
 

 

 

 

PERFORMANCE COMPARISON OF WEAK AND STRONG LEARNERS IN 

DETECTING GPS SPOOFING ATTACKS ON UNMANNED AERIAL 

VEHICLES (UAVS) 

 

 
by 

 

Aydan Gasimova 

Bachelor of Science, Information technologies and system engineering, Azerbaijan State       

Economic University, 2017 

 

  A Thesis 

Submitted to the Graduate Faculty 

 of the 

University of North Dakota 

in partial fulfillment of the requirements 

 

for the degree of  

Master of Science 

 

Grand Forks, North Dakota 

  December  

  2022 

 



II 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
Copyright 2022 Aydan Gasimova 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

This document, submitted in partial fulfillment of the requirements for the degree from the 

University of North Dakota, has been read by the Faculty Advisory Committee under whom the 

work has been done and is hereby approved. 
 

Naima Kaabouch 

 

 
Emanuel Grant 

 

 

Wen-Chen Hu 
 

 

 

 

 

 

 

 

 

 

 

This document is being submitted by the appointed advisory committee as having met all 

the requirements of the School of Graduate Studies at the University of North Dakota and is  

hereby approved. 
 
 

Chris Nelson 
Dean of the School of Graduate Studies 

12/9/2022 

Date 

 

 

Degree: 

Aydan Gasimova 

Master of Science

 
 Aydan Gasimova 

Name: 



IV 

 

 

 

PERMISSION 

 

Title Performance Comparison of Weak and Strong Learners in Detecting GPS 

Spoofing Attacks on Unmanned Aerial Vehicles (UAVs) 

Department School of Electrical Engineering and Computer Science 

Degree  Master of science 

 
In presenting this thesis in partial fulfillment of the requirements for a graduate 

degree from the University of North Dakota, I agree that the library of this University 

can make it freely available for inspection. I further agree that permission for extensive 

copying for scholarly purposes may be granted by the professor who supervised my 

thesis work or, in her absence, by the Chairperson of the department or the dean of the 

School of Graduate Studies. It is understood that any copying or publication or other use 

of this thesis or part thereof for financial gain shall not be allowed without my written 

permission and that of my advisor. It is also understood that due recognition shall be 

given to me and to my advisor in any scholarly use which may be made of any material 

in my thesis. 

 

 

 

 
 

 

Aydan Gasimova 

12/8/2022 

 

 

 

 

 

 



V 

 

 

 

TABLE OF CONTENTS 

LIST OF FIGURES ............................................................................................................. VIII 

LIST OF TABLES .................................................................................................................. X 

ACKNOWLEDGEMENTS ................................................................................................... XI 

ABSTRACT… ..................................................................................................................... XII 

CHAPTER 1: INTRODUCTION ...............................................................................................1 

1.1. Motivation and Problem Statement .................................................................................1 

1.2. Thesis Goal and Objectives ............................................................................................3 

1.3. Contributions .................................................................................................................4 

1.4. Thesis Organization........................................................................................................5 

CHAPTER 2: UAV VULNERABILITIES AND ATTACK  DETECTION  

METHODS………………………………………………………………………………….…....6 

2.1. Overview of Unmanned Aerial Vehicles (UAVs)…………………………………….….6 

2.2. Type of attacks targeting UAVs……………….………………………………................8 

2.2.1. Meaconing…………………………………………………………………....…..9 

2.2.2. Jamming attacks……………………………………………………………........10 

2.2.3. GPS Spoofing attacks……...…………………………………………...……….10 

2.3. Existing GPS spoofing detection methods targeting UAVs…….….……………...........11 

2.3.1. Cryptography-based methods..…………..…………………………....…............12 

2.3.2. Additional UAV features.…..………………………………………....…............13 

2.3.3. Direction-of-Arrival (DoA) sensing methods.………………………...…............13 

2.3.4. Machine learning methods ..……………………………….…………..………...14 

CHAPTER 3: METHODOLOGY ....... ………………………………………………………....15 

file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark0
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark1
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark2
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark2
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark3
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark3
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark4
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark4
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark9
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark15
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark15
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark30
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark30


VI 

 

3.1. Attack Detection Procedure using Machine Learning algorithms ......... ………………..15 

3.2. Training Dataset .................................... .........................................................................17 

3.3.  Data Processing. .......................................................................................................... .18 

3.4. Feature selection techniques… ....................................................................................... 20 

3.5. Weak learner Machine learning techniques…..…………….………………..…………...21 

3.5.1. Multinomial Naïve Bayes …………………………..….........................................23 

3.5.2. Complement Naïve Bayes……………………………............................................24 

3.5.3. Gaussian Process Naïve Bayes ..……… ………….…………………….……..…25 

3.5.4. Bernoulli Naïve Bayes …………………..............................………......................26 

3.5.5. Gaussian Naïve Bayes ……………………………….….....…………...................26 

3.6. Strong learner Machine learning techniques………………………………………….….27 

3.6.1. Bagging classifier ................................................................................................ 29 

3.6.2. Boosting Classifier…………………….………………………...….......................30 

3.6.3. Stacking classifier ................................................................................................ 30 

3.7. Hyperparameter tuning methods. ................................................................................... 31 

3.7.1. Grid search tuning method  for strong learners………………………....................32 

3.7.2. Genetic algorithm tuning method for weak learners.……………….…………......32 

CHAPTER 4: RESULTS AND DISCUSSIONS ...................................................................... 34 

4.1. Performance Analysis Metrics ...................................................................................... 34 

4.2. Analysis of optimization parameters…………….……………...…………………...….35 

4.3. Feature selection results… ...................................................................................... …..36 

4.4. Result analysis of the strong learners…………….…...……………...…………..……...38 

4.5. Result analysis of the weak learners…………………..………………………...............43 

4.6. Comparison results between strong and weak learners in terms of the  

main evaluation metrics………………………….………………..………………….....48 

file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark36
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark36
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark46
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark46
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark46
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark46
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark46
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark44
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark46
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark45
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark48
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark48
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark49
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark51
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark51
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark51


VII 

 

4.7. Comparison results between strong and weak learners in terms of the size 

and time metrics…………………………………………………….…..……….……….51 

CHAPTER 5: CONCLUSIONS AND FUTURE WORK .................................................. …...53 

BIBLIOGRAPHY ................................................................................................................. 56    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark55
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark55
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark56
file:///C:/Users/aydan/Downloads/Performance%20Analysis%20Of%20Machine%20Learning%20Algorithms%20In%20Detecting.docx%23_bookmark56


VIII 

 

 

 

 

 

 

 

 

LIST OF FIGURES 

 

          Figure    Page 

1. An illustration of the number of aircraft flying over the U.S at any time………………2 

2. Operation of UAVs.…………………………………………………………………….7 

3. Overview of Meaconing attack………………………………………………………….9 

4. Overview of GPS spoofing attacks .................................................................... …10 

5. Types of GPS spoofing attacks ................................................................................ …11 

6. Types of GPS spoofing detection techniques ........................................................... …12 

7. Supervised machine learning workflow ................................................................... …16 

8. Feature selection process......................................................................................... …19 

9. Illustration of the bias-variance connection ............................................................. …22 

10. Implemented weak learner category models ........................................................... …23 

11. Classification of the Ensemble models ................................................................... …27 

12. Bagging classifier work process ............................................................................. …29 

13. Stacking classifier work process ............................................................................ …31 

14. Genetic algorithm work process ............................................................................. …33 

15. Spearman’s Correlation Coefficient Heatmap for the used models. ........................... 37 

16. Mutual information feature selection method ............................................................ 37 

17. Evaluation metrics of the strong learners in terms of ACC and PD.… ....................... 39 



IX 

 

18. Evaluation metrics of the strong learners in terms of PMD and PFA……………..…  40 

19. Performance comparison to target the SWaP limitations for strong learners…………42 

20. Evaluation metrics of the weak learners in terms of ACC and PD.… ........................ 44 

21. Evaluation metrics of the weak learners in terms of PMD and PFA………………….45 

22. Performance comparison to target the SWaP limitations for weak learners.….....……47 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES 

 

Table                                                                                                                       Page 

1. List of extracted features from the corresponding dataset…………..………….........17 

2. List of the best parameters for weak learners..…..…………………..…...……..........35 

3. List of the best parameters for strong learners……………………………….………36 

4. List of selected features……………………………………………………………...38 

5. Comparison of the strong and weak learners in terms of four main evaluation 

metrics…...………………………………………………………………...………....50 

6. Best performance results among weak and strong learners in terms of main evaluation 

metrics……………………………………………..……………………...…….........50 

7. Performance comparison of the strong and weak learners in terms of size and 

metrics.…………………………………………………………………………….…52 

8. Best results among weak and strong learners in terms of size and performance 

metrics………………………………………………………………………………..52 



XI 
 

 
 

 

 

ACKNOWLEDGEMENTS 

 
First, I would like to express my gratitude to my academic advisor, Dr. Naima 

Kaabouch, who had a crucial role in helping me to complete my master’s degree. Her 

continued support and guidance always provided me with invaluable insights and 

strengthened my abilities. This work would have never been possible without her 

directions and professional feedback.  

I would also like to express my gratitude to the committee members, Dr. Grant 

and Dr. Hu for their time and valuable feedback.  

Lastly, I acknowledge the support of the National Science Foundation (NSF). 

The work performed in two years of my studies was supported through the NSF grant 

#2006674. 

 

 

 

 

 

 

 



XII 
 

 

 

ABSTRACT 

 
Unmanned Aerial Vehicle systems (UAVs) are widely used in civil and military 

applications. These systems rely on trustworthy connections with various nodes in their 

network to conduct their safe operations and return-to-home. These entities consist of 

other aircrafts, ground control facilities, air traffic control facilities, and satellite 

navigation systems. Global positioning systems (GPS) play a significant role in UAV's 

communication with different nodes, navigation, and positioning tasks. However, due 

to the unencrypted nature of the GPS signals, these vehicles are prone to several 

cyberattacks, including GPS meaconing, GPS spoofing, and jamming. Therefore, this 

thesis aims at conducting a detailed comparison of two widely used machine learning 

techniques, namely weak and strong learners, to investigate their performance in detecting 

GPS spoofing attacks that target UAVs. Real data are used to generate training datasets 

and test the effectiveness of machine learning techniques. Various features are derived 

from this data. To evaluate the performance of the models, seven different evaluation 

metrics, including accuracy, probabilities of detection and misdetection, probability of 

false alarm, processing time, prediction time per sample, and memory size, are 

implemented. The results show that both types of machine learning algorithms provide 

high detection and low false alarm probabilities. In addition, despite being structurally 

weaker than strong learners, weak learner classifiers 
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also, achieve a good detection rate. However, the strong learners slightly outperform the 

weak learner classifiers in terms of multiple evaluation metrics, including accuracy, 

probabilities of misdetection and false alarm, while weak learner classifiers outperform in 

terms of time performance metrics.
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Chapter 1 

INTRODUCTION 

1.1 Motivation and Problem Statement 

Unmanned Aerial Vehicle networks have increased in importance due to their 

high use in military and civilian applications [1]. Military uses include monitoring, area 

mapping, inspection, reconnaissance, and special missions. Civilian uses include 

agricultural observation, meteorological surveillance, cargo transportation, catastrophe 

detection, delivery services, and photography. According to the US Federal Aviation 

Administration (FAA), at peak operational periods in 2022, an average of 5400 aircraft 

will be flying in airspace at any given time [2]. In addition, the FAA has authorized the 

use of drones in public airspace for over 75 public institutions for a variety of 

objectives, including surveillance, public safety, research, and other purposes [3]. 

Furthermore, it is expected that around 250,000 UAVs will be functioning in the United 

States by 2035, which is considered more than the world's total of 45,000 commercial 

airliners [4]. 

To deal with this volume of air traffic, significant technological improvements 

in the design, automation, and surveillance of UAVs have been accomplished over the 

past two decades; however, these advancements demand exceedingly precise 

navigation and surveillance techniques. Existing airplane surveillance technologies are 

classified into three types [4], including Procedural Air Traffic Control (ATC), Primary 
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Surveillance Radar (PSR), and Secondary Surveillance Radar (SSR). In the first 

approach, flight crews are required to update their locations regularly through radio 

communications. ATC is mostly used in places with limited or no radar coverage, such 

as the seas. The second category,  the PSR is a non-cooperative security system that 

identifies the location of an aircraft based on its distance and azimuth from the ground 

control station. This system is self-contained and does not depend on the data from the 

corresponding aircraft. The last method, the SSR is a partially autonomous surveillance 

system that calculates an aircraft's location when inquired by a ground station using an 

aircraft transmitter reply. 

 However, these systems, which include SSR and PSR, are exceedingly 

expensive to maintain. Furthermore, these technologies are extremely slow to operate 

and incapable of handling future growth in air traffic.  

For the safety of return-to-home operations over short to long distance missions, 

 
 

Figure 1.1. A visualization of the number of airplanes flying over the US at any given 

time [2] 
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UAVs rely on Global Positioning System (GPS) receivers, which use satellite signals 

to provide precise location and time services. These signals are sent at two different 

frequencies: L1 (1575.42MHz) for civil use and L2 (1227.60MHz) for military usage 

[7]. However, because civilian UAVs are not encrypted, they are vulnerable to cyber-

attacks, such as meaconing, GPS jamming, and spoofing than military UAVs. The 

impacts of these attacks can vary from simple deceiving pilots to severe denial of 

service, which can significantly raise the risk of collisions and casualties.  

There are multiple GPS spoofing detection methods in the existing literature.  

These can be classified into four categories, namely cryptography, additional UAV 

features, direction-of-arrival (DoA) sensing, and machine learning [9, 10]. These 

strategies aim to identify and validate the authenticity of the GPS receivers. However, 

these approaches have several drawbacks that make them ineffective for real-time 

applications to detect GPS spoofing attacks, low detection rate, high false alarm and 

misdetection rates, and dependence on external hardware devices or sensors. In 

addition, some studies simulated only simplistic types of GPS spoofing attacks making 

them less effective in detecting sophisticated types of GPS spoofing attacks. Moreover, 

some of the methodologies employed in those studies are infeasible for UAVs due to 

their limited power and low processing resources.  

1.2  Thesis Goal and Objectives 

To address the limitations of the existing detection approaches, the goal of this 

thesis is to conduct a performance comparison of strong and weak learner models in 

detecting GPS spoofing attacks that target UAVs. This analysis will be done in terms 

of multiple evaluation metrics, namely accuracy, probabilities of detection and 
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misdetection, probability of false alarm, processing time, prediction time per sample, and 

memory size.  

Therefore, this thesis objectives are: 

 Conduct a detailed comparison of machine learning methods to detect and 

identify GPS spoofing attacks, 

 Extensively test the two types of machine learning models in terms of several 

metrics. 

1.3  Contributions 

Two different machine learning technique categories, weak and strong learners, 

are analyzed in-depth. It compares their performance in terms of seven evaluation 

metrics: accuracy, probability of detection, probability of false alarm, probability of 

misdetection, prediction time per sample, processing time, and memory size. Each 

method depends on a set of hyperparameters, which determines how well (or poorly) 

the algorithm performs. As a result, two papers have been published and presented at 

two IEEE conferences: 

 A. Gasimova, T. T. Khoei, and N. Kaabouch, "A Comparative Analysis of the 

Ensemble Models for Detecting GPS Spoofing attacks on UAVs." In 12th Annual 

Computing and Communication Workshop and Conference (CCWC), pp. 0310-

0315. IEEE, 2022. 

 T. T. Khoei, A. Gasimova, M. A. Ahajjam, K. A. Shamaileh, V. Devabhaktuni, 

and N. Kaabouch, “A comparative analysis of supervised and unsupervised 

models for detecting GPS spoofing attack on UAVs,” in 2022 IEEE International 

Conference on Electro Information Technology (eIT), 2022. 
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1.4 Thesis Organization 

This thesis is organized as follows: 

Chapter 2 provides a background overview of the UAV's vulnerabilities and 

types of attacks targeting those devices. In addition, existing detection techniques are 

discussed and analyzed in depth. 

Chapter 3 describes the methodology used in this thesis work. This chapter 

discusses the attack detection process that was built to simulate three forms of GPS 

spoofing attacks: simple, intermediate, and advanced. In addition, this chapter explains 

the procedures for generating training datasets for each attack that was utilized by the 

machine learning algorithms. Moreover, the chapter describes the machine learning 

techniques employed in this thesis. Finally, hyperparameter optimization techniques 

are thoroughly investigated and analyzed. 

Chapter 4 describes and analyses the results of GPS spoofing attacks. In 

addition, the results of feature selection and hyperparameter optimization techniques 

on each algorithm's detection performance are also described. Consequently, the results 

of the strong and weak learner classifiers are compared in detail in terms of seven 

evaluation metrics.  

Chapter 5 finally concludes this thesis and discusses future works and open 

research directions. 
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Chapter 2 

BACKGROUND OF GPS SPOOFING ATTACKS AND DETECTION 

METHODS ON UAVS 

In this chapter, an overview of the attacks targeting UAVs is provided. In 

addition, an overview of a few detection strategies is given.  

2.1  Overview of Unmanned Aerial Vehicles (UAVs)  

The Global Positioning System (GPS) has become a highly prevalent source of 

surveillance, navigation information, and geolocation for over a billion devices over 

the past decades [11]. The use of GPS in the transport industry is one of the first in civil 

areas and is growing quickly as a result of the need for navigation and air traffic control. 

UAVs have common features and restrictions used in existing modeling methodologies 

as shown below (see Figure 2.1): 

a) Specifics of motion. Drones are able to autonomously land and take off, maintain 

flight stability, and maintain the necessary altitude. However, certain elements 

of drone mobility may need to be considered while planning drone operations. 

One of these is the limitation of minimum turning radius while changing 

directions in flight [12], which is notably significant for fixed-wing drones. 

Small and micro drones are extremely vulnerable to meteorological variables 

such as wind, which may be represented as unpredictable travel times [13]. 
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During landings and takeoffs, fixed-wing drone specifications for flying angles 

should be considered. 

b) Limited weight. Drones used for delivering packages usually have payloads 

below 3 kg and carry a limited weight per flight [14]. Payload limitations are 

closely connected to the capability of the drone's energy storage system as well 

as the size, design, and cost of the UAV. Consequently, to fly the same route, a 

heavier drone requires more energy consumption than a lightweight drone. 

c) Limited flight range. A drone's energy consumption is determined by a variety 

of elements, including the type of drone, flying height, flight circumstances 

(such as forward flight, etc.), payload, and meteorological conditions. The 

energy unit's restricted capacity is typically described as the maximum 

operation time, maximum flying range, or the maximum number of locations a 

 
Figure 2.1. Operation of UAVs 
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drone may visit in a single flight [15-16]. 

d) Specifics of information processing. To receive commands and transmit the data 

they have received [17], drones must maintain communication connections with 

the ground station. Since line-of-sight communication is usually necessary, the 

signal deteriorates indoors or in the shadow of buildings. 

e) Remotely controlled by operators. Operators are required for drone missions in 

a number of countries [18, 19]. An operator often undertakes a series of 

preparation activities prior to the drone's takeoff; and after landing, they may 

be required to manage and examine the drone. 

2.2 Type of attacks targeting UAVs 

As previously mentioned, the positioning and navigation tasks of UAVs highly 

depend on GPS. Nevertheless, due to the unencrypted nature of the GPS signals, these 

vehicles are prone to several cyber-attacks [20, 21]. In the current situation, these attacks 

can be divided into three types: meaconing or replay attacks, GPS jamming, and GPS 

spoofing. These attacks violate the three security requirements, namely integrity, 

authenticity, and availability in terms of security requirements. In the following, a 

description of each class is described in the context of UAV.  

Integrity: It relates to protecting data from unauthorized modifications. These 

methods ensure that data is accurate and comprehensive. The autopilot mode of UAVs 

is entirely dependent on the GPS positions of UAVs, ground stations, and targets. As a 

result, GPS spoofing attacks target the integrity of GPS signals. 

Authenticity: The identification of the nodes that are broadcast should always 
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be known to the recipient of the communication. Meaconing attacks, on the other hand, 

violate the authentication criterion since the transmitter of the repeated signals is not a 

GPS satellite. 

Availability: This term refers to the fact that GPS signals must available to end 

users anywhere and at any time. For instance, an attacker may jam GPS receivers of 

UAVs or GC and launch a denial-of-service attack. As a result, jamming attacks target 

the availability of GPS signals. 

2.2.1 Meaconing  

In meaconing attacks, an attacker records and retransmits later the GPS  to a 

target without affecting the content of the signals. Figure 2.2 depicts the delayed 

transmission for meaconing attacks [21]. By masking the actual received signal, the 

meaconing signal attempts to deceive the receiver into selecting an inaccurate 

navigation solution [22]. If the meaconing attack succeeds, the target receiver will 

report the position included in the re-transmitted data instead of the genuine position. 

 
Figure 2.2. Overview of meaconing attack 



10 
 

2.2.2 Jamming Attacks 

As mentioned in the preceding paragraph, GPS receivers are vulnerable to 

spoofing or jamming attacks where attackers can insert counterfeit GPS signals into the 

network [27]. GPS jamming attacks are frequently carried out by intentionally sending 

messages in order to prevent genuine members of a network from transmitting or 

receiving data, which can result in denial of service. Jamming is the deliberate 

broadcast of powerful radio frequency signals. Some research demonstrated that 

jamming attacks might interfere with GPS and Galileo satellite signals at the same time 

[23 - 25]. This attack can decrease the quality of datalinks and prevent GPS devices 

Therefore, these attacks are known as a significant problem in wireless networks. 

2.2.3 GPS Spoofing attacks 

GPS spoofing attacks attempt to transmit a GPS signal to the UAV's GPS 

receiver causing the UAV to place itself in the incorrect position. The GPS spoofing 

 
Figure 2.3. Overview of GPS spoofing attacks 
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attack procedure is shown in Figure 2.3. Consequently, the receiver is guaranteed to 

lock onto the fake signal rather than the actual GPS signal [28].  

 According to multiple studies, GPS spoofing attacks are classified into three 

types, namely simplistic, intermediate, and sophisticated, as shown in Figure 2.4. In 

the first category, a GPS signal simulator interfered with a radio frequency to imitate 

authentic GPS signals. These types of attacks are the most used techniques to spoof 

GPS receivers since they only use a commercial GPS signal simulator. In intermediate 

spoofing attacks, determines the target receiver's antenna position and velocity to create 

counterfeit signals. The last category, sophisticated spoofing assaults, is the most 

successful sort of GPS spoofing attack. In these attacks,  

2.3 Existing GPS spoofing detection methods targeting UAVs  

Over the last decade, several studies related to the security of UAVs have been 

conducted to investigate and analyze cyber-attacks . For instance, the authors of [29] 

investigated the testbeds and analyzed the impact of GPS attacks on UAVs. In [30], in  

 
 

Figure 2.4. Types of GPS spoofing attacks 
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addition to analyzing the security of UAVs, the authors evaluated the types of attacks 

through a series of tests in a simulation environment. Moreover, they analyzed the 

behavior of the different GPS spoofing attacks on quadcopters in terms of security and 

safety issues. In recent works, the authors of [31 - 34] investigated the security issues 

of UAVs and analyzed some theoretical and practical solutions to detect and mitigate 

spoofing attacks.  

To address these vulnerabilities, several studies have been conducted to detect 

GPS spoofing attacks. Existing methods can be classified into four categories, namely 

cryptography, additional UAV features, Direction-of-Arrival (DoA) sensing, and 

machine learning, as shown in Figure 2.5.   

2.3.1 Cryptography-based techniques  

Cryptographic methods enable receivers to differentiate authentic GPS signals 

from counterfeit ones with a high probability. Nevertheless, they are impractical for 

civil applications due to the requirement [45 - 47]. In addition, these methods are not 

resistant to replay attacks, in which the attacker resends the legitimate signal with no 

 
Figure 2.5. Types of GPS spoofing detection  
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modifications after a long period, generating both time and position errors. Therefore, 

cryptography methods are not practical solutions to defend against attacks on GPS 

receivers.  

2.3.2 Additional UAV features 

Additional UAV features are based on the external UAV characteristics, 

including control system, acceleration, and inertial measurement unit (IMU). For 

instance, in [35], the authors developed a GPS spoofing technique to detect malicious 

attacks based on IMU. The results show a good detection rate. In [36], the authors 

proposed a GPS spoofing detection technique based on the monocular camera and IMU 

sensor of UAVs. Their results show the proposed hardware can detect spoofing attacks 

with good speed and detection rate. In [37], the authors proposed a low-complexity 

authenticity verification method developing a novel model for signal quality 

evaluation. Their results demonstrate the efficiency of the proposed method. Moreover, 

the authors of [38] proposed a vision-based UAV spoofing detection method that 

employs visual odometry. The obtained results of the proposed method prove the 

efficiency of spoofing detection on UAVs. However, these techniques have a few 

limitations, such as external networks and low accuracy, which are not practical for 

UAVs [49].  

2.3.3 Direction-of-Arrival (DoA) sensing 

 DoA sensing takes advantage of the fact that the spoofer transmits malicious 

signals from a single antenna, and they come from the same source. Authentic GPS 

signals, on the other hand, originate from several satellites and hence from multiple angles 

[50, 51].  
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2.3.4 Machine learning techniques 

Machine learning methods do not necessitate the acquisition of additional 

hardware, which makes them suitable for civilian UAVs. Therefore, some authors have 

proposed various GPS spoofing detection methods based on conventional machine 

learning (ML) models [39 - 43]. For instance, the authors of [39] proposed two dynamic 

selection techniques, including Metric and Weighted Metric Optimized Dynamic 

selectors to detect GPS Spoofing attacks targeting UAVs. They evaluated the 

performance of the proposed approach in terms of detection, misdetection, false alarm 

probability, processing time, and accuracy. Their results show acceptable results. The 

authors of [40] proposed a GPS spoofing detection method based on an adaptive K-

nearest Neighbors classifier and synchronization-free GPS-Probe method. The 

simulation results indicate that the proposed methodology can successfully identify 

malicious GPS spoofing attacks on UAVs with high detection accuracy. 

The authors of [41] proposed a two-step genetic algorithm-based extreme 

Gradient Boosting method to detect GPS-spoofing attacks. The results show that the 

proposed method can achieve high detection results to detect GPS spoofing attacks on 

UAVs. In [42], the authors developed a one-class support vector machine classifier 

technique to detect anomalies targeting wireless network systems. Lastly, the authors 

of [43] proposed another ML-based model using SVM to detect spoofed GPS signals 

on UAVs. The result of the proposed technique shows a high detection rate to detect 

malicious GPS signals. 
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Chapter 3 

   METHODOLOGY 

In this thesis, supervised machine learning algorithms are employed. These 

algorithms must first be trained on accurate training data. The training dataset in this 

thesis consists of a significant number of legitimate and malicious GPS samples. The 

following sections describe the training dataset acquisition, data preprocessing 

techniques, and feature selection methods. Finally, the hyperparameter techniques and 

classification models are discussed. 

3.1 Attack Detection Procedure using Machine Learning algorithms 

Figure 3.1 provides the ML model workflow for GPS Spoofing detection. In 

the first phase, real GPS signals are collected using software-defined radio units and 

spoofed signals are simulated. Three types of attacks, simplistic, intermediate, and 

sophisticated were generated through simulations. 

In the second phase, data preprocessing techniques are employed, such as data 

imputation and data transformation. In this study, value imputation and data 

normalization are used to obtain the best model results. 
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In the third phase, feature selection methods are employed to discard redundant and 

low-importance features in the corresponding dataset to increase the accuracy of the 

ML models. Two ensemble feature selection methods are used, namely Mutual 

information and Spearman correlation. These methods are capable of identifying 

correlated and irrelevant features. 

In the next stage, hyperparameter tuning methods are applied for all considered 

ML models, to obtain optimal results. Next, eight machine learning models are 

implemented. These models are bagging, boosting, stacking, multinomial NB, 

complementary NB, Bernoulli NB, Gaussian NB, and Gaussian Process NB. The 

algorithms were implemented using a Python library Scikit-learn. To find the best 

hyperparameters, two different techniques, grid search, and genetic algorithm are 

employed. In the final phase, the model learning is conducted, and the performance is 

performed by applying specific metrics.  

 
 

 
Figure 3.1. Supervised machine learning workflow 
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3.2 Training Dataset 

Supervised machine learning algorithms must be trained on reliable training 

datasets. In this thesis, we used a dataset developed in [56]. This dataset was generated 

by collecting real GPS signals using software-defined radio units. The hardware 

employed for the implementation was an Ubuntu 16.04 LTS with 8G RAM. In addition, 

MATLAB was used to simulate GPS attacks, simple, intermediate, and sophisticated. 

Table 3.1 gives the thirteen characteristics retrieved from the data, with their 

descriptions. These features are extracted through three extraction phases, beginning 

with the pre-correlation phase and ending with the delay-locked and post-correlation 

stages. The feature extraction procedure begins with estimating the carrier-to-noise 

ratio (C/N0) of the received signal [56]. The remaining characteristics are extracted 

during the observables block. 

The corresponding dataset is balanced and consists of 10,056 samples, 

including 5028 attack samples equally divided between the three types of GPS spoofing 

attack signals. Data corresponding to GPS spoofing attacks are encoded as 1, and the 

remaining are encoded as 0. 

Table 3.1. List of extracted features from the corresponding dataset [56] 
 

Extracted 

features 

Abbreviations Descriptions Receiver stage  

Carrier to 

Noise Ratio 

C/N0 Indicator of the signal that carries the 

GPS information 

Pre-

correlation  

Magnitude of 
the Early 

Correlator 

EC Magnitudes of the Early correlator are 
used for timing recovery 

During 
correlation 
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Magnitude of 
the Late 

Correlator 

LC Magnitudes of the Late correlator are 
used for timing recovery 

During 
correlation 

Magnitude of 
the Prompt 

Correlator 

PC Estimation of phase and frequency 
differences 

During 
correlation 

Prompt in-
phase 

correlator 

PIP In-phase signal of the prompt correlator During 
correlation 

Prompt 
Quadrature 

component 

PQP Quadrature signal of the prompt 
correlator 

During 
correlation 

Carrier 
Doppler in 

Tracking 

loop 

TCD Carrier Loop Doppler Measurements During 
correlation 

Carrier 
Doppler 

DO Change in frequency for a GPS receiver Post-
correlation 

Pseudo-range PD Time difference between transmission 

and reception time 

Post-

correlation  

Receiver 

Time 

RX Time of reception after the start of the 

time of the week 

Post-

correlation  

Time of the 

week 

TOW Time of the transmission of the 

navigation message 

Post-

correlation  

Carrier Phase 

Cycles 

CP Frequency difference between the 

received carrier and a receiver-generated 
carrier phase 

Post-

correlation  

Satellite 
vehicle 

number 

PRN Identification of different satellites 
orbiting the earth 

Post-
correlation  

 

3.3 Data Preprocessing 

Data preprocessing consists of numerous stages, including class rebalancing 
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and size reduction, feature elimination, missing value imputation, and data 

normalization, as shown in Figure 3.2. The corresponding dataset did not contain any 

missing sample; therefore, we did not employ any data imputation method.  

The raw data can be normalized using a variety of techniques, including mean 

and standard deviation-based procedures, decimal scaling normalization, and median 

absolute deviation normalization [57]. In this thesis, we employed the Quantile 

transform scalar and Min-max scalar to rescale all samples between 0 and 1 in the 

corresponding dataset. The Quantile scalar technique is applied to each feature 

independently to transform the features to follow a uniform or a normal distribution. 

The min-max normalization converts the data into a comparable scale, which improves 

classifier performance.  

X = 
 x−Min(x)

Max(x)−Min(x)
               (3.1) 

Where x is the initial value, Min(x) and Max(x) are the minimum and maximum 

values of the feature vector. 

 

 

 

Figure 3.2. Data preprocessing stages 
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3.4 Feature selection techniques 

It is necessary to choose a set of features that can accurately differentiate 

between genuine and counterfeit GPS signals. Correlated features in the dataset can 

have a negative impact on classification model performance. In this thesis, we used a 

heterogeneous method for selecting features, Spearman's Correlation, and Mutual 

information. 

The Spearman’s Correlation. When the result is close to 1 or -1, the 

characteristics have a strong correlation, either positive or negative [58]. A positive 

correlation coefficient indicates a positive linear correlation, while a negative 

correlation coefficient indicates a negative linear correlation. The correlation 

coefficient is given by:  

µ = 1-  
 ∑ (𝑑𝑖)2𝑛

𝑖=1

𝑛( 𝑛2−1)
                       (3.2) 

Where di stands for the difference between the two ranks per observation, i is the 

observation's index, and n is the total number of occurrences. In this work, a feature is 

considered correlated if it accomplishes a coefficient over 0.9.  

Mutual information. This technique, also known as entropy, is applied to every 

feature; characteristics chosen as significant features have high entropy values, whereas 

features chosen as low relevance have low entropy values. In this study, each feature 

with an entropy of less than 0.1 is removed from the dataset. The mutual information 

technique is given by [59]:     

I (X, Y) = H (Y) – H (Y | X)             (3.3) 

Where X and Y are random variables, H (Y) is the entropy that is used to quantify 
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a random variable's level of uncertainty, while H (Y | X) is the conditional entropy that 

expresses how much uncertainty is still present in Y. 

Non-stationary distribution. Non-Stationary Data Modification is required to 

maintain a static connection between machine learning models and non-stationary data. 

In this work, we investigate the features with non-stationary distributions and use 

interpolation to convert the data into stationary data [56]. This process determines the 

sequential differences between samples, as shown below: 

R = 
𝑥𝑖+1−𝑥𝑖

𝑛𝑖+1− 𝑛𝑖

     (3.4)  

Where R is the change rate and ni+1 − ni is the distance difference between two 

samples, which in our case is equal to 1. 

3.5 Weak learner Machine learning techniques 

Weak learner classifiers are models that can predict an intended result; 

however, they are not flexible enough to estimate accurately for all predefined classes 

and all predicted instances. They concentrate on successfully forecasting a set of target 

cases or a single target. Weak learnability excludes the requirement that the learner 

reaches high accuracy; rather, it must simply generate a hypothesis that performs 

slightly better than random estimation. 

The reliability of the ML models depends on various parameters, such as 

problem scope, data distribution, outliers, data quantity, and feature dimensionality. 

However, one of the major important parameters is the bias and variance of the 

relationship. Generally, they have an inverse relationship with each other, such as high 

bias-low variance or low bias-high variance [60]. High-bias models oversimplify the 
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models and mostly focus on the test data. It always leads to high errors in training and 

test data. To get optimal results, during the estimation of the models, the bias-variance 

tradeoff should be balanced. However, weak learner classifiers usually obtain high 

bias during classification. Figure 3.3 shows the sample of bias-variance connection, 

where the error (Eout) is the complexity of the model.  

 In this thesis, Naive Bayes (NB) weak learner category is used for 

detecting GPS spoofing threats. The key advantage of the NB model is its efficiency 

since training and classification may be completed with a single cycle through the data. 

The NB model is based on the Bayesian theorem that is based on the conditional 

independence assumption of characteristics. The Bayes theorem can be described as 

follows if B is an event and P(B) > 0 [17]: 

     P (A | B) = P(A) 
𝑃(𝐵|𝐴)

𝑃(𝐵)
               (3.5) 

 

 
 

 
 

Figure 3.3. Illustration of the bias-variance connection [60] 
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Where A  and B are different events, P(A|B) denotes the probability that one event will 

occur while another has already occurred, P(B|A) denotes the probability that event B 

will occur, and P(A) and P(B) denote the likelihood of the two independent events A 

and B [62]. Consequently, in this thesis, four Bayesian-based models are investigated. 

These models are multinomial, complementary, Gaussian, Bernoulli, and Gaussian 

processes, as shown in Figure 3.4. These models and their implementations are 

discussed in the next sections.  

3.5.1 Multinomial Naïve Bayes  

This technique is based on the NB tree, which estimates that each feature has a 

multinomial distribution. We assume a number of classes, c ∈ {1, 2, . . . , m},  each 

with a fixed set of multinomial distribution parameters. The vector for a class C is 

expressed below: 

θ = {θc1, θc2 . . .  θcn}                 (3.6) 

 

 
 

Figure 3.4. Implemented weak learner category models 

 

 

 

 

 



24 
 

Where n is the size of the dataset, ∑iθ ci = 1, and θci is the probability that instance 

i occurs in that class. Consequently, the maximum likelihood estimate is equated 

below: 

𝜃𝑐𝑖 = 
𝑁𝑐𝑖+ɑ𝑖

  𝑁𝑐+ɑ
                       (3.7) 

  Where Nci is the number of times sample i appears in the dataset, Nc is the total 

number of the samples in class c, ɑi is a smoothing index, and ɑ is the sum of ɑi.  

 After equating the MLNB estimate in (3.7) the classification rule can be 

expressed as follows: 

LMNB(d) = argmaxc [

   

log �̂�(𝜃𝑐) + ∑ 𝑓𝑖𝑖  𝑙𝑜𝑔 
𝑁𝑐𝑖+ 𝑎𝑖

𝑁𝑐  +𝑎
    

]         (3.8) 

Where �̂�(𝜃𝑐) is the prior class estimate, and fi is the frequency of each sample 

that occurred in class c. However, the obtained results can be overpowered by the 

combination of each parameter; therefore, the weights for this classifier are equated 

using log parameter estimates: 

    �̂�𝑐𝑖 = 𝑙𝑜𝑔𝜃𝑐𝑖        (3.9) 

3.5.2 Complement Naïve Bayes 

This model is based on the concept of improving the traditional MLNB 

classifier [63]. For the MLNB algorithm, the training data from a specific class, c, is 

utilized to estimate the weights. However, the CNB model estimates using data from 

all classes c. Therefore, the CNB model estimates more effectively since, in each 

iteration, it employs a more consistent amount of training data per class and reduces 

bias in the weight estimations. The CNB estimate is:  
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𝜃𝑐�̌� = 
𝑁�̌�𝑖+ 𝑎𝑖

𝑁�̌�  +𝑎
                    (3.10) 

Where N𝑐̌ is the total number fi sample occurrences in classes, N𝑐̌𝑖 is the number 

of times sample i occurred in classes, and αi and α are smoothing parameters. The 

classification rule is [64]: 

 lCNB(d) = argmaxc [

   

log 𝑝(𝜃𝑐) − ∑ 𝑓𝑖𝑖  𝑙𝑜𝑔 
𝑁�̌�𝑖+ 𝑎𝑖

𝑁�̌�  +𝑎
    

]                          (3.11) 

Where 𝑝(𝜃𝑐) is the prior class estimate and fi is the frequency of each sample that 

occurred in class c. In this model, in this classification rule, the negative sign refers to 

the fact that the samples that poorly match the complement parameter estimates can be 

assigned to class c. Finally, the weight of the samples is calculated with the same 

equation as MLNB equated (3.9). 

3.5.3 Gaussian Naïve Bayes  

GNB is one of the commonly used types of Naïve Bayes model that support 

continuous data and performs on a Gaussian normal distribution. These classifiers 

estimate the conditional probabilities that belong to a specific class which assumes that 

the predictor variables do not consider the covariance among all variables [65]. 

According to Bayes theorem, the posterior probability is calculated as:  

P (xi |y ) =  
1

√2𝜋𝜎𝑦
2 

exp (−
(𝑥𝑖−µ𝑦)

2𝜎𝑦
2 

2

)                  (3.12) 

Where y is the class label, μ (the sample mean) and 𝜎 
 (the standard deviation) 

are to be estimated from the training data. Given the predictor values, the algorithm 

calculates a distinct distribution for each predictor X1,....Xp, and observations are 
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assigned to the class with the highest posterior probability [66]. 

3.5.4 Bernoulli Naïve Bayes 

Data is a binary vector over the space of samples in the multivariate Bernoulli 

event model [68]. The probability of the given data is [67]:  

P(xi | y)= xi P(xi | y) + (1 – P(xi | y))(1 – xi)             (3.13) 

Where P(𝑥I |y) is the probability for each of these sample events, and y is any 

given class. It is assumed the likelihood of each sample existing in a dataset is 

independent of the presence of other words. Given a dataset, it can be seen as a 

collection of numerous independent Bernoulli experiments, representing the 

probability for each of these sample events. 

3.5.5 Gaussian Process Naïve Bayes 

The last member of the NB category, the Gaussian Process classifier, is a kernel-

based NB classifier which can handle high-dimensional dataset issues. The core idea 

behind Gaussian process prediction is the Gaussian Process assumption. It is placed 

over the function f(x) and the latent function. Generally, the inference is separated into 

two steps. First, it computes the probability of the variable associated with a test case: 

p (𝑓∗|X, y, 𝑥∗) = ∫ p(𝑓∗|X, 𝑥∗ , f )p(f |X, y) df                    (3.14) 

Where p (𝑓∗ | X, y) is the posterior over the latent variables, p(𝑓∗|X, 𝑥∗, f ) is 

Gaussian. Subsequently using this distribution for the latent function (𝑓∗) to produce a 

probabilistic prediction is expressed below: 

ᴨ∗̅̅̅  ≜ p (y*=+1|X, y, 𝑥∗) =  ∫ σ(𝑓∗ )p(𝑓∗|X, y, 𝑥∗) d𝑓∗          (3.15) 
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  Where d𝑓∗ is the given class. 

3.6 Strong learner machine learning techniques 

Traditional machine learning algorithms may not always provide a successful 

performance, specifically when the data is composite or imbalanced [69]. To improve 

the current performance, strong learners are implemented to boost the results of weak 

learners. A model is assumed highly learnable if there is a polynomial-time technique 

that produces a low error with high results. 

In this thesis, ensemble models are implemented. In ensemble learning, several 

base models are integrated as weak learners to address the underlying complexity of 

the data. By training several models and integrating their predictions, these strategies 

increase the performance of the ensemble model. In general, these fundamental models 

cannot perform independently due to significant bias or excessive variation. The power 

of ensemble learning is that it may reduce the bias-variance balance in order to build 

strong learners that perform better. 

 
 

Figure 3.5. Ensemble model classification 
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 An ensemble model has two distinct benefits. First, the relative predictive 

effectiveness of an algorithm is frequently situation-based, making it impossible to 

identify a single method. As a result, rather than selecting a single standalone model, it 

creates several models employing numerous standalone models and combines 

the prediction results to form an ensemble prediction model. Second, when provided 

with new conditions, an ensemble model frequently produces more accurate findings. 

In general, these techniques can be classified into three categories, namely, 

bagging, stacking, and boosting models. These models are also classified into two 

categories, namely homogenous and heterogenous (refer to Figure 3.5). In this thesis, 

we investigate and analyze all types of ensemble models.  

1)  Homogeneous ensemble models 

 Homogeneous ensemble models are developed when all the standalone models 

in the ensemble have a single-type base learning algorithm. The main difficulty in these 

types of classifiers is generating diversity using the same algorithm. These strategies, 

which have mostly been applied to homogeneous ensemble models, can also be 

employed to develop a wider variety of heterogeneous ensembles [70]. The bagging 

and boosting models are considered homogenous models. 

2) Heterogeneous ensemble models 

In heterogeneous ensemble models, all the independent models are created 

using distinct algorithms. The first option for creating numerous models is to use the 

same machine learning model many times using the same train data. The second option 

for creating several models is to create separate machine learning models. However, 

the key challenge for these sorts of learners is determining the best strategy to integrate 
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predictions from multiple models in the ensemble. The stacking approach is classified 

as a heterogeneous ensemble method. The staking procedure will be covered in the next 

section. 

3.6.1 Bagging classifier 

This model has several ML estimators that use decision trees and individual 

learners to make a prediction (Figure 3.6 shows the working process of this model). 

One advantage of such a method is reducing the base algorithm's choice and increasing 

the model's accuracy. To predict, it is assumed (y, x) case in £ be independently derived 

from the probability distribution [71]: 

  Q(j | x) = P(f(x, L) = j).   (3.16) 

Where Q(j | x) refers to the independent samples of the set L, f  prediction class 

j with relative frequency Q(j | x). The overall probability of predictor classes  

generated state at x is [72, 73]: 

 
 

Figure 3.6. Bagging classifier work process 
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R= [∑ Q(j | x)(P(j | x) 
j ]         (3.17)  

Where (P(j | x) is the probability distribution. Therefore, the classification is 

estimated as follows: 

∑ 𝐼 
𝑗 (argmaxiQ(i | x)=j)P(j | x)        (3.18)  

Where argmaxiQ(i| x) is the aggregate predictor and I is the indicator function. 

3.6.2 Boosting classifier 

 The boosting model is trained using weights that are adjusted based on how well 

each cycle's previous iteration performed. The boosting model utilizes algorithms 

called decision trees to enhance classification results, which combines many models 

of varying performance levels. 

The system in the function estimation problem consists of a random output 

variable y and a set of random input variables y and a set of random input variables x 

= {x1…. xn}. Overall, the boosting algorithm is expressed as below: 

Fm(x)= Fm−1(x) +  
m

h(x; am)              (3.19) 

Where h(x; am) is a member of the parameterized class of functions, Fm-1(x) is 

the current estimate, and 
m

 is a line search performed. 

3.6.3 Stacking classifier 

The stacking technique combines several separate weak classification algorithms 

by combining their meta-model outputs as inputs to a final estimate to improve 

accuracy and other evaluation metrics [73]. This technique is developed in the 

following steps (also refer to Figure 3.7): 
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1. Base models are analyzed and predicted on each training fold (OOF). 

2. The OOF predictions are sent to the meta-learner. 

3. The meta-learner is trained on these OOF predictions and can be run on the 

test set to make final predictions. 

3.7 Hyperparameter tuning techniques 

Hyperparameter tuning methods improve the efficiency of machine learning 

techniques. There are two types of approaches: manual search methods and automatic 

search algorithms. Manual search approaches are employed in order to find important 

parameters that have a significant impact on the results. Nonetheless, these approaches 

can be time consuming and cannot be used on high-dimensional data. 

Therefore, automatic search models address the limitation of manual learning methods 

[74, 75]. Several approaches are used in automatic search models, including grid 

search, Bayesian search, and genetic algorithm. In this thesis, two optimization 

techniques were used for the weak and strong classifiers, namely grid search and 

 
 
 

Figure 3.7. Stacking classifier work process 
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genetic algorithm. In the next section, we will investigate those techniques in depth. 

 

3.7.1 Grid search tuning method for strong learners  

Although the ensemble models can achieve high results with a default value, 

their performance can be improved significantly using parameter optimization 

techniques. For this purpose, the grid search optimization technique is applied to the 

strong learner algorithms. Initially, this method determines the hyperparameter ranges 

by collecting preliminary data. Then, using the specified key points, it generates a value 

list for parameters, trains the data for all values in the defined range, and returns the 

best value [77]. Consequently, the hyperparameters are found by their minimum 

and maximum value and the number of their steps. [78].  

3.7.2 Genetic algorithm tuning method for weak learners  

A genetic algorithm is adaptive with a global search algorithm, which is based on 

the process of evolution. This algorithm has several advantages, including probabilistic 

in nature, robustness, and global optimization performance [79]. In addition, it 

implements biological functions for engineering problems to create efficient, high-

quality, and optimized solutions.  

A genetic algorithm, which is based on the process of evolution, is flexible with 

a global search algorithm. This method is implemented using three types of operators: 

selection, crossover, and mutation, as depicted in Figure 3.8 [79]. In the first operator, 

the major part is regarded as a chromosome, which is equal to the individuals, in which 

each coding unit is referred to as a gene. An evaluation function determines the fitness 

value of each chromosome. Figure 3.8a depicts the probability-based operators used 
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during the selection step. The higher the threshold, the more likely crossover, and the 

 fewer iterations. The cross-genes for individuals that can be transferred are specified 

as the problem constraints. The mutation operator selects the transformed gene location 

and then alters the gene. 

In previous methods, grid search experiences the curse of dimensionality, which 

causes the efficiency to decline as the number of hyperparameters increases [26]. For 

this purpose, the genetic algorithm is used for tuning the hyperparameters to obtain the 

ultimate results in weak learners.  

  

 

 

 

 

 
 

 

Figure 3.8. Genetic algorithm work process 
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Chapter 4 

RESULTS AND DISCUSSIONS 

This chapter provides and analyses the results of the algorithms discussed in the 

previous chapter to detect three types of GPS spoofing attacks targeting GPS receivers.  

4.1 Performance Analysis Metrics 

To compare the performance of different methods for both classifier sets, four 

main evaluation metrics are used. These consist of accuracy (ACC), probability of 

misdetection (𝑃M), probability of detection (𝑃D), and probability of false alarm 

(𝑃FA). These metrics are calculated as follows: 

ACC = 
TP+TN

TP+TN+FP+FN
  ∗ 100                                                    (4.1) 

PD =
Tp

Tp+FN
∗ 100                                                                 (4.2) 

PFA =
Fp

TP+FN
∗ 100                                                                   (4.3)                                                                                                                  

PMD =
FN

TN+FP
∗ 100                                                  (4.4)   

Where ACC is the accuracy that consists of the probability that both authentic 

and attacked signals are detected correctly, PD is the probability of correctly detected 

legitimate signals, PMD is the probability of incorrectly detected malicious signals as 

legitimate, 𝑃FA is the probability of incorrectly detected legitimate signals. 

In addition to the main evaluation metrics, three additional metrics are used that 
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are related to size, weight, and power (SWaP) constraints on UAVs. These consist of 

memory size, processing time, and prediction time per sample. The description of each 

metric is given as follows: 

 Memory time: Monitors the consumption of the memory for each model 

separately. 

 Processing time:  Refers to the prerequisite time to train and test the models and 

it is highly dependent on the implemented ML classifier. 

 Prediction time: Refers to each instance that predicts a GPS spoofing attack 

during the testing phase. 

4.2 Analysis of optimization parameters 

In this thesis, we implemented two hyperparameter optimization methods to 

boost the performance of the strong and weak learner classifiers. For the NB models, 

we applied the genetic algorithm, while for the ensemble models, the grid search tuning 

technique is implemented. Those techniques, along with their best parameters, are 

illustrated in detail throughout the following sections. 

A. Optimization parameters for weak learners  

Since the weak learner classifiers were employed, we used a genetic algorithm 

  Table 4.1. List of the best parameters for weak learners 

 

Strong learner models Best parameters 

MLNB alpha=28 

CNB alpha=86 

GNB var_smoothing= 25.0 

BNB binarize=39.0, alpha= 62.0 

GPNB n_restarts_optimizer=23, 

random_state=65 
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technique to optimize the parameters. These hyperparameters are described in Table 

4.1 for each of the five NB models.  

B. Optimization parameters for strong learners 

After implementing the models and metrics, we applied the grid search as a 

hyperparameter tuning technique to obtain the best results for each strong learner 

model. These hyperparameters are given in Table 4.2 for each of the three ensemble 

models.  

4.3  Feature selection results  

 Figure  4.1 gives the results of Spearman’s correlation coefficient for each pair 

of features. As one can observe, several features are highly correlated. We selected the 

threshold of 0.9 to identify highly correlated features. As a result of this method, EC, 

LC, DO, and TOW are considered highly correlated with PC, TCD, and RX, 

respectively.  

 Figure 4.2 provides the most important features according to the mutual 

information algorithm. As shown in this figure, PRN is the most important feature, with 

a score of 0.7, while PQP is the least important feature, with a score of 0.0001, 

compared. to the other features. However,  as shown in Figure 1b, PC, TCD, and RX 

Table 4.2. List of the best parameters for strong learners 

 

Weak learner models Best parameters 

Stacking n estimators = 42. 

Bagging final estimator verbose= 1. 

Boosting max depth= 10, min impurity 

decrease = 10. 

 

 

 
 



37 
 

features are less important compared to their correlated pairs, namely LC, EC, DO, and 

TOW. Hence, these three features are removed from the corresponding dataset. 

Consequently, ten features, namely PRN, DO, TOW, PD, CP, LC, EC, PIP, PQP, and  

CN0, are considered relevant and uncorrelated features for classifying GPS spoofing 

attacks on UAVs (Refer to Table 4.3). 

The results of the selected ensemble algorithms are shown in Figure  4.3 in 

terms of ACC and PD. As one can see, the stacking model has the highest ACC 4.4.2  

 

Figure 4.1. Spearman’s Correlation Coefficient Heatmap for the used models 

 

 

 

 

 

 

 

 

 

Figure 4.2. Mutual information feature selection method 
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4.4 Result of the weak learners  

(95.43%), followed by the bagging (95.28%), and then the boosting model 

(94.61%). Therefore, these results show the stacking model provides the best accuracy 

for detecting GPS spoofing attacks. However, the accuracy is not sufficient to compare 

the efficiency of ML models in detecting GPS spoofing attacks. The number of falsely 

detected alarms and misdetected samples can decrease the performance of ML models. 

Figure 4.3b shows the results of the selected models in terms of PD. As one can see, 

the stacking classifier has the highest detection probability at 99.56%, the bagging 

classifier has a detection probability of 99.24%, and the boosting model has a detection 

probability of 96.55%, which is considered the lowest result compared to the two other 

Table 4.3. List of selected features 
 

Feature pairs Discarded features 

(RX, TOW)  

 

PC, TCD, and RX 

 

(TCD, DO) 

(LC, PC) 

(EC, PC) 
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ensemble models. 

Figure 4.4a shows the probability of misdetection of the selected ensemble 

models. As one can see, the stacking classifier has a PMD of 0.36%, the bagging model 

shows a PMD of 0.64%, and the boosting model has a PMD of 2.95%. Consequently, 

the stacking model has the lowest PMD, whereas the boosting model has the highest 

and worse PMD. Figure 4.4b illustrates the results of the PFA of the selected models. 

The stacking classifier has the best result in terms of the PFA (0.43%), followed by the 

 

 

 

 

Figure 4.3. Evaluation metrics of the strong learners in terms of ACC and PD 
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bagging model (1.07%) and then boosting classifier (5.08%).  

 As shown in the tables above, the stacking model obtains the best results in 

terms of all performance evaluation metrics among strong learner classifiers. It 

achieves a 95.43% ACC, a 99.56% PD, a 0.36% PMD, and 0.03% PFA. In contrast, 

the boosting model provides the best result in terms of all evaluation metrics. This 

model shows a 94.61% ACC, a 96.55% PD, a 2.95% PMD, and a 5.08% PFA. In 

contrast, the stacking model has a PFA of 1.6%, which is 0.51% higher than the PFA 

 

 

 

Figure 4.4. Evaluation metrics of the strong learners in terms of PMD and PFA 
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of these proposed methods. In addition, this stacking model has an ACC of 99.7% and 

a PD of 99.8%, which are 0.1% lower than the ACC and PD of the proposed methods. 

 Figure. 4.5 gives the results of the memory size, processing time, and average 

prediction time of each sample for each model. As one can see in this table, the stacking 

classifier presents the worst outcomes in terms of processing time and average 

prediction time compared with the other ensemble techniques. This is followed by the 

bagging model (190.4 MB) and then by the boosting method (190.5 MB). The stacking 

model has a processing time of 13.06 seconds, the bagging model has 0.74 seconds, 

and boosting model has 1.5 seconds. As a result, the bagging classifier provides the 

best results in terms of processing time, followed by bagging and stacking models. 

Finally, the stacking classifier has the worst average prediction time of 0.24 seconds 

per instance. 
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Figure 4.5. Performance comparison to target the SWaP limitations for strong learners 
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4.3.1 4

4.5 Result of the weak learners 

The results of the selected NB algorithms are shown in Figure 4.6 in terms of 

ACC and PD. Figure 4.6a shows the accuracy of all five classifiers. As one can see, the 

MLNB model obtains the highest ACC (95.10%), followed by the CNB (95.00%), then 

the GNB (94.30%), GPNB (90.00%), and BNB (65.80%). Therefore, these results 

show that the MLNB model provides the best accuracy for detecting GPS spoofing 

attacks among weak learners.  

Figure 4.6b shows the results of the selected models in terms of PD. The GNB 

classifier has the highest detection probability of 99.80%, the CNB classifier has a 

detection probability of 92.00%, the MLNB classifier has a detection probability of 

91.50%, the GPNB model has a detection probability of 80.33%, and the BNB model 

obtains a detection probability of 56.30%, which is the lowest result compared to the 

two other ensemble models.  

Figure 4.7a shows the probability of misdetection of the selected NB models. 

The MLNB and CNB classifiers have a PMD of 1.00%; the GNB model shows a PMD 

of 2.50%, the GPNB model shows 16.67%, and the BNB model shows 43.47%. 

Consequently, the MLNB and GNB models obtain the lowest PMD, whereas the BNB 

model has the highest and worse PMD.  

Figure 4.7b illustrates the results of the PFA of the selected models. In addition, 

the MLNB classifier has the best result in terms of the PFA (0.10%), followed by the 
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CNB model (0.16%) and then the GNB classifier (3.20%), GPNB classifier (3.40%), 

and BNB model (23.20%). As shown in the tables above, the MLNB classifier obtains 

the best results in terms of all performance evaluation metrics among strong learner 

classifiers. It achieves a 1.00% of PMD, a 95.10% of ACC, and 0.10% PFA, while the 

GNB classifier obtains the lowest and better PD of 99.80%. In contrast, the BNB model 

provides the worst results in terms of all evaluation metrics. This model shows a 

 

 

 

 

Figure 4.6. Evaluation metrics of the weak learners in terms of ACC and PD 
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65.80% ACC, a 56.30% PD, a 43.47% PMD, and a 23.20% PFA.  

Figure 4.8 gives the results of the size in memory, the processing time, and the 

average prediction time of each sample for each model. As one can observe, the MLNB 

and CNB have the lowest and best memory size (170.2 MB) among all NB classifiers. 

The BNB and GPNB classifiers show the best and worst performance in terms of 

memory size, respectively, while they achieve the best results in terms of prediction 

 

 

 

 

Figure 4.7. Evaluation metrics of the weak learners in terms of PMD and PFA 
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time compared to other NB algorithms. The BNB model achieves the lowest and best 

prediction time (0.003s). In contrast, the GPNB model achieves the worst outcome in 

terms of prediction time, followed by the CNB model. The CNB and MLNB classifiers 

achieve a prediction time of 0.099s and 0.095s, respectively. However, the BNB model 

achieves the shortest and best processing time compared to other NB classifiers. 

According to the results, the GNB classifier also obtains moderately similar results to 

the CNB classifier in terms of processing time at 0.580s. In contrast, the GPNB 

classifier obtains the longest and worst processing time of 1.890s. 
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Figure 4.8. Performance comparison to target the SWaP limitations for weak learners 
 

 

 

 

 

 

 



48 
 

4.6 Comparison results between strong and weak learners in terms of the main 

evaluation metrics 

In this section, we present the results of the two classifier sets, namely ensemble 

and Naïve Bayes, in terms of the main evaluation metrics (ACC, PD, PMD, PFA). The 

detailed overview is illustrated in Table 4.4. It is worth mentioning that despite 

structural differences between the strong and weak learners, the overall outcomes of 

both classifiers are relatively close to each other. One can observe that the member of 

the ensemble model set, stacking obtains an ACC of 95.43%, which is considered the 

highest accuracy among all classifiers. 

For the PD metric, the weak learner classifier: the GNB model slightly 

outperforms (0.5 times) the best-performer stacking ensemble model. However, for the 

PMD metric, the stacking classifier achieves the lowest and best results (0.36%) among 

all implemented classifiers. For the last metric (PFA), the MLNB model performs 10.7 

times better compared to stacking (the ensemble model). Consequently, the stacking 

model achieves the best results in terms of ACC, PMD, and PFA among all classifiers. 

In addition, the second best performers, bagging and CNB models achieve a 

similar result as the best performers, namely stacking and MLNB. The bagging model 

obtains an ACC of 95.20%, while the weak learner member, CNB, obtains an ACC of 

95.00%. In addition, the stacking model outperforms the CNB model by a factor of 2.8 

in terms of the PMD. In the last metric, PFA, the CNB model performs three times 

better compared to the ensemble model (bagging). 

The third best-performers for each classifier set show that the member of the 

ensemble model (boosting) only slightly outperforms (1.2 times) the weak learner 
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model (GNB) in terms of ACC, while it achieves noticeably better results than the 

boosting model, in terms of the other three metrics, including PD, PMD, and PFA. The 

boosting model obtains 1.1 times higher PD, three times lower PMD, and 1.6 lower 

PFA. 

The last model of the NB, the GPNB classifier, achieves the worst results 

among all the ML classifiers in terms of all four metrics. Consequently, it is worth 

mentioning there is an immense difference between the ACC and PD results of the 

worst-performer of the weak (BNB model) and strong (boosting model) learner 

categories. The boosting classifier obtains overall about 25 times higher and better 

results than the BNB classifier in terms of all classifiers.  

To sum up, the comparison of the best-performers of the ensemble and NB 

models obtain relatively close results to each other in terms of four main evaluation 

metrics. The strong learners obtain the best outcomes for the three main performance 

metrics, namely ACC, PFA, and PMD, while weak learners obtain higher results in 

terms of PMD, which is considered the best result as shown in Table 4.5. 
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Table 4.4. Comparison of the strong and weak learners in terms of four main evaluation 
metrics 

 
 

Models ACC 

(%) 

PD 

(%) 

PMD 

(%) 

PFA 

(%) 

 

Strong 

learners 

Bagging 95.28 99.24 0.64 1.07 

Stacking 95.43 99.56 0.36 0.03 

Boosting 94.61 96.55 2.95 5.08 

 
 
 
 
 
 
Weak  
 
learners 

MLNB 95.10 91.50 1.00 0.10 

GNB 94.30 99.80 2.50 3.20 

CNB 95.00 92.00 1.00 0.16 

BNB 65.80 56.30 43.47 23.2 

GPNB 90.00 80.33 16.67 3.40 

 
 

Table 4.5. Best performance results among weak and strong learners in terms of main 

evaluation metrics 

 

Main evaluation 

metrics 

Best performance results among weak and strong 

learners 

 Strong learners Weak learners 

ACC Stacking - 

PD - GNB 

PMD Stacking - 

PFA Stacking - 
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4.7 Comparison results between strong and weak learners in terms of the size and 

time metrics 

In this section, we will evaluate the strong and weak learners in terms of time 

performance and size metrics, as demonstrated in Table 4.6. When we investigate the 

memory size of all algorithms, we can observe the results of the evaluation metrics are 

close to each other for each classifier family. CNB and BNB models obtain the same 

memory size of 170.2MB, which is considered the best result among weak learners. This 

is also considered the best outcome for both strong and weak classifier categories. The 

highest and lowest outcomes are achieved by the stacking and BNB model (0.74s and 

0.4s) in terms of processing time. It is worth mentioning that, despite the stacking model 

consisting of five weak learners, it achieves the best processing time among strong 

learners.  

When we compare the worst results of the strong and weak learner family 

models, we can observe that the outcome of the weak learner model, GPNB, is 7.9 times 

lower than the bagging classifier, which is considered noticeably a better performance 

in terms of processing time. The best result of the ensemble model boosting obtains five 

times lower results compared to the best performance of the NB model: BNB. Similar 

to the best results, the worst outcome of the average prediction time for the ensemble 

model: bagging is 2.4 times higher compared to the NB model: CNB, which is 

considered the worst outcome among all models.  

To conclude the analysis of time performance and memory size, weak learners: 

MLNB, BNB, and GPNB classifiers obtain the best performance, while strong learners 
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achieve lower results. The results of the four metrics for all models are given in Table 

4.7.  

Table 4.6. Performance comparison of the strong and weak learners in terms of size and performance 
metric 

 

 Classification 

Model 

Processing 

Time 

(s) 

Model 

Size 

(MB) 

Average 

Prediction Time 

(s) 

 

 

Strong learners 

Boosting 1.50 190.5 0.010 

Bagging 13.06 191.3 0.240 

Stacking 0.74 190.4 0.020 

 

 

 

 

 

Weak learners 

 

MLNB 

 

0.90 

 

170.2 

 

0.095 

 

CNB 

 

0.11 

 

170.2 

 

0.099 

 

GNB 

 

0.58 

 

170.3 

 

0.090 

 

BNB 

 

0.40 

 

264.3 

 

0.003 

 

GPNB 

 

1.89 

 

261.7 

 

2.100 

 

Table 4.7. Best results among weak and strong learners in terms of size 
and performance metrics 

 

Time performance and 

memory size metrics 

Best results among weak and strong learners 

 Strong learners Weak learners 

Processing time  - BNB 

Memory size - MLNB 

Prediction time per sample - BNB 
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Chapter 5 

CONCLUSIONS 

Unmanned Aerial Vehicles (UAVs) or drones have become increasingly 

popular in a variety of fields. As a result, more than 10,000 commercial drones will be 

operating over the next ten years [3]. This is mostly owing to their cost and budget 

benefits over commercial helicopters [80, 81]. Furthermore, technical innovation 

allows for simple manipulations using cellphones to fly mini-drones rather than 

utilizing remote controls.  

UAVs rely on GPS receivers for the safety of return-to-home missions during 

medium to long-distance flights. The GPS radio frequency connection, known as the 

L1 channel, is used for civilian UAV applications [56]. However, these signals are 

unencrypted, making them subject to GPS jamming and spoofing. In GPS spoofing 

attacks, a malicious user can transmit counterfeit GPS signals in this attack and can 

change the UAV's flight without being noticed. A successful GPS spoofing assault can 

inflict significant material damage as well as human injury. 

Several approaches for detecting GPS attacks have been proposed. However, 

some of these technologies are inefficient since they are unreliable and have low 

accuracy, detection probability, false alarm, and misdetection. Moreover, additional 

hardware and protocol adjustments are required to use these solutions. 

To address these problems, this thesis provides a comparison based on 
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supervised machine learning techniques to detect GPS spoofing attacks [2]. In Chapter 

2, Global Positioning Systems and attacks against these systems were reviewed. 

Moreover, the advantages and limitations of cutting-edge security systems were also 

evaluated. It was demonstrated that the existing strategies for the security of UAV 

systems have various issues.  

In Chapter 3, the approaches for building attack scenarios and training datasets 

were detailed. In this thesis, we used a dataset which is implemented in [56]. Real-time 

experiments were conducted to collect a dataset. Several features are retrieved from the 

data based on three types of attacks, including simplistic, intermediate, and 

sophisticated. In addition, feature selection techniques, namely Mutual information and 

Spearman correlation were used to improve the quality of the dataset. Moreover, two 

hyperparameter optimization techniques, namely grid search and genetic algorithm 

were implemented to determine the optimal hyperparameters for each model.  

In Chapter 4, the performance of the two different machine learning categories, 

strong and weak learners, was analyzed. For the evaluation, four main metrics were 

used, namely probability of detection, probability of misdetection, probability of false 

alarm, and accuracy. These metrics are effective for the evaluation and selection of the 

most suitable model to detect GPS spoofing attacks. In addition to these metrics, three 

others were used that are related to the size, weight, and power constraints. These 

include processing time, prediction time for each instance, and memory size.  

According to the results, a strong learner classifier (stacking) achieves the best 

results in terms of accuracy, probability of misdetection, and false alarm are achieved, which 

are 95.43%, 0.36%, and 0.03%, respectively. In contrast, the weak learner classifier (the 



55 
 

GNB model) achieves better results in terms of the probability of detection, which is equal 

to 99.80%. In addition, according to the comparison results, the MLNB algorithm obtains a 

0.4s processing time, the BNB algorithm obtains 0.003s, and the GPNB algorithm obtains a 

170.2MB memory size, which is considered the lowest and best results among all ML 

classifiers implemented in this study.  

In conclusion, strong learner classifiers outperform weak learners in terms of the 

main evaluation metrics, namely accuracy, misdetection probability, and false alarm 

probability, while weak learner classifiers obtain the best results in terms of the metrics to 

target size, weight, and power limitations. To conclude, we can state both detection 

algorithm categories provide good results in detecting GPS spoofing attacks on UAVs. 

However, there are still several unresolved issues with the security of UAVs that have 

to be addressed with acceptable approaches.  

One promising research direction is the implementation of online unsupervised 

machine learning techniques, which can categorize and train unlabeled data. A potential 

research area in this respect is to conduct a comparative analysis to investigate the 

performance of deep learning algorithms to identify the GPS spoofing attacks targeting 

UAVs. Another area of future study is to explore and create countermeasure techniques 

after an attack has been identified. 
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