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ABSTRACT
Graph queries on large networks leverage the stored graph prop-
erties to provide faster results. Since real-world graphs are mostly
dynamic, i.e., the graph topology changes over time, the correspond-
ing graph attributes also change over time. In certain situations,
recompiling or updating earlier properties is necessary to maintain
the accuracy of a response to a graph query. Here, we first propose
a generic framework for developing parallel algorithms to update
graph properties on large dynamic networks. We use our frame-
work to develop algorithms for updating Single Source Shortest
Path (SSSP) and Vertex Color. Then we propose applications of the
developed algorithms in Unmanned Aerial Vehicle (UAV) based
delivery systems under time-varying dynamics. Finally, we imple-
ment our SSSP and vertex color update algorithms for Nvidia GPU
architecture and show empirically that the developed algorithms
can update properties in large dynamic networks faster than the
state-of-the-art techniques.
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1 INTRODUCTION
Complex system analysis often takes the help of network model-
ing, where the interacting entities are modeled as vertices and the
interactions are mapped as the edges. Properties of the modeled
network help to find interesting insights about the actual system.
As a result, network analysis has applications in various domains
including bioinformatics, drug discovery, internet routing, and rec-
ommendation systems. For large networks, computing and storing
graph properties efficiently is itself an expensive operation due to
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the irregular memory access during graph traversal. The real-world
networks, which are dynamic in nature, possess additional chal-
lenges of maintaining the correct property values with the change in
network structure. Most of the existing algorithms were developed
targeting static graphs and thus if applied on dynamic networks,
they recompute properties on network snapshots at different time
instances. This technique of applying static graph algorithms on
dynamic networks is computationally expensive and involves re-
dundant operations. Furthermore, the challenge increases with the
increase in the size of the network[1–3].

Here, we propose a framework to develop algorithms to update
graph properties efficiently.
Problem Statement: Let𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ) be the graph at time step 𝑡 and
𝑢.𝑝𝑟𝑜𝑝𝑡 be the corresponding graph property (E.g., distance from
source in SSSP or color assignment in vertex coloring problem) of a
vertex 𝑢. Let Δ𝐸𝑡 = 𝐸𝑡+1 −𝐸𝑡 be the set of changed edges from time
step 𝑡 to time step 𝑡 + 1. It consists of two subsets, 𝐼𝑛𝑠𝑡 and 𝐷𝑒𝑙𝑡 ,
respectively the set of inserted edges and deleted edges at time
step 𝑡 . Thus, 𝐸𝑡+1 = ((𝐸𝑡 ∪ 𝐼𝑛𝑠𝑡 ) \ 𝐷𝑒𝑙𝑡 ). Our goal is to efficiently
compute the updated property 𝑢.𝑝𝑟𝑜𝑝𝑡+1 for all 𝑢 ∈ 𝑉𝑡+1, without
recomputing from scratch.
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Figure 1: Graph property update framework demonstrated
with an example of SSSP update.

2 GRAPH PROPERTY UPDATE FRAMEWORK
This section provides details on the proposed approach.
Step 1 identifies the affected end vertices of each edge (𝑢, 𝑣) ∈ Δ𝐸.
In this edge-centric parallel operation, the affected vertices directly
related to the changed edges are gathered in a frontier for further
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processing. Step 2 is an iterative process of updating the property.
In each iteration, the property is updated in parallel for the affected
vertices in the current frontier. The next frontier is generated by
visiting the neighbors and selecting the possible set of affected
vertices. The iterative process converges and achieves correctness
when the frontier becomes empty.

Fig. 1 describes our parallel framework with an example of SSSP
update. In the example, the green circles are the affected vertices at
different stages of SSSP update algorithm. For more details on SSSP
update see [3]. Similar to SSSP update, our framework can be used to
develop a vertex color update algorithm, where the initial color can
be corrected by finding the affected vertices and recoloring them.
In an asynchronous parallel framework, recoloring may produce
color conflict and it can be solved iteratively in step 2.
3 APPLICATIONS OF OUR FRAMEWORK
3.1 Centralized Drone-based Delivery
In a centralized drone-based delivery system, drones follow the
delivery route provided by the central server. In varying wind
conditions (wind speed and direction change with time), finding
the most efficient delivery routes becomes a problem of finding
SSSP in a dynamic network. In [2], we applied our framework to
efficiently update the delivery route of the drones in a centralized
system under time-varying dynamics.
3.2 Drone Truck Co-operated Delivery
In [1], we proposed a drone truck co-operated delivery scenario,
where drones start from a delivery truck, perform their delivery,
and return to the truck. In this setup, we consider a fixed predefined
route and rest areas for the truck. However, each drone’s delivery
route is dynamic due to time-dependent factors such as wind direc-
tion. We use the SSSP update algorithm to solve a multi-objective
problem where the delivery system aims to complete a set of deliv-
eries in the minimum time while the drones try to minimize their
energy consumption to meet the limited battery constraint.
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Figure 2: Drone truck co-operated delivery system.

4 EXPERIMENTAL RESULTS
We use our framework to develop and implement parallel algo-
rithms to update SSSP and Vertex Color in large dynamic networks.
In our experiment, 𝑥% 𝐼𝑛𝑠 in Δ𝐸 indicates total Δ𝐸 ∗ 𝑥/100 edge
insertion and Δ𝐸 ∗ (1 − 𝑥/100) edge deletion.
4.1 Single Source Shortest Path Update
Our NVIDIA CUDA-based SSSP update implementation[3] outper-
forms state-of-the-art Gunrock’s [5] GPU-based SSSP implemen-
tation (recomputation approach) in most cases. Fig. 3a, 3b shows

the ratio of SSSP recomputation [5] time, and SSSP update time on
GPU.
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Figure 3: SSSP: Comparison with Gunrock’s implementation.

4.2 Vertex Color Update
Fig. 4a, and 4b show the ratio of color recomputation [4] time
(using GPU-based Kokkos coloring), and vertex color update time
on GPU. Experimental result shows that the execution ratio is more
than 1 in most cases, i.e., the update algorithm takes less time than
recomputation.
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Figure 4: Color Update: Comparison with static coloring[4]

5 CONCLUSION
We introduce a parallel framework to develop algorithms for updat-
ing the properties of large dynamic networks. Using our framework,
we develop and implement SSSP and vertex color update algorithms
on GPU architecture. Empirical results show that our implemen-
tations update different graph properties faster than the current
state-of-the-art methods. We have already applied SSSP update al-
gorithm in UAV-based delivery systems for efficient delivery route
selection under time-varying dynamics. We plan to apply our vertex
color update algorithm in a dynamic delivery-scheduling scenario.
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