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I

CHAPTER I 
INTRODUCTION

The Fundamental Theorem of Algebra, states that every 
equation with complex coefficients

f (zJsz’Va^z11'"1* ---------- i an=0
has,, complex (real or imaginary) root.

Altho this theorem is the basis of algebra, it was 
comparatively recently that it was proved. Albert Girard, 
in 1629, asserted that "every algebraic eauation has as 
many solutions as the exponent of the highest term" but 
added the exception that no powers could be omitted, but 
he pointed out that if there were fewer roots than the 
degree, it is useful to introduce as many "impossible 
solutions" as will make the total number of roots and 
impossible solutions equal to the degree. The mathema­
ticians of the eighteenth century were convinced of the 
existence of a root for ever algebraic equation from 
contemplation of particular equations: the binomial, 
those of uneven degree, and those of even degree with sign 
(aQan)r -1. Many mathematicians, such as d'Alembert, 
Euler, Daviet de Fonoenex, and Lfcgrange, tried vainly to 
prove it. Some proofs were given, but these were later 
proved to be not strictly rigorous.

The first rigorous proof of this theorem was given 
by Gauss in 1797, and was published in 1799 in his dis­
sertation avoiding of the use of comrlex Quantities.



Gauss states his purpose is to demonstrate a new theorem 
that all integral, rational, algebraic functions in one 
variable can be resolved into real factors of first or 
second degree. He also states in the introduction to the 
fourth proof: "(the first proof) ..... had a double pur­
pose, first to show that all the proofs previously attempt­
ed of this most important theorem of the theory of algebraic 
equations are unsatisfactory and illusory, and secondly to 
give a newly constructed rigorous proof." Since that time 
so many proofs have been given that it is no« necessary 
to group them and then characterize the groups.
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CHAPTER II
CLASSIFICATION OF PROOFS

A classification of the proofs avoiding the use of 
the function theory and integral calculus is given by 
Von E. Netto.* He divides the proofs into two main groups: 
those making use of the analytical or geometric means, and 
those making use of the fact that an equation can be prov­
ed to have a root since odd powered equations are known 
to have roots.

The proofs of the first group can be divided into those 
which use geometric continuity and those which approach 
a root asymptotically.

The characteristic geometric proofs include the first 
proof of Gauss, the first and second proofs of Cauchy.
The first proof of Gauss will be «iven in complete detail 
in Chapter III. The first proof of Cauchy, with some add­
itions by Dickson,' will be given in Chapter I t A ttoer 
method of this same proof is given by Macnie,1* and will 
be given with a criticism in Chapter VI.

The second subdivision of proofs of the first group 
gives an analytical rule for the approximation of a root, 
z, for the f(z) to vanish. A series of proofs of the

* Encyclopadie of Mathematics, Druck und Von Teubner,
1898-1904, Vol. 1, Part 1.
' L.E. Dickson, Elementary Theory of Eoustione, John 
iley & Sons, 1917.

B John Macnie, Algebraical Equations, A.S.Barnes &
Company, 1876.



first subdivision can be altered to bring the proof to 
this form.

The d’Alembert proof, the first which was attempted 
for the fundamental theorem belonged here; it rested on 
the analytical inversion of F(y)=f(x). Gauss showed that 
this proof was not rigorous, and then later showed how it 
could be changed to obtain full rigour.

R. Lipschitz gave a proof in analytic form. Two 
others which are of the same train of thought but have 
completely different methods are those of F. Mertens and 
0. Weierstrass, both of which make use of the approximation 
formula of Newton as the method of calculation.

Under the proofs of the second group, the second 
proof of Gauss is the most important. A summary of this 
proof will be given later in the thesis.

E. Phragmen gave a proof, using a new representation, 
in which he derived an algebraic congruence

F(z)=f (w,r) z+-G(w,r) modulus z* -2 ujz ^  where r- f by 
an equation with reduced degree solubility determined so 
that f(<j,f)-0, G(o,^ )-0 posses a common root w- ̂  : there­
fore f(z) is divisible by z2'-2zco^a'



CHAPTER III
FIRST PROOF OF GAUSS

Every equation with complex coefficients
f(z)szIV a 1zn“1 ^--------------- fan=0

has a complex (real or imaginary) root.
We shall consider all of the coefficients as real., 

then the general case in which some of the coefficients 
are complex easily follows. For, if f^z) is a function 
of z, whose coefficients are, resoectively, the conjugate 
imaginaries of the second function, fg(z), then we may 
write f-jJzJwA+iB, fg(z)«A-iB, and (z)fg(z)*A*+ B**f(z) 
where f(z) has only real coefficients. How, if f(z)»0 
can be shown to have a root ct, , then we must have either 
^ ( < 0 * 0 ,  or f2 (Cyf)s*0. Suppose f̂ (tV, )*0, then it follows 
that f2(^)=0» whereof is the conjugate of CC,. Fence 
f1(z)»0 and fg(z)=*0 have at least one root.

We are to crove that there always exists at least 
one value .of z which causes the polynomial f(z) to 
vanish.

Let z-x+iy, then we may write f(z)»X+iY, There X 
and Y are polynomials in x and y with real coefficients. 
To find expressions for X and Y, let x=rcos^, y=rsin^, 
and then z=r(cos^-^-i8in <j/>) where 0-$^27r. By De Yoivre's 

zrn=rra(c0s^+-isin^> )ra=rm (cos m^^isin mfi). 
Substituting for z in f(z) we get,



Xsr^cos n^*a, r*~' cos(n-1)j> + a^r^'^cos(n-2)^5^-----
Y-r^sin n̂ v-a, r 'v'/ sin(n-l) <f> t %  r^'^sinfn-S)^-----

----* aw _( r sin jt>
A second expression for X and Y is obtained by setting

, aThus z— r (1 H i ) 
lwt -

CO _ sin <t>
tan ft

(l*-t*)f,(X+Ti)=r"(Uti)l^*ar ̂ “' ( l r t i ( U t ^ Y -------

_ 1-t'
l-rt

----^ a ^ l - t V
If we expand the terms on the right and arrange results 
according to powers of t, we get

X-

where F(t) is a polynomial in t of degree less that 2n, 
and G(t) a polynomial in t of degree 2n, each with coef­
ficients involving r integrally.

Each point (x,y) representing a complex number 
z*x+iy having the modulus, r, lies on the circle xVy^-r*- 
with radius r, and center at the origin of coordinates.
To find the oints on this circle for which X=Q, or Y»0, 
we solve F(t)-0, or G(t)=Q, for a given value of r, and 
note that to each real root, t, corresponds a single real 
value of cos^, consistent with that of einjẑ , and hence 
a single point (x-rcos^, y=rsin/). Elementary algebra 
proves that no eouation can have more roots than its

£



power, so if F(t)=0 and G(t)*0 have any roots at all they 
cannot have more than 2n. From this it follows that 
neither X or Y can be eaual to zero at all points of an 
area in a plane, for in that event we could select r 
such that the circle would case through that area and X 
and Y would vanish at an infinite number of points on 
this circle.

The value of Y may be written 
Y=r^(sin n^+£j»sin(n-l)^ r |i.sin(n-3) ft ------)

From this expression it is readily seen that r may be 
taken so large that Y has the same sign as sin n/ on 
all points on the circle where sin n<j> is numerically 
larger than some valuer , which may be as small as we 
please but not zero. Mark on the circle the points

0 , 11/n, 2 -fn, ......... 2(n-l)ir/n
and designate them, respectively, by 0, 1, 2, ...2n-l*
Thus the circle is divided into 2n arcs (01), (12), (23),
....... (2n-l,0) in which sin n^ is alternately +■ and

Sin tj> , sin 2 (f>,........ sin n j are continuous functions
of . Since r is now a constant Y is therefore a contin­
uous function o f ^ , and has a single value for each value 
of j . But Y had opposite signs at the two ends of the 
region of any one of our points of division on the circle. 
Hence Y is zero for some ooint within each region, and 
at just one such point, since Y was shown to vanish at 
not more than 2n points of a circle with center at the



A-2C>



y = ^ 0 - 4  r3A^~ J &  + j r ' A ^ ^ e

O-. 7 0 *(>'



origin. We shall denote the points on the circle at which 
Y is zero by

Po> Pl> 2n-l
Let the constant r be chosen so large that X also 

has the same sign as its first term, r cos n , for /
not too near one of the values TT/3n, 3'n/3n,5'ff/2n,....
for which cos n^=0. Since these values correspond to the
middle points of the arcs (01), (12),........ no one of
them lies in a neighborhood of a division point 0, 1, ... 
Now cos n^- when <f> is an even or an odd multiplier of
-fl̂ n respectively. Hence X is positive in the neighborhood
of the division points 0, 2, 4, ........, 2n-2 and thus
at f0, P - ,  P4 , ...... but negative in that of 1, 3, 5,...
. .  2n-l, and thus at P-^, Pg, P g , .................

We saw that Y is not zero throughout a region of 
the plane. Hence there is a. region in which Y is every­
where positive, and perhaps regions in which Y is every­
where negative, while Y is zero on the boundary lines.

Let R be the part inside our circle of a positive 
region having the points Pg^ and Pg’n+]_on its boundary.
The points of arc may be the only boundary points
of R lying on the circle (as for PrFga and PQF^d in the 
figure on page 2 ) or else its boundary includes at least 
another such arc Pgic^k+l (aB s^aĉ e<̂  region P^PgbPgP^c 
in the figure). In the first case, X and Y are both



to

zero at some point (a or d) on the inner boundary, since 
X is negative at P and positive at Pgh and hence zero 
at some intermediate point. In the second case, a point 
moving from Pgh to ?2h+l al°nS B«naller included arc 
and then along the inner boundary of R until it first 
returns to the circle arrives at a. point PgJc of even 
subscript (as in the case of Indeed if a person
travels as did the point, he will always have the region 
R at his left and hence will pass from PgJc to sni
not vice versa. Since X is negative at -j and positive 
at P2k, it (as also Y) is zero at some point b on the 
part of the inner boundary of R joining these two rointe. 
Hence b represents a root of f(z)=0. Thus in either of 
the possible cases, the equation has a root, real or 
imaginary.*

* This proof is a combination of the proofs given in 
F. Oajori, Theory of Equations, The Macmillan Oo., 19P8, 
and L.E. Dickson, Elementary Theory of Equation^, John 
Wiley & Sons, 1917.



CHAPTER XV

FIRST PROOF OF CAUOHY
Theorem: An equation of degree n with any complex 

coefficients
f(z) —2 t a, zrl" 't------------ -fa^-0

has a complex (real or imaginary) root.
Write z*x+iy where x and y are real and similarly 

a(-c(*-id, etc. By means of the binomial theorem, we may 
express any power of z in the form X+iY. Hence

f (z)-^(x,y) + i </> (x,y) (l)
where and jJ are polynomials with real coefficients.

Lemma 1: F(h)=a,h+a^h‘a+--------- fa^h^ is less in
absolute value than any assigned positive number p for 
all complex values of h sufficiently small in absolute 
value.

Denote by g the greatest absolute value of a,,--- ay.
If Ihl is less than Ik I, where IkJ-c'l, we see that F is 
less in absolute value than

g(k+k*+---------- k ’O ^ g r — ^P if |k1 </-£-_/ whichL-k ip+gi
is obtained from the expression g~Y<P, thus 

glj<|fp-pk)J then |k(g+p)(^p^ and $*|LJL| .
Lemma 2: Given any positive number P, we can find 

a positive number R such that |f(z)l>P if lz/-R.
We have

f (z)-zv (l-*-D), D=af (l/z)+-------- t&Jl/z)*

Since the absolute value of a sum of two complex numbers



is equal to or greater than the difference of their 
absolute values, we have

\f(z)|* |zp (1- ID I)
Let p be any assigned positive numbers 1. Applying 

Lemma 1 with h replaced by 1/z, we see that | D U p  if |l/z I 
is sufficiently small, i.e., if is sufficiently
large. Then

lf(z);>/Pi-P )±p
if (l-p), which is true if

This proves Lemma 2.
Lemma 3: Given a complex number a such that f( <0/0, 

we can find a complex number z for which | f (z) / ̂ /f (a)/. 
Write z^a+h. By Taylor's theorem

f (oh)-f (a)-ff' (a)h+--------4frW(a)-Jlr---- 2̂ .r] n i
Not all of the values f'(a), fn(a)t------ are zero since
ftr,,(a)-n 1. Let /r,(a) be the first one of these values
which is not zero, 

f
Then

f (a r 14 "~ffa7rl4
(V
T

u

Writing the second member in the simpler notation
g(h)=l+bhr-f ch1"*-1 ..........+-mh^,bf0

we shall prove that complex value of h may be found such 
that |g(h)|<l. Then the absolute value of f(z)/f(a) will 
be <1 and Lemma 3 proved. To find such a value of h, 
write h and b in their trigonometrio forms



!3

h=^(ccs<3> oleine?) t b-1bl (cos/f+isin^
Then

bhr= |b/y*r|coB(^*-r e>) + i&in(^i-T6)]
Since h is at our choice, /> and angled are at our choice.
We ohoose o so that/# ̂  r ->=-180 . Then the Quantity in braces 
reduces to -1, whence

g (h)-(l-lb Î r)-f-hT (chr..... +mhn“r).
By Lemma 1, we may choose so small that 

\eh +-...........+ mhn~rl -̂Ib/
By taking still smaller of necessary, we may assume at 
the same time that |bl̂ »r<l. Then

| g(h) U(l- lb \̂>r) , ]g(b))*l.
Minimum Value of a Continuous Function: Let F(x) 

be any polynomial with real coefficients. Among the real 
values of x for which l-x^-2 there is at least one value 
x, for which F(x) takes its minimum value F(x;), i.e., 
for which F(x ,)=F(x) for all real values of x such that 
l-x-2. This becomes intuitive geometrically. The oortion 
of the graph of y=F(x) which extends from its point with 
the abscissa 1 to its ooint with the abscissa 2 either 
has a. lowest point or else has several equally low 
points, each lower than all the remaining points. The 
arithmetic proof depends u;on the fact that F(x) is con­
tinuous for each x between 1 and 2 inclusive.

We are interested in the analogous Question for



which, by (l), is the sauare of |f(z)|. Ae in the elements 
of solid analytic geometry, consider the surface repre­
sented by Z=G(x,y) and the right circular cylinder jfV yA.R‘*' 
Of these points on the first surface and on or within 
their curve of intersection there is a lowest point or 
there are several equally low lowest points, possibly an 
infinite number of them. Expressed arithmetically, among 
all the pairs of real numbers x,y for which x'V yA-R 
there is at least one pair x,, y, for which the polyno­
mial G(x,y) takes a minimum value G(x,,y,), i.e., for 
which G(x, ,y, )-G(x,y) for all pairs of real numbers x,y 
for which x'Vy^-R*'

Proof of the Fundamental Theorem: Let z• denote 
any complex number for which f(z')-0. Let P denote any 
co lex number exceeding lf(z’)l. Determine R as in 
Lemma 2. In it the condition lzl-R may be interpreted 
geometrically to imply that the oint (x,y) representing 
z-xtiy is outside or on the circle 0 having the equation 
xAry*■ -R'f' Lemma 2 states that, if z is represented by 
any .oint outside or on the circle 0, then |f(z)|>P. In 
other words, if, |f(zj|£p, the point representing z is 
inside circle 0. In particular, the point representing 
z* is inside circle 0.

In view of the preceding section on minimum value,



we have
,y« ) - o ( x , y )

for all pairs of real numbers x, y for which x'Vyl-̂ R 
where x (,y,is one such pair, "'rite z ,for x,+ iy,. Since
V t z ) !  - G ( x , y ) »  we have

lf(*,)ls£ff(z)/
for all z's represented by points on or within circle 0. 
Since z' is represented by such a point,

|f(Z|)|*|f(z')kP (2)
This number z is a root of f(z)-0. For, if 

f(z,)^0, Lemma 3 shows that there would exist a. complex 
number z for which

|f(z)Mf(z,)l (3)
Then lf(z)|^P by a preceding statement, so that the 
point representing z is inside circle C, as shown above® 
By the statements preceding, (2), 

lf(z,)l*lf(z) I
But this contradicts (3). Hence the fundamental theorem 
is proved.•

* L.E. Dickson, First Course in Theory of Fcuations, 
John Wiley & Sons, 1922.



CHAPTER V

SUMMARY OF GAUSS' SECOND PROOF 
In his second proof, Gauss makes use systematically 

of an important expedient. A series of properties of an 
equation of nth degree with n roots g(z)=0 can he express­
ed by relations, which are themselves exoressible ration­
ally in the symmetric roots, and thus in terms of coef­
ficients of g(z) one can then replace these coefficients 
by the corresponding coefficients of an eouation f(z)=0 
concerning the existence of whose roots nothing is known, 
and can conclude from the unchangeableoess of the relations, 
these properties also for f(z).*

Gauss himself sums up this proof as follows:**
"The solution of the eouation

Y=xH-L'xM''t L"xM'a'- ............. -0
that is, the determination of a particular value of x 
which satisfies the equation and is either real or of 
the form g+hf^l, may be made to depend upon the solution 
of the equation F(u,X)=0 provided the discriminant of the 
function Y is not zero. It may be remarked that if all 
coefficients of Y are real and if as is permissible we 
take a real value for X, all the coefficients in F(u,X)

* Encyclooadie of Mathematics, Druck und Von B.G. Teubner, 
1898-1904, Vol. 1, Part 1.
** Source Book in Mathematics, D.E. Smith, McGraw-Hill 
Book Company, Inc., 1929



are also real. The degree of the auxiliary eouation 
F(u,X)-=0 is expressed by the number |rm(m-l); if then m 
is an even number of the form 2"^, k designating an odd 
number, the degree of the second eouation is expressed 
by a number of the form 2*“,,lc.

In case the discriminant of the function Y is zero, 
it will be possible to find another function ^  which is a 
divisor cf Y, whose discriminant is not zero, and whose 
degree is expressed by a number 2 k, where v"</(. Every 
solution of the equation ^ = 0  is again made to depend 
upon the solution of another equation whose degree is

Y— Iexpressed by a numbei 2 k.
From this we conclude that in general the solution 

of every equation whose degree is expressed by an even 
number of the form 2 %  can be made to depend upon the 
solution of another equation whose degree is expressed 
by a number of the form 2"^k with 't(/</(. In case this 
number is also even, i.e., if is not zero, this method 
can be applied again, and so we proceed until we come to 
an equation whose degree is expressed by an odd number, 
the coefficient© of this equation are all real if all the 
coefficients of the original eouation are real. It is 
known, however, that such an eouation of odd degree is 
surely solvable and indeed has a real root. Hence each 
of the proceeding equations is solvable, having either 
real or roots of the form g+bhCl.



Thus it has been proved that every function Y of
the form x^-L8 xM-,+ ............  in which L 8, L M,...
are particular real numbers, has a factor x-A where A is 
real or of form g-fh/̂ OL. In the second case it is easily 
seen that Y is also zero for z=g-h a  and therefore divis­
ible by z-(g-h r~T) and so by the product xx-2gx+gg+hh. 
Oonseouently every function Y certainly has a real factor
of first or second degree. Since the same is true of the
quotient (of Y by this factor) it is clear that Y can 
be reduced to real factors of the first or second degree.
To prove this fact was the object of this paper.”



*

TWO OTHERS PROOFS OF THE THEOREM 
Thie proof is of a type which is not mentioned in 

the classification given in Chapter II.*
It is shown in the theory of complex variables that 

in any region of the complex plane, simply connected 
except for excised points, that if ^doesn't return to 
its original value when changing continuously as (x,y) 
describes the boundary of a region, it may be inferred 
that there must be points in the region for which R=0*
(r-Zx^Ty3 )

Consider the function
F(z)-zy+a, zN~'r--------- z+aA/-X(x,y)+iY(x,y)
where X and Y are found by setting z«x*iy and expanding 
and rearranging. The functions X and Y will be nolyno- 
mials in (x,y) and will therefore by continuous everywhere 
in(x,y). Consider the angle ^ o f  F. Then 
ft -ang. of F*ang of z ̂  1+ J  + £=7—  r ffc) -

ang zy+ang of (1<-J±- + ----- -+

Next draw about the origin a circle of radius r so large 
that

CHAPTER VI

Then for all points of z upon the circumference the

*E.B. Wilson, Advanced Calculus, Ginn and Company, 1912.



angle of F is
I Y\ I&  ~ang of F=n(ang of z)+ang of (1+̂ .) ^

Now let the point (x,y) describe the circumference.
The angle of % will change by 2 rrfor the complete circuit, 
hence ft must change by Sntrand does not return to its 
original value. Hence there is within the circle at least 
one point (a,b) for which R(a,b)=0 and consequently for 
which X(a,b)=0 and Y(a,b)=0, and F(a,b)=0. ^hus if 
oe -a+ib, then F(<v)3iO and the equation F(z)-0 is seen to 
have at least the one root PcT. It follows that (z-ot) is 
a factor of F(z) and hence by induction it may be seen 
that F(z)«Q has just n roots.

20



_ _

The proof which is given toy Macnie* is much the 
same as the first proof of Cauchy given in this paper.
In this oroof, Macnie makes an assumption which the 
following criticism** shows is not always true.

To prove that cue value of x, in general a comolex 
number, can always toe found which causes the rational 
integral function, f ( x ) - P t o  vanish, "it is reouir- 
ed to show that some value of â -tof̂ l must exist, for which 
fp%Q* becomes zero. For, if it could not become zero, 
there would toe some value below which it could not be 
diminished. But it will be proved that whatever value of 
tP*>Q*, different from zero, can be obtained, a value 
still smaller can be obtained by making a suitable change 
in the expression that is substituted for x in the func­
tion. f P % Q * , therefore, must be capable of becoming 
zero for some value of a *-bCI, that is, the function 
must become zero for some value of x."

The assumption here is, that if for every value of 
f(x) an h can be found such that mod f(x*-h)^mod f(x), 
f(x) must necessarily vanish for some value of x. This 
does not necessarily follow. The inference is not 
warranted that a function which permits of dimunition

*J. Macnie, Algebraical Equations, A.8. Barnes & Oo., 1876
** R.E. Moritz, On Certain Proofs of the Fundamental
Theorem of Algebra, Arnei*. hath. Monthly, Vol. X,

0 n K 9



for every value of the argument possesses necessarily a

zero value. If, for example,

f (x) has no zero value, yet for every value of x an h
may be found such that 

f (x-̂ h) ̂ .f (x)



CHAPTER VII 
PROBLEMS

z3 =11+31 
fat  Z=x+iy

x3 +3x‘aiy-3xy,a'*yJ i-llf21. From which 
X-x3 -Sxy^-ll-O 
Y-Zx^y-y3-2-0

From the equations, we get

1 T
Â>CuC€M>-yV

X y
+- o 
— o

t/?vidL* • 
aoO

/ Asrv̂ â

J_
YJJ o
3 * #
4 f f j T1 IA-.

- ; ± «2-
-4 1 /i f -
- j * /57~

3

- 4
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J 6

zv/-2zJ-zJ-2z *10-0 
Let z-x+iy

Y»2y (x **-x-l-y (2x +1)
y - 6** 6x-l ± y(6x^6x-l) -4(x* 2x~*-x^-2x* 10) 
A"  2

Let z=r*cos 4<9«sln.v<s>
Y=rvsin 4e+-2rasir. 30 -r*sin 2<9-2r sin £> 
IDI <  ( f ' p r ' - f r )  L e t  r=4

ID | -4^vl/8vl/32- .US’l**" 
Let c-Sin 40-Gin 4l‘*0,52H 

C-10*15» 13"
The positive angles lC-3/r)foT which sin 4 ©  

exceeds sin 4C numerically are those between ^  ^

For any suoh angle & and for r-4 Y has the same sign as 
sin 4©and hence is alternately -/-and - in these succesive 
intervals.

The X equation is
X-r^cos 4<9*2rJco8 Sa-r^cos 2e-2r sine+-10

For any such angle <3 and for r«4, X has 
the same sign as cos 4 <=> ■

«

■7 X  t. * ? A  o l ,  i  /. i  ^

i t  3  ~2 i r  /

a ±  S %  , £  1

3 ± 3 . 3 ,  ± f- *

U *  J  L

3 1  3 .  S '

_  / - 7 t a . s

- a. X 3 -  ±  '■
- 3

—  c - t J . s

X



1



*1

I

J t .  *
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