
University of North Dakota University of North Dakota

UND Scholarly Commons UND Scholarly Commons

Computer Science Faculty Publications Department of Computer Science

2019

Toward the Design and Implementation of Traceability Toward the Design and Implementation of Traceability

Engineering Tool Support Engineering Tool Support

Subik Pokharel

Hassan Reza
University of North Dakota, hassan.reza@UND.edu

Follow this and additional works at: https://commons.und.edu/cs-fac

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Subik Pokharel and Hassan Reza. "Toward the Design and Implementation of Traceability Engineering
Tool Support" (2019). Computer Science Faculty Publications. 28.
https://commons.und.edu/cs-fac/28

This Article is brought to you for free and open access by the Department of Computer Science at UND Scholarly
Commons. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized
administrator of UND Scholarly Commons. For more information, please contact und.commons@library.und.edu.

https://commons.und.edu/
https://commons.und.edu/cs-fac
https://commons.und.edu/cs
https://commons.und.edu/cs-fac?utm_source=commons.und.edu%2Fcs-fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=commons.und.edu%2Fcs-fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.und.edu/cs-fac/28?utm_source=commons.und.edu%2Fcs-fac%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:und.commons@library.und.edu

Journal of Software Engineering and Applications, 2019, 12, 249-265
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2019.126015 Jun. 30, 2019 249 Journal of Software Engineering and Applications

Toward the Design and Implementation of
Traceability Engineering Tool Support

Subik Pokharel*, Hassan Reza

Department of Computer Science, University of North Dakota, Grand Forks, North Dakota, USA

Abstract
Requirements of a system keep on changing based on the need of stakehold-
ers or the system developers, making requirement engineering an important
aspect in software development. This develops a need for appropriate re-
quirement change management. The importance of requirements traceability
is defining relationships between the requirements and artefacts extracted by
the stakeholder during the software development life-cycle and gives vital in-
formation to encourage software understanding. In this paper, we have con-
centrated on developing a tool for requirement traceability that can be used to
extend the requirement elicitation and identification of system-wide qualities
using the notion of quality attribute scenarios to capture the non-functional
requirements. It allows us to link the functional and non-functional require-
ments of the system based on the quality attribute scenarios template pro-
posed by the Carnegie Mellon Software Engineering Institute (SEI). Apart from
this, the paper focuses on tracing the functional and non-functional require-
ments of the system using the concept of requirement traceability matrix.

Keywords
Requirement Engineering, Requirement Engineering Tool, Tool Support,
Quality Attributes, Requirement Traceability, Software Engineering

1. Introduction

The essential proportion of accomplishment of a software system is how much it
meets the goal for which it was developed [1]. Failure of a software system to
meet the needs of its users and its environment after it has been developed can
cause serious problems on both the development team and the stakeholders. The
development team must maintain the system and on the stakeholder’s side, it
may cost time and money for rework. Therefore, the teams developing these

How to cite this paper: Pokharel, S. and
Reza, H. (2019) Toward the Design and
Implementation of Traceability Engineer-
ing Tool Support. Journal of Software En-
gineering and Applications, 12, 249-265.
https://doi.org/10.4236/jsea.2019.126015

Received: January 26, 2019
Accepted: June 27, 2019
Published: June 30, 2019

Copyright © 2019 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2019.126015
http://www.scirp.org
https://orcid.org/0000-0002-7593-9624
https://doi.org/10.4236/jsea.2019.126015
http://creativecommons.org/licenses/by/4.0/

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 250 Journal of Software Engineering and Applications

software products must perform a rigorous risk analysis to distinguish possibly
dangerous conditions, and their contributing factors before launching, or during
the development of the software system [2]. Therefore, to design and develop
any software system, requirement engineering assumes an essential job as it por-
trays the functional and non-functional requirements of the system software [3].
As crucial component of a software system, requirement engineering is a cyclic
process of finding the software requirements, by recognizing the stakeholders
and their needs and archiving these needs in a form that is manageable for anal-
ysis, correspondence, and resulting execution [1] [3].

The process of requirement engineering revolves around five main activities
[4] [5]. Domain understanding means getting a decent comprehension of the
space in which the issue is established, and what the underlying foundations of
the issue are. Requirement elicitation is the activity of finding competitor prere-
quisites and presumptions that will shape the software to-be, founded on the
shortcomings of the present software as they rise up out of area understanding.
Requirement evaluation and negotiation deal with making educated choices
about issues raised during the elicitation procedure. Requirement specifications
deal with the thorough displaying of prerequisites, to give formal definitions to
different parts of the software. Finally, verification and validation are concerned
with checking the prerequisites record for consistency, culmination and preci-
sion of the system. The challenges faced during the research by the requirement
engineering are distinguishable from those faced by the software engineers since
requirements remain principally in the problem space whereas other software
requirements reside basically in the solution space [1] [6]. Therefore, the devel-
opment team faces several inherent challenges. Stakeholders might be from var-
ious fields and may shift and strife in objectives contingent upon their points of
view of the environment they perform their tasks [1].

The types of requirements we are concerned with are the functional and
non-functional requirements. Functional requirements deal with the functional-
ity of a system and specifies what the system should perform under specified
conditions [7] [8]. Some of the examples of the functional requirements are
business rules, authentication and authorization levels, external interfaces, ad-
ministrative functions, etc. These requirements depend on the type of software
users are interested in and the nature of the environment where the software is
expected to be deployed [8]. The functional system requirements of a software
should be able to describe the system services in detail. A non-functional re-
quirement defines how the system performs certain functionality under specified
conditions [9] [10]. An example of this kind of requirement can be, the reload-
ing feature of a web-page which should be performed within some fraction of a
second. Non-functional requirements are referred to as the requirements ending
with the string -ility or -ity or -ness [11] [12]. These include usability, modifia-
bility, traceability, scalability, security, robustness and so on [13] [14].

The work presented in this paper is the continuation of our previous work [3]

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 251 Journal of Software Engineering and Applications

[15] [16] which talks about the development of a requirement engineering tool
and captures the requirements of a system. The key contribution of this paper is
to implement the traceability between the requirements that were introduced in
our previous work. The tool developed can be used to stimulate the domain un-
derstanding, and requirement elicitation and specification process for system
qualities [3]. We have utilized the quality attributes template proposed by the
Carnegie Mellons SEI, which helps the system architects and designers for the
development of the system. In the next sections, we will go in detail about the
traceability of requirements, followed by some related works and finally some
details about the developed requirement engineering tool and the traceability
between the requirements that are linked with one another.

2. Background

Computer systems are utilized as a part of numerous critical applications where
a failure can have great consequences. Creating deliberate strategies to relate the
software quality attributes of a system to the architecture of the system gives a
sound premise to settling on target choices. This enables decisions for plan tra-
deoffs and empowers designers to make sensibly exact expectations about a sys-
tem’s attributes that are clear from predisposition, and shrouded presumptions
[9]. Quality attributes give a strategy to examining a systems architecture against
various critical quality attributes, for example, availability, performance, testabil-
ity, usability, security, scalability, and modifiability that are gained from mission
or business objectives [5]. Quality attributes drive the design of a system archi-
tecture.

Traceability between the development requirements and artefacts play a major
role in the development of a system, for example, system validation, change im-
pact analysis, and regulation compliance. The importance of requirements tra-
ceability is defining and using relationships between the requirements and arte-
facts extracted by the stakeholder during the software development lifecycle and
gives vital information to encourage software understanding [17]. Traceability
can be characterized as how much a relationship can be built up between at least
two items of the developed requirements, particularly items having an antece-
dent successor or ace subordinate relationship to each other [18]. Tracing of re-
quirements for software/system development can be focused at various view-
points, such as system/software verification and validation, change administra-
tion, and administrative consistency. The significance of traceability has been
broadly perceived, and it is training recommended in numerous progression
standards [19]. The research on the field of traceability has significantly centered
around prerequisites traceability, going for concentrate how to portray and take
after the life of a prerequisite, in both forward and in reverse directions.

Traceability of requirement is characterized as the capacity to portray and
pursue the life of a requirement, in both a forward and reverse way [18] [20], for
example, stakeholder’s needs, building segments, requirements, or source code.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 252 Journal of Software Engineering and Applications

Traceability of requirement is viewed as essential for setting and keeping up
consistency between heterogeneous models utilized all through the advancement
life-cycle. Every now and again detailed advantages of traceability of require-
ment incorporate elements such as the assistance of correspondence, bolster for
the combination of changes, the conservation of plan learning, quality confirma-
tion, and the counteractive action of false impressions. Tracing of information
or requirements promotes developed system understanding and helps designers
in managing basic issues in system advancement and support. For instance, arc-
hitects may be occupied with the inceptions of a necessity (e.g., the stakeholder’s
requirement) or the justification for a specific design decision. They may like-
wise need to know how precisely functional or non-functional necessities are
figured out in the system, or if a usage totally understands a given arrangement
of requirements [17].

During the maintenance of the system, traceability of requirement is likewise
vital for examining the effect of new requirements or changes to existing ones. It
regularly experiences the huge exertion and many-sided quality of making and
looking after follows, in spite this fact, procedures for producing and approving
traceability of requirement are accessible. This outcome in invalid or inadequate
trace data which cannot bolster engineers or architects in certifiable issues.

3. Related Works

Visure quality analyzer launched by Visual Requirements S.L. is one of the ap-
proaches to handle requirement engineering. This tool permits the user to de-
fine, measure, improve and manage the quality of each requirement, along with
entire requirement specifications [21]. To generate the complete requirements
for a project, the tool uses a user-customized process-meta model. This model
captures all the processes required during the development stage in a diagram-
matical fashion and links the components required for the design to one another.

Another tool is inteGREAT (Modern Requirements 4TFS), whose model at-
tempts to “provide all partners with a typical perspective of prerequisites,
prompting more exact, steady, and brought together fruition of projects over
time.” [22]. inteGREAT’s answer gives determinability of necessities through
“various prerequisites measurements” and traceability of necessity trait history,
displaying of utilization cases, and reusability of past data sources. inteGREAT
works for the most part through Microsoft Office items, enabling clients to pro-
duce necessities and exchange them to the inteGREAT stage. Some companies
like Bright Green Projects, Leap SE, PACE, etc. provide services with different
tools that middle around boundlessly unique inclinations and product configu-
ration details [23].

Reza et al. [24] talk about a non-functional requirement tool utilizing the sce-
nario-based approach. Based on the different styles, tactics, and quality of the
system requirements, this tool allows its users to decide the architectural style for
a system. The main limitation of this tool is that it only captures the requirement

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 253 Journal of Software Engineering and Applications

but lacks the traceability between the requirements.
Quality attributes talked about in planning stages will, if effectively met, rein-

force software development by giving designed system requirements to enhance
the code lucidness, dependability, and more. Non-functional requirements in-
corporate modularity, security, adaptation to internal failure, and that’s only the
tip of the iceberg. These parameters don’t really give usefulness to the developed
system or software, yet careful quality in their advancement can manage the way
the system may be changed, or even how it may respond in case of a breakdown.

The importance of non-functional requirements and criticality of the quality
of their solutions increases while considering different software. Inability to ef-
fectively execute software that is both profoundly accessible and fault tolerant
cannot be permitted in these situations. Inability to actualize safety efforts in
software administering flying vessels can abandon it open to attacks or external
control. An absence of exactness in the source-code can along these lines influ-
ence the accuracy of software designed to explore airship or shuttle, causing the
flight direction of the vessel to be changed suddenly, similarly as with the Ariane
5 [25].

Egyed et al. [26] have presented a tool support technique using a vid-
eo-on-demand system which facilitates requirement tracing by creating trace
data automatically, and later show that it can be used in various engineering
fields to solve requirement traceability problems. The key contribution of the
work is that it decreases the huge exertion and unpredictability of procuring
traces via automatically getting trace information from a little arrangement of
clear speculated traces. This prompts more complete trace and the maximum
capacity of requirement traceability can be exploited.

Pohl et al. [27] present an environment which enables the requirement
pre-traceability during the development phase of the system. The work pre-
sented here is the continuation of their previous work, where in the current
work they have re-implemented the work and address the scalability problems
faced when running in the real application. Figure 1 shows the main contribu-
tion of their work. In Figure 1, we can see the actors involved during the origin
of the requirements for a system. This phase is called the requirement
pre-traceability as not all requirements generated by the actors are involved in
the system. Once the requirements are generated, the next step is the design and
implementation of the requirements. Since this step is carried out by the devel-
opment team, some requirements may be ignored due to conflicts or some may
be added to the system. So, the requirement post-traceability is carried out in
this step.

Cuddeback et al. [28] have introduced an experimental framework where they
study human interactions with decision support systems. The work focuses on a
group of people making decisions over a support software and was carried out at
different universities. The participants analyzed the requirement traceability
matrix for a Java code formatted program and based on the result, the authors

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 254 Journal of Software Engineering and Applications

Figure 1. Generation of requirements during a system development [27].

presented the computation for accuracy of human interaction on automated re-
quirement traceability. The automated tracing tool used is RETRO (REquire-
ments TRacing On-target) with some modification in the back-end.

Gregoriades et al. [29] represent a tool (SRA) to support non-functional re-
quirement in complex sociotechnical system. The tool proposed uses scena-
rio-based testing to enhance the dependability and operational execution re-
quirements for a system. The author of the paper [30] showed the motivations
and concerns among broad scale circumstances, and a method named LSS,
which uses robotized and semi-robotized systems to the portrayal, support and
correspondence, with the usage of far-reaching computation circumstances in
the field of requirement engineering.

Bashir et al. [31] give a survey of the existing techniques in the current do-
main of traceability. They evaluated the current traceability techniques and
found that the existing techniques are inadequate and may cause problems while
managing the changes in the system requirements. In the paper, the authors ca-
tegorized the current techniques into three classes based on the utility of the
techniques and argued that they can be combined and used for removing the
shortcomings of one another to yield the highest benefits from requirement tra-
ceability. The first class incorporates the techniques with the system level scope,
the second incorporates the software level scope and the third is a weak class that
incorporates the software level scope.

4. Quality Tool and Its Capabilities

To implement a requirement for a system, multiple people from different fields
may be involved. These people may be the stakeholders, developers, engineers,

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 255 Journal of Software Engineering and Applications

architects, and so on, making it a difficult job as all the people involved are from
multidisciplinary fields. The stakeholders set the functional requirement of the
system but do not understand the approach to solve the problem. The members
of the development team have knowledge about the tools used to develop and
the techniques used for developing the system. Since we see a gap between the
stakeholders and the development team, the author is needed to communicate
between them, who creates a statement between them. Since the requirements of a
system are changing from time to time as required by the stakeholders, there is a
need for it to be tracked so that it does not affect the overall system by any means.
To encourage the effective interchanges among the distinctive stakeholders, we
require a tool which can monitor all functional and non-functional requirements
with their connection to one another.

In our previous work [3], we developed a model-based requirement engineer-
ing tool that captured the functional and non-functional requirements of the
system. The major work presented in the tool was capturing the non-functional
requirements of the system using the quality attribute scenario template which
was originally proposed by the Carnegie Mellon Software Engineering Institute
(SEI) [5]. The capabilities of the tool presented in [3], was capturing the func-
tional and non-functional requirements of the system along with the linking
between them. The limitation of the tool [3] is that it just captures the require-
ments and if along the development phase of a system, if any of the requirements
are changed, the user of the tool must go through all the requirements of the
system and look for any major changes. In this paper, we add on to the previous
work and introduce the traceability features. With this feature, if there are any
changes to the requirements of a system, it gives the user a notification on the
things they might want to investigate or make changes to.

The users of the software requirement tool developed maybe a member from
the development team or the system architect. It allows the users to perform
create, read, update and delete (CRUD) operations for the functional require-
ments, nonfunctional requirements and the system constraints. It also allows the
users to link the requirements with one another. The links can be between the
functional and non-functional or functional to functional or non-functional to
non-functional requirements, which is shown in the Figure 2. This relation
might vary from one-to-one up to many-to-many depending on the type of

Figure 2. Relationship between the requirements in the system.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 256 Journal of Software Engineering and Applications

requirements. The system constraints for a project consist of the software re-
quirements and the hardware requirements.

The detail of the schema definition developed from the entity relationship
model is shown in Figure 3. It shows the different classes composed inside the
tool. The class project contains attributes regarding the requirements captured
into the tool. The class functional requirement captures the functional require-
ments of the project and similarly the class nonfunctional requirement captures
the non-functional requirement of the project. To capture the non-functional
requirements, we have used the quality attribute scenarios template proposed by
SEI. As any requirements implemented into the system must be related to one of
the projects, therefore both functional and non-functional requirement table
stores a foreign key of the project id.

As discussed, and shown in Figure 2, the requirements may be linked with
one another or to itself. To keep track of these links, we have implemented three
relation classes. These classes store the ids of the requirements that are linked with
one another along with the project id that they belong to or they are linked in. The
details of how we capture the requirements in the tool are described below.

Figure 4 shows the window for creating project. It allows the user to insert the
name of the project along with its start date, end date, and description of the

Figure 3. Schema definition of the database.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 257 Journal of Software Engineering and Applications

project. After inserting these details, the user can then enter the functional re-
quirements, the non-functional requirements and the system constraints present
in the left side of the window.

We have used the quality attribute scenarios to add the non-functional re-
quirements for a system. The user can either enter or update the quality attributes
such as availability, security, modifiability, performance, testability, and usability for
a project using this template, which is shown in Figure 5. The source captures if the

Figure 4. Template for creating and managing projects.

Figure 5. Template for creating and updating non-functional requirement.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 258 Journal of Software Engineering and Applications

requirement is internal or external to the system. The user can then enter the
other descriptions as per the project referring to the quality attribute scenario
template description [2]. The names for the different quality attributes are gen-
erated uniquely by the system and can be edited or deleted at any time by the
user. If there is a relation between the other requirements, the user is notified
about it and the user must check the integrity of data and remove its relationship
with other requirements before removing it completely from the system.

Figure 6 shows the window for the functional requirements, where the user is
prompt to enter the name, description, references on file that are related to this
requirement, prerequisite before implementing it, and the relation with
non-functional requirements. The functional requirement can be linked to
another functional requirement. Also, in case of functional requirements, the
process of edit and delete is the same as that of the non-functional requirements
discussed and shown above.

Next the user can capture the system constraints, which is also an important
aspect of a project along with the functional and non-functional requirements.
The window for capturing the system constraints is shown in Figure 7, where
the user enters the hardware, software and network requirement of the project.
These are not related to any of the requirements but are linked to only projects, as
the system constraints for a project is fixed and is independent to the requirements

Figure 6. Template for creating and updating functional requirement.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 259 Journal of Software Engineering and Applications

changes within a project.
The user can view the list of ongoing and completed projects from the dash-

board of the tool, shown in Figure 8. This window allows the user to view, edit
and delete the projects. On clicking the view button, the user will be able to

Figure 7. Template for creating and updating system constraints.

Figure 8. Dashboard for software requirement tool.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 260 Journal of Software Engineering and Applications

find the details of the project along with the list of functional requirements,
non-functional requirements and system constraints associated with it. Also, the
user can click on the individual requirements to find the details about them.
When the user clicks the delete button, the project is deleted with the confirm
button.

If the requirements inside the project are linked to some other projects, then
the user must delete the relationship before completely deleting the project. The
other feature is the edit, where the user can edit the project and the requirements
inside them. When the user makes changes to any of the requirements and saves
it, the tool notifies the user about the other requirements that they might want to
change before proceeding as the other requirements are connected to each other.
This is an important task as it captures the traceability between the requirements
as a change in a requirement may affect others due to the dependability between
them. To trace the dependability between the requirements when they are
changed, we use the requirement traceability matrix. It helps us to keep track of
the progress as well as ensures that each requirement is tested thoroughly and
helps in determining the changes to be made in the requirements along the way.

Figure 9 shows a requirement traceability matrix of a project at an instance of
change, which generated by scanning the database and finding the links between
the requirements inside that is being changed. The requirements labeled FR
(1∙∙∙n) represent the functional requirements for the project, the requirements
labeled NFR (1∙∙∙m) represent the non-functional requirements for the project,
and the symbol “x” represents the links between the requirements inside the
project. This requirement traceability matrix is generated due to the change in
one of the requirements inside a project. Once this is generated within the sys-
tem, the tool then notifies the user about the relationship between the require-
ments. The user then has an option to either ignore the changes or make addi-
tional changes to the linked requirements. This process continues until the
changes are made to the linked requirements or till, they are ignored. Once the
dependencies are resolved, then the changes to the project are committed.

Figure 10 shows the alert dialogue box shown to the user when they decide to
change any existing requirements in an existing project. The alert window shows
the requirements (i.e. functional and non-functional) that are currently linked to
the requirement being changed. The tool allows the users to either ignore

Figure 9. An instance of a requirement traceability matrix (RTM).

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 261 Journal of Software Engineering and Applications

Figure 10. Notification on changing or updating a requirement.

or modify the linked requirements. If the user decides to ignore the require-
ments, that implies that the current change does not impact on that specific re-
quirement and removes the link from the traceability matrix shown in Figure 9.

If the user decides to modify the linked requirement, the user is directed to a
window based on the requirement (shown in Figure 5 and Figure 6) and can
make changes on them. Once the requirement is changed and the user clicks
save button, the user is redirected to the alert window (i.e. Figure 10) where the
ignored and modified requirements are removed. The user is only allowed to
save the changes made on a requirement after they either ignore or modify all
the linked requirements. By doing so, we achieve the traceability of the require-
ments in the developed tool.

The requirement engineering tool developed, helps the different stakeholders
and the development team to team up on each progression of the project, and
helps to not only capture the requirements but also to keep track of all the
changes that are made or will be made into the system. Looking after relation-
ship between quality properties and requirements of a project is dreary occupa-
tion for the author. This tool not only allows the user to capture the require-
ments of the system but also allows establishing a link between the functional
and non-functional requirements allowing the members involved a detailed pic-
ture of the requirements.

5. Discussion

Requirement Engineering is one of the critical and challenging fields of study as

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 262 Journal of Software Engineering and Applications

it keeps on changing as per the stakeholders and the development team
throughout the system development process. Failure of a system that has been
deployed and not meets its requirement needs is a hassle for both the stakehold-
ers and the developers involved. As discussed in the previous section, the devel-
oped tool captures the requirement for a system and based on it, the user can
make modification to it. The tool allows the user to capture both functional and
non-functional requirement of a system before starting the development phase.
To develop this tool, we have used JAVA, PHP, JavaScript, and HTML as the
front end and MySQL as the relational database and can be used in any operat-
ing system environment.

The appropriate users for the tool would be knowledgeable of knowing the
complete process of requirement engineering. The tool not only focus on the
software developed in the market but also the safety critical systems, complex
spacecrafts, and autonomous systems which on failure may even hamper people
lives. The traceability of the tool helps the user to know the effects that might
cause due to an addition or modification of a requirement in the system, which
in turn notifies the user beforehand or during the development phase.

6. Conclusion and Future Work

In this paper, we have presented the process of designing and implementation of
a requirement engineering tool which has the capabilities to capture the re-
quirements, link the requirements to one another and let the user make changes
to the requirements based on their demand. We have used the database ap-
proach to store the requirements and based on that, applied the concept of tra-
ceability matrix for capturing the traces between the requirements. The devel-
oped tool tries to bridge the problem of continuously changing software re-
quirements. The major applicability of this tool is in the fields of software engi-
neering, software architects and for the unmanned aircraft systems, where a mi-
nor change in a system can reflect a major impact on the overall project and lives
of the people.

There are different approaches currently present in this field whereas this tool
provides the user with the feature to maintain a one-to-one relationship between
the requirements. In future, to improve this tool we can use the concepts of ar-
tificial intelligence such as machine learning and deep learning for making it
easier for the users to handle and track the traceability of the requirements with
detection of failure mechanisms.

Acknowledgements

We would like to thank Sanjaya Pandey of the University of North Dakota and
Graciela Vargas Roque of the University of California at Davis for helpful sugges-
tions and comments during the development of the tool. Furthermore, we would
also like to acknowledge all the members at the University of North Dakota who
were and are engaged in the area related to the work presented in this paper.

https://doi.org/10.4236/jsea.2019.126015

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 263 Journal of Software Engineering and Applications

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Nuseibeh, B. and Easterbrook, S. (2000) Requirements Engineering: A Roadmap.

ICSE’00 Proceedings of the Conference on the Future of Software Engineering, Li-
merick, Ireland, 4-11 June 2000, 35-46. https://doi.org/10.1145/336512.336523

[2] Mader, P., Jones, P.L., Zhang, Y. and Cleland-Huang, J. (2013) Strategic Traceability
for Safety-Critical Projects. IEEE Software, 30, 58-66.
https://doi.org/10.1109/MS.2013.60

[3] Pandey, S., Pokharel, S. and Hassan, R. (2018) Towards Cyber-Physical Require-
ment Engineering Elicitation Tool Support. 2018 World Automation Congress
(WAC), Stevenson, WA, 3-6 June 2018, 1-5.
https://doi.org/10.23919/WAC.2018.8430399

[4] Ward, J. and Daniel, E. (2006) Benefits Management: Delivering Value from IS & IT
Investments. John Wiley & Sons, Chichester.

[5] Barbacci, M.R., Ellison, R., Lattanze, A.J., Stafford, J.A., Weinstock, C.B. and Wood,
W.G. (2002) Quality Attribute Workshops. Technical Report, CARNEGIE-MELLON
UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST.
https://doi.org/10.21236/ADA405790

[6] Cheng, B.H.C. and Atlee, J.M. (2007) Research Directions in Requirements Engi-
neering. 2007 Future of Software Engineering, Minneapolis, MN, 23-25 May 2007,
285-303. https://doi.org/10.1109/FOSE.2007.17

[7] Kotonya, G. and Sommerville, I. (1998) Requirements Engineering: Processes and
Techniques. Wiley Publishing, Hoboken, NJ.

[8] Van Lamsweerde, A. (2009) Requirements Engineering: From System Goals to UMl
Models to Software. John Wiley & Sons, Chichester.

[9] Barbacci, M., Klein, M.H., Longstaff, T.A. and Weinstock, C.B. (1995) Quality
Attributes. Technical Report, CARNEGIE-MELLON UNIV PITTSBURGH PA
SOFTWARE ENGINEERING INST. https://doi.org/10.21236/ADA307888

[10] Chung, L., Nixon, B.A., Yu, E. and Mylopoulos, J. (2012) Nonfunctional Require-
ments in Software Engineering. Springer Science & Business Media, Berlin.

[11] Chung, L. and do Prado Leite, J.C.S. (2009) On Non-Functional Requirements in
Software Engineering. In: Borgida, A.T., Chaudhri, V., Giorgini, P. and Yu, E., Eds.,
Conceptual Modeling: Foundations and applications, Springer, Berlin, 363-379.
https://doi.org/10.1007/978-3-642-02463-4_19

[12] Tang, A. and Van Vliet, H. (2009) Modeling Constraints Improves Software Archi-
tecture Design Reasoning. 2009 Joint Working IEEE/IFIP Conference on Software
Architecture & European Conference on Software Architecture, Cambridge, UK,
14-17 September 2009, 253-256. https://doi.org/10.1109/WICSA.2009.5290813

[13] Bass, L., Clements, P. and Kazman, R. (2003) Software Architecture in Practice. Ad-
dison-Wesley Professional, Boston, MA.

[14] O’Brien, L., Merson, P. and Bass, L. (2007) Quality Attributes for Service-Oriented
Architectures. Proceedings of the International Workshop on Systems Development
in SOA Environments (SDSOA'07: ICSE Workshops 2007), Minneapolis, MN,
20-26 May 2007, 3. https://doi.org/10.1109/SDSOA.2007.10

https://doi.org/10.4236/jsea.2019.126015
https://doi.org/10.1145/336512.336523
https://doi.org/10.1109/MS.2013.60
https://doi.org/10.23919/WAC.2018.8430399
https://doi.org/10.21236/ADA405790
https://doi.org/10.1109/FOSE.2007.17
https://doi.org/10.21236/ADA307888
https://doi.org/10.1007/978-3-642-02463-4_19
https://doi.org/10.1109/WICSA.2009.5290813
https://doi.org/10.1109/SDSOA.2007.10

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 264 Journal of Software Engineering and Applications

[15] Reza, H., Korvald, C., Straub, J., Hubber, J., Alexander, N. and Chawla, A. (2016)
Toward Requirements Engineering of Cyber-Physical Systems: Modeling CubeSat.
2016 IEEE Aerospace Conference, Big Sky, MT, 5-12 March 2016, 1-13.
https://doi.org/10.1109/AERO.2016.7500897

[16] Reza, H., Sehgal, R., Straub, J. and Alexander, N. (2017) Toward Model-Based Re-
quirement Engineering Tool Support. 2017 IEEE Aerospace Conference, Big Sky,
MT, 4-11 March 2017, 1-10. https://doi.org/10.1109/AERO.2017.7943647

[17] Egyed, A. and Grunbacher, P. (2005) Supporting Software Understanding with Au-
tomated Requirements Traceability. International Journal of Software Engineering
and Knowledge Engineering, 15, 783-810.
https://doi.org/10.1142/S0218194005002464

[18] Nair, S., De La Vara, J.L. and Sen, S. (2013) A Review of Traceability Research at the
Requirements Engineering Conferencere@21. 2013 21st IEEE International Require-
ments Engineering Conference (RE), Rio de Janeiro, 15-19 July 2013, 222-229.
https://doi.org/10.1109/RE.2013.6636722

[19] Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grunbacher, P.,
Dekhtyar, A., Antoniol, G., Maletic, J. and Mader, P. (2012) Traceability Funda-
mentals. In: Cleland-Huang, J., Gotel, O. and Zisman, A., Eds., Software and Sys-
tems Traceability, Springer, Berlin, 3-22.
https://doi.org/10.1007/978-1-4471-2239-5_1

[20] Gotel, O.C.Z and Finkelstein, C.W. (1994) An Analysis of the Requirements Tra-
ceability Problem. Proceedings of IEEE International Conference on Requirements
Engineering, Colorado Springs, CO, 18-22 April 1994, 94-101.

[21] (2018) Your Requirements Engineering Tool. Requirements Management Software.
Online. http://www.visuresolutions.com/requirementsengineering.

[22] (2018) Modern Requirements. Requirements Definition and Management. Online.
http://www.modernrequirements.com/integreat/.

[23] de Gea, J.M.C., Nicolás, J., Fernández Alemán, J.L., Toval, A., Ebert, C. and Viz-
caíno, A. (2012) Requirements Engineering Tools: Capabilities, Survey and Assess-
ment. Information and Software Technology, 54, 1142-1157.
https://doi.org/10.1016/j.infsof.2012.04.005

[24] Reza, H., Jurgens, D., White, J., Anderson, J. and Peterson, J. (2005) An Architec-
tural Design Selection Tool Based on Design Tactics, Scenarios and Nonfunctional
Requirements. 2005 IEEE International Conference on Electro Information Tech-
nology, Lincoln, NE, 22-25 May 2005, 6.

[25] dos Santos Romani, M.A., Lahoz, C.H.N. and Yano, E.T. (2010) Identifying Depen-
dability Requirements for Space Software Systems. Journal of Aerospace Technolo-
gy and Management, 2, 287-300. https://doi.org/10.5028/jatm.2010.02037810

[26] Egyed, A. and Grunbacher, P. (2002) Automating Requirements Traceability:
Beyond the Record & Replay Paradigm. Proceedings of the 17th IEEE International
Conference on Automated Software Engineering, Edinburgh, UK, 23-27 September
2002, 163-171.

[27] Pohl, K. (1996) PRO-ART: Enabling Requirements Pre-Traceability. Proceedings of
the Second International Conference on Requirements Engineering, Colorado
Springs, CO, 15-18 April 1996, 76-84.

[28] David, C., Dekhtyar, A. and Hayes, J. (2010) Automated Requirements Traceability:
The Study of Human Analysts. 2010 18th IEEE International Requirements Engi-
neering Conference, Sydney, 27 September-1 October 2010, 231-240.
https://doi.org/10.1109/RE.2010.35

https://doi.org/10.4236/jsea.2019.126015
https://doi.org/10.1109/AERO.2016.7500897
https://doi.org/10.1109/AERO.2017.7943647
https://doi.org/10.1142/S0218194005002464
https://doi.org/10.1109/RE.2013.6636722
https://doi.org/10.1007/978-1-4471-2239-5_1
http://www.visuresolutions.com/requirementsengineering
http://www.modernrequirements.com/integreat/
https://doi.org/10.1016/j.infsof.2012.04.005
https://doi.org/10.5028/jatm.2010.02037810
https://doi.org/10.1109/RE.2010.35

S. Pokharel, H. Reza

DOI: 10.4236/jsea.2019.126015 265 Journal of Software Engineering and Applications

[29] Gregoriades, A. and Sutcliffe, A. (2005) Scenario-Based Assessment of Nonfunctional
Requirements. IEEE Transactions on Software Engineering, 31, 392-409.
https://doi.org/10.1109/TSE.2005.59

[30] Hall, R.J. (2008) A Method and Tools for Large Scale Scenarios. Automated Soft-
ware Engineering, 15, 113-148. https://doi.org/10.1007/s10515-008-0026-8

[31] Bashir, M.F. and Qadir, M.A. (2006) Traceability Techniques: A Critical Study. 2006
IEEE International Multitopic Conference, Islamabad, Pakistan, 23-24 December,
265-268.

https://doi.org/10.4236/jsea.2019.126015
https://doi.org/10.1109/TSE.2005.59
https://doi.org/10.1007/s10515-008-0026-8

	Toward the Design and Implementation of Traceability Engineering Tool Support
	Recommended Citation

	Toward the Design and Implementation of Traceability Engineering Tool Support
	Abstract
	Keywords
	1. Introduction
	2. Background
	3. Related Works
	4. Quality Tool and Its Capabilities
	5. Discussion
	6. Conclusion and Future Work
	Acknowledgements
	Conflicts of Interest
	References

