
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

04 Jan 2023 

A Parallel Framework for Efficiently Updating Graph Properties in A Parallel Framework for Efficiently Updating Graph Properties in 

Large Dynamic Networks Large Dynamic Networks 

Arindam Khanda 

Sajal K. Das 
Missouri University of Science and Technology, sdas@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
A. Khanda and S. K. Das, "A Parallel Framework for Efficiently Updating Graph Properties in Large Dynamic 
Networks," ACM International Conference Proceeding Series, pp. 298 - 299, Association for Computing 
Machinery (ACM), Jan 2023. 
The definitive version is available at https://doi.org/10.1145/3571306.3571359 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1212&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3571306.3571359
mailto:scholarsmine@mst.edu


A Parallel Framework for Efficiently Updating Graph Properties
in Large Dynamic Networks

Arindam Khanda
akkcm@mst.edu

Missouri University of Science and Technology
Rolla, MO, USA

Sajal K. Das
sdas@mst.edu

Missouri University of Science and Technology
Rolla, MO, USA

ABSTRACT
Graph queries on large networks leverage the stored graph prop-
erties to provide faster results. Since real-world graphs are mostly
dynamic, i.e., the graph topology changes over time, the correspond-
ing graph attributes also change over time. In certain situations,
recompiling or updating earlier properties is necessary to maintain
the accuracy of a response to a graph query. Here, we first propose
a generic framework for developing parallel algorithms to update
graph properties on large dynamic networks. We use our frame-
work to develop algorithms for updating Single Source Shortest
Path (SSSP) and Vertex Color. Then we propose applications of the
developed algorithms in Unmanned Aerial Vehicle (UAV) based
delivery systems under time-varying dynamics. Finally, we imple-
ment our SSSP and vertex color update algorithms for Nvidia GPU
architecture and show empirically that the developed algorithms
can update properties in large dynamic networks faster than the
state-of-the-art techniques.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms.

KEYWORDS
datasets, neural networks, gaze detection, text tagging

ACM Reference Format:
Arindam Khanda and Sajal K. Das. 2023. A Parallel Framework for Efficiently
Updating Graph Properties in Large Dynamic Networks. In ICDCN 2023:
24th International Conference on Distributed Computing and Networking,
Jan 04–07, 2023, IIT Kharagpur, India. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3571306.3571359

1 INTRODUCTION
Complex system analysis often takes the help of network model-
ing, where the interacting entities are modeled as vertices and the
interactions are mapped as the edges. Properties of the modeled
network help to find interesting insights about the actual system.
As a result, network analysis has applications in various domains
including bioinformatics, drug discovery, internet routing, and rec-
ommendation systems. For large networks, computing and storing
graph properties efficiently is itself an expensive operation due to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICDCN 2023, Jan 04–07, 2023, IIT Kharagpur, India
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9796-4/23/01.
https://doi.org/10.1145/3571306.3571359

the irregular memory access during graph traversal. The real-world
networks, which are dynamic in nature, possess additional chal-
lenges of maintaining the correct property values with the change in
network structure. Most of the existing algorithms were developed
targeting static graphs and thus if applied on dynamic networks,
they recompute properties on network snapshots at different time
instances. This technique of applying static graph algorithms on
dynamic networks is computationally expensive and involves re-
dundant operations. Furthermore, the challenge increases with the
increase in the size of the network[1–3].

Here, we propose a framework to develop algorithms to update
graph properties efficiently.
Problem Statement: Let𝐺𝑡 (𝑉𝑡 , 𝐸𝑡 ) be the graph at time step 𝑡 and
𝑢.𝑝𝑟𝑜𝑝𝑡 be the corresponding graph property (E.g., distance from
source in SSSP or color assignment in vertex coloring problem) of a
vertex 𝑢. Let Δ𝐸𝑡 = 𝐸𝑡+1 −𝐸𝑡 be the set of changed edges from time
step 𝑡 to time step 𝑡 + 1. It consists of two subsets, 𝐼𝑛𝑠𝑡 and 𝐷𝑒𝑙𝑡 ,
respectively the set of inserted edges and deleted edges at time
step 𝑡 . Thus, 𝐸𝑡+1 = ((𝐸𝑡 ∪ 𝐼𝑛𝑠𝑡 ) \ 𝐷𝑒𝑙𝑡 ). Our goal is to efficiently
compute the updated property 𝑢.𝑝𝑟𝑜𝑝𝑡+1 for all 𝑢 ∈ 𝑉𝑡+1, without
recomputing from scratch.

In
p

u
t

U
p

d
at

e 
A
ff

ec
te

d
 N

o
d

es
 It

er
a�

ve
ly

Original 
Network
𝐺0

Ini�al Network 
Property𝑃

Changed 
Edges Δ𝐸

Check Δ𝐸 to iden�fy Affected subgraph

Update property of nodes in 𝐹

Generate new Fron�er of Affected Nodes 
by visi�ng neighbors

Empty Fron�er?

Yes

No

Updated Network Property

Mark affected ver�ces and generates 
Fron�er of Affected Nodes 𝐹Pr

oc
es

si
n
g
 C

h
an

g
ed

 
E
d
g
es

A

F

B

D E

C
5

2 4

4

2
6

1 Del: (A, B: 2)
Ins: (A, E: 1)

A

F

B

D E

C

4

1

0

4

A

F

B

D E

C

4

1
1

0

4

7

3

A

F

B

D E

C

4

1

0

5

5

inf

inf

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

Iteration 1 Iteration 2

SSSP tree

Updated 
SSSP tree

A

F

B

D E

C

2 4

21

0

4

6

7

3

2

A

F

B

D E

C

4

1

0

4

A

F

B

D E

C

4

1
1

0

4

7

3

A

F

B

D E

C

4

1

0

5

5

inf

inf

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

A

F

B

D E

C

2
1

0

5

5 1
4

1

6

9

3

A

F

B

D E

C
5

2 4

4

2
6

1 Del: (A, B: 2)
Ins: (A, E: 1)

SSSP tree

A

F

B

D E

C

2 4

21

0

4

6

7

3

2

Updated 
SSSP tree

Figure 1: Graph property update framework demonstrated
with an example of SSSP update.

2 GRAPH PROPERTY UPDATE FRAMEWORK
This section provides details on the proposed approach.
Step 1 identifies the affected end vertices of each edge (𝑢, 𝑣) ∈ Δ𝐸.
In this edge-centric parallel operation, the affected vertices directly
related to the changed edges are gathered in a frontier for further

298

https://orcid.org/ 0000-0003-3364-8914
https://doi.org/10.1145/3571306.3571359
https://doi.org/10.1145/3571306.3571359
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3571306.3571359&domain=pdf&date_stamp=2023-01-04


ICDCN 2023, Jan 04–07, 2023, IIT Kharagpur, India Khanda, et al.

processing. Step 2 is an iterative process of updating the property.
In each iteration, the property is updated in parallel for the affected
vertices in the current frontier. The next frontier is generated by
visiting the neighbors and selecting the possible set of affected
vertices. The iterative process converges and achieves correctness
when the frontier becomes empty.

Fig. 1 describes our parallel framework with an example of SSSP
update. In the example, the green circles are the affected vertices at
different stages of SSSP update algorithm. For more details on SSSP
update see [3]. Similar to SSSP update, our framework can be used to
develop a vertex color update algorithm, where the initial color can
be corrected by finding the affected vertices and recoloring them.
In an asynchronous parallel framework, recoloring may produce
color conflict and it can be solved iteratively in step 2.
3 APPLICATIONS OF OUR FRAMEWORK
3.1 Centralized Drone-based Delivery
In a centralized drone-based delivery system, drones follow the
delivery route provided by the central server. In varying wind
conditions (wind speed and direction change with time), finding
the most efficient delivery routes becomes a problem of finding
SSSP in a dynamic network. In [2], we applied our framework to
efficiently update the delivery route of the drones in a centralized
system under time-varying dynamics.
3.2 Drone Truck Co-operated Delivery
In [1], we proposed a drone truck co-operated delivery scenario,
where drones start from a delivery truck, perform their delivery,
and return to the truck. In this setup, we consider a fixed predefined
route and rest areas for the truck. However, each drone’s delivery
route is dynamic due to time-dependent factors such as wind direc-
tion. We use the SSSP update algorithm to solve a multi-objective
problem where the delivery system aims to complete a set of deliv-
eries in the minimum time while the drones try to minimize their
energy consumption to meet the limited battery constraint.

𝜆0
𝜆1

𝜆2

𝜆3

𝜆4

𝜆5

𝜆6

𝜆7

>

>

>

>

>

>

>

>

<

<

<

<

Drone with 
package

Depot

Customer

Customer

Drone without 
package

Truck route

Drone route

𝛿𝑗 Wind Control Unit

Rest Area

Truck

Figure 2: Drone truck co-operated delivery system.

4 EXPERIMENTAL RESULTS
We use our framework to develop and implement parallel algo-
rithms to update SSSP and Vertex Color in large dynamic networks.
In our experiment, 𝑥% 𝐼𝑛𝑠 in Δ𝐸 indicates total Δ𝐸 ∗ 𝑥/100 edge
insertion and Δ𝐸 ∗ (1 − 𝑥/100) edge deletion.
4.1 Single Source Shortest Path Update
Our NVIDIA CUDA-based SSSP update implementation[3] outper-
forms state-of-the-art Gunrock’s [5] GPU-based SSSP implemen-
tation (recomputation approach) in most cases. Fig. 3a, 3b shows

the ratio of SSSP recomputation [5] time, and SSSP update time on
GPU.

BHJ-2 Orkut LiveJournal RMAT24
Dataset

0

2

4

6

8

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

50 Million Changes
Ins %

0
25
50
75

90
95
100

(a) 50 million change edges

BHJ-2 Orkut LiveJournal RMAT24
Dataset

0

1

2

3

4

5

6

7

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

100 Million Changes
Ins %

0
25
50
75

90
95
100

(b) 100 million change edges

Figure 3: SSSP: Comparison with Gunrock’s implementation.

4.2 Vertex Color Update
Fig. 4a, and 4b show the ratio of color recomputation [4] time
(using GPU-based Kokkos coloring), and vertex color update time
on GPU. Experimental result shows that the execution ratio is more
than 1 in most cases, i.e., the update algorithm takes less time than
recomputation.

RMAT24_e8 Orkut roadUSA inf-italy
Dataset

0

5

10

15

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

1 Million Changes

Ins %
5
25
50

75
95

(a) 1 million change edges

RMAT24_e8 Orkut roadUSA inf-italy
Dataset

0.0

2.5

5.0

7.5

10.0

Ex
ec

ut
io

n 
Ti

m
e 

R
at

io

5 Million Changes

Ins %
5
25
50

75
95

(b) 5 million change edges

Figure 4: Color Update: Comparison with static coloring[4]

5 CONCLUSION
We introduce a parallel framework to develop algorithms for updat-
ing the properties of large dynamic networks. Using our framework,
we develop and implement SSSP and vertex color update algorithms
on GPU architecture. Empirical results show that our implemen-
tations update different graph properties faster than the current
state-of-the-art methods. We have already applied SSSP update al-
gorithm in UAV-based delivery systems for efficient delivery route
selection under time-varying dynamics. We plan to apply our vertex
color update algorithm in a dynamic delivery-scheduling scenario.
ACKNOWLEDGMENTS
This work was supported by the NSF projects SANDY (Award #
OAC-1725755) and CANDY (Award # OAC-2104078)
REFERENCES
[1] Arindam Khanda, Federico Corò, and Sajal K Das. 2022. Drone-Truck Cooperated

Delivery Under Time Varying Dynamics. In Proceedings of the 2022 Workshop
on Advanced tools, programming languages, and PLatforms for Implementing and
Evaluating algorithms for Distributed systems. 24–29.

[2] Arindam Khanda, Federico Corò, Francesco Betti Sorbelli, Cristina M. Pinotti, and
Sajal K. Das. 2021. Efficient Route Selection for Drone-based Delivery Under Time-
varying Dynamics. In IEEE 18th International Conference on Mobile Ad Hoc and
Smart Systems (MASS). 437–445. https://doi.org/10.1109/MASS52906.2021.00061

[3] Arindam Khanda, Sriram Srinivasan, Sanjukta Bhowmick, Boyana Norris, and
Sajal K. Das. 2022. A Parallel Algorithm Template for Updating Single-Source
Shortest Paths in Large-Scale Dynamic Networks. IEEE Transactions on Parallel
and Distributed Systems 33, 4 (2022), 929–940. https://doi.org/10.1109/TPDS.2021.
3084096

[4] Sivasankaran Rajamanickam, Seher Acer, Luc Berger-Vergiat, Vinh Dang, Nathan
Ellingwood, Evan Harvey, Brian Kelley, Christian R Trott, Jeremiah Wilke, and
Ichitaro Yamazaki. 2021. Kokkos Kernels: Performance Portable Sparse/Dense
Linear Algebra and Graph Kernels. arXiv preprint arXiv:2103.11991 (2021).

[5] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A high-performance graph processing library on
the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 1–12.

299

https://doi.org/10.1109/MASS52906.2021.00061
https://doi.org/10.1109/TPDS.2021.3084096
https://doi.org/10.1109/TPDS.2021.3084096

	A Parallel Framework for Efficiently Updating Graph Properties in Large Dynamic Networks
	Recommended Citation

	Abstract
	1 Introduction
	2 Graph Property Update Framework
	3 Applications of our Framework
	3.1 Centralized Drone-based Delivery
	3.2 Drone Truck Co-operated Delivery

	4 Experimental Results
	4.1 Single Source Shortest Path Update
	4.2 Vertex Color Update

	5 Conclusion
	Acknowledgments
	References

