University of North Dakota UND Scholarly Commons

Creative Expression in Mathematics

Jessie Mildred Striegl

Follow this and additional works at: https://commons.und.edu/theses

Recommended Citation

Striegl, Jessie Mildred, "Creative Expression in Mathematics" (1933). Theses and Dissertations. 4570.
https://commons.und.edu/theses/4570

This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

CREATIVE BXPRESSION IW MATHMEATICS

A Thesis
Submitted to the Faoulty of the Graduate schcol
of the University of North Dakota
by
Jessie Mildred $\frac{. .}{\text { Striogl }}$

In Paitial rulrillment of the Requirements for the Degree of Master of Arts

Tebruary
1933

PREFACE

The writer wishes to thank the members of her Committee, and particularly Professor John D. Leith, for the ariticisms and suggestions which made this thesis possible. (k)

$$
J_{0} \text { M. S. }
$$

University, North Dakota
February 3, 1933

This thesis, presented by Jessie M. Striegl in partial fulfillment of the requirements for the degree of diaster of Arts, is hereby approved by the committee in charge of her work.

CommTPTES

TABLE OF CONTENTS

Chaptex Page
I. Introduction 1
Ceneral purposes 2
School equipment and facilities for leaming 2
Sources of sumgested projeote 3
The adaptability of a creative-expression program 4
IT. The Langunge of Mathomatics as Induefve to Creative Acitivity 8
Mathematical symbolism in solence 8
progress of numbor forms 8
Modern Arabio and Roman notation 9
Briclish and metric systams of weights and measuxomenta 9
III. Numbers as Classified by Significant Relations 12
General alassifieations 12
Tactors as a basis of Grouping 12
Numbers derived from construction 13
thumbers in series and progressions 13
The geometric and arithmetic means 14.
IV. The scquisition of Short Cuts in Mathematics: An Aetivity which Lends 1tself to Culturel as well as Utilitarian Values 16
General purposes 16
Short cuts basie in the fous fundsmontal processes 16
Wxtraction of roots 17
Logerithmic computations 20
Algolruic lawg considered as short cuts 21
V. Besic $\#$. 5 thomatical Procoeses Considered for Crea- tive and Gultural Values 22
Use of fractions 22
heasurement of angles 22
Development of trigonometric functions 23
Differentiation and integration 23
VI. Greative Activitios Involved in the Construction of Lechanical and Graphical Devices Used in Ancient
and in Modern Times 25
Farly devices used in computation 25
Modern rechanical devioes 28
The principle of the Golden Section 32
Devices used in the solution of the three ancient problems 33

1) Squaring of eirele2) Duplieation of cube3) Trisection or angle
Devices for measuring time and temperature 33
VII. Relative Values IIIustrated by Graphe 35
Uses of the graph 35
Typos of graphs used for ooncreto 1 llustra- tions 36
Graphs of functions desaribed by equations 38
Conic seetions-curves 39
VIII. The Construetion of Pigures of Area and Volume as a Source of Creative Metivity in Mathe- maties 42
Regular polygons 42
Hive regulex polyedrons 43
General Volumes 4.4
General axeas 45
IX. Whathematieal Principles Involvod in Design are Conducive to Greetive Activities 48
The regular oolvgon in design 48
The eirele in design 49
Mathematteal princinlec from desion in neture 49
Colorine dosi mens 51
Paper-Polding 52
X. Mathematieal. Activitios in Oceupations 54
introdue tion 54
In meinesxing 54
In arts and seiences 56
In business 60
XI. Mathematies Por Lelsure and Recreation 63
Introduction 63
Pallioies and illustions 63
Rowed constructions 64
Re-arrangement of areas 65
Chinese magic squares 66
Properties of numbers 66
"Tanous problems of antiquity" 68
Unicursal problems 69
The labyrinth and msze 69
Draratizations 70
Matheinatical posters 71
XII. Creative Expression Through Mathensties: Sumanary 72
furpose of given suggestions 72
Applion tion of Mater Ial sugegeated 73
Bibliograghy 74

LIST UF PLANES

Plate

1. Kotric Aavance
2. Numbers Derived by Construction Geometric Series Geometric lean
III. Graphical Method of Bxtracting Roots Geometrie wothod of Extracting square loot
IV. Fractional Values Illustrated
V. Angles Illustrated

VI(a). Teigonometric Values
VI(b). Tangent and Codangent Curves
ViI. Devices Used in Computetions

VIII(a). Instruments for Computa tion
VIII(b). Instruments for Computation
VIII(c). Instruments for Computation
IX(a). Instxuments for Observetion
IX(b). Instruments for observation
X. Devices for Construction

XI (a). Pypes of Graphs
XI(b). Types of Graphs
XII. Graphs of Functions Deseribed by quations
xili. Regular folygons
XIV. The Five Regular Polyedrons

AV. Kegular Polyedrons in Crystel lorms
XVI. Construction Patterns for Pigures of Volume XVII(a). Figures of Volume

XVII(b). Figures of Volume
XVIII. Figures of Arem

XIX, The Triangle
XX. Plgures to Illustrate the Pythagorean Theorom
XXI. Regular Polygons in Design
XXII. Properties of the Square
XXIII. The Circle in Design
XXXV. The Four Color Theorem Paper Foldeng
xCV. Hothods of Dotermining Unknown Distances

KXVI. Doaeptive Prooes
XXVII. Decoptive Tigures

XKVIII. Misesilaneous Jisuras
XIIX. Chinabe Iagic Squares
SXR, Unicursel Sxoblams Labyxinth and Maze

Chapt. I

Introduction.

General Purpose: "Knowledge is not power until it is applied; before the application is made it is only potentiality. Facts, principles, and theories are useless unless applied to situations to which they are relevant." The thought expressed in this quotation from A. R. Nead is the key-note of the purpose for which the material presented in this thesis has been gathered and organizod. Mathematics, as a means of oreative expression, covers a broad field, for it is centered about almost every activity of life. The illustrations herein, have been chosen from a vast wealth of material, with the idea of brosdening the reader's vision by touching upon specific examples from many sources.

Applications: The acquisition of knowledge is not a goal In itself. Conerete application or expression of that knowledge is the response which wust be given to complete the learning. A small boy asked his brother, who was studying mathematics in college, to help him make a square corner. The brother, could not, although if he had been asked the principle of the Pythagorean theorem, he would have known it perfectly.

Creative response must not be considered as something distinctive and apart from the mere aequiring of knowledge. These are not separate, but one; and it is the responsibility of the teacher to guide and direct the student in such ways as to mininize afforts and waste and still leave the learning process with him. The student who has been trained in oreative
expression will see the relationships involved in his problems for they will mean more to him than mechanical operations.

The material presented in the following sections is primerily for the teacher of mathematics in the secondary schools, to be used as sugeestive of projects in ereative expression. It may be made available to students as their ability or progress calls for activities orainarily not provided for by the texts. For students of superior ability, there is material. included to furnish appesling aotivities for the development of creative and cultural qualities not usually attained from the study of mathematies. For those students who manifest inability to learn or aislike for mathematies, the purpose is an appeal through creative expression; and although the prinelples involved may not be fully understood, the production of a conorete plece of work wil1. Lend towards a definite goal of noconplishment, which in itsolf is a meause of improved learning. School Rquipment and Facilities for Learnine: In order that creative activities may be a part of the regular school work, the currioulum, equipment, and methods of teaching will be called upon to lend themselves to making a favorable environment. The oourses offered in mathematies must be looked upon as goneral modes of thinking, as comprehensive and plexible patterns for the re-arrangement of experiences, and not meroly as "tool" subjects. The equipment, which is ordinarily limited, may be added to by purchese, but preferably by hand mede constructions, whose planning and execution offer excellent opportunities for ereative aetivities. Tho methods used, whether they be group or individual instruction, lecture, question-answer, or laboratory, must
offer a chance for self expression, ereativeness, and practical associations.

Proper facilities for carrying out a program of ereativeexpression are ideals not generally realized. The rows of desks, the orderly shelves of books, and the inelastic curricula are not conducive to self expression on the part of the student. He needs books, but reading should form only a part of his activities. Instead of rows of desks he needs a eroup of related laboratories where, under guidence, he can try out and discover the characteristic pursuits of adult life. Old fashioned classes in mathematics must needs disappear, and in an attempt to introduce the student to projeets through which he may attain self education, activitios approaching 1 ife situations must appear.

Sources of Supgested Projects: Creative activities in mathomatics offer excellent opportunities to observe conerete forms and situations, as those found in plant life, snowilakes, the planets, light and sound, and so on. These expressions may take the form of desigas, constructions, industrial applications, or devices of various kinds. The results obtained may be varied by the use of color and decoration, and be displayed on bulletin boards or in other ways about the class room. Activity may manifest itself in projects such as running a school bank, building a radio set, running a book store or shon, putting on a style show to exhibit geometric ifgures and designs on clothing, or it may be in forms of entertainment and drematization which can be used on programs by the Mathematics Club.

Pield trips maf of facititate observation, for some of nature's most enticing geometric applications are not given to
a removal from their out-of-door settings. The use of a scrap book for recording observations and preserving collected examples, specimens, pictures, diagrams, and applications, is a means of bringing together the various activities in connection with some project into a unified whole. The results of such ereative expression, may be placed on display, or kept for future use.

The Adaptability of a Creative-expression Program: The activity program is on accepted reality in a large number of progressive school systens. Measured results have been made which show that it is possible to teach through activities and still accomplish normal or better than normal results in the fundamental skills.

A course in Cultural Mathematies was introduced at Antioch 1
College in 1928 for freshmen. No group instruction is given on the principle that ereative powers are thus stunted. A laboratory plan of study is followed in which emphasis is placed on the quality of work rather then ousntity, and progress is measured by the setisfactory mastery of successive problems. To illustrate: the applicetion of the law of sines to the solution of a triangle is not shown by example, but the student is asked in a given conerete case to explain how the law may be used to find the necessary parts of the triangle. Thus he gains an inward feeling that he is ereating ideas of his own. J. D. Dawson voices his opinion, which is tempered by the opinions of assoeiated instructors and students, in regard to the results of the

1-Dawson, J. D.: Cultural Mathematics at Antiooh, School and Society (January 24, 1931) Vol XXXIII p. 141-144.
course. He believes that although the average student may cover less ground, a better understanding of the material has been gained, and more adequate applications may be made. An apparent increase of student interest has come with the change in method, teaching interest has also been incraased and the work has become a cooperative enterprise in the college.

The question is being esked, "Is creative Edueation nompatible with Nastery of the Fundament 1 Processes? ${ }^{\frac{1}{*}}$ Willard W. Beatty answers the question affirmatively. He states that a real education must consist of at least two parts--that which transmits to the coming generation the traditions and schievements of the past, and that which provides opportunity for ereative expression out of which alone cen develop the power to contribute further to the pormanent heritage of the race. The schools of Bronxville, New Tork, under the superintendency of Mr. Beatty, have recomized these two obligations, and wile securing ereative expression in a notable degree, are also maintaining high standards of accoraplishment in the fields of objective learning. The faot is therein reoognized that the potentiality for crestive expression and the bility to fashion from materials of his environment some expression which shall be stamped with his own personality, lies within eseh individual. In the formal subjects, goal standards are set which the student must reach in order to be ready for advancoment into the next

[^0]unit of work.
A method of combining the concrete and abstract in mathematics by projects, use of graphs, recurring to every day realities of students, and other means of appronch has been outlined by Fletcher Durell. As indicated by Mr. Durell, the advantages realized by this method 11 e in the additional wolues which are given not only to the practical and vocational, but also to the ideal and spiritual side of ma thematies. The results of a semester's work on an activity program in a fifth grade English class have been reported by 0.C. Grawford and Lillian Gray. The class, which was not a highly selected one, made about 60 per cent more gain in English then was normal for the semester. 3
In considering vital values in areative expression, Margaret E. Mathias concludes that wholesome physical activity, acquisition of knowledges and skills, development of desirable sooial habits, and individual satisfaction are provided for the student by the use of materials suitable for oreative work. Her experiments were made with ohildren in painting. However, recognition of these qualities there stregthens the fundemental principle of the advantages of creative expression el sewhere.

1-Durell, F.: Makine the Conerete and Abstract Melp Each other in Mathematics. Sehool seience and Mathematies. (0etober, 1929) Vol. XXIX p. 702-713.

2-crawford, C. C., and Gray, Lillian: Measured Results of Activity Teaching. National Education Association Journal (Ootober, 1931) Vol. XX p. 270.

3-liathias, M. E.: Vital Values in Creative Expression. Netional Saucation Association Proceedings (1930) p. 376-378.

Creative expression through music, art, literature, and drame, is quite generally recognized as an ideal way of awakening in an individual the highest form of response of which he is capable. Working upon the same principle, ereative expression through mathematics, will aweken new interests, responses, and abilities for direct application.

Chapter II

The Language of Mathematics as Inducive to Creative Acitivity. Mathematical symbolism in Science: The symbolism of mathematios is simply a longuage by means of which thought is conveyed. It is required for the best expression of seientific method when the relations to be expressed become too involved for ordinary langusge, which is less precise and complete. There have been periods during which no progress was made in mathematics because the point had been reached at which new symbols were necessary before further expression was possible. In each case the need led to invention and the necessary symbols were for theoming, which enabled further progress. In order to realize the importance of aymbols a student need only undertake to carry out a simple operation, e.g., in algebra, with words alone.

Wuch of ourrent iiterature makes free use of mathematical symbols. Workers in science find them convenient and indispensable for conveying their findings to others. The student should be encouraged to collect articles from his readings which contain such syrabols, or to list as many os he may be familiar with, adding to the list as his observations broeden his field. The list may be arranged according to the year in which each symbol was first invented, according to the country which contributed each, or according to the branch of methematics to which it is especially adapted, as, for exanple, the signs of algobra and the integral and differential signs used in colculus.

Progress of Number Porms: The development of number forms is a long and interesting story. A source of notivity for the student lies in tracing these changes from the Chinese, Babylonian,

Egyptian, and other early languages, into the old European and the nodern lancuages. Material of this kind may be gathered from a good dictionary, encyclopaedis, or histories of mathematies. Reference is also made here to Smith's Number Stories in which the progress of number forms is discussed quite in detail.

Modern Arabic and Roman Notation: The ten digite of the Arabic notation as used today may be found in various styles and types of print; e.E. 4 and 4. Calendars, bulletins, and other sources furnish illustrations of such types. The Roman notation incluades the use of I, V, X, C, L, M, D, and - (the bar) as applied to any of the symbols. This notation is still used quite commonly on corner stones, clocks, some legal documents, and elsewhere. The student should be able to add to the list.

The combination of figures in both types of notation to form large numbers may be made the basis of creative activity. For an example in Arabic notation, the number of molecules in a gram is expressed as 6.06×10^{23}, a form with considerable advantage over the expanded notation. Other forms may be shown.

English and Metrio Systems of Meights and Measurements: The systems of weights and mereuxerents as expressed in English and in Metric terms, each uses an organized group of notations from mathematics. Just as the use of the common fractions is gradually giving way to the use of the decimal fraction, so is the English system of weights and measurements, which involves common fractions, giving way to the Metric system, which involves decimal fractions.

1-mith, David E.: Number Stories of Iong Ago Boston--New York: Ginn and Company, 1919.

The graph of the ietric dvance, as shown on Plate I, is indicative of the increased usage of the Metric system among the nations of the world. It is presented here that ereative activity may be centered about it and interest aroused for its sloption by the United States and Grat Britain, whioh would then mean a one hundred per cent metrieal worlō. The material presented can be re-arranged into other graphical types, as, for example, a time line, a bax graph, or according to geographical locetion of the countries.

A few other suggestions are given in regard to the metrie system about which projects for 3 tudent activity may be centered:
 length and measures of volume and capacity. These models can be compared with similar units of measure in the Bnglish system. A projoct may call for obtaining bulletins from the United states Bureau of Standards as added sources of information. Another project may include making a collection of labels containing double markings: as, a can of peas--2 pound 3 ounces or 539 grams, a bottle of listerine -7 fluid ounces or 207 cubie centimeters, a pacicage of sterilized gauze $-\infty 1$ yard or .9 meter.

Al though the English system of weights and measures is in common use, the units involved and their relations to each other could be made the basis of projocts to increase one's familiarity with them. Many of the historical faets, which are ordinarily overlooked, would appeal to the student if arrived at through some form of activity. A project may be centered about the terms used, their origin, and derivation. The following are current facts, to be used as suggestion, from mathematical history: The
Metric Advance

yard was used by King Henry I of Fngland as a unit, being the distance from the point of his nose to the end of his thumb. The standards for the rod and foot in the 16 th Century are given 1 in the following account.

To find the length of a rod in the right and lawful way, and according to seientific usace, you should do as follows: Stand at the door of a church on Sunday, and bid 16 men to stop, tall ones and small ones, as they happen to pass out when service is finishod; then make then put their feet one behind the other, and the length thus obtained shall be a right and lawful rod to measure and survey land with, and the 16 th part of it shall be a right and lawful foot.

1-Sanford, Vera: A Short History of Mathematies. Cambridge: Riverside Press, 1930 p. 354.

Chapter III

Numbers as Clessified by Significont Relations.

General Classifioations: Numbers may be grouped with the principle of factoring as a basis, with construction as a basis, in series or progressions, and with other basic elassifications. Each eroup thus enumerated contains various divisions each appropriately named, so that numbers may be referred to by many definite olassifications. Collections of as many of these groups as possible, with their sub-divisions, may be made. A few of the classifications are here discussed briefly, as representative of the activity which may be involved.

Factors as a Basis of Grouping: With factors as a basis of grouping, the classification will include such numbers as the perfect, the amicable, the prime, and the composite. The porfect and amicable numbers are few compared to other groupings. Activity for the student in regard to such numbers may be centered around the historical interest in the mathematicians who discovered some of them, as well as in including illustrations for the general grouping of numbers.

A method of discovering prime numbers is by the use of Bratosthenes" Sleve. Eratosthenes inscribed the odd numbers on parchment, and, having out out all the composite numbers, the remaining parchment had somewhat the appearance of a sieve. The method was as follows: Write the natural odd numbers:
 Counting from 3 strike out every third number; counting from 5 strike out every fifth number; counting from 7 strike out every
seventh number, and so on. The numbers that remain are prime. Numbers Derived from Construction: Numbers derived from construction may include such classifications as commensurable, incommensurable, triangular, square, and oblong numbers.

Numbers that are incommensurable may be illustrated by the famous case of the side and diagonal of a square. Let $A B C D$ represent the square. On the diagonal AC, AF is laid off equal to AB. The remaining distance, $F C$, then becomes the side of a square whose diagonal OB lies on the side BC, BF being perpendieular to AC. See Plate II, Flg. 1. This may be construeted. by the student and by taking a definite length for the side of the square, approximations of the lengths of the diagonals derived.

Triangular numbers may be illustrated by cannonballs piled in triangular formation. The formula for finding the number of balls in a pile with triangular base is given by: $1 / 6 n(n+1)(n+2)$ Where n equals the number on each side. The triangular numbers are: $1+3+6+10+15+21+\cdots-\cdots,-\infty$ etc. The student wili find it of interest to use any available spheres, as marbles, and by forming different sized piles verify the triangular numbers. Square and oblong numbers may be found in a similar way by changing the base of the pile to a square or oblong.

Numbers in Series and Progressions: Numbers in series and progressions will include such classifications as cireulating decimals, and arithmetic and geometric series or progressions. Examples of these may be tound in various toxts or reference books. Activities may center about direct applications or probloms to illustrate. The solution of the famous problem of the loaves which is given in Chapter XI is illustrative of an

Numbers Derived by Construction

Geometric Series

Geometric Mean

arithmetic progression.
The Coottetric and Arithmetic Means: Probloms and constructions illustreting specific examplos of the georetric mean and progressions follow: Pig. 2, plate II, shows any right triangle In which $A D$, the perpendicular to the hypotenuse $B C$, is always a seopetric mean between the lengths $B D$ and $D C$. In Fig. $3, A B$, the tangent, is almays a geometric mean betweon the lengths $A C$ and $A D$ of the secant $A D$. In $T 1 \mathrm{~g}$. 4 , the triangles are equilateral and fomed by joining the mid-points of the sides. If $A B=1$, the pertmetere of the triangles in order of their size, $3,3 / 2,3 / 4$, $3 / 8,3 / 26$, etc. form a geometric series. A similar construction is shown in Pig. 5, where the comparative lengths $A B$, BP, LU, etc. may be detemmined by the student. Plg. 6 is illustrative of the geometric mean, or the single term whioh is insexted in geometrie progression between two numbers. In this illustration the geometric mean is the square root of $4 X 1$ or 2.

The arithmetic mean of two numbers is equal to hale their sum. To illustrate: A. piece of rope when colled in a round mat is found to have 12 complete turns, or layers. The innemost turn is 4 inches long and the outermost turn is 37 inches long. The mean is $1 / 2(4+37)$, or $201 / 2$ inches. The length of the rope then is 12 स $202 / 2$, or 246 inches. Other $111 u s t r a t i o n s$ may be made by winding, a zope around a cone, or in noting the number of strokes the elock mekes in striking the 12 hours of a day or night; $e . g \cdot 1 / 2(12+1) 12$, or 78 .

The arithmetic mean is also used as one of the measures of central tendency in statistics. The column diagram illustrated in Chapter VII is the graphical representation of this measure.

As a projoct for student activity, the computation of various class averages is sugeested. The marks of an individual student may also be used, and the averages computed from time to time be graphed in order to illustrate the procress being made. Actual data should be given to the students to be put in visual form. Chapter VII, on graphical representation, will suggest types of creative expression which it may be found desirable to use in this connection.

Chapter IV

The Aequisition of Short Cuts in Mathomatics: An Activity which Lends itself to Cultural as well as Utilitarian Values.

General Purposes: Short cuts in mathematics are a means by which eultural values may be developed. If one must always be busy with the common place things in life there is little time left to develop superior appreciation and aptitude. To be able to reach a goal quickly is an incentive to go farther, to explore, and create, and reach out to include more than the mere attainment of the immediate end in view. By the application of shortened methods, e.s., to the processes of addition and multiplication, in acquiring the utilitarian purpose of mathematies, a feeling of appreciation for the beauty and power therein is created. Short Cuts Basic in the Four Pundamental Processes: The following are suggestions for "short euts" which are basic in computations. Other shortened processes are available from various text books which may be added to those given here. The student may apply such rules to specific examples to be used for illustrations, or if of superior ability he may be interested in preparing to some extent exposes of the machinery behind each of the "short cuts."

To square a number ending in 5, reultiply the number of tens by one more than itsele and annex 25.

To find the produet of two numbers whose tens ${ }^{\text {digits are }}$ the same and whose units' digits add to make 10, multiply the tens, digit by one more than itself and ennex the product of the units' aigits.

The "elevens" rule" may be illustrated by $11 \times 4532=49852$. Writo 2 for the right hand figure. Add 2 \& 3 for the next figure; 5 s4 for the 4th figure; and write 4 for the 5 th igure of the produet.

The process of "uasting vut $9^{\prime \prime} s^{\prime \prime}$ ney be used as a cheok for adaition, multipliaation, and division. Por addition, add the digits in each of the addends and divide by 9. The remainder is called the "excess". Find the total sum of the excesses and divide by 9. The excess of the sum of excesers equals the excess of the sum of the addends. For multiplieation the excess of $9^{\prime} s$ in the product equals the exeoss in the product of excesses of the multiplier and multiplicand. Yor division, when there is no remeinder, the excess in the divident equals the excess in the product of excesses of divisor and quotient. When there is a remainder, the excess of the product of the excesses in the diVisor and quotient plus the excess of the remainder is equal to the excess in the dividend.

A number may be squared by the expansion of the binomial theorem as in a.lgebra. Thus, $(96)=(90+6)=8100+1080+36=9216$, or, $(96)^{2}=(200-4)^{2}=1000-800+16=9216$.

In addition it is sametimes an advantage to be able to add two or more columns at a time. To do this for two column's begin with the number at the bottom and add the units of the number next sbove, and then add the tens, naming the totals only. Jontinue in this way until all the numbers are added. To add three or more colums, the method for two columns is extended to include all the columns desired.

Extraction of Roots: Other "short methods" of computation
are used in extracting the square and cube roots of numbers, Tor more rapid computations, tables have been made of the squares and cubes of numbers, Student competition and verification of solutions, involving the direst applleation of such tables, Fould Insure skill and efficiency of their use.

The algebraic method insures a rapid calculation of square and aube roots when tables ere not avellable. To show the relationship betweon this method and the expansion of the binomial theoren, the following illustration for square root is given. The extraction of the eube root involves more complionted computation and is not often used, but to show the similarity is a worth while expression for the student. To extract the square root of 547.56 by algebraic method, apply the binomiel expension: 222 $(f+n)=f-2 f n+n$, where f is the found part of the root at any stage, and in is the next digit to be found. $f_{2}=20$, and $\left(f_{1}\right)$, or 400 , subtracted from 547.56 leaves a remainder of 147.56 . This contains $2 f_{2}+n_{2}\left(n_{2}=3\right)$ with a remainder of 28.56 . This now contains $2 \mathrm{r}_{2}-\mathrm{n}_{2}$, (m玉0.4) wi th no romainder, giving 23.4 as the root sought.

The extraction of the roots by the graphical method, although Imited in its useftiness, illustrates the functional relationshipa involved. To obtain the chart, (See Plate III, Pig. 1), plot the graphs of the equations: $x=\sqrt{y}$ and $x=\sqrt[3]{y}$. To illustrate the validity of the curves, the student maj find the roots of various well known squares or cubes on them. Prom the curve, OD, can be read the square root of any number from 1 to 100 correct to one decimal place. Curve BC is a continuation of $O A$. and from it can be read the cube root of any number between 1 and

Plate III
Graphical Method of Extracting Roots

Geometric Method of Extracting Square Root

200 , correct to one decimal place. The graphical method can also be used to extract fourth and higher roots.

That the student may appreciate the added dexterity given by "short eut" methods of extracting roots, he should determine them in other ways, as by the geometric method, the factoring method, or the method of averages. Pig. (2) PlateIII, diagrams the geometric method, using the square root of 2025 as an example. A square whose area is 2600 is 40 units on a side. A square whose area is 2500 is 50 units on a side. If the square of 40 units on a side is taken out, two rectangles and a square remain. The length of the rectangles is 40 units, so the problem is to find the width. If the width is 6 , the combined area is too great, therefore try 5 , and the combined areas becomes 2025 .

The factoring method may be illustrated by finding the square root of $85,766,121$. Its factors are $3,3,3,3,3,3,7,7,7$, $7, \eta, 7$, therefore its square root is $3 \times 3 \times 3 \times 7 \times 7 \times 7$, or 9261 .

To find the square root of 40 by the method of averages, factor it into 5×8. Taking the average of 5 and 8 , the factors approximate 6.5×6.15. Averaging again a better approximation, 6.325×6.3241, is derived. The process may be repented until as many significant places as desired are obtained.

The method of obtaining a result, not being the creative end for which mathemetics exists, the pupil should be encouraged to find direct application in spocific examples; 0.g., What is the shortest distance from the south-west corner to the north-east corner of a township?

Thus the extraction of the roots of numbers means more then a mere following of formula or rule. To be able to do so by one
mothod is sufficient for utilitarian purposes. To be able to reach the end in view by other methods as well, broadens ones appreciation of the appliantion and purpose by connecting through ereativeness and self expression what might otherwise be isoletod facts.

Logarithmic Comutations: There are methods of omputations of a more advanced nature which might be thought of, azso, as "short euts". The long and laborious arithmetic computations of astronomers were brought to an end in the enrly pert of the 17 th century by the invention of logerithms. These hed been forshadowed in tho use of exponents by stifel, but it was for Napier who was in elose touch with Briegs to invent thom. Student aetivity may be centerod around such suggestions as; historical facts concerning the invention, a comparison of the two types of logarithms, as, their besos, the kind of work in whiah aach is used, and the nethod of changing from one to the other. Speeific instances may be found whore oither type is used, as in applicntions in business, economies, and science.

The student may not gein speed by the application of logarithms to specific problems involving simple processes in multiplication, division, involution, or evolution; e.e., those centored about the right anglod trianglo, but by making such application he wi21, aiscover some of the beauty of mathematics, and Will gain a cultural knowledge and an sppreciation of the prinelples involved. The use of the slide rule in computing values by logarithms involves creative activity. If the student does not have access to a slide rule, he may make one in Bristol board. (See Chapter VII.)

Algebraic Laws Considerod as Short Cuts: Algebraio prinoiples, as the Laws of Exponents, Laws of Algebra, and Laws of Signs, are in themselvos "shoxt cuts". It is suggested that student activity be contered about srouping these lavs, and giving speoifio exeraples to illustrate.

The adventage of the Lavs of Exponents may be shown by expressing a computation involving them in some other form, as, for examio: $7 * 7=7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 * 7 \cdot 7 \cdot 7$. In similar ways each of the lavs way be expressed. The student may learn to manipulate exponents and signs with a creat deal of skill, but unless ho has gone further than formula and theory would require, snd set up for hiraself a goel which includes the purpose and advantage of such discoveries, he has lost the real walue which self discoverios and erentiveness offor.

Chapter V

Basic Mathenatical Processes Considered for Creative and Cultural Values.

Use of Mractions: Mractions now so easily expressed as common fractions, decimal fractions, or per cents, are a comparatively recent invention. A project besed on the development and use of these forms may be made more interesting by including constructions to illustrate them. Pestalozzi's Mraction Sheet, which shows the relation of the parts to the whole, is an early method of studying fractions. Plate IV illustrates its construetion and other constructions which may be used as suggestions for student activity.

Measurement of Angles: An angle is a changeablo figure usualiy thought of as being measured in degrees or in radians, 1.e., "naturs 2 " measure. Suclid in his "Elements" defines an angle of a sogment as that angle "contained by a straight line and a circumference of a efrcle". The Babylonians had, before the time of Buclid, divided the eircle into 360 degreos getting their idea, no doubt, from the 360 days of a year. A projeot for student activity may center around the early development of angular notation, late V contains suggestions for ways in which angles may be illustrated by cardboaxd constructions.

Illustrations for the various kinds of angles, as acute, right, obtuse, straignt, supplementary, and complementary, may be noted about the class room. Articles showing them may be collected from various sources; e.g., a carpenter's rule, clock hands, a pocket knife, or a folding fan. Pictures of objects in

$$
\begin{gathered}
\text { paferfsill san/ed lello:70edf } \\
1127^{e} / d
\end{gathered}
$$

Plate V

Angles Illustrated

Diedral Angles

Polyedral Angles

which angles appear may be collected, classified, and mounted as a means of creative expression in this connection.

Developront of Trigonometric Functions: If the graphs of the sine, cosine, tangent, and cotancent functions are constructed to the scale of a unit circle, their modes of variation and comparative values may be observed. Plate VI illustrates a project which may be centered upon this principle. If the scale for the unit circle bo taken large enough to avoid croving effects, the graphs may be combined into one diagram, and produced in artistic form.

As a project the s tudent may construct from cardboard a unit eirole rounted so as to rotate upon a card. Tastened at any point on the circumference is a swinging pendulum which is scaled in length similar to a scale across the diameter of the circle. As the eircle is made to rotate so that the various angles have been turned, as indicated by the scale of degrees about the circle, the sines and cosines of the angles may be read from the vertical and horizontal scales.

There are notable applications of the sine and cosine curves, as in the study of sound waves and alternating electric currents; e.g., in radio. These suggest further ereative and cultural activities for the student.

Differentiation and Interration: Calculus is sometimes called "the mathematics of nature". It deals with change, and "In nature all things change". Calculus is used to simplify many computations which would otherwise be long and complicated. It may be applied to work in many fields where summations, rates of motion, slopes, maxima and minima, and other concepts involving

Trigonometric Values

Unit Circle

Sine Curve

Cosine Curve

Plate Vi (b)

Tangent and Cotangent Curves

ohonge appear. The student may find and list specific applications of the use of differentiation and integration. Articles Arom current literature showing the use of calculus in various fields may be found. For exemple, calculus may be used in making computations in aviation, in radio activity, in medicine, and wherever the direction, speed and balancing of forces are involved. Diagrams showing the principles involved in differentiation and integration may be constructed in forms suitable for display. Such diagrams may be found in books containing the elementary principles of ealculus. Other activities may center around the historical facts in regard to the discovery and perfection of caloulus.

Chapter VI

Creative Activities Involved in the Construction of Mechanical and Graphical. Devices Used in Ancient and in Modern Times.

Early Dovices Used in Computa tion: Some of the dovices used In computing in oazly times, al though outmodod now, were indispensable in their doy. Their atudy wil2 afford the student means of creativo expression through constructions, diagraming, and making aimeot applications. Such devices aiso have an appoal Irom thoir historical stanapoint, many of them being closely related to the development and progress of the soience of methematics. Glaisher said, "I an sure that no subject loses more than mathematies by any attempt to dissooiate it iram its history".

In the following pages in this chapter, a fow computing 'dovicos will be disoussec in detail that the construetion of them may be made directly. Other devices will be mentioned as suggestions for further activity whore referenee material to them is accessible.

Many of tho modern ievicos may be used by the student in airect applications. It is here again suggested that whore the school does not have these devices available, student activity be first centered around construetions for the elass room, and thon further activitios follow in the form of the alrect applieations.

Many forms of the sbacus appeared as early devicos used in computations. The suan-pan in China, the sorobon in Japan, the s^{\prime} ohoty in Russia, the Roman abacus, and the modern abacus are all well known forrs. The modern abacus consists of beads strung
on a wire, or of buttons sliding in a groove. In the Roman abacus, each groove is divided into two parts, with 4 buttons in the longer part, and 1 in the smaller part of each groove. Bach of the 4 buttons stands for I, and the single button for V, in the units groove. In the tens groove, the 4 are X each and the single one L.

The construction of an abacus forms a simple project.
Illustrations of the work done on an abacus may be reproduced by means of a plece of paper marked with 4 or 5 horizontal Iines, with coins to represent counters. (See Plate VII) The following describes the addition of 282 and 369: Since 5 counters on the units line are equivalent to 1 on 5 's space, 5 of the unit counters are removed and \mathcal{I} is carried to the next space, leaving 1 counter on the units line. Then 2 counters are removed and l is carried to the nert line, etc.

In subtraction the subtrahend is literally taken away from the minuend and whenever a line or space in the minuend has an insufficient number of counters, uthers are borrowed from the space or line next above.

In multiplication, the multiplicand and multiplier are laid out on the left. (See Fig. 2, Plate VII) (In actual work the nultiplier counters are removed when each has been used.) The top line of the multiplier is taken as the unit and the multiplicand is laid out on the board as many times as there are counters on this line of the multiplier. These multiplier counters are then removed and the next line is taken as a unit. Parts I, III, IV illustrate this. In multiplying by 5 as in II, the next higher line is taken as the unit and the multiplicand is
Derices Used in Computations

Abacus-Addition
Thousands X
Hundreds

Tens
Units

Abacus-Multiplication

Fiq. 2

Pascalis Trianqles

Fig. 3

Fig. 4
taken as the unit and the multiplieand is divided by 2. (182.5). At the conclusion, the counters that represent partial products are added and the sum appears on the right.

Division on the abacus is accomplished by repeated subtraction, and the computer uses his counters to record the number of times the divisor has been subtracted. The units line is shifted as the work proeresses.

The sand board is an old Greek type of counting board on which the figures are made in sand on a bokra and obliterated after use.

On the counting board the numbers are represented by loose counters laid on lines. This arrangement has an elementary place value idea. In regard to the permanence of the value at any one position, a Greek writer said: "like favorites of a tyrant, their value is sometimes more and sometimes less".

The psemnites is a sand reckoner which was used by Archimedes as a means of reckoning lerge numbers. By its use he determined the amount of sand required to fill a universe, of radius equal to the distance to the sum, as being less than 10^{63} grains of sand, assuming that 10,000 grains of sand are in a sphere of not less than a fixerer breadth.

Napier's rois, Korean rods, and the aneient Chinese stick numerals are other devices used to facilitate computations.

The coefficients of the verious terms in a binomial expansion are displayed in elegant form by Pascal's triangle. (See Pig. 3, Plate VII). This triangular array first appeared in the form shown in Tig. 4, and is constructed as follows: write down the numbers 1, 2, 3, etc, as far as cosired in a vertical row.

On the right of 2 place 2 , add them together and place 3 under the 2 ; then 3 and 3 are 6 , whoh is placed under the $3 ; 4$ and 6 are 10 , which is placed under the 6 , and so on. The third vextical row is formed from the secona, and in a similar way, the other rows are formed. This triancle zites, without the trouble of ealoulation, how many combinations cen be made, taking any number at a time, out of a larger number. Por example; how many selections cen be sade of 3 at a tilie out of 8 ? on the horizontal row commencing with 8 , look for the third number; this is 56, which is the answer.

Modern Mechanical Devices: In mathematics, as in other fields of endesvor, work and energy are facilitated by machinexy. Thus innumerable inventions hove seen made which aid the mathematician in his computations. In the small school many of these will be unavailable unless constructed by the student. Neither the list of devices whioh follows nos the list of applications to which they may be put is complete. It is left for the student to explore, discover, and ereate. The straight edge, draftsman's triangles and the T-square are devices used for drawing straight and parallel straight lines. (See Pigs. 1 \& 2 , Plate VIII). The parallel ruler (Fig. 3) is based on a emmiliar theorem on parallelograns. On this principle, an extension shelf (wig. 4) which alweys remains in a horizontal position may be constructed. The earpenter"s square (Figs. 5 \& 6) may be used to determine a true semieirele or to show where to cut a ring into halves.

A simple compass (Fig. 7) may be constructed. from a straight edge. Pivotod at one end, a marker may be inserted in holes at

Plate viIi (a)
Instruments for Computation

Draftsman's Triangles
T-squares

Parallel Ruler

Fig. 3

Carpenter's Square

Fig. 5

Fig. 2
Horizontal Shelf

Fig. 6

Compass

at various scale distances and the edge swang around in circular motion, thus producing a eirole of any desired radius.

Levels may be constructed in a number of ways. Jig. 9 shows an ancient form, and Fig. 9, a means of using a plumb line in a semi-circle to determine a level line.

The $3-4-5$ rule is a simple means of constructing a right angled triangle. (See Pig. 10)

The protractor and sombination ruler and protractor, if not available may be construeted irom card board, or erom plywood for blackboard use. (See Figs. 21 \& 12)

The diagonal scale (Fig. 13) which is based on the prineiple of proportional line segmonts, measures lengths to the hundredths of an inch. This is also easily constructed.

Proportional compesses (Tig. 14) are used to make seale drawings of given figures. By making $O B^{\prime}$ equal to one half of $O B$ and $O A$ ' equal to one hale of $O A$, and then opening the compasses so that $A B$ equels a given line segment, $A^{\prime} B^{\prime}$ is equal to one half of $A B$. This is also the principle of proportional ine segments. On a similar principle the pantograph (Fig. 15) is used to magnify ar roduce a given alagram or map. A construction of this kind for blackboard use would be a valuable aid for class room work.

The slide-rule, which has already been mentioned in Chapter IV may be construeted from bristol board. A diagrem and direetions for construction are given in the Hac Millan Logarithmic and Trigonometric Tables.

The Monroe calculator is a valuable asset to a mathomatical. department. A simple adding machine may be constructed which is

Plate Val (G)

Instruments for Computation

Protractor

Plate VIII (c)
Instruments for Computation

Diagonal Scale

Proportional

Pantograph

Principle of Adding Machine

based on the principle of the now familiar device of a series of wheels each having tor gear teeth, one for each unit from 0 to 9. (see 18. 16) At each complete turn of any weel the next higher one is turned through one ienth of a revolution. For the student who may be interested in the mathematics of the oaloulating machine, reference is here given to two articles 1 in the Mathenaties Teacher.
homemade instrumenta for measuring horizontal and vertical ongles are diagramed in Pigs. 1 and 2 , Plate IX. Spirit levela are used in setting up the apparatus. A pin placed at 0 (Fig. 2) is used as a pivot for the ruler, and a pin at is is used to sight over in teking measurements. For further disoussion of those instruments, roference is here made to the Tenching of Mathematies in Secondaxy Schools.

The plano-teble (2 ig. 3) is used for mapping. A siraple outilt may consist of stool, a drawiag board and a chalk box for an alidade, Directions for uslag the plane-table may be found in "The Third Year Book."

The hypscmeter (Fig. 4) is a modem form of a geometrio square used to measure helghts. It is easily construated by

1-Locke, Leland: Some Mathernatios of the Calculating Machine. Mathematies Teacher (Noveraber I922), Vol. XV p. 423-428. Mathematios of the Calculating machine. asathematios Teacher Trebruasy l.gz4) Vol. XVIT p. 78-86.
2-Bresilch; Ernst R: The Teaching of athenaties in Seconday Schools. Chicago, Universi ty of Chieago ress 1930 Volume ITechnique p. 126-128.

3-Shuster, C.M.: The Use of Measuring Instruments in Teaching Mathemetios. ThirdYeer Book 1928 New Xork Teachers college, Columbia University p. 215

Plate IX (a)
Instruments for Observation

For Measuring Horizontal Angles

For Measuring Vertical Angles

Plate ix (b)
Plane Table

Fig. 3 (a)

For Mapping Areas

Astrolabe

$$
\text { Fig. } 3(b)
$$

Hypsometer

Fig. 4

Sextant

pasting a sheet of eraph paper on a board and fitting plumb bob and sights. By the principle of similar triangles, the desired computations are made.

The astrolabe (Tig. 5) is used to measure angles. It can be constructed of a large eircular bristol board protractor, 12 to 14 inches in dianeter, which is divided into quarter degrees. This is tacked on to a board and given several coats of varnish and wax. A ring is fitted in the top, and a sighting arm, or alidade, suspended. If a staff is fitted to the back so it can be used in a horizontal position, it is possible to measure both vertical and horizontel angles.

The sextant (Fig. 6) provides a means of measuring angles of elevation, and thereby determining latitudea. It may also be used for measuring horizontal, vertical and inclined angles. Further discussion of the saxtent may also be found in the Third Year Book.

The transit, al though ordinarily a complicated instrument, may be made or purehased in simple form. For directions for constructing a transit as a project in geometry, reforence is here given to the Mathematios Teacher for 1931. Other discussions of the construction and use of the transit may be found in the Third Year Book and in the Teaching of lathemeties in Secondary Sohools by Breslich.

Other devices wiilich lend themselves to similar student activity are the angle mirror, cross-staff, elinometer, planimeter,

1-Engle, T. L.: Construoting a rransit as a Project in Geometry. Mathematios Teacher (November I93I) Vol. XXIV NO. 7 p. 444-447
and vernier.
Mechanical devices for constructions of the hyperbola (Pig. 2, Plate X), and of the ellipse (Pis. 2) may be usad in ereative expression by the student. To construct the hyperbola, fasten one end of a ruler at one foeus, F^{*}, so that it may swing about that point, and to the other eni fasten a string. Make the length of the string less than that of the ruler by $2 a$ and fasten the free end of it to the foous, F. Press the string against the ruler with a pencil at P, and turn the ruler about F^{\prime}.

The nethod of construction of the ellipse is also called the Gardener's Rule as it is used by gardeners for laying out elliptical Plower beds. Fasten pins in the paper at the foci F and F'. Tie a string to them, making the length of the string equal 2a, the length of the major axis. Then press a pencil against the string and move it, keening the string taut. The sum of the distances of the pencil point from the two pins will at each point be equal to the length of the string.

The Princinle of the Golden Section: The prineiple of the Golden Section provides a method of producing a mean proportion between two given lengths. Its construction was pirst discovered by Pythagoras and presented as a geometric theorem. (see Pig. 3, plate X). The straight $\frac{11 n e}{2}, a$, is divided into two parts, X and $(a-X)$ so that $a(\Omega-X)=x^{2}$. By construction $A B=R D$ and $E F=E B$. FGKD $=(3 P+B D)(E P-E D)=H X-B D=M-A B$. Therefore, FOKD $+A K=$ Since EAB is a right triangle, $A B^{2}+A B^{2}=E B^{2}=A P^{2}$ Then, $A B^{2}+A B^{2}=$ $\operatorname{FGKD}+A E^{2}$. Therefore, $A B^{2}=\operatorname{FGKD}$ and $A H^{2}=H B C K$. The Golden section Is used to construct a pentagon. (See Chapter VIII)

Because of its mystic qualities the pentagon was adapted

Plate x
Devices for Construction

Ellipse

"Golden Section"

by the pythagoreans as the balge of their society. The five sides of the pentagon mey be changed to produce various patterns of the five-pointed star.

Devices used in the Solution of the Three Ancient Problems: Because of their inability to square the oircle, duplicate the cube, and trisect an angle by means of straight edge and compess, mathematioians ventured farther and discovered other means to solve their problems.

The eissoid of Diooles is a curve used to duplicate the cube, for by it a length is found such that its cube is twice that of the cube of some given length. The conchord of Hicomedes is a curve which also gives the desired length to duplicate a oube, as well as the desired point through which to construct a line to trisect an engle.

The quadratrix is a curve which gives the desired lengths to square a eirele, and to also trisect an ancle.

The construetion of these curves is not included here because of the necessity for ratier long explenations. However, the superior student in geometry may find these a source of interesting activity. They may be found in verious texts as well as books of mathematical history. Besides the activity involved in constructing the curves, specific applications may be made in duplicating cubes, trisecting angles, and squaring circles.

Devices for ceasurine Time and Temperature: Devices used for the measurement of time and of temperature may afford the student a means of ereative expression. The gnomen or sun dial, and the water clock, were devices used to tell time before the invention of the hour glass or more modern clock. A project may
be centered upon historioal. interests, and principles involved, or a sun dial may be constructod according to proper mathematical. prinaiples and observetions made.

Measures of tempersture are based on the centigrade and Fahrenheit Thermometers. A chart or graph may be made to illustrate the comparative values, including the boiling point and freezing point. If the two types of themometers are available direct readings may be made to verify mathematical computations.

Chapter VII

Relative Velues Illustrated by Graphs.

Uses of the Graph: As hes been quoted by Klein, "The function is the soul. of methematies." The reading world is becoming functionally minded, and consequently current literature uses freely the graph and its companions, the formula and the equation.

The graph is ordinarily thought of ae a means of plotting related points which have been celculated as values of unknown quantities. In reverse order, from the graph of a function the value of polnts may be determined. The zero values of polynomiale, the intersection points of geometric ourves, interpolated values, and maximum and minimum points are determined by means of the graph.

Graphs are also used to illustrate relationships involved In conorete si tuations. Rates, areas, volumes, water pressures, and other functions from every-day life are definitely described by means of graphs. The business and economic world, as well as aducators, find the graph a satisfactory way of recording information, and more use is boing made of it each year.

The graph may be used to illustrate relationships between speed and distance, distance and time, or any two values which Yary dependently. Wor example, interest on money depends on time, the weight of a uniform rod depends on length, the cost of a quantity of sugar depends on weight, or the circumference of a eirele depends on its radius. The use of the graph in building problems, rallroad time tables, points of maximum net returns, eto., means an unfolding of relationships in a manner easily
underatood.
These aro given as suggestions of dependent relations of Which many specifie examplea may be found and represented eraph1.0elly. Junotional relationghips often exist where they are onsily overlooked. The following specilio example is given as a suggestion for aotivity in applyins the graph.

A total of 151 M . brioks are needed for a building, and they will be used as follows: 4if per day for the first four days, 10M. per dey for the next six days, and 15 m . par day for the Iast ifve days. As a matter of aconomy it is desirea to have the deliveries made at a uniform rate per alay. Pind the maximum storage eapacity needed to allow uniform deliveries over the fiftecn aay period. (See Fig. 1, late XI) By measuring the ordinate differences, $A D$ anc $B E$, it is found that the maximum storage eapaoity needed is approzimately 24,000 bricks. The varyiag ordinate aleferences between the line "Iotal Used" and the line TTotal Deliveries" show the growth and disappearance day by day of the pile of stored bricks.

Types of Graphs Usad for Gonerate I11ugtrations: The applieation of the graph serves a two-fold purpose: lst, it puts tho individual in contaet with a wide range of experiences, and 8nd, it enables the individuel to comprohend total relationghips.

There are verious elasses and types of graphs used to ilIustrate conorete situntions. They include the bar ereph, piotograph, oircla graph, line ereph or comparative line graph, histogram or column diagram, and the step graph, all of which are popularly used. Hany and varied are the applications which can be made involving their use. A project whioh suggests itself for
Plate X[(a)- Types of Graphs
Comparative Line Graph

Learning Curve

Fig. 3
Fig. 1
Bar Graph

Circle Graph

Fig. 2
Pictogram

the student gonsists in 001200 ing eraphs irom his own experience, from enment ilterature, or from any nvelieblo pource, endeavoring to find lilustrations of the varioue types and their applications. The Pollowing illustrations gre givon as suggestions to start the student on this tour of investigstion and exploration. The eirele fraph may be a singlo dissected eircle ae chown in Pig. \&, Plate XI, or several concentric cireles.

The learning eurve may be used by the pupil to show graphically the relationship of his scove in teets from day to dgy over a period of time. Similer applioations may be made to prom gress or achievement made by a class. (See Fic. 3)

The pictogram is perhaps the most easily understood and is often used to ereate an attitude for the userulness of exaphs, or to introduce a alscussion of staphs among a group which is unfamiliar with them. Pig. I is an example of a pictograu used In teaching mathematios. It serves to illustrate tho elementary principle involved, and suggests rany possibilibies mich would put information of various kinds in an sttractive and easily intorprated form.

The bar grapa lends 4 tself to a variety of forms. (See
Pig. 5) The bars may be horizontal or vortieal; a sinela bar, several bers, each plain or each alssected; or a sot os multiglo bars. Thia is a userul as well as an interesting type of exaph and tha student wil2 find it a means by whioh he reay be areative and original in oxpressing information.

If a column diagram (Fig. 6) is plotted on cardboard and along the base and outhine, the diagram will balance on a knile edge placed at the mean or avorase. The colum diagram is a graph

Plate XI (b)
Types of Graphs
Column Diagram or Histogram

Frequency Polygon or Line Graph

Step Graph

which may be used in illustrating the grades of a pupil or of a olass. If the grades are thus roprosonted, and the averace or "mean" grades (See Chaptar III.) obtainod, tho diagram Will balance at that paint on the soale. Other aimilar appliontions may be made.

The frequency polygon (Fig. 7) ar line sraph is similar to the learning ourve. alrendy discussed. There are several kinds of line graphs; as, a aimele line which may be bzoken ox ourved, and several comparative lines esch of which may be broken or curved. An iliuatretion of a comparative line graph is given by P1E. 1, Plate XI. This type of graph may be usad in comparing clses grades, or individuel achievements, in somperiog the price of foodis from time to time, in comparing the amount of rainfall from month to month or year to ysar, and in many other ways where comparisons may be desired between definite funotions relationships.

The step graph represents roletionships by means of rectsingular srees. Pig. E, Plate II, represents the distribution of scores in a test. The rectangles may be renlswed by their diagonals, thus converting the step graph into a line graph. The student may illustrate this by making the desired construction. Graphs of Eunctions Described by Equations: Graphs are used. Also to 1llustrete tho linear end non-lineer funotions expressed by equations. Posters, deseriptive of verious types of eurvea, may be constructed by the student es a means of ereetive expression. Plate XII suggests a few types of eurves which may be inoluctod.

H1g. 1 shows the graph of an equation which has no real root.

s40:7enby la paq!-12sag s40:704nf fo suderg

$$
11 x x^{8} / d
$$

A oubic equation may have one real root and two imeginary roots, imaginary rootg always occuring in peirs. This is illustrated in Fig. 2.

The curve, $y=2 x^{4}-5 x^{3}+5 x-2$, as shown in Fig. 3 , cuts the $X-a x$ is at -1 , 豙, 1 , and 2. Hence there are four real roots.

In Fig. $4, y=x^{4}+2 x^{3}-3 x^{2}-4 x+4$, illustrates a mive in which x has but two velues, -2 , and w. It is thus shown that this function has two double roots.

Fig. 5 shows the graphs of two simultaneous equetions, one a circle and the other a straíght line. The graph shows that there are two solutions for the equations, points $(4,3)$ and $(-3,-4)$.

Fig. 6 shows that the two equations $x-y=10$, and $x^{2}+\frac{y}{2}=25$, have no real solutions.

Ple. 7 shows that in the two quadratic equations given, there are four possible irs of velues for x and $y ;$ points $(4,1)$, $(-4,1),(4,-1)$, and $(-4,-1)$.

The graph is a convenient way of representing the veriation of a function, as the independent variebles are given successive aifferent values. For example, in the equation, $y=-a x+b$, as the value of b is changed the straight line crosses the y axis at those given ralues. If the value of, a, remains unchanged the line retains the same slope for the various assigned values of b. The student may use the sane idea for a project to show the effect of assigning different values to the constants in verious types of equations; as; the linear equation, quadretic equation, cubic equation, simultaneous equations, and so on.

Conic Sections Curves: Some of the possibilities have been suggested in the graphical representation of the curves of the
conic sections; $i . e$. , the circle, ellipse, parabola, and hyperbola. These curves mey be produced, es their name suggests, from eross sections of a cone. Wach section taken at a different engle pro duces a different curve, or type of curve. For example, the hyperbola is produced by a eross section of a cone shaped like an hour elass. This discovery wes made by Apollonius, and a project in this oonnection might incluce historicel facts in regard to his life and works.

Many cumves may be observed by the student in the things about him. Other forms of creative expression which may be centered about such curves, may be in making colleetions of pictures and diegrams to illustrate them, as well as in graphical productions. A discussion of a few of such curves follows.

The spiral. is the neme given to an important family of curves. It includes the curve of the tendrils on vines; it is the path in Which a corot travels which comes within the sun's atmosphere and eventually falls upon its surface; it includes the spiral Nebulae of the heavens, the spiral of Archimedes, the hyperbolio spiral, and the logerithmia spiral.

The oateriary is the curve in which a chain of uniform weight will heng when supported at both ends.

The cyolold is the curve traced by a point on a circle which rolls along a stroight line. Variations of this curve may be proe duced by the trecings of a point which is less than or more than a radius distance from the center of the eircle. The wheel may also be rolled on the inside or outside of a fixed circle instead of a straight line, thus produeing other varlations in the curve. The Witch of Agnesi, the lemniscate, and the cardioid are
suggestions for other eurves whith may be included in the students ereetive aotivity in this fiel.

Chapter VIII

The Construction of Pigures of Area and Volume as a Souree of Creative Activity in Mathematics.

Regular Polygons. Among the regular polygons which are insoribable in a circle are the equilateral triangle, the square, the pentagon, the hexagon, and the octagon. With the exception of the pentagon, the construction of these is not difficult, and from them the construction of polygons having twice the number of sides; as, $10,12,16$, atc. is easily obtained. The construction of the pentagon depends upon the principle of the Golden Section (see Chapter VI and Fig. 1 Plate XIII). Divide OB by the Golden section. $B C=O D$ by construction. $O D^{2}=O B \cdot B D$. By similar triangles $B C: O B=B D: B C$. $C S=B C$ and $B S$ is a side of the desired pentagon.

Other regular polygons are inseribeble, as those of 15,17, and 257 sides, but their construction is also difeieult. The following rule has been established to determine what figures can be inscribed: $\left(2^{\pi}\right) \cdot P_{1} P_{2} \xi^{-\infty}-\cdots$ - M equals the number of sides, where 2 is raisod to any power and P represents any prime number. A1so, $\left(2^{n}-1\right)$ represents the number of sides, if the result is a prime number, as in the case of 3,17 , or 257.

It is of interest to note that in the time of Ptolemy, a figure was discovered which gives the sides of 4 of the reguitar polygons, See Fig. 2 Plate XIII, in which M is the mid-point of $A O$ and $C D$ is the arc of a circle of radius MC. The length of side for each is given es, oce side of hexagon, $B C=$ side of square, $C D=$ side of pentagon, and OD $=$ side of decagon.

$$
\begin{aligned}
& \text { Plate XIII } \\
& \text { Regular Polygons }
\end{aligned}
$$

Pentagon

Fiq-i

Ptolemy's Figure

Fig. 2

Figures based on the regular polygons are found in profusion in the snow flakes. These may also bo cut from paper and mounted with beautiful offects. To photograph the snowilekes against a black background, is an interesting activity for the student who is handy with the use of a caraera.

Regular inscribed polygons involve certain relationships which may be graphed or diagramed as a means of illustration by the student. For example, the side is a function of the radius of the circle, and therefore the area depends on the radius. This suggests also, that there are relations between the perimeter, the area, and the sides. These relations may be charted as a group.

Pive Regular Polyedrons: There are but five regular polyedrons; the tetraedron, hexaedron, octaedron, dodeceedron, and icosaedron, having respectfully $4,6,8,12$, and 20 regular sides or faces.

The five regular polyedrons may be easily constructed from paper. For patterns, see Plate XIV. The models thus constructed will furnish a valuable backround for a clearer concept of these solids. With the constructions built upon a rather large scale, measurements may be taken and a project of determining areas, volumes, and comparisons of the figures centered upon them.

A relationship between the octeedron and the cube is shown in Pig. 1, Plate XV. By joining $\left.A C, C D ; D^{\prime} A, D^{\prime}\right\}, B^{B} A$, and $B C$ (Fig. 2) a regular tetredron is formed within a cube. These figures may be used to verify such relations in the areas as, Cube $=65^{2}$, Tetraedron $=\frac{1}{2} s^{2} \sqrt{3}$, and Octaedron $=s^{2} \sqrt{3}$, where 3 represents a side of a cube, Such a project in monsuration may include grouping ar

Plate XIV
TheFive Reqular Polyedrons Dodecaedron

I cosaedron

Fiq. 2

Plate XV

Reqular Polyedrons in Crystal Forms

Fig. 5

Fig. 4

Fig. 8
charting all of the possible values of area, surface, and volume, with coraparisons, of the rive regular polyedrons.

Polyedrons are found in nature in the form of erystals. Artificial erystals may be made by modifying the edges and corners of the regular polyedrons. These erystal forms are more aifficult of construetion but are attractive if carofully made. The student who has designed the patterns and nodels for the five regular polyedrons may proceed to modify them to obtain some of the results as suggested by Figs. 3, 4, 5, 6, 7, and 8, Plate xV. Beads may also be found to illustrate a number of the various forms of erystal.s. Other volumes may be made from paper, or modeled in clay or wood. (See Fig. 1, 2, 3, 4, and 5 plate XVI).

General Volumes: A collection of wooden models to illusprate the basic volume figures would be a valuable possession for any mathematical department. They may be purchased, but a dourie purpose is served if constructed by students. See Plate XIII for suggestions. Other figures may be added to those illustrated.

Observation reveals areas and volumes in towers, chimneys, pyramids, gas tanks, flower beds, tin conteiners, road parements, glass in decorative windows, interior decorations, and many other things. The study of dwellings, as the Eskimo igloo, the Indian tepee, cliff dwellings and the South Sea Island hut affords interesting illustrations of geometric solids. Creative expression may be centered in such projects as laying out a basoball diamond, finding the cost of blackboards, finding the area of floor spaces, computing the air space in the class room, and pryaring bills of materials needed for boxes, bins arid so forth. A study of excavations for basements about the community, as welit as brick

Plate XVI

Construction Patterns for Figures of Volume

Plate XVII (a)

Figures of Volume

ロロロロOVDロ

alunlor to sannb！
（－8）IIAX ${ }^{2} 7^{e} / d$
and stone work may also suggest a project to be based upon the principles involved in areas and volumes. As more appealing to girls, a study of the cost of oranges for example in comparison with their sizes may be made and thus deeide on the most economical buy. Another project in connection with volumes may be based on the forms found in a honeycomb or hornet's nest. The student may speculate on why the bee and hornet use hexagonal rather than square, circular, or any other shaped bases in the cells of the comb.

General Areas: Tigures to illustrate plane areas, may also be constructed of cardboerd or wood, or drawings made of them by the student. See plate XVIII for suggestions of figures which can be thus considered, and others may be added by the student. A chart giving the formulas and principles used in computations of the areas of plane figures may be compiled, and direct applications of them may be made.

Any one of the plane figures may be taken as a basis for more intensive activity and ereative expression; as, for example, the triangle. There are many kinds of triangles, and these may be constructed and classified. If in two similar triangles the sides of one are twice the sides of the other, the area of the bigger is equal to 4 times the area of the smaller. This may be shown by constructed blocks. See Fig. 1, Plate XIX. Pig. 2 shows that a triangle is equal in area to one hale a parallelogram of the same base and altitude. Fig. 3 , in which $C D=D O$, illustrates another method of forming a parallelogram fros a triangle. Areas of triangles may be detemained by the appliation of various fommlas which may be listed and illustrated

$$
\begin{aligned}
& \text { Plate XVIll } \\
& \text { Figures of Area }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Platexix } \\
& \text { The Triangle }
\end{aligned}
$$

By Determinants:

Fig.4

Fig. 5

Triangle in Design (See Plate XXI)
by the student. Thus, the area of any triangle may be found by the formula, $A=\sqrt{s(s-a)(s-b)(s-c)}$, in which a, b and. c represent the si des and $s=\frac{1}{B}(a+b+c)$. The area of a triangle in rectangular coordinates (See Fig. 4, Plate XIX) may be found as follows: Draw AA, BB^{\prime}, and CC^{\prime} perpendicular to the X -axis. Then, area
 positive or negative depending upon the order in which the vertices are arranged around the triangle (olockwise or counter-clockwise), but its numerical value is always the area of the triangle. To compute, this may be set up by deteminants, as shown on Plate XIX. Areas of triangles depend upon certain relationships; as, the base and altitude, two sides and the included angle, three sides, or as a function of the radius of the inseribed or circumscribed circle. These relationships may be illustrated by the student in diagrams or graphs as an addod expression of ereative activity in the study of triangles.

The principle involved in the Pythagoreen theorem offer. many possibilities for oreative expression in its application to areas. Fig. $1,2,3$, and 4 , Plate XX show applications which may be illustrated by diagram or construction! To add to generalizations, changes may be made in the figure to show relationships; 1.e., keep two sides fixed and change the included angle from acute, to right, to obtuse. The square on the sile opposite the changing angle is at first less, then equal to, and then groater than the sum of the squares on the other two sides. (see Fig. 5)

1-Rupert, C. E.: Panous Geometrical Theorems and Problems , Chicago, D. C. Eeath and Company 1900

Plate $X X$

Figures to Illustrate the Pythagorean Theorem

Fig. 3

If in Fig. 6, the triangles $1,2,3, \& 4$ are taken a way, the square on the hypotenuse of a right-angled triangle remains; and If the two rectangles $A P$ and $P B$ are taken away from the whole figure, the sum of the squares on the two sides of the triangle remains, but the four triangles all together equal the two rectangles. This may be constructed from blocks to illustrate the Pythagorean theorem.

The Pythagorean theorem as observed in tiles illustrated by Fig. 7. This may be suggestive of various types of ereative expression.

Figs. 8,9 , and 10 , suggest further block constructions which may be used for illustration. These do not exhaust the possibilities, and the student may wish to add other proofs and applications to these suggested.

By the Pythagorean Theorem distances between two points in sectangular coordinates may be found. For example, the distance between points $x_{1} y_{1}$ and $x_{2} y_{2}$ is equal to the square root of the square of $\left(x_{2}-x_{1}\right)$ plus the square of $\left(y_{2}-1_{1}\right)$. The student may set up many concrete examples of this application.

Chapter IX

Mathematical Principles Involved in Design are Conducive to Creative Activities,

The Regular Polygon in Design: Although the properties of the regular polygons have been consi@ered to some extent for construction activities, they are again considered here in relation to design. Porms of design suggested by the possibilities of the regular polygon have been in use since ancient times. Illustrations of such applications may be found in ancient mosaic patterns, Egyptian tapestries and many more modern proauctions.

Mosaic pavements are constructed upon the principle that all surface about a point in a plane is fllled completely by 6 equilateral triangles, 4 squares, or 3 regular hexagons. (See Figs. 1,2 , and 3, Plate XXI). Figs. 4 and 5 are illustrations of the application of that principle. They are suggestive of the historical interest in mosaic pevements, about which projects for student activity may be centered in connection with the uses made of mosaic pavements in both ancient and modorn times.

Figs. 6-11 inclusive, Plate XXI, are suggestive of designs which use the ragular polygons. Others original designs may be created by the student according to mathematical principle. These may be used for various decorative purposes.

More intensive activity may be centered around any one of the regular polygons. Figs. 1, 2, and 3 Plate XXII, show some of the possibilities of the properties of the square. Fig. 13 illustrates how a regular pentagon may be constructed which is equal in area to a given square. Thus, construct any regular

Plate xXI

Regular Polygons in Design

Fig. 6

Fig. 9
K

窃

Fig. 7

Fig. 8

Plate XXII

Properties of the Square

Fig. See Plate $x X I$

Fig. 3
pentagon of side (a). The square of side (b) is now constructed equal to the pentagon in area. If (m) is the side of the given square, $b^{2}: m^{2}=a^{2} ; x^{2}$, or $b: m=a: x$. Since x is the fourth proportional to b, m, and s, it may now be found and the desired regular pentagon constructed.

The Circle in Design: Design may be based also almost solely upon the properties of a circle. A number of suggestions follow: The results which may be obtained from the circle in design are many and beautiful, and the architect ingeniously weaves them into the construction decorations of his edifices. The beautiful stained glass windows, cornices, engraven wood work finishings, the exquisite arrangement of the visible pipes of the organ, as well as the latice work so often used to cleverly conceal less deslred effects, are exanples of such works of art. In reallty such results must first be construeted in miniature design by the skillful application of mathematical principles. Projects may be worked out in bristol board or construction paper out-out, with colored tissue paper backgrounds. Practical applications may be made in constructing lamp shades, waste paper beskets and other decorative pieces. Suggestions for design are found on Plate XXIII.

Tigs. 10 and 11 not only illustrate suggestions for design, but they also show the mensuration of the circle. Thus in Pig. 10 the area is divided into 3 equal portions and in Fig. 11, into 4 equal portions by the use of other circles.

Mathemetioal Principles from Design in Nature: Nature is an unending source of suggestion for design. The student may eollect seeds, seed pods, leaves, and flowers, and examine them to find

$$
\begin{gathered}
\text { ubisad u! a/0u10 a4. } \\
\text { I11XX a } 71 / d
\end{gathered}
$$

artistic designs. The beauty of geometric figure found there is almost unbelievable exoept to him who is explorative and observing.

Field trips will make possible the observation of things incapable of being brought into the room. Not only with plant life are such relations found, but geometry may be correlated with animal biology as well. The star fish is but one example of the possibilities there.

To reap the fullest benefits from such observations, the keeping of notebooks or scrap books of results should be encouraged. It is a means of bringing together as a unit the various forms of activity which may be centered about a single project. Not only drawings, but examples, specimens, graphs, and other creative expressions may be thus preserved.

Illustrations from Nature and Art: "God geometrizes continuelly was Plato's reply when questioned as to the occupation of the Deity. In no way is this convietion more firmly established than when a little thought is given to art in nature. Geometric lines and forms of almost every kind are to be found in nature for it was from nature that man conceived his ideas for sueh. The Fibonacei series, 1, 1, 2, 3, 5, 8, 13, 21, 34, etc., may be found in the arrangement of the leaves about the stalks of a plant. This sories is the ratio of the "whirling square" which is constructed as follows: Draw a square ABCD; from O, the mid point of $A B$ draw $O C$; with O as the eenter and $O C$ as radius, draw the are $C E$ meeting $A B$ produced at E; on $A D$ and $A E$ complete the rectangle $A E F D$, which is a whirling square rectangle whose width is 1 and whose length is 1.618 . The
butterfly also fits into a whirling square design as well as into a root-five rectangle which is discussed in the following paragraph.

Root-rectangles are a basic factor in art, because of their pleasing effect on the eye. Again man follows after nature, for nature uses the root-rectangle plan. For example tho dragon ily and the iris are tuilt on the root-three rectangle pattern, and as has alread been stated the butterfly is built on a root-five rectangle. Root-rectangles are constructed as follows: The side of a square and its diagonal are the dimensions of a roottwo rectangle; the side of a square and the diagonal of the roottwo rectangle are the dimensions of a root-three rectangle; the process is thuis cintinued fer other root rectangles, the roctfour rectangle being a double square.

The seed pod of the iris does not show dynamic symmetry as does the flower, but rather static symetry, for it is a reguiar equilateral triangle with a suesilus one within.

These are given as bare suggestions of the fine illustrations which nature offers for mathematical designs. Two courses of activity are open for the student: he may merely observe and colleet designs from nature, or he may use such observed designs in productions of his own.

Coloring Designs: Not more than four colors are necessary in coloring a map or design in such a way that no two contiguous sections shall be of the same color. In Fig. 1, Plate XXIV, there is no possible way of drawing another section Y which would be contiguous with A, B, C or X. Any one of the sections may diminish and disappear with out spoiling the color effect. This may
Plate Xxiv

The Four Color Theorem

Fig. 1
Paper Folding

$$
\text { Fig. } 2
$$

Arithmetic Series

Fig. 3

Figs

Harmonic Series
be verified and illustrated by the student.
Paper-folding: Paper-folding offers many opportunities for erestive expression. Plane flgures which may be easily folded are the square, equilateral triangle, reetangle, pentacon, hexagon, octagon, and nonagon. The decagon and dodecsgon are obtainable erom the pentagon and hexagon respectively by first obtaining the angles at the center, and the pentedecagon is obtainable from the pentagon. The figures of the conic sections; eirele, parabola, ellipse, and hyperbole, may al so be illustrated by paper-folding processes.

Fig. 2, Plete XXIV shows how the arithmetic series may be illustrated by paper-folding. The horizontal lines to the left of the diagonal inoluding the upper and lower edges, form an arithmetic series. The initial line being, a, and the common difference, d, the series is: $a, a+d, a+2 d$, etc.

Fig. 3 represents a geometric series, for in a right-angled triangle, the perpendicular from the vertex on the hypotenuse is a geometrio mean between the segments of the hypotenuse.

A hemonic series is represented in Fig. 4. Fold any lines $A R$ and $P B, P$ being on $A R$, and B on the edge of the paper. Fold again so thet AF and RR may both coincide with PB. PX and PY are the crenses thus obtained. The points A, X, B, and Y fom a harmonic rance, and any points obtained by the intersection of any other line cutting $P A, P X, P B$, and $P Y$ will also form a harmonic range.

1-Row, Sundara: Geometric Exercises in Paper Folding. Chicago-London: Open Court Publishing Company. 1901

Because of the prinoiple of congruence which is involved In paper-folding, moriy of the mathematical processes may be thus illustrated. Finite lines, bisected and triseeted, rectilineal angles, bisected and divided into other equal parts, and perpendiculars drawn to given lines, ara 4 lustrative of suoh processes.

Chapter X

Wathanatical Aativities in Oocupations.

Introduction: There is practically no occupation of man which does not involve some form of mathematies. It is necessary for progress of any kind in scientific prediotion, discovery, and invention. Descriptive seiences need intricate mathematics to compute electrical energy, or speed and balancing forces of any kind. Social soiences need mathematics in coping with conmunity problems and statistics of all kinds. Mathematies is involved in all business affairs. Engineering work, as the design and construction of structures and machines of every kind, is governed by mathomatics. Kedicel science, and basic physics and chemistry involve mathematics. The student may find many specific examples of the use of mathematies in many fields of activity. As suggestive of such applications several fields of human activity are considered in this section.

Architecture and Landscaping: Architecture is based on the practical application of mathematieal principles. The blue print is the center of the architect's activithes. The stuadent may obtain copies of blue prints and learn to read and interpret them. He may also draw plans for himself using architectural care and accuracy. Plans for a yard, a garden, a house, and many other things may be easily obtained or observed. Current literature contains a wealth of material of which collections may be made. As a further suggestion for motivated activity, the student may make collections of pictures and plans of famous buildings, and of many types of bridges to illustrate different uses of geometric
design, and thus formulato the idea of methematical principles involvod in planning constructions.

Survoying: Surveying offers many opportunities for student aotivitios, Instruments used in surveying have been discussed in Chapter VI.

There are a number of methods of datermining distances by congruent and similar triangles. A few suggestions follow which may be applied by the student to specific caves. Pig. 1 , Plate XXV, illustrates a method of deterisining the height of a tree, building, or ilagpolo. Fig. 2 illustrates a method of detormining the ¿1stance botween two inaccessible points. Pig. 3 shows how to doternifie the width of a river without crossing it, by using an isosceles trianglo and a sighting point A, whilo Pig. 4 detemines width by marking off Bu perpendicular to AB and ereoting MR perpondicular to BM. Fig. 5 illustrates how the location of a distant object may be detormined, by using a surveyor's transit in constructing angle dAB equal to angle CAB and angle CBA equal to angle CBA.

Mechanies: Mechanies offors many opportunities for creative and construetive activities. The inclined plane, the lever, the pendulum, and the pulley furnish conerete illustrations and require little apparatus to show the mathematical principles involved. Simple examples may be found from taxt books in mathematics or selence whioh mey be used as suggestions in conatructive work.

The center of gravity for a circle, a triangle, a square or any other plane surface may be illustrated by eardboard figures; While for a cone and other ilgures of volume, experiments may be

Plate xxv

Methods of Determining Unknown Distances

Fig. 5

made to find the incline at which the body may be placed before equilibrium is destroyed. The Leaning Power of 13π is an example taking a position in which equilibrium will be destroyed if the incline is increased. Projocts in this connection will illustrate the principles involved in finding the conter of gravity.

Transportation and Cormunication: Transportation and $c o m-$ munication offer excellent examples of the appliestions of mathematics. The highway engineer, the electrical engincer, the radio engineer, and the aviator must be familiar with prootical applications of mathematies. If magazines of curront litorature on these subjects are available, instances of mathematical applications may be found. Curves in road building, meters, and other mensuring devioes are suggestions of somo of the applications Whion may be found.

Musje: In music, piteh, time, and the scale, are examples of concepts involving the applications of mathematical principles. Warly mathematicians spent a groat deal of time with the study of hamonios. A project for student activity should include the historical background, as, for example, Bach's "well-tempered scale, " in wheh the cotave is dividod intp 12 tones with a constant ratio of vibration from one tono to the next, leading to a geometric progreseton of tho ratio 2. This may be compared to the divisions of the various scales used now. Other activities may involve experimonting with a vibrating string to determine the mathematical relationships existing between the harmonies or overtones of a given tone. If tuning forks are available they offer a simple means of verifying the pulse of vibrations. Evaluating notes and rests in written music is a worth while activity
if the student is not already familiar with the mathematical divisions of rusical notetion.

Litergture: The importance of mathematice from the viewpoint of language may be suggested by the following quotation: MYathematios is thinking God's thought after Him. When anything is understood, it ia pound to be susceptible of matiematical. statement. The voesbulary of mathematics is the ultimate vocabulary of the material universe."---White.

There is no better training for accurate verbal self-expression than that provided by theoroms in geometry. Clear, derinite, and pracise in wording and phrasing, they become almost musical ir effect. a mere repetition of theorems is not necessary for there are numbarless isolated unwritten theorems which may be expressed by the student. These may not be of supreme importance, but they will be of great beauty if carefully worded.

IAterature is full of mathometical quotations and rererences, often notable for their precision and exactness of atatement. A collection of some of these suggests an activity for the student which will lend interest to his formal mathematical study.

Astronomy: In astronomy a project may be centered upon the divisions of time. The following suggestions are given as to some of the things which may be considered.

Time is designated by such significant terms as, solar time, sidereal time, equator time, or a sidereal day, and astronomical day, and others. The student may find it of interest to determine the sources of such terms and compare them as to their
actual longth.
A perpetuel calondar may be construetod by the student. This may be a simple arrangement covering a short period of time, or it may be more involved including centuries.

Time signals givenover the radio ere sent out in methodical order. Information in regard to when they are given, why they are given, and so forth, may be found by the student to lend interest in this study.

Latitude is detemined by aid of the sextant, the transit, or the astrolebe, as have been disoussed in Chapter VI. The student may use the principle involved in the following example in determining the latitude in which ho lives. (See Fig. 6, Plate ZXV). $S S^{*}$ represents the position of tho earth on December 21, with relation to tho sun's rays. IS represents the earths axis, and $s E$ the equator. An observor et 0 sees the sun along osd, and its angle of elevation above his horizon is h or sok. An observer at C, 23急 south of the equator, sees, the sun at noon along cts, or in his zenith, at the same instant that the observer at 0 sees it h degrees ebove his horizon. It is necessary to shom that angle SOK is equal to angle OKE, or h equals h. If 1 is the latitude of the observer at $0,23 \frac{1}{2}+1+1=90$ cegrees; 1 then equols csi minus h. Therefore an observation teken at noon which will determine the angle of elevetion h of the sun above the horizon, will enable one to find his latituce.

A profoct muy be centered on the relative distances and sizes of the planets. After finding the necessary values for these, they may be represented by articles ranging in size Prom a small pea to an oleven inch globe. The distances, ranging on
a small scale fron inches to rods, mey be illustrated, as on out of loors project, by given looetions about the sohool yard. The following problem will make more 1 mpressive the vast distances involved. It may be used as suggestion for other problems thich the student may ereate:

Altair, which is olr nearest star is 15.5 light years away. A light year is 365.25 days in length. That would be the reilroad Pare from the aarth to Altair at 25 cents for a 24 hour ride? Knowing how fast light travels the distonce to Altair may bs computed. What would the fare be at 2 cents a mile? If the train goes at 50 miles an hour 1t would take $50,000,000$ years to get to Altair. From this the distence may be computed, also.

Medicine: Mathematics is found in the science of medicine. For the boy who faile to take an interest in mathematics because he intends to be a doctor, creative activity might take the form of going to the arug store to see about having one or more prescriptions filled. He wili find that mathematics forms a very necessary foundation for his profession.

Organic growth and decay are now computed by the formulas $y=a e^{k t}$ and $y=a e^{-k t}$, respectively. $(a, k>0)$. By means of the planimeter (See Chapter VIII) the area of a wound is determined and according to the above formula the normal rate of healing is computed. In this connection an article on war wounds may be of 2 interest to the student.

The study of optics, or converging and diverging lens, may be considered here, also, for student activity, as the correction of vision depends upon it. Apart from the field of medicine, the

1-Tupfier, Theodore, and Desmarres, R.: A Note on the propress of Cicatrization of \#ar wounds. Journal of Experimental Medicine Vol. XXVII (February 1, 1918) p. 165-178.
student may wish to extend this study into the appliestion to antomobile headlights and other specific uses of similar nature. Social Sciences, Blolory, and Zconomics: Pacts are determined by the application of methematical principles which are of importance in the social seiences. The student may find spocific examples from facte drawn from present social conditions: the social status of the country, international relations, inmigretion, and election retums, are suggestions of topies about which stetistical reports may be obtainad or complled by the student and used in various mathomatical activities.

Biology also offers many sources of materiel which lends itself to mathematical treatment; for example, the relation between the age and height, or weight of children. A project based on a chert of that kind will furnish interosting activity for the student.

Sconomics is filled with concepts besed on difforential caloulus. Suggestions of applications which may be found in curront litereture night include, the mortality ourve, correlations, probebility, theory of interest, rate of prioe chance, marcinal utility, and statistical velues. As a mor spocific application of what may be included: it has been detorminod that the sufficienoy of a given street car fare, the priee of a sandwich, or a pair of shoes involves the formula for the expansion of the binomial theorem. It is appliantions of such types thet may be found by the student.

In Business: Mathematies, as it affects the business world, includes many phases of activity about which projects may be centered.

Banking, insurance, taxation, and investment involve a series of businoss forms which simplify such proceedings. A collection of blank forms would be a valuable aid to becoming familiar with their uses. These may be obtained at a bank or from county or state officiels.

Newspaper clippings of stook market reports, bond issues, tax receipts and expenditures, and international finance proceedserve to broadea the student's familiarity and ability to appreciate sueh business relawons. Such olippings also provide material for innumerable projects in graphical regresentation of facts.

School banking eives opportunity for many activities in Which the student may participate. Considerable ingenuity may be shown by the students in carrying on such a project. officers may be chosan to serve a given length of time, bank furniture, such as the cashier's window, may be constructed, and rules and regulations may be established which will lend reality to the activity in genoral. Artifiolal situations may be ereated by the students to mako it possible to beecso sanillar with numerous forms of business pagors, as: promissozy notes, checics, bank drafts, bills, recelpts, money orders, cash slips, inventory blanke, pay-rolls, atid many others.

A project on $1 n s u r a n c o$ may follow suggeations similiar to those given for school Fanking. Polloy blanks of the various kinds of insurance issued may be collected by the students to serve as a basis for further activities.

Investments and finance include stock market reports, $1 i b e r t y$ bonds, building bonds, amortization and borrowing, the kinds of
investments and the various ways of paying obligations. These egain sucgest various opportunitiss for student exploration and activity.

Computation of taxes, elippings on tax spenditure, comparison of taxes per eapste in differont countries, as well ns the kinds of taxes, are further sugcestions for student setivities.

Suggestions ior projects in comection with interest and discount include the study of advantages and disadvantages of installmant plans and comperison by graphs of the simple and compound interest values on a given sum of money at a given rate. The various methods of computing interest incluce the fomula, interest torles, and eraphs. Compound interset may be computed by the binomial theorem as an ensy solution as follows: $A=p(1+1)^{n}$, A belng the compound amount and $(1+1)^{n}$ the accumulation factor. The compound amount of $\$ 500$ for/periods at 3%, a typical savings bank rato, is:
$A=500(1.02)^{5}$
$(1+1)^{5}=1+51+101^{2}+101^{3}+51^{4}+1^{5}$
$(1.02)^{5}=1.1040808032$
Therefore, $\mathrm{A}=\$ 500 \times 1.1040808032=\$ 552.04$
A project may be besed on a comparison of methods used for computine interest.

Gheyter XI

Mathematios for Laisure and Reereation.

Introduction: Mathem ties lends itself to leisure and reereation as well as to soientific thought and oaloulations. Many mathematicel activities have indirect value in that they tend to open the student ${ }^{*}$ s horizons by stimulating the imagination through proviaing interest and amusement, and by emphasizing modes of thinking which can be applied to the affairs of 1ife. Some of these forms of entertainment have had their origin in ancient times. Daily nowspapers, almanaes, and advertising pamphlebs often contain aimilar mathematieal "brain teasers." Through these and other sourees, the student may add to the 11 st or suggestions given herein, and produce a scrap book of interesting material for leisure and reareation. Such material may be used by a Mathematics Club for entertainment, or $1 . t$ may suggost various types of aotivity to be enlarged upon for different purposes.

Fallielos and Illusions: Many fallieies and illusions have been drawn from mathomatical principles. By their absurdity the true conception is sometimes made more impressive. For example, it may be "proved" that any number is equal to any other number: Let, $c=d$. Then, $a c=a d$ and $b c=b d, a$ and b being any two given numbers. By subtracting: ac-bc $=a d-b d$. By transposing: $a c-a \phi=b e-b d$ or $a(c-d)=b(c-d)$. Therefore $a=b$. Since this cannot be, the impropxiety of dividing by zero is at once apparent.

To "prove" that every triangle is isosceles, take any tri-
angle ABC. See Fig. 1, Plate XXVI. DE is a perpendicular bisector of $A B$, and $C E$ is a bisector of the angle C meating DE et E. Draw $B A$ and $B B$. Draw EC porpendicular to $A C$ and $E F$ perpendioular to $B C$. Then trianglo $A D E$ is similar and equal to triangle $B D E$, and A equals BE. In the same way it is shown that $C G$ equala CI nnd CG oqualo CF. This being true, CA equala $C B$ and triengle $A B C$ is isosceles.

It may be "shown" that 64 is equal to 65. 7igs. 2, 3, and 4. Plate XXVI, Illustrato this fallacy.

Plate XMVI illustrates other figures that appear to be what they are not. The observation and reproduction of such IIgures should impress the student with the neeessity of geomotric proofs. In Tig. $1, A B$ and $X Y$ are equal in longth, but appenr unequal. In P1g. 2, AB equals $C D$. In Pig. $3, A B$ and $C D$ ace parallal. ABOD and WXYZ, in Pies. 4 and 5, lie on a stralsht line. In Pig. 6, it is dinficult to determino the pathe of AB beneath the obstruction. $A B$ and $3 D$, in Fig. 7 , are straight ines, but appear curved. In Tie. 8 , the ofrolo appoars flattened at Q, P, R, and S_{2} and in Tig. 9, 3D appeers a groeter aistance than $A C$.

Rowod Constructions: The included figures construeted from rows are sugeestive of crestive aativity. Conoroto applications may be mede, or construetions mede merely in design for ontertainment. Fig, I, Plate XXVIII; chows how 16 trees may be planted in 12 straight rows with 4 trees in every row. Jig. i shows how 16 trees may be jlanted in 15 streight rows with 4 trues in every row. In Fig. 3, 19 trees are planted in 9 row sith 5 treses to a row. Pig. 4 illustrates the arrangement of 12 coins. They are to be moved so as to have 5 on a side instead of 4 , and

$$
\begin{gathered}
\text { Plate xxri } \\
\text { Deceptive Proots }
\end{gathered}
$$

Fig-2 (b)

$$
\begin{gathered}
\text { Plate XXVII } \\
\text { Deceptive Figures }
\end{gathered}
$$

A)

$$
\text { Fig. } 1
$$

$$
A+H \mid A
$$

CHHHHALO

$$
\text { Fig. } 3
$$

Plate Xxyill

Miscellaneous Figures

preserve the given square. This may be done by plaoing 5 on 4 , 3 on 1,11 on 10 , and 8 on 7 .

Re-arrancement of trees: The remarrancement of areas as suggosted in tho following oxamples, may be illustratod by caraBoard constructions, Othor similer construetions may bo found or created by the student. Fig. 5, Plate XCVIII illustrates how a board $3 \mathrm{ft} . \mathrm{by} 10 \mathrm{ft}$. can be cut once to bo made to cover a hole 2 ft . by 15 ft . Fig. 6 illustrates the folloming problem: Wr. Jnoleson owns a square farm, the erea of hich is 20 ecres; noer ench corner stancs a large tree which is upon a noizhbor's land. How may he add to his farm so as to have a squaro farm containing 40 ecres end still not own the land upon mich the trees stanc? P1E. 7 shows the arrancement of 5 squeres which have been out so ss to form 1 large square. In Fig. 8 is shown how a board 25 inches by 3 inches is cut so that the pleces when arranged shall form a perfect scuere. Pig. 9 shows how a piece of cardboard in the form of a Greek cross hes boen out by two straight outs so as to divide it in such a way that when reunited they ill form a square. Pig. 10 shows how a piece of cardboard $12 \frac{1}{2}$ incheg long by 2 inches \mathbb{T} de may be out into 4 piecos in such a manner as to form a perfect square without Wuste.

P1g. 11 is dremn to "prove" that the circumference of all circlos are equal. Thus, festen together the oontors of two circles of unoqual redii, as per diagram, and let them roll from A to A^{\prime}. Since the distence $B B^{\prime}$ and $C C^{\prime}$ are equal, end the nymber of revolutions is the same for both, the oircumferences must be equal. If not, why not?

Chinese Magic Squares: Mn thematical minde have developed the so-conlled Chirese "megio squaro" until its "mysteries" now s117 a fait sized volumg, and stili, no doubt, al2 of its propertios have not yet been discovered. The included maric squares in Ple to XXIX are simple illustrations of the diseoveries which have been made. The magio square is roforred to not only in books of methematics, but elen in other books of ilterature. In early times a sreat dosl of superstition centered about the magic squere, and there still erists a superstitious regerd for it. It appears 2 the decorstions of fortune-telling bowls, it is used in gemes of chance or lottery, and is aven wom by sore as an amulet or charm. The student may be able to find specific appliontions in his readings.

Properties of Numbers: Curious results are derived from the number 142,857. If this is multiplied by $2,3,4,5$, or 6 the same sequance agpoars in each of the products es in the given number. If, however, it 10 multiplied by 7 the eurlons result 999,990 is obtainod.

Computations wi th the numbers 37 sod 73 ehow thet upon multiplicotion with the velous numbers from the arithmetioel proGression, $3,6,9,12,15,18,21,24$, and 97 , an odd roletion of products is derived. They are but suggestions for a methematical type of entertainment. Othor similar computations may bo found in such reference books as Smith's 2umber atories af Lone AgO, and Jones' Mathemetical Wrinkles. (see Biblioeraphy)

L-Andrews, W. S.: $\frac{\text { Magic }}{1908}$ Squares and Cubes, Chicago: Open Court
Publishing Company

Plate XXIX

Chinese Magic Squares

6	10	3	15
11	7	14	2
16	4	9	5
1	13	8	12

8	1	6
3	5	7
4	9	2

Sum $=15$
in every
straight
straight line.

Sum $=15$
in every straight line.

$S_{u m 7}=20$
in every
straight line.

25	6	7	24	3
4	10	17	12	22
5	15	13	11	21
8	14	9	16	18
23	20	19	2	1

A bordered magic square.

The figure 9 revenls many propertios in computations thich ere of interost. Althouch many of these have no utiliterian value, they have a plece in mathamatios in verifying the computetions and using them as a meens of enfoyment and pastime.

If the number $987,651,32113 \mathrm{multin} 11$ ed by $18,27,30,45$, $54,53,72,81$, and 99 , rospectfully, it sivos procucts in thich the first and lost ficures are the same as those in the multiplier. This is aleo true of higher multiples of 9, se 108 and 117 and others. If multinlied by? and 90 the Inst sigures aro the seme as those of the multiplier.

If a number concisting of the nine diefts--ercept the g-In their roguler order be multiplied by 9 , or any multiplo of 9 , the product in each case will be a number fomed by repetitions of the seme dicit.

The difference between any certain number end any other: number composed of the same figures in a different order is divisibie by 9.

If the sum of the digits of any number be mutracted tran that number, the remainder is divisible by 9 .

The process of "ansting out $9^{\prime \prime} s^{\prime \prime}$ has alresdy been discussed in Chapter IV.

These computations and facts do not exhaust the possibilities which heve been discovered. Other rolations may be found from various sources by the student and ndded to these as eiven.

Such problems as heve been diecussed under the properties of numbers, although intrinsically unimportant, have often served to awaken life long interests in the fundamental truths underlying and in the bsckground.

Pamons Problems of Antiquity: Problems hevo been puzzled over by mathernticians until they have become fanous in history.

A fow of these are noted here as a nuelous for an onlarged colloetion whioh might be roade by the student. Althouch the solution may not always be readily underetood, there is historical interest in the problem itsele. A project for stuant activity may include the preperation of hend nade pamphzets on one or more of the problems, the historieal sotting paich made each problem, at the time at whioh it was oricinated, a "resi life problem," and the lite and works of men whose narses are connected with the problems.

The follominc is the femous chess problem of cessa:
Seser, the inventor of chess, presented his gamo to Scheran, and Indian prince. The latter asked Sessa to name hin reward. Sesse asked that the prince cive him 1 crain of wheat for the first square on the chess board, 2 for the second, 4 for the thixd, 8 for the fourth, and so on to the sixty-fourth. The nurber of gralns of wheat thus called for is given by a formula for the sum of gecmetric procression as:

$$
\frac{1-1 \cdot 2^{64}}{1-2}=\frac{2^{64}-1}{1}-2^{64}-1 \quad 18,446,744,073,709,551,615
$$

This amounc its greater than the world's annual supply at present, since 7000 erqins equal 1 pound Avoirdupois and there are 60 pounds in a bushez. sivera rride thus be approximately 420,000 grains of wheat in a bushel, which amount woula give in round nuabers 43 trillion bushels in the total omount of wheat required. History does not relate how the oladm was sevtled.

One of tio three iamous problems of Leonardo of Pisano (Sivonacoi) is as follows:

Whree men agree to share money in the ratios of $\frac{1}{2}, 1 / 3$, and $\$ / 6$. Surprised by an enemy each snatched what he could. Latex, the ilist gave up $\frac{1}{8}$ of what he took; the second, $1 / 3$; and the third, $1 / 6$. This was then divided among them equally and each then had the share to which he was antitled. What was the totel sum?

The eistern problem of Eeron of Alexandria follows:

I am a brezen bin; my spouts are 2 eyes, my mouth and the flat of my right foot. My right oye filis a far in 2 days, my leet eye in 3 , my foot in 4 . My mouth 1 s capable of 111112 s it 11 c hours; tell me how long all four together will take to 9111 it.

A problem wich involves the idea of arithmetieal progression is recorded in a papyrus of the Geyptian oriest Ahmes, who lived nearly two thousand yesxs berore Christ:

Divide 40 loaves anong 5 persons so that the numbers of loaves thab they receive iorm an arithmetical progression, and so that the two who receive the last brend together have $1 / 7$ as much as the others.

Ynicursal Problems: The unicursal problems given on plate XXX, 11gs. 1,2 , and 3, are of historieal interest. Pig. 1 , a ro-entrant polygon, is a Pythagorean symbol, and Fig . 2 , the sign wenual of Lohammed, whioh he traced in the sand by the point of his sclimitax without taking it off the ground. Fig. 3 contains onjy 2 odn nodes, A and B, and therefore can be deseribed uniouraaily if started from one of them and finished at the other.

The Labyrints and Hsze: The labyrinths and mazes shown in Pigs. 4, 5, 6, 7, and 8 on Plate ANA are also of historieal intereat as well as forming a means of rurnishing recreation and enterbaiment if constructed on a larger scale. These shown are given us sugcestivo of uther pabterns whioh may be found or ereated by the student. A labyrinta may be made more difeicult by increasing the number of nodes or by making thom of a higher order, using bridges and tunnels so as to produce the construction in three dimensions.

In. Fi6. 4 the letters stend for various towns and the lines indicate the only possibla paths by wioh a person may travel. If a person is to staxt from any town and go to every other town

Plate $x \times x$

Unicursal Problems

Fig. 1

Labyrinth and Maze

Fig. 4

Fig. 6

Fig. 5

once and only once, and return, he must take one of only 2 routes. The letter r representing a right turn and 1 a lert turn, the rule for ench route is as follows:

Fig. 5 illustrates what is known as the Familtonian Game and follows the same principle as illustrated in Fig. 4 .

Fig. 6 illustrates the design on the coins of Cnossus, which is supposed to be a clue to the correct peth in the traditional Iabyrinth constructed for the Mnotaur. This design is shown in rectangular measure in Pig. 7. In either arrangement this maze may be run by three different routes: lst, always follow the wall on the right hand side; 2nd, always follow the wall on the left hand side; or $3 x d$, when a node is reached, i.e., a point where there is a choice of paths, the path to be taken is that which is next but one bo that by which ine ncde was approached.

To run the Hampton court maze, Iig. 8, the rule is to always follow the wall to the right or to the left.

Dxanatizaticns: Drumatization is another oreative expression very appealing to students of secondery. school age. rrobiems of 1ife involving mathematical intecpretations may be aramatized. Significant aims and purposes in mathematios raay also be interpreted by aramatization. Mathematical plays are issued in such magazines as the llathematies Teacher, School. Science and wathematies, and the "Pexas Outlook." These may be obtained and produced by mathematics classes or clubs or used as suggestions for original plays which may be made more applicable to the circumstances under which they are to be given.

Mathamatical Posters: The construction of elassroom posters using appropxiate mottos and designs is an appealing form of ereative expreesion for the student. To suggest the worth of mathematics, posters may be planned and made to illustrate such mottos as: What man can do with mathematies, not what mathematics can do with man, or "Chemistry depends on mathematies"; for reminders of class room activities: "Stop! heve you checked!" (M), or "Members of equations are like twins. Treat them alike"; or as incentives: "Can you make your letter in Arithmetio?"

Geometric forms in nature and ext are suggested by snow erystals, fruit cut to show symmetrieal arrangement of seed pods, or the design of a churah window with the motto: "Geometry in the quiet of the Church."

Other mottos which in themselves suggeat creative expression, are: "The plan made this house. Nathemetios made the plan"; "Mathematics--the mastor key"; "The men who fired the shot could not see the target, but mathematios helped them hit it"; "Aviation--nine-tenths mathematies"; "Goometry in the home" (showing a girl meking a lampshade with hexagonal base). The studert may add to these by his own observations.

Chapter XII

Creative Expression Through Mathematice: Sumary.

Puroose of Given Supeestions: No effort has been made to present the meterial in this thesis in text book style. It has rather been the aim to provide suggestions for and means of erentive expression which should supplement the work provided by the usual tezts.

It is quite generally eaknowledged that creative expression allows the student to unfold mentel and physical abilities which would otherwise be latent and unproductive to the sooial world. It is also believed that inhibition means a cradual destruction of that inherent power known as general intellizence. Unless the student is given oportunity and allowed expression when his learning has created a desire, he not only loses the benefit of the advenced learning, but his power ever after to respond is also weakened.

The student may not always be a wise judge in the tyne of response by which he wishes to express himself. In that ha needs guidence and direction. He needs to be brought in oontact with problems and projects which will be appealine; i.e., suegestive of ereative activities which are to bim of a desirable character. In his choice of these activities the student should not be allowed to feol that he is merely completine a task which has been provided for blm . The need for the expression must be felt by him, and the form of expression must be his, created from his own ideas, or the real values in the activity are destroyed. He himself must, in some measure, live the life of an artist, an
inventor, an explorer, ond a discoverer. The fact that the work has already been covered by others, each in his individual way, does not lessen the value to the student of his own creative expression of the seme.

Applicatlon of Material Suggested: The material in the preceding sections has been dram from the history of mathematics, observation, direct application, and experience. The general principles involved may be applied to mathematioal interests, or interests apart from mathematics. The suggestions herein given are means by which the student may extract further cultural values from his mathematical study; he may be provided with entertainment and recreation; he may acquire greater facilities for exprossing his thought and ideas; and he may broaden his interests, for many fields of activity have been touched upon.

Many of the suggestions and examples given are general rather than specific and direct. It is hoped that they are presented in such manner as to support the underlying aim, that of arousing a lexger self-activity in the fom of ereative exprossion on the part of the stadents of secondary school mathematics. The possibilities have not all boen suggested, or even touched upon. It may be, too, that those given are not the ones that will be most suitable for all circumstances under which ereative expression is desired. However, if the meteriel here presented can be considered representative, and because of it other activities be aroused and participated in, the purpose of this thesis will be fulfilled.

BTBI TOGRAPHY

Andrews, W. S. Misgic Squares and Cubes. Chicago; Open Court

Breslich, E. R., Teaching of Mathemetics in secondery schools. Chicago; University of Ohicago Press. 1930

Cajori, F., History of Elementary ilathematios. New York; Macmillan Company, 1914

Haskell, A. C., How to Make and The Graphic Charts, New York; Cocex Book Company Inc. 1919

Jones, S. I., Mathematical Winkles. Gunter, Texas; S. I. Jones. 1912

Mathematics Teecher. Published by Metional Council of Teachers of Whe themetics.

Row, S., Geometric Exercises in Paper Folding. Chicago, London; Open Court Publishine Company. 1927

Bupert, G. ., Pemous Geometrical Thoorams and Problems. Chicago, D. C. Heath and Compeny. 1900

Sanford, V., Short History of Mathemeties. Boston, How York; Houghton Mifflin Compeny. 1930

School Selence and "sthemetios. Published by the Central Association of Solence and Mathematios.

Schultze, A., Teaching of Mothematics in Secondery Schools. Hew Vork; Nacmillan Company. 1998

Smith, D. E., Pistory on Wathematios. Boston, Nem Yorte, etc.; Cimn and Company. (1923-1925)

Smith, D. E., Number Stories of Long hgo. Boston, New York, etc.; Ginn and Compnny. 1929

Smith, D. E., Manchine of Coometry. Chicego; Ginn and e. 1923 p. 258-268

Sutton, C. W*, and Lemnes, N. J., Business Arithmetic. Bostor, Mem York; 411 yn and Bacon. 1918

Third Year Book. Published by Netional Council of Teachers of Mathematies.

[^0]: 1-Beatty, illa ra \quad : Is Creative Bducation Compatible with Mastery of the Mundamental Processes? National Education Association. Depertment of superintendence. official Report 1930. p. 147.

