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Abstract. In this work, a new algorithm for autonomous 

avatar motion is presented. The new algorithm is based 
in the Rapidly-exploring Random Tree (RRT) and an 
appropriate ontology. It uses a novel approach for 
calculating the motion sequence planning for the 
different avatar limbs: legs or arms. First, the algorithm 
uses the information stored in the ontology concerning 
the avatar structure and the Degrees Of Freedom 
(DOFs) to obtain the basic actions for motion planning. 
Second, this information is used to perform the growth 
process in the RRT algorithm. Then, all this information 
is used to produce planning. The plans are generated by 
a random search for possible motions that respect the 
structural restrictions of the avatar on kinesiology 
studies. To avoid a big configuration space search, 
exploration, exploitation, and hill climbing are used in 
order to obtain motion plans. 

Keywords. Avatar, rapidly-exploring random tree, 

degree of freedom, ontology, kinesiology. 

1 Introduction 

As it is very well defined in [13], planning is 
searching for and designing of a sequence of 
actions that allow reaching an objective. The 
problem of planning in a situation where there is an 
initial or actual state and the objective or desire 
either to arrive at or obtain a final state has been 
considered by many researchers in the areas of 
robotics, control, and computing, and as a result 
there emerged several approaches for solving this 
problem. 

In motion planning for autonomous animation, 
the objective is to compute a trajectory from an 
initial configuration to a goal configuration. This is 
applicable to avatar animation. In this area, an 

additional desirable objective would be that the 
motion plan algorithm could produce “realistic” 
animated movements and reduce human 
intervention in the animation. By “realistic” we 
mean motion plans that contain some degree of 
randomness. After all, even most incredible 
athletes do not repeat the same movement with 
millimetric precision. 

This is motivated by the increasing use of 
computer animation in different areas such as 
films, video games, and disaster studies. Many 
new techniques have been developed to help in 
elaboration of these animations. Currently, a field 
of great interest is the humanoid avatar animation 
due to its use in a 3D world animation and robotics 
[9, 16, 29]. 

If an avatar has to move, it is expected and 
desired that the movements look “realistic”. This 
means that the movements produced by the avatar 
should respect the constraints imposed by the 
human body, and certain variability should be 
allowed. By variability we mean that if the same 
“realistic” movement is executed by all avatars with 
the same parameters as time goes, a certain odd 
perception will start to arise since even in the same 
human being performing the same movement 
certain variability exists. Therefore, it is highly 
desirable that, as in humans, the same movement 
should vary to a certain degree from motion plan to 
motion plan and from avatar to avatar. 

Algorithm planning has been used for avatar 
animation in many scenarios [9, 16, 21, 23]. 
However, motion planning has not been used in 
general for avatar animation due to restrictions in 
the number of DOFs, joint lengths, and the 
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unrealistic movements produced by the algorithms 
for autonomous animation. 

Many approaches have explored avatar motion 
planning such as genetic algorithms [18], swarm 
intelligence [17], and sampling base motion 
planning (SBMP) [4, 8, 6, 22]. Some success has 
been achieved using these algorithms; however, 
many of them are off-line algorithms. Nevertheless, 
the SBMPs have showed some promises due to 
the way the Configuration Space (CS) [14, 25] is 
defined. For example, it allows obtaining better 
obstacle avoidance due to the implicit CS 
geometry [14]. Examples of these algorithms are 
the probabilistic road-map algorithm [12] and the 
Rapidly-exploring Random Tree (RRT) algorithm 
[13, 27]. 

In these kinds of algorithms [7, 13, 28], the 
incremental sampling and searching approach is 
used to assure excellent search coverage over the 
configuration space, which allows the avatar to 
reach a variety of movements. This is despite of 
the fact that usually just a certain range of the 
configuration space is required to accomplish a 
motion task. 

In particular, motion planning using the RRT 
algorithm as in [13, 17, 28] implements an efficient 
sampling strategy used to build a tree search 
structure. In these methods, an initial 
state/configuration is considered as the tree root. 
Then, new nodes are randomly added as new 
branches are generated. Finally, when the 
objective is reached, the best trajectory in the tree 
is selected by means of backtracking. 

Based in this observation, our algorithm uses 
the RRT search tree growing strategy to give a 
variability and CS coverage in avatar motion 
planning. In addition, it uses a version of the hill 
climbing method [19] which reduces the tree 
growth, and it guides the search in order to 
produce efficient movements. Therefore, the 
algorithm presented in this paper avoids the use of 
inverse kinematic for motion planning and search 
over all the CS. This reduces the computational 
complexity and allows producing an on-line 
algorithm. 

This paper is organized as follows. Section 2 
provides related work on motion planning. The 
motion planning problem and formalization are 
defined in Sections 3 and 4, respectively. Section 
5 outlines motion planning with avatar ontology. 

The autonomous motion planning algorithm is 
described in Section 6, while Section 7 presents 
simulation and results. Finally, conclusions are 
given in Section 8. 

2 Related Work 

There exists vast literature [8, 16, 17, 30, 31] on 
motion planning using animated avatars or robots. 
In this section, some motion planning algorithms 
are presented according to whether the obtained 
plans are based on an articulated structure or not. 

2.1 Motion Planning for Non-Articulated 
Structure 

Various motion planning works have been done for 
a non-articulated structure implementation. To 
mention a few, the researcher in [10] uses Genetic 
Algorithms (GA) to generate paths that can avoid 
different obstacles of the terrain. The algorithms 
employ a fitness function to find the better plan 
paths. Also by implementing a sampling method, 
[8] uses a tree structure that can be pruned and 
grow according to possible obstacles in the 
environment, then generating plan paths. 

2.2 Motion Planning for Articulated Structure 

When a motion plan for an articulated structure is 
required, many algorithms exist to deal with this 
issue: for example, GA [18] and ant colony 
optimization [17] algorithms. These motion 
planning algorithms have to handle aspects like the 
CS and the DOF of the articulated structure. A 
drawback of these algorithms is that the 
combination of CS and DOF implies a humongous 
state space due to the possible positions that each 
joint in the articulated structure can achieve [3, 
5, 26]. 

In the case of Inverse Kinematic (IK) [2, 20, 24], 
some drawbacks arise due to the complexity of the 
formulation. For example, if the articulated 
structure increases its number of joints, it requires 
modifications in the system formulation. 

In addition, IK algorithms are more suitable for 
synthesizing posture than animation [16]. In order 
to resolve the explosion of state space, SBMP 
have been proposed not only because they are 



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Autonomous Motion Planning for Avatar Limbs 459

ISSN 2007-9737

successful in handling a huge configuration space, 
but that they also provide an adequate framework 
for planning with many DOFs [22]. 

These are the reasons why we have made use 
of the SBMP approach to propose a motion 
planning algorithm able to work with a more flexible 
DOF representation. It accomplishes the planning 
and reduces the structure dependence in order to 
generate motion plans. 

3 Problem Statement 

The motion planning problem for an avatar in a 3D 
world will be represented by generation of plans 
that give us trajectories able to accomplish the 
avatar task. For this, we use the following model. 

Let 𝐴 be an avatar that has to accomplish a 

motion task, and 𝐽 = (𝑗1, … , 𝑗𝑛) are the joints that  𝐴 
has. Each joint in turn has 𝑞𝑖 =  {𝑥|𝑥 ∈
𝑉𝑒𝑐𝑡𝑜𝑟 𝑆𝑝𝑎𝑐𝑒}, 𝑖 = 0, … , 𝑛 constrained by DOF of 

that joint. The DOF configuration of  𝐴 forms a 
system configuration 𝑄𝐽 = (𝑞1, … , 𝑞𝑛). 

The state space, where all 𝑄′𝑠 of 𝐴 are possible, 

is represented by the 𝑛-dimensional configuration 
space 𝐶𝑎. This state space has the following 

hierarchy: 𝐶𝑎 represents all possible configurations 

of 𝐴 due to the avatar structure, 𝐶𝑎−𝑐𝑜𝑙𝑙𝑖𝑑𝑒 
represents the subset of states that are not allowed 
after collisions have been taken in account, and 
finally 𝐶𝑎−𝑓𝑟𝑒𝑒 = 𝐶𝑎 − 𝐶𝑎−𝑐𝑜𝑙𝑙𝑖𝑑𝑒 which represents all 

possible useful configurations. 
Then, the objective is to compute a sequence 

of actions, a plan  𝑃, which can take the 𝐽 joints in 

the initial configuration 𝑄𝑖𝑛𝑖𝑡 to a goal 

configuration 𝑄𝑔𝑜𝑎𝑙. Our motion problem in CS is 

represented in Figure 1. 

4 Planning Formalization 

For the motion planning problem handled in this 
work, revolute joints are considered and the 
principal concepts of state and action are set as 
follows. 

A state 𝑠𝑘 is represented as the tuple  𝑠𝑘 =
(𝑘, 𝑞𝑘 , 𝒗𝒌), which represents the configuration for 

the 𝑘-th joint, 𝑞𝑘 is the quaternion representing the 
𝑘 joint rotation, and the translation vector 𝒗𝒌 
indicates the joint position. 

The joint rotation is represented by a quaternion 
𝑞𝑘 = (𝜃𝑘, �̂�𝑘) where the rotation angle is 
represented by 𝜃𝑘 and �̂�𝑘 is a unit vector 
representing the axis of rotation. 

In order to represent an action 𝑎𝑥 = (𝑥, 𝑞) in the 
plan, we set it as a motion for the 𝑥-th joint in 𝑞 
rotation angle. 

The possible actions which could be generated 
are limited due to the avatar DOFs and its motion 
limits. 

This motion action representation will be 
expressed in STRIPS [19] form in order to give a 
better implementation understanding: 

𝑎𝑘(𝑘, 𝑞)
= 𝑝𝑟𝑒: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒(𝑠𝑘) ˄ 𝑓𝑟𝑒𝑒𝑠𝑡𝑎𝑡𝑒(𝑠′

𝑘) 

 𝑝𝑜𝑠: ¬𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒 (𝑠𝑘) ˄  

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑡𝑎𝑡𝑒(𝑠′
𝑘) ˄ ¬𝑓𝑟𝑒𝑒𝑠𝑡𝑎𝑡𝑒(𝑠′𝑘). 

(1) 

An action will be considered to be usable in the 
plan as long as the new joint state is free of 
collisions. 

For us, the plan 𝑃 is terminated once the goal 
𝑣𝑔𝑜𝑎𝑙 is reached, or once 𝑃 has moved the avatar 

configuration to a state close enough to the goal 
𝒗𝑔𝑜𝑎𝑙. This is different from IK where the final state 

needs to be reached all the time. 

Although an avatar has 𝐽 joints that could be 
used, not all of these joints are required to 
accomplish its motion task, i.e., depending of the 
task, some joints will never be moved. Therefore, 
taking into account all unnecessary joints will only 
increase the complexity of the motion planning, 

 

Fig. 1. Components of the plan of movement and its 

relation with the configuration space 𝐶𝑎 
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i.e., the search in the CS. This is due to a bigger 
joint configuration space. 

The proposed algorithm handles the previous 
problems by generating motion plans using a 
cardinal variable task joint subset 𝐿 ⊂ 𝐽. In other 
words, the proposed algorithm is not set with a 
predefined number of joints. 

The use of 𝐿 decreases the search space, but 
the number of possible configurations of the joint 
DOFs is still large. In this work 𝐶𝑎 is decomposed 

by quantization of each angle of rotation 𝜃𝑥 for 𝑥 
joint DOFs of motion degrees: 

𝐷𝑥 =  {𝑛 ∈  ℕ| 𝑛 𝑚𝑜𝑑 ∆𝑝= 0 ˄ (𝛩𝑚𝑖𝑛  ≤ 𝑛 

≤  𝛩𝑚𝑎𝑥)}. 
(2) 

This allows reducing the state space of DOFs 
to 𝑗 elements and keeping coverage of all state 
space. Here 𝛩𝑚𝑎𝑥 indicates the maximum and 𝛩𝑚𝑖𝑛 

the minimum rotation angle for the DOF 𝑥. 

Therefore, the set of all possible states that the 
avatar can reach in 𝐶𝑎 is given by 

𝑆 =  ⋃ 𝐷𝑖 ,

𝑁

𝑖=1

 (3) 

where 𝐷𝑖 is the state set for each DOF, and 𝑁 is 
the number of DOFs used in the motion planning 
task.  

In order to give a more understandable 
representation of an action and to define its 
rotation axis, �̂� is specified according to the motion 
and orientation over all possible DOFs: yaw, pitch, 
and roll. They form a set of actions for each DOF 
at each joint. This action set will be defined over all 
possible motion degrees of each DOF. Using 
action definition, we can define the set 𝑀 as all 
permissible actions:  

𝑀 =  {𝑎𝑘(𝑘, 𝑞)| 𝛩 ∈  𝐷𝑖  ˄ (𝛩𝑚𝑖𝑛 

≤ (𝛩𝑘 − ∆𝑝)˄(𝛩𝑘 +  ∆𝑝))

≤  𝛩𝑚𝑎𝑥}, 

(4) 

where the 𝛩𝑘 value represents the current 𝑘 

rotation angle in which the action 𝑎𝑘 is going to be 

executed. 𝛩𝑚𝑖𝑛 and 𝛩𝑚𝑎𝑥 are taken from 
kinesiology studies [15], this ensures that our 
planning algorithm will not implement actions 
forbidden to the human physical structure. 

5 Motion Planning with Avatar 
Ontology 

Avatar independence is an important aspect of this 
work due to the fact that it allows our algorithm to 
be implemented by different avatars encouraging a 
more autonomous animation. 

Knowledge Base (KB) Agent represents a 
feasible approach for us; here agents help an 
avatar to achieve independence. Works like [11] 
propose an ontology for KB agents, which 
complements our motion planning algorithm by 
providing the behavior and internal structure of an 
avatar that requires to achieve a motion task. 

In this work a similar ontology is implemented, 
which provides the avatar internal structure 
knowledge (like joint DOFs and rotation limits) for 
the planning algorithm to generate a specific avatar 
motion plan. 

6 Autonomous Animation Motion 
Planning 

In order to generate motion plans independent of 
the avatar, the joint ontology information that the 
KB agent has is passed to the motion planner. The 
pseudo-code for this procedure is given in 
Algorithm 1. 

This works in the following manner. First, the 
planning algorithm performs a search of possible 
configurations that let it move the 𝐽 joints. This 
generates a tree structure, where each node 
represents all possible actions. Second, the motion 
planner is initialized with the ontology information 
and the initial system configuration according to 
the avatar that implements the plan. Now, for the 
planning algorithm, the joints are numbered from 1 
to 𝑚, where 𝑚 represents the final joint. We define 

the 𝑗𝑚 joint as the end effector; it can be one of the 
following joints: the last joint of the hand, that of the 
foot, or the abdomen joint. 

This end effector is used to determine the 
moment when a task has been finalized. For 
example, to reach a glass of water means to put 
the hand joint as near as possible to the glass of 
water. Also, to move to a door could mean to move 
the abdomen joint as near as possible to that door. 
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Now, with the tree structure initialized, the 
distance 𝑗𝑚 between the end effector and 𝒗𝑔𝑜𝑎𝑙 is 

used to check if the plan should terminate. For this, 
the algorithm uses a threshold set by the user. If 
the goal has not been reached, the action search 
continues. Then, after 𝑥 added actions, the tree 
formed with the found actions is checked in order 
to find the best possible plan so far that the avatar 
is going to execute. This process is repeated until 
the 𝑗𝑚 joint achieves the goal threshold. 

The growth process of the tree search is given 
in Algorithm 2. 

As the algorithms show, actions in 𝐶𝑎 will be 
obtained through a random process. Each action is 
checked to find if the random process was unable 
to generate a movement for the chosen joint/node 
to grow the tree. This only happens when a 
generated action violates the motion restrictions 

set in the ontology, i.e., an action that leads to an 
unreal configuration. If a valid action is obtained, it 
is added to the tree structure. 

The growth process presented in Algorithm 2 
shows an important difference between our 
implementation and the RRT. This is due to the fact 
that our method does not require having the whole 
action plan to start executing movements that bring 
us closer to the goal. Even when new obstacles are 
discarded or added to the environment, the 
proposed planning algorithm can build an 
alternative plan starting from the last executed 
action. 

By using just the 𝐿 ⊂ 𝐽 joints, 𝑎𝑟𝑎𝑛𝑑 is obtained. 
Now, we have the action and we know the last 
executed action, so we can add the action to the 
search tree.  

Given 𝑎𝑟𝑎𝑛𝑑 and the last executed action 
lastActionExecuted, Algorithm 3 looks for an action 
in the search tree that is closer to the random one, 
because in that place the new action will be added 
to the search tree. In order to do this, Algorithm 3 
compares the resulting distance value: if the 𝑎𝑏𝑒𝑡𝑡𝑒𝑟 

was executed, it assigns 𝑥1 if we are close enough 
according to a threshold, otherwise it assigns 𝑥2 as 

the rotation angle 𝛩, where 𝑥1, 𝑥2 =  {ℝ | (𝑥1  <
 𝑥2)}; in our work, values of 5 and 10 were used 
respectively. 

The new 𝛩 value replaces the previous value 

from the 𝑎𝑟𝑎𝑛𝑑 action, and it is added to the tree. 
Something that influences the design of the 

proposed algorithm is based in the following 
observation of human motion: most of the time, a 
person moves a joint until the joint motion does not 
give any perceptible benefit. Using this 
observation, Algorithm 3 implements the 
exploitation action decision dilemma used in some 
RL problems where an action is executed several 
times until the goal is reached or until the action 
fails to reduce the goal distance. 

The new action that has been added is 
exploited as presented in Algorithm 4. 

As in Algorithm 3, the rotation angle value is set 
by using the distance. This new action is verified if 
it gets the avatar closer to the goal and if the joint 
is kept inside its motion limits in order to add the 
action into the search tree. The exploitation 
process of the new added action ends if the actions 
obtained move the 𝑗𝑚 joint away from the goal. 

Algorithm 1 Autonomous Animation Motion 
Planning 

Requires: avatar ontology instance, motion plan 

goal, 𝒗𝑔𝑜𝑎𝑙, and the 𝐿 joint subset involved 

Ensures:  motion plan that allows reaching the plan 

goal starting from the initial avatar configuration 

1:  goalReached ← false 

2: Plan ← motionPlanner( AvatarOntology, 𝒗𝑔𝑜𝑎𝑙, 

 𝐿) 

3: repeat 

4:   if distance( 𝑗𝑚 ) ≤ threshold then 

5:     goalReached ← true  

6:   else 

7:     Plan ← growthPlan(lastActionExecuted) 

8:     lastActionExecuted ← execute(Plan) 

9:   end if 

10: until goalReached = true 

 
Algorithm 2 growsPlan 
Requires: latest action plan that has been executed 
Ensures: grows the plan, once a new action is added 

from the last action executed 
1:  while 𝑖 ≤ 𝑥 do 

2:   𝑎𝑟𝑎𝑛𝑑 ← randomAction(𝐿) 

3:   if isNull(𝑎𝑟𝑎𝑛𝑑) = false then 

4:     addAction(𝑎𝑟𝑎𝑛𝑑, lastActionExecuted) 

5:   end if  

6:    𝑖 ← 𝑖 + 1 

7: end while 
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Using these concepts of exploitation, valid actions 
are obtained in a faster way. 

In this manner, the motion planning algorithm is 
designed to generate motion plans for different 
avatars, requiring only the information of the joints 
that it has to move by taking advantage of the 
concept of exploitation, the efficient RRT search 
strategy, and the CS decomposition. The entire 
process of the proposed algorithm is presented in 
Figure 2. 

7 Simulation and Results 

In this section the animation of a human avatar’s 
left arm is generated by using ontology 
implementation [11] and the proposed motion 
planning algorithm. For this simulation, the goal is 
to reach the object by using the avatar left arm. 
Motion planning and the avatar structural 
parameters are presented first. Second, we 
performed another case study where the left arm 
structure is modified and the number of DOFs is 
increased. 

Finally, the images of a motion plan simulation 
are presented. 

7.1 Planning Parameters 

The proposed algorithm was applied to the avatar 
left arm shown in Figure 3. The arm has eight 
DOFs distributed as shown in this figure.  

The configuration space corresponds only to 
the left arm scope, 𝐶𝐿−𝑎𝑟𝑚, where no obstacle is 

present. In addition, 𝐶𝐿−𝑎𝑟𝑚 = 𝐶𝑓𝑟𝑒𝑒. The system 

configuration due to the involved joints 𝐿 =
(𝑗1, … , 𝑗4) is 𝑄 = (𝑞1, … , 𝑞8). 

The DOF distribution that composes the 
configure system over the joints involved is 
presented in Table 1. 

Table 1. System configuration 

Joint 
Degree of freedom 

Pitch Roll Yaw 

Shoulder X X X 

Elbow X   

Wrist X X X 

Hand X   

Algorithm 3 addAction 

Requires: the 𝑎 action that will be added and the last 

executed action  

Ensures:  action 𝑎 added 

1:  𝑎𝑏𝑒𝑡𝑡𝑒𝑟 ← nearesAction(𝑎𝑟𝑎𝑛𝑑, 
lastActionExecuted) 

2: if distance(𝑎𝑏𝑒𝑡𝑡𝑒𝑟) < threshold2 then 

3: 𝛩 ← 𝑥1 

4: else 

5: 𝛩 ← 𝑥2 

6: end if 

7: 𝑎𝑟𝑎𝑛𝑑 ← 𝛩 

8: addAc(𝑎𝑏𝑒𝑡𝑡𝑒𝑟, 𝑎𝑟𝑎𝑛𝑑) 

9: exploitAction(𝑎𝑟𝑎𝑛𝑑) 

 
Algorithm 4 exploitAction 

Requires: action 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 to exploit 

Ensures:  action 𝑎𝑛𝑒𝑤 

1:  if distance(𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < threshold2 then 

2:   𝛩 ← 𝑥1 

3: else 

4:   𝛩 ← 𝑥2 

5: end if 

6: 𝑎𝑛𝑒𝑤 = 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

7: 𝑎𝑛𝑒𝑤 ← 𝛩 

8: if distance(𝑎𝑛𝑒𝑤) < distance(𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡) then 

9:   if (withinRangeMotion(𝑎𝑛𝑒𝑤) = true) then 

10:     addAc(𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑎𝑛𝑒𝑤) 

11:     exploitAction(𝑎𝑛𝑒𝑤) 

12:   end if 

13: end if 

 

 

Fig. 2. The proposed planning algorithm 
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It is important to set the distance function to 
know if we get closer to the solution. In this 
simulation, we use the Euclidean distance between 
the end effector and the goal position to guide the 
movements. 

7.2 Movement Limits 

A standing person has a natural position as shown 
in Figure 3, and in our work this position is the initial 
system configuration 𝑄𝑖𝑛𝑖𝑡 from where it has to 

reach a goal configuration 𝑄𝑔𝑜𝑎𝑙. 

Although only the left arm is used, the CS is 
wide, but the decomposition of the motion degree 
helps to cover all the search space without 
specifying all possible configurations. After some 
experiments, ∆𝑝= 10 gives good space search 

coverage for the simulation. 

By matching the kinesiology information [15] to 
the different DOFs in the avatar left arm, we can 

obtain the motion limits, 𝛩𝑚𝑖𝑛 and 𝛩𝑚𝑎𝑥 of each 
DOF to be saved in the ontology. This ontological 
information is presented in Figure 4 and Table 2. 

Table 2. Ontological information 

Joint 
DOF limit 

Pitch Roll Yaw 

Shoulder 90°, -90° 180°, -50° 180°, 0° 

Elbow 140°, -10°   

Wrist 60°, -60° 90°, -90° 30°, -20° 

Hand 90°, 0°   

7.3 Many DOFs Planning 

In order to illustrate that the planning algorithm can 
generate plans independent of a specific avatar 
structure and a predetermined number of DOFs, 
the avatar left arm is modified by adding the elbow 
joint two times. This modification increases the arm 
wide range and the number of DOFs. In addition, 
they have the same DOF number and distribution, 
i.e., the number of extra joints equals the number 
of elbow joints. Therefore, the system configuration 
of this set of joints 𝐿 = (𝑗1, … , 𝑗6) is 𝑄 = (𝑞1, … , 𝑞10). 

7.4 Results 

Figure 5 presents animation stills of an avatar 
reaching a sphere in front of it. The motion plans 
generated in different experiments shown in 
Figure 5 were limited to a specific number of 
motion movements to reach the goal. In addition, 
the design work was limited to the definition of the 
goal within the configuration space 𝐶𝐿−𝑎𝑟𝑚. The 
goal motion limitations were selected to avoid 
unnecessary actions by the motion planner. 

In addition, the threshold was selected such 
that the proposed algorithm could avoid a race 
condition at the goal state. 

Motion plans generated in the experiments 
implement natural motions, i.e., motions that a 
common person could make. Also plans starting 
from the same initial configuration and having the 
same goal configuration have differences between 
them, this enhances the motion realism. 

In Figure 6 animation stills of the avatar arm 
with many DOFs are presented. This animation 

 

Fig. 3. Avatar used in case studies 

 

Fig. 4. Joint motion limits 
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shows that it was able to generate motion plans 
with different number of DOFs assigned to the 
motion task. 

8 Conclusions 

This work presents a motion planning algorithm for 
avatars, which contributes to the generation of a 
motion sequence for simple animations in a more 
autonomous and realistic way. More specifically, 

the main contributions of our work are the 
following: 

- The proposed algorithm was able to work with 
a big number of DOFs that are needed to 
accomplish the task, and for this the DOF 
configuration space is discretized by 
constraining the possible rotation angles for 
each DOF. 

- As long as the ontology provides the avatar 
internal structure, without the exact joint 
dimensionality and position, a motion plan is 
generated for the avatar. 

 

Fig. 5. Simulation results where the goal is in front of 
the left arm 

 

 

 

Fig. 6. Arm with many DOFs 



Computación y Sistemas, Vol. 19, No. 3, 2015, pp. 457–466
doi: 10.13053/CyS-19-3-2009

Autonomous Motion Planning for Avatar Limbs 465

ISSN 2007-9737

- Realistic but maybe not optimal plans are 
generated by constraining the joint motion 
range using kinesiology information. 

The work presented here shows an 
improvement in generation of autonomous 
animations. However, our algorithm generates 
plans only for a small motion task. A more complex 
motion planning algorithm is required to perform 
more complex movements like carrying objects or 
running. Also, our proposal is sensitive to the 
threshold and ∆𝑝 values. Unsuitable values may 

result in motion plans with configurations caught in 
suboptimal positions or unable to reach 𝒗𝑔𝑜𝑎𝑙. 

Although the algorithm handles collisions with 
obstacles in the environment and is able to modify 
the trajectories, the implementation of a process 
for collisions with itself is necessary. This means 
that such DOF configurations are allowed that may 
overlap the avatar with itself. 

Finally, autonomous animation generated by 
this motion planning algorithm can be improved if 
a visual sensor is added to it to give feedback. 
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