

Computación y Sistemas

ISSN: 1405-5546

computacion-y-sistemas@cic.ipn.mx

Instituto Politécnico Nacional

México

Boyain y Goytia Luna, Cristian E.; Mendez Vazquez, Andres; Ramos Corchado, Marco

Antonio

Autonomous Motion Planning for Avatar Limbs

Computación y Sistemas, vol. 19, núm. 3, 2015, pp. 457-466

Instituto Politécnico Nacional

Distrito Federal, México

Available in: http://www.redalyc.org/articulo.oa?id=61541546004

 How to cite

 Complete issue

 More information about this article

 Journal's homepage in redalyc.org

Scientific Information System

Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal

Non-profit academic project, developed under the open access initiative

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional de la Universidad Autónoma del Estado de México

https://core.ac.uk/display/55529995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org/articulo.oa?id=61541546004
http://www.redalyc.org/comocitar.oa?id=61541546004
http://www.redalyc.org/fasciculo.oa?id=615&numero=41546
http://www.redalyc.org/articulo.oa?id=61541546004
http://www.redalyc.org/revista.oa?id=615
http://www.redalyc.org

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

ISSN 2007-9737

Autonomous Motion Planning for Avatar Limbs

Cristian E. Boyain y Goytia Luna1, Andres Mendez Vazquez1,
Marco Antonio Ramos Corchado2

1 Instituto Politécnico Nacional, Centro de Investigación y Estudios Avanzados, Jalisco,
Mexico

2 Universidad Autónoma del Estado de México, Toluca, Estado de México,
Mexico

{cboyain, amendez}@gdl.cinvestav.mx, marco.corchado@gmail.com

Abstract. In this work, a new algorithm for autonomous

avatar motion is presented. The new algorithm is based
in the Rapidly-exploring Random Tree (RRT) and an
appropriate ontology. It uses a novel approach for
calculating the motion sequence planning for the
different avatar limbs: legs or arms. First, the algorithm
uses the information stored in the ontology concerning
the avatar structure and the Degrees Of Freedom
(DOFs) to obtain the basic actions for motion planning.
Second, this information is used to perform the growth
process in the RRT algorithm. Then, all this information
is used to produce planning. The plans are generated by
a random search for possible motions that respect the
structural restrictions of the avatar on kinesiology
studies. To avoid a big configuration space search,
exploration, exploitation, and hill climbing are used in
order to obtain motion plans.

Keywords. Avatar, rapidly-exploring random tree,

degree of freedom, ontology, kinesiology.

1 Introduction

As it is very well defined in [13], planning is
searching for and designing of a sequence of
actions that allow reaching an objective. The
problem of planning in a situation where there is an
initial or actual state and the objective or desire
either to arrive at or obtain a final state has been
considered by many researchers in the areas of
robotics, control, and computing, and as a result
there emerged several approaches for solving this
problem.

In motion planning for autonomous animation,
the objective is to compute a trajectory from an
initial configuration to a goal configuration. This is
applicable to avatar animation. In this area, an

additional desirable objective would be that the
motion plan algorithm could produce “realistic”
animated movements and reduce human
intervention in the animation. By “realistic” we
mean motion plans that contain some degree of
randomness. After all, even most incredible
athletes do not repeat the same movement with
millimetric precision.

This is motivated by the increasing use of
computer animation in different areas such as
films, video games, and disaster studies. Many
new techniques have been developed to help in
elaboration of these animations. Currently, a field
of great interest is the humanoid avatar animation
due to its use in a 3D world animation and robotics
[9, 16, 29].

If an avatar has to move, it is expected and
desired that the movements look “realistic”. This
means that the movements produced by the avatar
should respect the constraints imposed by the
human body, and certain variability should be
allowed. By variability we mean that if the same
“realistic” movement is executed by all avatars with
the same parameters as time goes, a certain odd
perception will start to arise since even in the same
human being performing the same movement
certain variability exists. Therefore, it is highly
desirable that, as in humans, the same movement
should vary to a certain degree from motion plan to
motion plan and from avatar to avatar.

Algorithm planning has been used for avatar
animation in many scenarios [9, 16, 21, 23].
However, motion planning has not been used in
general for avatar animation due to restrictions in
the number of DOFs, joint lengths, and the

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Cristian E. Boyain y Goytia Luna, Andres Mendez Vazquez, Marco Antonio Ramos Corchado458

ISSN 2007-9737

unrealistic movements produced by the algorithms
for autonomous animation.

Many approaches have explored avatar motion
planning such as genetic algorithms [18], swarm
intelligence [17], and sampling base motion
planning (SBMP) [4, 8, 6, 22]. Some success has
been achieved using these algorithms; however,
many of them are off-line algorithms. Nevertheless,
the SBMPs have showed some promises due to
the way the Configuration Space (CS) [14, 25] is
defined. For example, it allows obtaining better
obstacle avoidance due to the implicit CS
geometry [14]. Examples of these algorithms are
the probabilistic road-map algorithm [12] and the
Rapidly-exploring Random Tree (RRT) algorithm
[13, 27].

In these kinds of algorithms [7, 13, 28], the
incremental sampling and searching approach is
used to assure excellent search coverage over the
configuration space, which allows the avatar to
reach a variety of movements. This is despite of
the fact that usually just a certain range of the
configuration space is required to accomplish a
motion task.

In particular, motion planning using the RRT
algorithm as in [13, 17, 28] implements an efficient
sampling strategy used to build a tree search
structure. In these methods, an initial
state/configuration is considered as the tree root.
Then, new nodes are randomly added as new
branches are generated. Finally, when the
objective is reached, the best trajectory in the tree
is selected by means of backtracking.

Based in this observation, our algorithm uses
the RRT search tree growing strategy to give a
variability and CS coverage in avatar motion
planning. In addition, it uses a version of the hill
climbing method [19] which reduces the tree
growth, and it guides the search in order to
produce efficient movements. Therefore, the
algorithm presented in this paper avoids the use of
inverse kinematic for motion planning and search
over all the CS. This reduces the computational
complexity and allows producing an on-line
algorithm.

This paper is organized as follows. Section 2
provides related work on motion planning. The
motion planning problem and formalization are
defined in Sections 3 and 4, respectively. Section
5 outlines motion planning with avatar ontology.

The autonomous motion planning algorithm is
described in Section 6, while Section 7 presents
simulation and results. Finally, conclusions are
given in Section 8.

2 Related Work

There exists vast literature [8, 16, 17, 30, 31] on
motion planning using animated avatars or robots.
In this section, some motion planning algorithms
are presented according to whether the obtained
plans are based on an articulated structure or not.

2.1 Motion Planning for Non-Articulated
Structure

Various motion planning works have been done for
a non-articulated structure implementation. To
mention a few, the researcher in [10] uses Genetic
Algorithms (GA) to generate paths that can avoid
different obstacles of the terrain. The algorithms
employ a fitness function to find the better plan
paths. Also by implementing a sampling method,
[8] uses a tree structure that can be pruned and
grow according to possible obstacles in the
environment, then generating plan paths.

2.2 Motion Planning for Articulated Structure

When a motion plan for an articulated structure is
required, many algorithms exist to deal with this
issue: for example, GA [18] and ant colony
optimization [17] algorithms. These motion
planning algorithms have to handle aspects like the
CS and the DOF of the articulated structure. A
drawback of these algorithms is that the
combination of CS and DOF implies a humongous
state space due to the possible positions that each
joint in the articulated structure can achieve [3,
5, 26].

In the case of Inverse Kinematic (IK) [2, 20, 24],
some drawbacks arise due to the complexity of the
formulation. For example, if the articulated
structure increases its number of joints, it requires
modifications in the system formulation.

In addition, IK algorithms are more suitable for
synthesizing posture than animation [16]. In order
to resolve the explosion of state space, SBMP
have been proposed not only because they are

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Autonomous Motion Planning for Avatar Limbs 459

ISSN 2007-9737

successful in handling a huge configuration space,
but that they also provide an adequate framework
for planning with many DOFs [22].

These are the reasons why we have made use
of the SBMP approach to propose a motion
planning algorithm able to work with a more flexible
DOF representation. It accomplishes the planning
and reduces the structure dependence in order to
generate motion plans.

3 Problem Statement

The motion planning problem for an avatar in a 3D
world will be represented by generation of plans
that give us trajectories able to accomplish the
avatar task. For this, we use the following model.

Let 𝐴 be an avatar that has to accomplish a

motion task, and 𝐽 = (𝑗1, … , 𝑗𝑛) are the joints that 𝐴
has. Each joint in turn has 𝑞𝑖 = {𝑥|𝑥 ∈
𝑉𝑒𝑐𝑡𝑜𝑟 𝑆𝑝𝑎𝑐𝑒}, 𝑖 = 0, … , 𝑛 constrained by DOF of

that joint. The DOF configuration of 𝐴 forms a
system configuration 𝑄𝐽 = (𝑞1, … , 𝑞𝑛).

The state space, where all 𝑄′𝑠 of 𝐴 are possible,

is represented by the 𝑛-dimensional configuration
space 𝐶𝑎. This state space has the following

hierarchy: 𝐶𝑎 represents all possible configurations

of 𝐴 due to the avatar structure, 𝐶𝑎−𝑐𝑜𝑙𝑙𝑖𝑑𝑒
represents the subset of states that are not allowed
after collisions have been taken in account, and
finally 𝐶𝑎−𝑓𝑟𝑒𝑒 = 𝐶𝑎 − 𝐶𝑎−𝑐𝑜𝑙𝑙𝑖𝑑𝑒 which represents all

possible useful configurations.
Then, the objective is to compute a sequence

of actions, a plan 𝑃, which can take the 𝐽 joints in

the initial configuration 𝑄𝑖𝑛𝑖𝑡 to a goal

configuration 𝑄𝑔𝑜𝑎𝑙. Our motion problem in CS is

represented in Figure 1.

4 Planning Formalization

For the motion planning problem handled in this
work, revolute joints are considered and the
principal concepts of state and action are set as
follows.

A state 𝑠𝑘 is represented as the tuple 𝑠𝑘 =
(𝑘, 𝑞𝑘 , 𝒗𝒌), which represents the configuration for

the 𝑘-th joint, 𝑞𝑘 is the quaternion representing the
𝑘 joint rotation, and the translation vector 𝒗𝒌
indicates the joint position.

The joint rotation is represented by a quaternion
𝑞𝑘 = (𝜃𝑘, �̂�𝑘) where the rotation angle is
represented by 𝜃𝑘 and �̂�𝑘 is a unit vector
representing the axis of rotation.

In order to represent an action 𝑎𝑥 = (𝑥, 𝑞) in the
plan, we set it as a motion for the 𝑥-th joint in 𝑞
rotation angle.

The possible actions which could be generated
are limited due to the avatar DOFs and its motion
limits.

This motion action representation will be
expressed in STRIPS [19] form in order to give a
better implementation understanding:

𝑎𝑘(𝑘, 𝑞)
= 𝑝𝑟𝑒: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒(𝑠𝑘) ˄ 𝑓𝑟𝑒𝑒𝑠𝑡𝑎𝑡𝑒(𝑠′

𝑘)

 𝑝𝑜𝑠: ¬𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒 (𝑠𝑘) ˄

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒(𝑠′
𝑘) ˄ ¬𝑓𝑟𝑒𝑒𝑠𝑡𝑎𝑡𝑒(𝑠′𝑘).

(1)

An action will be considered to be usable in the
plan as long as the new joint state is free of
collisions.

For us, the plan 𝑃 is terminated once the goal
𝑣𝑔𝑜𝑎𝑙 is reached, or once 𝑃 has moved the avatar

configuration to a state close enough to the goal
𝒗𝑔𝑜𝑎𝑙. This is different from IK where the final state

needs to be reached all the time.

Although an avatar has 𝐽 joints that could be
used, not all of these joints are required to
accomplish its motion task, i.e., depending of the
task, some joints will never be moved. Therefore,
taking into account all unnecessary joints will only
increase the complexity of the motion planning,

Fig. 1. Components of the plan of movement and its

relation with the configuration space 𝐶𝑎

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Cristian E. Boyain y Goytia Luna, Andres Mendez Vazquez, Marco Antonio Ramos Corchado460

ISSN 2007-9737

i.e., the search in the CS. This is due to a bigger
joint configuration space.

The proposed algorithm handles the previous
problems by generating motion plans using a
cardinal variable task joint subset 𝐿 ⊂ 𝐽. In other
words, the proposed algorithm is not set with a
predefined number of joints.

The use of 𝐿 decreases the search space, but
the number of possible configurations of the joint
DOFs is still large. In this work 𝐶𝑎 is decomposed

by quantization of each angle of rotation 𝜃𝑥 for 𝑥
joint DOFs of motion degrees:

𝐷𝑥 = {𝑛 ∈ ℕ| 𝑛 𝑚𝑜𝑑 ∆𝑝= 0 ˄ (𝛩𝑚𝑖𝑛 ≤ 𝑛

≤ 𝛩𝑚𝑎𝑥)}.
(2)

This allows reducing the state space of DOFs
to 𝑗 elements and keeping coverage of all state
space. Here 𝛩𝑚𝑎𝑥 indicates the maximum and 𝛩𝑚𝑖𝑛

the minimum rotation angle for the DOF 𝑥.

Therefore, the set of all possible states that the
avatar can reach in 𝐶𝑎 is given by

𝑆 = ⋃ 𝐷𝑖 ,

𝑁

𝑖=1

 (3)

where 𝐷𝑖 is the state set for each DOF, and 𝑁 is
the number of DOFs used in the motion planning
task.

In order to give a more understandable
representation of an action and to define its
rotation axis, �̂� is specified according to the motion
and orientation over all possible DOFs: yaw, pitch,
and roll. They form a set of actions for each DOF
at each joint. This action set will be defined over all
possible motion degrees of each DOF. Using
action definition, we can define the set 𝑀 as all
permissible actions:

𝑀 = {𝑎𝑘(𝑘, 𝑞)| 𝛩 ∈ 𝐷𝑖 ˄ (𝛩𝑚𝑖𝑛

≤ (𝛩𝑘 − ∆𝑝)˄(𝛩𝑘 + ∆𝑝))

≤ 𝛩𝑚𝑎𝑥},

(4)

where the 𝛩𝑘 value represents the current 𝑘

rotation angle in which the action 𝑎𝑘 is going to be

executed. 𝛩𝑚𝑖𝑛 and 𝛩𝑚𝑎𝑥 are taken from
kinesiology studies [15], this ensures that our
planning algorithm will not implement actions
forbidden to the human physical structure.

5 Motion Planning with Avatar
Ontology

Avatar independence is an important aspect of this
work due to the fact that it allows our algorithm to
be implemented by different avatars encouraging a
more autonomous animation.

Knowledge Base (KB) Agent represents a
feasible approach for us; here agents help an
avatar to achieve independence. Works like [11]
propose an ontology for KB agents, which
complements our motion planning algorithm by
providing the behavior and internal structure of an
avatar that requires to achieve a motion task.

In this work a similar ontology is implemented,
which provides the avatar internal structure
knowledge (like joint DOFs and rotation limits) for
the planning algorithm to generate a specific avatar
motion plan.

6 Autonomous Animation Motion
Planning

In order to generate motion plans independent of
the avatar, the joint ontology information that the
KB agent has is passed to the motion planner. The
pseudo-code for this procedure is given in
Algorithm 1.

This works in the following manner. First, the
planning algorithm performs a search of possible
configurations that let it move the 𝐽 joints. This
generates a tree structure, where each node
represents all possible actions. Second, the motion
planner is initialized with the ontology information
and the initial system configuration according to
the avatar that implements the plan. Now, for the
planning algorithm, the joints are numbered from 1
to 𝑚, where 𝑚 represents the final joint. We define

the 𝑗𝑚 joint as the end effector; it can be one of the
following joints: the last joint of the hand, that of the
foot, or the abdomen joint.

This end effector is used to determine the
moment when a task has been finalized. For
example, to reach a glass of water means to put
the hand joint as near as possible to the glass of
water. Also, to move to a door could mean to move
the abdomen joint as near as possible to that door.

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Autonomous Motion Planning for Avatar Limbs 461

ISSN 2007-9737

Now, with the tree structure initialized, the
distance 𝑗𝑚 between the end effector and 𝒗𝑔𝑜𝑎𝑙 is

used to check if the plan should terminate. For this,
the algorithm uses a threshold set by the user. If
the goal has not been reached, the action search
continues. Then, after 𝑥 added actions, the tree
formed with the found actions is checked in order
to find the best possible plan so far that the avatar
is going to execute. This process is repeated until
the 𝑗𝑚 joint achieves the goal threshold.

The growth process of the tree search is given
in Algorithm 2.

As the algorithms show, actions in 𝐶𝑎 will be
obtained through a random process. Each action is
checked to find if the random process was unable
to generate a movement for the chosen joint/node
to grow the tree. This only happens when a
generated action violates the motion restrictions

set in the ontology, i.e., an action that leads to an
unreal configuration. If a valid action is obtained, it
is added to the tree structure.

The growth process presented in Algorithm 2
shows an important difference between our
implementation and the RRT. This is due to the fact
that our method does not require having the whole
action plan to start executing movements that bring
us closer to the goal. Even when new obstacles are
discarded or added to the environment, the
proposed planning algorithm can build an
alternative plan starting from the last executed
action.

By using just the 𝐿 ⊂ 𝐽 joints, 𝑎𝑟𝑎𝑛𝑑 is obtained.
Now, we have the action and we know the last
executed action, so we can add the action to the
search tree.

Given 𝑎𝑟𝑎𝑛𝑑 and the last executed action
lastActionExecuted, Algorithm 3 looks for an action
in the search tree that is closer to the random one,
because in that place the new action will be added
to the search tree. In order to do this, Algorithm 3
compares the resulting distance value: if the 𝑎𝑏𝑒𝑡𝑡𝑒𝑟

was executed, it assigns 𝑥1 if we are close enough
according to a threshold, otherwise it assigns 𝑥2 as

the rotation angle 𝛩, where 𝑥1, 𝑥2 = {ℝ | (𝑥1 <
 𝑥2)}; in our work, values of 5 and 10 were used
respectively.

The new 𝛩 value replaces the previous value

from the 𝑎𝑟𝑎𝑛𝑑 action, and it is added to the tree.
Something that influences the design of the

proposed algorithm is based in the following
observation of human motion: most of the time, a
person moves a joint until the joint motion does not
give any perceptible benefit. Using this
observation, Algorithm 3 implements the
exploitation action decision dilemma used in some
RL problems where an action is executed several
times until the goal is reached or until the action
fails to reduce the goal distance.

The new action that has been added is
exploited as presented in Algorithm 4.

As in Algorithm 3, the rotation angle value is set
by using the distance. This new action is verified if
it gets the avatar closer to the goal and if the joint
is kept inside its motion limits in order to add the
action into the search tree. The exploitation
process of the new added action ends if the actions
obtained move the 𝑗𝑚 joint away from the goal.

Algorithm 1 Autonomous Animation Motion
Planning

Requires: avatar ontology instance, motion plan

goal, 𝒗𝑔𝑜𝑎𝑙, and the 𝐿 joint subset involved

Ensures: motion plan that allows reaching the plan

goal starting from the initial avatar configuration

1: goalReached ← false

2: Plan ← motionPlanner(AvatarOntology, 𝒗𝑔𝑜𝑎𝑙,

 𝐿)

3: repeat

4: if distance(𝑗𝑚) ≤ threshold then

5: goalReached ← true

6: else

7: Plan ← growthPlan(lastActionExecuted)

8: lastActionExecuted ← execute(Plan)

9: end if

10: until goalReached = true

Algorithm 2 growsPlan
Requires: latest action plan that has been executed
Ensures: grows the plan, once a new action is added

from the last action executed
1: while 𝑖 ≤ 𝑥 do

2: 𝑎𝑟𝑎𝑛𝑑 ← randomAction(𝐿)

3: if isNull(𝑎𝑟𝑎𝑛𝑑) = false then

4: addAction(𝑎𝑟𝑎𝑛𝑑, lastActionExecuted)

5: end if

6: 𝑖 ← 𝑖 + 1

7: end while

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Cristian E. Boyain y Goytia Luna, Andres Mendez Vazquez, Marco Antonio Ramos Corchado462

ISSN 2007-9737

Using these concepts of exploitation, valid actions
are obtained in a faster way.

In this manner, the motion planning algorithm is
designed to generate motion plans for different
avatars, requiring only the information of the joints
that it has to move by taking advantage of the
concept of exploitation, the efficient RRT search
strategy, and the CS decomposition. The entire
process of the proposed algorithm is presented in
Figure 2.

7 Simulation and Results

In this section the animation of a human avatar’s
left arm is generated by using ontology
implementation [11] and the proposed motion
planning algorithm. For this simulation, the goal is
to reach the object by using the avatar left arm.
Motion planning and the avatar structural
parameters are presented first. Second, we
performed another case study where the left arm
structure is modified and the number of DOFs is
increased.

Finally, the images of a motion plan simulation
are presented.

7.1 Planning Parameters

The proposed algorithm was applied to the avatar
left arm shown in Figure 3. The arm has eight
DOFs distributed as shown in this figure.

The configuration space corresponds only to
the left arm scope, 𝐶𝐿−𝑎𝑟𝑚, where no obstacle is

present. In addition, 𝐶𝐿−𝑎𝑟𝑚 = 𝐶𝑓𝑟𝑒𝑒. The system

configuration due to the involved joints 𝐿 =
(𝑗1, … , 𝑗4) is 𝑄 = (𝑞1, … , 𝑞8).

The DOF distribution that composes the
configure system over the joints involved is
presented in Table 1.

Table 1. System configuration

Joint
Degree of freedom

Pitch Roll Yaw

Shoulder X X X

Elbow X

Wrist X X X

Hand X

Algorithm 3 addAction

Requires: the 𝑎 action that will be added and the last

executed action

Ensures: action 𝑎 added

1: 𝑎𝑏𝑒𝑡𝑡𝑒𝑟 ← nearesAction(𝑎𝑟𝑎𝑛𝑑,
lastActionExecuted)

2: if distance(𝑎𝑏𝑒𝑡𝑡𝑒𝑟) < threshold2 then

3: 𝛩 ← 𝑥1

4: else

5: 𝛩 ← 𝑥2

6: end if

7: 𝑎𝑟𝑎𝑛𝑑 ← 𝛩

8: addAc(𝑎𝑏𝑒𝑡𝑡𝑒𝑟, 𝑎𝑟𝑎𝑛𝑑)

9: exploitAction(𝑎𝑟𝑎𝑛𝑑)

Algorithm 4 exploitAction

Requires: action 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to exploit

Ensures: action 𝑎𝑛𝑒𝑤

1: if distance(𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < threshold2 then

2: 𝛩 ← 𝑥1

3: else

4: 𝛩 ← 𝑥2

5: end if

6: 𝑎𝑛𝑒𝑤 = 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡

7: 𝑎𝑛𝑒𝑤 ← 𝛩

8: if distance(𝑎𝑛𝑒𝑤) < distance(𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then

9: if (withinRangeMotion(𝑎𝑛𝑒𝑤) = true) then

10: addAc(𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑎𝑛𝑒𝑤)

11: exploitAction(𝑎𝑛𝑒𝑤)

12: end if

13: end if

Fig. 2. The proposed planning algorithm

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Autonomous Motion Planning for Avatar Limbs 463

ISSN 2007-9737

It is important to set the distance function to
know if we get closer to the solution. In this
simulation, we use the Euclidean distance between
the end effector and the goal position to guide the
movements.

7.2 Movement Limits

A standing person has a natural position as shown
in Figure 3, and in our work this position is the initial
system configuration 𝑄𝑖𝑛𝑖𝑡 from where it has to

reach a goal configuration 𝑄𝑔𝑜𝑎𝑙.

Although only the left arm is used, the CS is
wide, but the decomposition of the motion degree
helps to cover all the search space without
specifying all possible configurations. After some
experiments, ∆𝑝= 10 gives good space search

coverage for the simulation.

By matching the kinesiology information [15] to
the different DOFs in the avatar left arm, we can

obtain the motion limits, 𝛩𝑚𝑖𝑛 and 𝛩𝑚𝑎𝑥 of each
DOF to be saved in the ontology. This ontological
information is presented in Figure 4 and Table 2.

Table 2. Ontological information

Joint
DOF limit

Pitch Roll Yaw

Shoulder 90°, -90° 180°, -50° 180°, 0°

Elbow 140°, -10°

Wrist 60°, -60° 90°, -90° 30°, -20°

Hand 90°, 0°

7.3 Many DOFs Planning

In order to illustrate that the planning algorithm can
generate plans independent of a specific avatar
structure and a predetermined number of DOFs,
the avatar left arm is modified by adding the elbow
joint two times. This modification increases the arm
wide range and the number of DOFs. In addition,
they have the same DOF number and distribution,
i.e., the number of extra joints equals the number
of elbow joints. Therefore, the system configuration
of this set of joints 𝐿 = (𝑗1, … , 𝑗6) is 𝑄 = (𝑞1, … , 𝑞10).

7.4 Results

Figure 5 presents animation stills of an avatar
reaching a sphere in front of it. The motion plans
generated in different experiments shown in
Figure 5 were limited to a specific number of
motion movements to reach the goal. In addition,
the design work was limited to the definition of the
goal within the configuration space 𝐶𝐿−𝑎𝑟𝑚. The
goal motion limitations were selected to avoid
unnecessary actions by the motion planner.

In addition, the threshold was selected such
that the proposed algorithm could avoid a race
condition at the goal state.

Motion plans generated in the experiments
implement natural motions, i.e., motions that a
common person could make. Also plans starting
from the same initial configuration and having the
same goal configuration have differences between
them, this enhances the motion realism.

In Figure 6 animation stills of the avatar arm
with many DOFs are presented. This animation

Fig. 3. Avatar used in case studies

Fig. 4. Joint motion limits

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Cristian E. Boyain y Goytia Luna, Andres Mendez Vazquez, Marco Antonio Ramos Corchado464

ISSN 2007-9737

shows that it was able to generate motion plans
with different number of DOFs assigned to the
motion task.

8 Conclusions

This work presents a motion planning algorithm for
avatars, which contributes to the generation of a
motion sequence for simple animations in a more
autonomous and realistic way. More specifically,

the main contributions of our work are the
following:

- The proposed algorithm was able to work with
a big number of DOFs that are needed to
accomplish the task, and for this the DOF
configuration space is discretized by
constraining the possible rotation angles for
each DOF.

- As long as the ontology provides the avatar
internal structure, without the exact joint
dimensionality and position, a motion plan is
generated for the avatar.

Fig. 5. Simulation results where the goal is in front of
the left arm

Fig. 6. Arm with many DOFs

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Autonomous Motion Planning for Avatar Limbs 465

ISSN 2007-9737

- Realistic but maybe not optimal plans are
generated by constraining the joint motion
range using kinesiology information.

The work presented here shows an
improvement in generation of autonomous
animations. However, our algorithm generates
plans only for a small motion task. A more complex
motion planning algorithm is required to perform
more complex movements like carrying objects or
running. Also, our proposal is sensitive to the
threshold and ∆𝑝 values. Unsuitable values may

result in motion plans with configurations caught in
suboptimal positions or unable to reach 𝒗𝑔𝑜𝑎𝑙.

Although the algorithm handles collisions with
obstacles in the environment and is able to modify
the trajectories, the implementation of a process
for collisions with itself is necessary. This means
that such DOF configurations are allowed that may
overlap the avatar with itself.

Finally, autonomous animation generated by
this motion planning algorithm can be improved if
a visual sensor is added to it to give feedback.

Acknowledgements

This work has been funded by CONACYT
scholarship 227266/212740.

References

1. Garro, B. A., Sossa, H., & Vazquez, R. A. (2007).

Evolving ant colony system for optimizing path
planning in mobile robots. IEEE Conference on
Electronics, Robotics and Automotive Mechanics,
pp. 444–449, doi: 10.1109/ICSPC.2007.4728416.

2. Baerlocher, P. & Boulic, R. (1998). Task-priority

formulations for the kinematic control of highly
redundant articulated structures. IEEE International
Conference on Intelligent Robots and Systems, pp.
323–329.

3. Brock, O. & Khatib, O. (2000). Real-time

replanning in high-dimensional configuration
spaces using sets of homotopic paths. International
Conference on Robotics and Automation, pp. 550–
555, doi: 10.1109/ROBOT.2000.844111.

4. Ma, C., Li, W., Yang, Y., & Chang, L. (1995). Robot

motion planning with many degrees of freedom.
IEEE International Conference on System, Man and

Cybernetics, Vol. 1, pp. 892–897, doi:
10.1109/ICSMC.1995.537880.

5. Choi, J. & Amir, E. (2007). Factor-guided motion

planning for a robot arm. IEEE International
Conference on Intelligent Robots and Systems, pp.
27–32, doi: 10.1109/IROS.2007.4399555.

6. Ferguson, D., Kalra, N., & Stentz, A. (2006).
Replanning with RRTs. IEEE International
Conference on Robotics and Automation, pp. 1243–
1248, doi: 10.1109/ROBOT.2006.1641879.

7. Plaku, E., Kavraki, L.E., & Vardi, M.Y. (2010).

Real-time inverse kinematics of the human arm.
IEEE Transactions on Robotics, Vol. 26, No. 3, pp.
469–482.

8. Ferguson, D. & Stentz, A. (2007). Anytime,

dynamic planning in high-dimensional search
spaces. IEEE International Conference on Robotics
and Automation, pp. 1310–1315, doi:
10.1109/ROBOT.2007.363166.

9. Arechavaleta, G., Esteves, C., & Laumond, J.P.
(2004). Planning fine motions for a digital factotum.
IEEE International Conference on Intelligent
Robotics and Systems, Vol. 1, pp. 822–827.

10. Gerke, M. (1999). Genetic path planning for mobile

robots. American Control Conference, Vol. 4, pp.
2424–2429, doi: 10.1109/ACC.1999.786483.

11. Orozco, H.R., Ramos, F., Zaragoza, J., &
Thalmann, D. (2007). Avatars animation using

reinforcement learning in 3d distributed dynamic
virtual environments. International Conference on
Logic Applied to Technology (LAPTEC), pp. 67–84
doi: 10.3233/978-1-58603-936-3-67.

12. Kavraki, L.E., Svestka, P., Latombe, J.-C., &
Overmars, M.H. (1996). Probabilistic roadmaps for

path planning in high-dimensional configuration
spaces. IEEE Transactions on Robotics and
Automation, Vol. 12, No. 4, pp. 566–580, doi:
10.1109/70.508439.

13. LaValle, S.M. (1998). Rapidly-exploring random

trees: A new tool for path planning. Department of
Computer Science, Iowa State University.

14. LaValle, S.M. (2006). Planning Algorithms.
Cambridge University Press.

15. Luttgens, K. & Hamilton, N. (2002). Kinesiology -
Scientific Basis of Human Motion. Mc Graw Hill.

16. Kallmann, M., Aubel, A., Abaci, T., & Thalmann,
D. (2003). Planning collision-free reaching motions

for interactive object manipulation and grasping.
Eurographics, Vol. 22, No. 3, pp. 313–322, doi:
10.1111/1467-8659.00678.

17. Mohamad, M.M., Taylor, N.K., & Dunningan,
M.W. (2006). Articulated robot motion planning
using ant colony optimization. IEEE Conference on

Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Cristian E. Boyain y Goytia Luna, Andres Mendez Vazquez, Marco Antonio Ramos Corchado466

ISSN 2007-9737

International Intelligent Systems, pp. 690–695, doi:
10.1109/IS.2006.348503.

18. Uc, M., Rodriguez, A., & Ramos, F. (2007).

Reinforcement learning and dynamic planning
applied to virtual humans animation. 4th
International Conference on Electrical and
Electronics Engineering, pp. 169–172, doi:
10.1109/IS.2006.348503.

19. Russell, S. & Norvig, P. (2002). Artificial
Intelligence: A Modern Approach. Prentice Hall.

20. Tolani, D. & Badler, N.I. (1996). Real-time inverse
kinematics of the human arm. Presence, Vol. 5, No.
4, pp. 393–401.

21. Koga, Y., Kondo, K., Kuffner, J., & Latmobe, J.C.
(1994). Planning motion with intentions.
International Conference on Computer Graphics
and Interactive Techniques, doi:
10.1145/192161.192266.

22. Yoshida, E. (2005). Humanoid motion planning

using multi-level DOF exploitation based on
randomized method. IEEE International Conference
on Intelligent Robots and Systems, pp. 3378–3383,
doi: 10.1109/IROS.2005.1544954.

23. Arenas-Mena, J.C., Hayet, J.B., & Esteves, C.
(2012). A motion capture based Planner for virtual

characters navigating in 3D environments.
Computación y Sistemas, Vol. 16, No. 4.

24. Choi, J. & Amir, E. (2009). Combining Planning

and Motion Planning. IEEE International
Conference on Robotics and Automation, Kobe,
Japan, doi: 10.1109/ROBOT.2009.5152872.

25. Plaku, E. & Hager, G.D. (2010). Sampling-based

Motion and Symbolic Action Planning with
Geometric and Differential Constraints. IEEE
International Conference on Robotics and
Automation, Alaska, USA, doi:
10.1109/ROBOT.2010.5509563.

26. Ding, X. & Fang, C. (2013). A Novel Method of

Motion Planning for an Anthropomorphic Arm
Based on Movement Primitives. IEEE/ASME
Transactions on Mechatronics, Vol 18, No. 2, pp.
624–636, doi: 10.1109/TMECH.2012.2197405.

27. Akgun, B. & Stilman, M. (2011). Sampling

Heuristics for Optimal Motion Planning in High
Dimensions. IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 2640–2645,
California, USA, doi: 10.1109/IROS.2011.6095077.

28. Islam, F., Nasir, J., Malik, U., Ayaz, Y., & Hasan,
O. (2012). RRT*-Smart: Rapid convergence

implementation of RRT* towards optimal solution.
IEEE International Conference on Mechatronics
and Automation, Chengdu, China, doi:
10.1109/ICMA.2012.6284384.

29. Xie, B., Zhao, J., & Liu, Y. (2011). Human-like

Motion Planning for Robotics Arm System.
International Conference on Advanced Robotics,
pp. 88–93, Tallinn, Estonia, doi:
10.1109/ICAR.2011.6088543.

30. Zong, D., Li, C., Xia, S., & Wang, Z. (2012).

Planning interactive task for intelligent characters.
Computer Animation and Virtual Worlds, Vol. 23,
No. 6, pp. 547–55, doi: 10.1002/cav.1470.

31. Zhang, L., Pan, J., & Manocha, D. (2009). Motion

Planning of Human-like Robots using Constrained
Coordination. IEEE International Conference on
Humanoid Robots, pp.188–195, Paris, France, doi:
10.1109/ICHR.2009.5379545.

Cristian E. Boyain y Goytia Luna received his
M.Sc. from the Center for Research and Advanced
Studies of the IPN (CINVESTAV), Guadalajara
campus, in 2009. His research interests are
motion planning, reinforcement learning, and
computer animation.

Andres Mendez Vazquez received his Ph.D. from
the University of Florida, Gainesville, USA in 2008.
He is a research professor at the Center for
Research and Advanced Studies of the IPN
(CINVESTAV), Guadalajara campus. His
research interests include machine learning and
data mining, artificial intelligence, computer vision,
analysis of algorithms, and numerical
optimization.

Marco Antonio Ramos Corchado received his
Ph.D. from the University of Toulouse, France. He
is a research professor of Artificial Intelligence and
Virtual Reality at the Autonomous University of
Mexico State. His research interests include
animation techniques, artificial life, artificial
intelligence, distributed systems, and intelligent
agents.

Article received on 05/12/2014; accepted on 09/04/2015.
Corresponding author is Cristian E. Boyain y Goytia Luna.

