).

Fig. 8 Contours of the absolute RMSE error in the predictions of the models for comparison, with the contour
of the airfoil overlaid. The freestream conditions are the same as in Fig. 7. Note that the contours of the absolute
error use a color map different from the others in this paper; the maximum value is 0.06, which is around 4
times the average RMSE.
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variables [17] is worth investigating. (2) The MS-SSIM loss function improved flow field prediction compared with the
RMSE loss function. However, it still treats flow field solutions as generic images. It might be worthwhile to invent a
new loss function that evaluates the structural similarity of a prediction and incorporates the physics of the flow.
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