
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

04 Jan 2023 

Scalable Skill-Oriented Task Allocation in Crowdsourcing within a Scalable Skill-Oriented Task Allocation in Crowdsourcing within a 

Serverless Ecosystem Serverless Ecosystem 

Biswajeet Sethi 

Riya Samanta 

Soumya K. Ghosh 

Sajal K. Das 
Missouri University of Science and Technology, sdas@mst.edu 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
B. Sethi et al., "Scalable Skill-Oriented Task Allocation in Crowdsourcing within a Serverless Ecosystem," 
ACM International Conference Proceeding Series, pp. 135 - 139, Association for Computing Machinery 
(ACM), Jan 2023. 
The definitive version is available at https://doi.org/10.1145/3571306.3571399 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of 
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for 
redistribution requires the permission of the copyright holder. For more information, please contact 
scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1205&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/3571306.3571399
mailto:scholarsmine@mst.edu


Scalable Skill-oriented Task Allocation in Crowdsourcing within a
Serverless Ecosystem

Biswajeet Sethi
∗

Indian Institute of Technology Kharagpur, India

biswajeet.sethi@iitkgp.ac.in

Riya Samanta
∗

Indian Institute of Technology Kharagpur, India

riya.samanta@iitkgp.ac.in

Soumya K. Ghosh

Indian Institute of Technology Kharagpur, India

skg@cse.iitkgp.ac.in

Sajal K. Das

Missouri Univ. of Science and Technology, Rolla, USA

sdas@mst.edu

ABSTRACT
Allocating the most competent crowdworkers to each upcoming

task is a fundamental challenge in crowdsourcing. The mechanism

becomes complicated when the arriving tasks require a high level

of expertise within a constrained budget. The validation of skill

matching between tasks and crowdworkers adds a new dimension

to the traditional problem of task allocation. In addition, in real-

world scenarios, the influx of both tasks and workers is dynamic,

making it nearly impossible to predict the precise amount of com-

putational resources required for the crowdsourcing platform to

operate efficiently. Serverless computing is a new pay-per-use, auto-

scalable, Function-as-a-Service based model, that ensures parallel

execution of lightweight event-driven functions. The developer

with serverless can solely concentrate on writing application logic

with zero effort on resource provision, server management, envi-

ronmental configuration, and availability. Today, collaboration has

become the new competition. In light of these considerations, we

propose a novel framework to facilitate task allocation strategies

for crowdsourcing applications, deployed within a serverless plat-

form in order to improve performance. The results obtained are

compared to the baseline, Online-Greedy, and simulations are run

in both serverless and local environments.
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1 INTRODUCTION
Crowdsourcing (CS) has emerged as a distributed rational solution

and a business-making replica. CS is a model for collaborative net-

worked resources to accomplish a task in this connected world.

Today, when data is available from the instant owner, CS has made

it possible to outsource the task, once a time being performed by

in-campus employees, to the nexus through an open call. In any

category of CS platform, whether spatial, web-based, or volunteer

services, most projects are complex and structural [17], needing

several crowd-workers with a variety of skills to collaborate. A

software-development project outsourced via a freelancing market-

place is one example (e.g., UpWork, Freelancer, Toptal, etc.).

Thus, in large markets like CS, corporations have recognized the

scarcity of highly skilled workers and the intense competition for

top talent. This necessitates the current research trends to focus on

skill-based task allocation in the CS backdrop. Moreover, in

most practical scenarios, the influx of tasks and workers is variable

or dynamic, depending on factors such as working hours, tech-

nology demands, the type of available tasks, crowd-workers, etc.

Hence, CS platforms strive to facilitate the on-demand and scalable

distribution of assignments to human workers worldwide [11]. This

makes it hard to forecast the platform’s computing needs. In the era

of Big Data, scalability and resource provisioning are significant

concerns for any CS platform. This is why commercial applica-

tions are transitioning to micro-services and containers, leading to

serverless computing.

One of the important benefits of using serverless is the avail-

ability of infinite auto-scalability, with commanding trends in data-

intensive applications. Serverless lets the user execute stateless

functions in the form of small chunks of reusable code. It invokes a

copy of the function on request with no restriction on the number

of concurrent incoming requests for the function. In the event of

any sudden prong, the serverless platform is capable of scaling to

any stretch with auto-provisioning of resources. It also eliminates

the effort the user has to spend on server management and config-

uration of the runtime. One of the other important reasons behind

the popularity of serverless is its pricing model. Serverless is based

on a pay-per-use model. The user has to pay only for the active

computation and storage that it uses.

The challenge today is to make the much-desired CS platforms

more performance efficient and automated. By deploying CS appli-

cations in a serverless ecosystem, we could take advantage of all the

basic benefits of serverless, such as auto-scalability, auto-provision
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Table 1: Comparison of Relevant Prior Work

Authors Allocation
Mode

Scalable ?

Goel et al. (2014) [5] Offline ×
Cheng et al.(2016)[4] Offline ×
Liu et al. (2016) [10] Offline ×
Jarrett et al. (2017) [7] Offline ✓Response to volume of

data

Song et al. (2020) [17] Online ×
Ni et al. (2020) [12] Offline ×
Samanta et al. (2021) [14] Online ×
Liang et al. (2022) [9] Offline ×
Samanta et al. (2022) [15] Offline ×
Proposed Approach
[THIS PAPER]

Batch based (hy-

brid of online and

offline)

Auto-scalable; Parallel
computation; Pay-per-
use

of resources, and pay-per-use. Also, the stateless functions in server-

less allow the developers to perform concurrent computations.

Key contributions: (1) We formulate the Task-Worker Mapping

(TWM) problem. The tasks under consideration have skill require-

ments, along with certain definite budgets. Next, we propose Skill-

oriented Allocation (SoA) algorithm for assigning crowd-workers

to the tasks. (2) We propose a serverless framework to deploy our

crowdsourcing application in order to improve its performance in

terms of latency. Here, we define latency as the total delay in getting

the final result of task-worker mapping. (3) We demonstrated the

efficacy of SoA over the existing state-of-the-art method based on

latency, success rate and average task waiting time. For simulation,

we used a real dataset.

The remaining sections are organised as follows. Section 2 pro-

vides a concise summary of the relevant literature. Section 3 ex-

plains skill-based task allocation in CS and defines the problem.

Section 4 describes the serverless framework proposed for a scal-

able allocation strategy. The experimental results used to evaluate

the performance of the aforementioned framework are presented

in Section 5. The last section is the conclusion.

2 RELATEDWORK
The task allocation problem in CS has attracted researchers for more

than a decade. however, only a few have considered skill orientation

in the decision process. In [5], authors considered bounded budgets

and non-homogeneous jobs requiring specific skills and designed

an incentive-compatible technique using bipartite matching. The

authors in [4] find an optimal worker-and-task assignment strategy,

such that skills between workers and tasks match with each other,

and workers’ benefits are maximized under the budget constraint.

Another work is of [10] where the authors proposed an approach

to managing complex task allocation while taking into account the

tasks-workers-skills tripartite graph.

On the other hand, multi-skill-oriented task allocation in online

settings is studied by [17] and [14]. The authors of [14] follow a

similar plan of action as that of [17], with the addition of a willing-

ness component for complex assignments, along with the workers’

skills and the utility of assigned activities. The authors in [12] de-

fine dependency-aware spatial CS. The [9] proposed a cost-based

greedy approach to minimize CS platform costs by matching a suit-

able team of workers for spatial tasks under multiple constraints.

However, except [17] and [14], all the papers offer offline allocation.

The paper [7] proposed a path for CS expansion through interoper-

ability and scaling with no such adhered protocol.

An earlier version of this work has been accepted in IEEE GLOBE-
COM 2022 [15]. The concept of the SoA algorithm is being derived

from i-VTM algorithm of [15]. Table-1 gives a comparative glimpse

of research work conducted in the field of CS.

On the other hand, a plentiful amount of research has been

actively going on in the domain of serverless computing. Papers

like [6, 9], discuss the fundamental features of serverless computing

along with its opportunities and challenges. Additionally, authors

in [3, 8] discuss how the scalability of serverless platforms can

become the future of the industry.

To the best of our knowledge, no work has ever attempted to

add an auto-scalability feature to the CS platform using a serverless

backbone. In this work, we tried to overcome this research gap.

3 SKILL-ORIENTED TASK ALLOCATION IN
CROWDSOURCING

In this section, we discuss the details of skill-oriented work alloca-

tion in CS and relevant formal definitions.

3.1 Batch-based Allocation Strategy
Considering the limitations of online and offline allocation ap-

proaches [2], in this work we apply a batch-based allocation
strategy that is a hybrid of offline and online assignment. We di-

vide the time period into (𝑋0, 𝑋1, 𝑋2, ...𝑋𝑘 ) intervals. At the start of
each interval (i.e.,𝑋 𝑗 ), the framework carries out the task allocation

process, taking into consideration the number of tasks and crowd-

workers received during 𝑋 𝑗−1. Additionally, the unassigned task

and crowd-worker entities, if have not surpassed the time-to-live,

are pushed to 𝑋 𝑗+1.

3.2 Problem Formulation
At the beginning of batch count 𝑋𝑖 , a set of tasks 𝑇 and a set of

available crowd-workers𝐶 are present at the CS platform for active

participation. Every task 𝑡 ∈ 𝑇 , has a list of skills requirement 𝑆𝑡
and a predefined budget 𝐵𝑡 . The task 𝑡 is supposed to have arrived at

time 𝛿𝑡 and has an estimated time-to-live of 𝑒𝑡 . After 𝑒𝑡 expires, the

task is either removed from the system or re-posted. Each crowd-

worker 𝑐 ∈ 𝐶 is associated with a list of skills 𝑆𝑐 and is supposed to

incur 𝑅𝑐 fee. Similarly, 𝑐 is considered to have arrived at time 𝛿𝑐 and

is expected to have a time-to-live till 𝑒𝑐 . Following the justifications

made in the papers [5, 17], we assume that the number of skills that

every task necessitates or that a crowd-worker possesses is always

part of a specified universal skill set 𝑄 with a fixed size 𝑛.

For each batch 𝑋𝑖 , the problem is to assign crowd-workers to

tasks and generate an allocation map without the net remuneration

of the selected workers surpassing the total budget sanctioned. Also,

the skill requirements of the tasks should be covered. We named

this problem as Task-Worker Mapping Problem(TWM) which is

NP-hard and can be proved by a reduction from the Approximated
Subset Sum Optimization Problem[12, 16].

3.3 Task-Worker Mapping Mechanism
This section describes the SoA algorithm in detail. The concept of

bipartite graph is utilized in scheming two main data structures,

namely Skill-Task Mapper (𝐺𝑆𝑇 ) and Skill-Worker Mapper (𝐺𝑆𝑊 ).
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Algorithm 1 Skill-oriented Allocation (SoA)

Input: Crowd-worker data-frame𝐶
′
, Skill-Task Mapper matrix𝐺𝑆𝑇

Output: Allocated Map𝑀𝑎𝑝
′
, Updated𝐺𝑆𝑇

1: Start

2: 𝐺
′
𝑆𝑇
←𝐺𝑆𝑇

3: Sort𝐶
′
with respect to remuneration

4: for all 𝑐 ∈ 𝐶′ do
5: Select worker𝜔 from𝐶

′
with lowest remuneration

6: 𝐺𝑆𝑊 ← Generate Worker-Skill Mapper of𝜔
7: 𝑐𝑜𝑙_𝑠𝑢𝑚← Column-wise sum of𝐺𝑆𝑊 excluding the last budget row

8: 𝑐𝑜𝑙_𝑚𝑎𝑥_𝑠𝑢𝑚←Max(𝑐𝑜𝑙_𝑠𝑢𝑚)

9: 𝑡𝑟𝑒𝑐𝑜 ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑐𝑜𝑙_𝑚𝑎𝑥_𝑠𝑢𝑚)
10: if 𝐵𝑡𝑟𝑒𝑐𝑜 ≥ 𝑅𝜔 then

11: 𝑡
′ ← 𝑡𝑟𝑒𝑐𝑜

12: Update 𝐵
𝑡
′

13: Add allocation (𝜔, 𝑡 ′ ) to𝑀𝑎𝑝
′

14: end if
15: Update𝐺

′
𝑆𝑇

16: end for
17: return 𝐺

′
𝑆𝑇

,𝑀𝑎𝑝
′

18: End

The 𝐺𝑆𝑇 is generated by the Lambda functions (𝐿𝑡𝑎𝑠𝑘 ). Similarly,

the proposed SoA algorithm is also deployed in multiple Lambda
functions instances, denoted as 𝐿𝑆𝑜𝐴 . The details related to the

serverless deployment are in Section-4.

The𝐺𝑆𝑇 is a two-dimensional matrix that is used to store skills

per task requirement. To represent the columns, all of the currently

available tasks𝑇 are combined. Thus, if all of the 𝑛 tasks in𝑇 result

in a total of𝑚 distinct skills, the size of 𝐺𝑆𝑇 will be (𝑚 + 1) × 𝑛.
The extra last row is dedicated to storing the current budget of the

tasks so that the matrix also passes the budget status while being

used during the allocation process. To note, the entry (𝑥,𝑦) (for
row 1 to m only) is set to one, if and only if a skill 𝑥 is required by

any task 𝑦; otherwise, it is set to zero. This 𝐺𝑆𝑇 is necessary for

dynamically tracking of any task’s skill requirement coverage.

The second important data structure is 𝐺𝑆𝑊 which is used for

matching each crowd-worker’s skills to that of the requirements

of tasks. The 𝐺𝑆𝑊 is also implemented using a two-dimensional

matrix. If a crowd-worker has𝑚 skills, the 𝐺𝑆𝑊 for 𝑛 tasks will

be𝑚 × 𝑛 in size. Like 𝐺𝑆𝑇 , in 𝐺𝑆𝑊 , the entry (𝑥,𝑦) is set to one;

if and only if skill 𝑥 is required by task 𝑦; otherwise, is set to zero.

To eliminate unnecessary skills, any redundant skill possessed by

a crowd-worker that is not required by any of the posted tasks is

ignored while constructing 𝐺𝑆𝑊 .

To begin, a local copy of𝐺𝑆𝑇 is created and named as𝐺
′
𝑆𝑇

. After

sorting𝐶 , the crowd-worker asking for the least remuneration is se-

lected (lines 3-5). Then, the worker’s respective𝐺𝑆𝑊 is constructed,

and column-wise sum of 𝐺𝑆𝑊 is manipulated (lines 6-7). Now, the

task for which the column-wise sum value is maximum is chosen

and temporary stored in 𝑡𝑟𝑒𝑐𝑜 (lines 8-9). If the task’s budget, 𝐵𝑡𝑟𝑒𝑐𝑜
is enough to cover 𝑅𝜔 then 𝑡𝑟𝑒𝑐𝑜 is designated as the allocated task

𝑡
′
and accordingly the budget is refined (lines 10-12). In the case of

multiple tasks qualifying for this condition, one of them is selected

randomly. Next,𝑀𝑎𝑝
′
is updated and so as the𝐺

′
𝑆𝑇

. Now, the data

structure 𝑀𝑎𝑝
′
is called the allocation map. It is implemented in

the form of a dictionary having key-value pair, where key is a

task name (or ID) and value is a list of tuples. Each tuple has the

name (or ID) of a worker and the skill set he or she contributed.

Finally, as SoA finishes execution, both𝑀𝑎𝑝
′
and𝐺

′
𝑆𝑇

are returned.

Figure 1: Proposed Serverless Task-Worker Mapping Framework

Theorem 1. SoA runs in 𝑂 (𝐶 ×𝑇 ) time.

Proof. Every 𝑡 ∈ 𝑇 is expected to have at least one separate

skill need. In 𝑇 , no two tasks will have exactly the same skill re-

quirements or none at all. In SoA, if 𝐶 is the set of crowd-workers

provided, then its sorting would be in 𝑂 (𝐶 (𝑙𝑜𝑔(𝐶)). Next, in the

outer loop of length |𝐶 |, 𝐺𝑆𝑊 matrix of size |𝑆𝑐 | × |𝑇 | is formed

for each worker in 𝐶 . The worst case scenario is when a worker’s

skill set size is the same as 𝑆𝑇 . Therefore, creation of 𝐺𝑆𝑊 takes

𝑂 ( |𝑇 ×𝑆𝑇 |) time and column-wise summation also takes𝑂 ( |𝑇 ×𝑆𝑇 |)
time. Moreover, finding the argmax is of 𝑂 ( |𝑇 |) costs. As a result,
the total time complexity of the Skill-oriented Allocation (SoA) Al-

gorithm is𝑂 (𝐶 (𝑙𝑜𝑔(𝐶)) +𝐶× (2(𝑇 ×𝑆𝑇 ) +𝑇 )). It is already assumed

that the count of skills required for any task or that a crowd-worker

holds are always part of a fixed-size universal skill set 𝑄 . The SoA

algorithm has a time complexity of 𝑂 (𝐶 (𝑙𝑜𝑔(𝐶)) + (𝐶 ×𝑇 )) which
is effectively 𝑂 (𝐶 ×𝑇 ), where 𝐶 is the set of participating crowd-

workers and 𝑇 is the set of tasks placed on the CS platform. □

4 PROPOSED SERVERLESS APPROACH FOR
TASK ALLOCATION IN CROWDSOURCING

The primary purpose of CS platform is to enable the assignment

of workers to suitable tasks. Most of the existing CS platforms are

pull-based, in which workers pick the tasks, e.g., Amazon MTurk.

In this work, we explored a push-based system [18] in which the

platform identifies potential workers and assigns tasks to them. The

proposed framework works in two phases, as shown in Figure-1.
We used AWS Lambda [1] as our serverless computation unit, Ama-

zon Simple Storage Service (Amazon S3) for storage and Amazon

Eventbridge for scheduled triggers to functions.

4.1 Phase 1
Phase 1 has the following steps:
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• Step 1: The CS platform takes the crowd-worker and task data as

input.

• Step 2: The data from the platform is pushed into a AWS S3 bucket
as two different objects.

• Step 3: Using AWS Amazon EventBridge, Lambda functions are

auto-scheduled, to fetch task and crowd-worker data concurrently

at some specified interval( also denoted as batch).

• Step 4: The crowd-worker data is fetched by a Lambda function,

𝐿𝑤𝑜𝑟𝑘𝑒𝑟 for required splitting. The splitting mechanism of 𝐿𝑤𝑜𝑟𝑘𝑒𝑟

is based upon horizontal slicing. In parallel the task file is fetched

by another Lambda function 𝐿𝑡𝑎𝑠𝑘 for generating the𝐺𝑆𝑇 .

• Step 5: The 𝐿𝑡𝑎𝑠𝑘 processes the task file and produces 𝐺𝑆𝑇 and

pushes it to the AWS buckets. In the mean time, 𝐿𝑤𝑜𝑟𝑘𝑒𝑟 slice the

crowd-worker data horizontally to 𝑛 parts and uploads the parti-

tioned crowd-worker data as objects to S3.
– Each crowd-worker data bucket has been mapped with a corre-

sponding Lambda function 𝐿𝑆𝑜𝐴 .

– Here, each push of partitioned crowd-worker data to a bucket

acts as a trigger to the corresponding Lambda function 𝐿𝑆𝑜𝐴 .

The outcome of phase 1 are 𝐺𝑆𝑇 and partitioned smaller crowd-

worker data set. The main purpose of phase 1 is to pre-process the

incoming task and crowd-worker dataset and make it ready for the

SoA to act on. The entire task data set is converted into a bipartite

graph (𝐺𝑆𝑇 ). The worker dataset, on the other hand, is split up into

many files to allow SoA instances to run concurrently. Moreover,

the 𝐺𝑆𝑊 is actually a sub-graph of the 𝐺𝑆𝑇 . Thus, after the 𝐺𝑆𝑇

has loaded for each instance of SoA, it is simple to construct the

𝐺𝑆𝑊 .

4.2 Phase 2
Phase 2 has the following steps:

• Step 1: Input to each 𝐿𝑆𝑜𝐴 function is the𝐺𝑆𝑇 and one of the sub

crowd-worker data set files generated from phase one.

• Step 2: After execution, each Lambda function sends the processed

partitioned crowd-worker data andmodified𝐺
′
𝑆𝑇

as separate objects

to a S3 bucket.
• Step 3: Another Lambda function 𝐿𝑚𝑒𝑟𝑔𝑒𝑟 fetches all the objects

from the bucket and processes data to produce the final result. The

final result is stored back in the original S3 bucket as in the Figure-1.

The main purpose of phase 2 is to perform concurrent execution

of SoA in multiple instances and to generate the final result from

the intermediate maps.

4.3 Discussion
For each 𝑛 sliced worker files produced in the first phase, phase

2 of the framework runs 𝑛 number of instances of 𝐿𝑆𝑜𝐴 function.

This allows concurrent processing of sliced crowd-worker data and

𝐺𝑆𝑇 . Each instance of the 𝐿𝑆𝑜𝐴 produces a task allocation map

and a modified𝐺𝑆𝑇 , giving in total 2𝑛 outputs. For simplicity, we

denote the map generated from 𝑘𝑡ℎ 𝐿𝑆𝑜𝐴 function as 𝑀𝑎𝑝
′

𝑘
and

the respective Skill-Task Mapper as 𝐺
′
𝑆𝑇𝑘

. Each intermediate map

is basically a dictionary where the key represents the task and

the values represent the respective allocated crowd-workers along

with their contributed skills. The 𝐿𝑚𝑒𝑟𝑔𝑒𝑟 then merges all the maps

{𝑀𝑎𝑝
′
1
, 𝑀𝑎𝑝

′
2
, ...𝑀𝑎𝑝′𝑛} to form the penultimate mapper 𝑀𝑎𝑝𝜎 .

For any task assigned with multiple crowd-workers contributing

the same skills, the crowd-worker with the lowest remuneration

criteria is selected and the rest are unassigned resulting in𝑀𝑎𝑝 .

On a similar note, a global picture of 𝐺𝑆𝑇 is also extracted to

overview the current status and to remove any redundancy, which

could be a frequent possibility [2] in our case as we are replicating

the task information in all the 𝐿𝑆𝑜𝐴 instances in the form of 𝐺𝑆𝑇 .

However, the crowd-workers’ information is horizontally sliced

in subsequent data sets to reduce latency and to improve process-

ing time by enabling parallel execution of mapping algorithms

(i.e., SoA). At the end of the current batch, not only is the 𝑀𝑎𝑝

published to the CS platform, but this 𝑀𝑎𝑝 together with 𝐺𝑆𝑇 , is

resubmitted to phase 1 for consideration in the next batch cycle.

This aids in detecting unassigned crowdworkers and unfinished

tasks having a certain residual budget, giving them another chance

in the upcoming batch cycles if their time-to-live is still valid.

5 PERFORMANCE EVALUATION
5.1 Dataset
For simulation purposes, we employ a real dataset (Meetup) refer-

enced in the work [17]. Here, |𝑇 | be the number of tasks which is

set to 1234, 𝑄 , Universal skill set. There are 554 distinct skills in 𝑄 .

|𝑆𝑡 | be the number of skills required by each task; varying between

5 and 10. 𝐵𝑡 , the mean budget of the task is set to $428, with a stan-

dard deviation of $255. |𝐶 | is the number of crowd-workers which

is set to 3275. |𝑆𝑐 |, the number of skills that each worker masters,

varying between 1 and 5 and 𝑅𝑐 be the mean payment incurred by

any crowd-worker is set to $40, with a standard deviation of $50.

5.2 Experimental Results
The Online-Greedy (OG) algorithm [17] is considered the baseline

for comparing our proposed SoA algorithm. It is to be noted that the

time complexity of OG is 𝑂 (( |𝐶 | + |𝑇 |)2) whereas that of SoA’s is
𝑂 ( |𝐶 | × |𝑇 |). Hence, inherently, SoA is more efficient than OG. Next,

to validate the proposed serverless framework, we executed the

SoA algorithm on both the serverless platform and local computer

environments. For the latter part, SoA is executed as a single in-

stance at the start of every batch cycle. The task and crowd-worker

data is assumed to arrive following the Normal Distribution[13]
having a mean of 30 minutes and standard deviation of 10 minutes.

The batch size is set to 10 minutes. Every single simulation is done

for 1 hour, and 100 such simulations are run to get the average for

each performance metric.

(1) Local vs Serverless total latency: Figure-2(a)compares the

latency observed for executing SoA in both the proposed server-

less framework and in a local system. The overall latency, 𝐿𝑎𝑡𝑠𝑙 in

serverless can be represented by the following.

𝐿𝑎𝑡𝑠𝑙 = 𝐿𝑎𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 + 𝐿𝑎𝑡𝑚𝑒𝑟𝑔𝑒

where, 𝐿𝑎𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 = 𝐿𝑎𝑡𝑓 𝑒𝑡𝑐ℎ + 𝐿𝑎𝑡𝑠𝑝𝑙𝑖𝑡 + 𝐿𝑎𝑡𝑢𝑝𝑙
For total latency calculation, we considered 𝐿𝑎𝑡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 in three

different splits. 𝐿𝑎𝑡𝑓 𝑒𝑡𝑐ℎ is the latency to fetch the crowd-worker

data and task data to the computation unit from the CS platform.

Here, task and crowd-worker data fetching take place concurrently.

Hence, we considered the maximum value of both. 𝐿𝑎𝑡𝑓 𝑒𝑡𝑐ℎ =

max(𝐿𝑎𝑡𝑡𝑎𝑠𝑘
𝑓 𝑒𝑡𝑐ℎ

, 𝐿𝑎𝑡𝑐𝑤
𝑓 𝑒𝑡𝑐ℎ

) Here, 𝐿𝑎𝑡𝑡𝑎𝑠𝑘
𝑓 𝑒𝑡𝑐ℎ

is the latency to fetch the

arriving task data from the CS platform to the serverless ecosystem

by 𝐿𝑡𝑎𝑠𝑘 and 𝐿𝑎𝑡𝑐𝑤
𝑓 𝑒𝑡𝑐ℎ

is the latency to fetch the arriving crowd-

worker data from the CS platform to the serverless ecosystem by

𝐿𝑤𝑜𝑟𝑘𝑒𝑟 . 𝐿𝑎𝑡𝑠𝑝𝑙𝑖𝑡 is the time taken to split the crowd-worker data

and segregate it to respective S3 buckets. And 𝐿𝑎𝑡𝑢𝑝𝑙 is the sum of

processing time at 𝐿𝑆𝑜𝐴 and latency to upload generated maps to
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Figure 2: (a) total latency and (b) waiting time of SoA in serverless and local settings and (c) success rate for SoA and OG in local setting.

the S3 bucket for further processing. 𝐿𝑎𝑡𝑚𝑒𝑟𝑔𝑒 is the sum of time

to fetch intermediate maps from the S3 bucket, processing time to

generate the final maps from the intermediate maps and to upload

the final results to the S3 bucket.

In the local system, SoA is executed in a sequential flow as a sin-

gle instance. The 𝐺𝑆𝑇 is generated in-house for all tasks received

during a given batch and is passed as arguments along with the

entire crowd-workers dataset. The output is a single allocation map

𝑀𝑎𝑝
′
and a𝐺

′
𝑆𝑇

for every batch cycle. Thus, overall latency, 𝐿𝑎𝑡𝑙𝑜𝑐
in local system is the execution of the algorithm. On comparing

the total latency in both the local and serverless ecosystems, we

observed that the latency in a serverless platform varies in the

range of 1500-1600 ms, whereas locally, the latency was found to

be in the range of 4000-5000 ms.

(2) Average task waiting time: Figure-2(b) shows the average

time spent by the tasks in the waiting queue before successful

allocation. For serverless settings, the average waiting time of a

task varied between 400 and 600 ms, whereas for local set-up, the

average waiting time was as high as 2000 ms. The incoming batch

task for the range of 30 to 40 experiences the longest wait times as

tasks and workers arriving during this period are at their maximum.

(3) Success rate: The success rate is the average percentage of

completed tasks out of the available tasks on the platform. Figure-

2(c) shows that the average success rate of SoA is approximately 25%

whereas that of OG is 16%. Thus, SoA performed with an efficiency

of 36% compared to OG.

6 CONCLUSION
Considering performance as a major concern, in this paper, a novel

serverless framework to promote CS skill-oriented task allocation is

proposed. The adaption of serverless computing has been shown to

help run the allocation process in terms of light-weight concurrent

stateless functions, leading to a performance of 2.5x better com-

pared to the local implementation. Besides, the core features of the

serverless platform have even made the job of developers simple

and easier. Further, we modelled the Task-Worker Mapping (TWM)

problem and proposed the SoA algorithm as a solution. Evaluating

with a real dataset (Meetup), we observed a task allocation success

rate of about 9% compared to the baseline. Again compared to local

set-up, we achieved an efficiency of 70% in case of average waiting

time for task allocation.
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