New Jersey Institute of Technology Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

4-30-1964

The purification, analysis and growth of single crystals of organic semiconductors

Melvin Leonard Druin New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemical Engineering Commons

Recommended Citation

Druin, Melvin Leonard, "The purification, analysis and growth of single crystals of organic semiconductors" (1964). *Theses*. 2104. https://digitalcommons.njit.edu/theses/2104

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

THE PURIFICATION, ANALYSIS AND GROWTH OF SINGLE CRYSTALS OF ORGANIC SEMICONDUCTORS

BY

GELVIN L. DRUIN

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEWARK COLLEGE OF ENGLHEERING

This thesis is to be used only with due regard to the rights of the author. Dibliographical references may be noted, but passages must not be copied without permission of the College and without credit being given in subsequent written or published work.

Newark, Haw Jorsey

ADSTRACT

The purpose of this investigation was to design and construct a furnace for growing large single crystale of organic compounds by slow crystallization from the molt by the Bridgman technique. The crystals obtained by this furnace will be used in a later investigation of the intrinsic electrical and optical properties of organic semiconductors.

The methods described have been used with success to produce large single crystals of anthracene and ethyl-paminobenzoate with diameters of 1/2 inch.

The most promising methods of purification of anthracene, which were chepical synthesis, washing, recrystallization from colvents, sublimation, dimerization, co-distallation and zone refining have been investigated. The relative merits of each method were explored and discussed with particular attention to co-distillation which is considered to be the most applicable. Anthracene of higher purity than commercial zone refined anthracene was prepared and is believed to be adequate for crystal growth and subsequent electrical measurements.

A very simple fluorescence technique for quantitative

analysis of traces of naphthacene in anthracene was developed which employs a colloidal suspension of the sample. Sensitivity approaching 0.1 ppm naphthacene in anthracene is readily obtainable. The method is convenient to use, involving only small samples and uncomplicated manipulative techniques. For rapid semiquantitative analysis, it provides a visible fluorescence color correlation with the level of impurity.

APPROVAL OF THESIS

FOR

DEPARTMENT OF CHERICAL ENGINEERING

NEWARK COLLEGE OF ENGINEERING

BY

FACULTY COMMITTE

APPROVED:

NEWARK, NEW JERSEY APRIL, 1964

ACKNOWLEDGEMENTS

The author acknowledges the advice, guidance and encouragement offered by Dr. S. I. Kreps during this investigation. The author thanks Dr. J. Bishop for advice on spectrofluorometry, as well as his permission to use the Farrand recording spectrofluorometer; Mr. B. Czorny for his recommendations in work on spectrofluorometry; Mr. H. Kemme for his assistance in work in differential thermal analysis; and Mr. C. Trushell for his drafting work.

The author acknowledges the support of this work extended by the Newark College of Engineering Research Foundation; and the encouragement and confidence extended by his wife, Earlyn and his parents. The author offers special thanks to Allison Jill Druin for her co-operation.

TABLE OF CONTENTS

	Pare No.
9T7T.R. PA (95	
	чи "à
	ja og Henrik Stra
APPROVAL PAGE	in the second se
ACKNOWLDDGERATET.	4
TABLE OF CONTENTS	an en S San ing
LIST OF FIGURES	
LIST OF TABLES	0
INTRODUCTION	ts. a,≟er
Organic Semiconductors	۲۹۰ ۲ میگ
Conductivity	1
Purity	<u>Ş</u>
Polycrystalline and Single Crystal Camples	
Purpose of Investigation	
Conductivity Studios of Anthraceno	L.
ANALYSIS OF ANTHRACEME-MAPHTMACEME MIXTURES BY FLUORESCENCE MEASUREMENTS	4.,
Experimental	
Apparatus	,
Reagonts	
Procedure	•
Proparation of Standard Samples	А
Colloidally Suspended Samples	

Clear Solution Samples	10
Results and Discussion	** 3 1 1 ** 1 ** 1 **
Semiquantitiative Evaluation of Results	0.5 Mg 4 5 45 gar
Quantitative Evaluation of Colloidal Spectra	
Comparison of Colloidal Suspension Spectra with Solution Spectra	n' j, tinj Nastan
Precision and Reproducibility	्य २०२३ इ.स. इ.स. इ.स.
PURIFICATION TECHNIQUES OF ANTHRACELE	
Synthesis of Anthracene	,
Washing	June .
Recrystallization	
Sublimation	ي منهية من
Dimerization	ي. تحريب عمد ا
Co-distillation.	- j. s. j.
Zone Refining	i sing Sang
Conclusions and Recommendations	90
ETHODS OF GROWING SINGLE CRYSTALS	
Sublimation	ار ا مار انو
Solution	, 2
Pelt	و منه مسلح تلمع
Bridgman Method	5,12
DESIGN CRITERIA	Cr. do warden
Tomporaturo Gradient within the Furnace	
Crystal Container	50

Material of Construction 50
Self-seeding
Secd Crystal
Convenience of Operation
Lowering Mechanism
Convenient Operation in Maintenance of the Furnace
DESCRIPTION OF THE FURNACE
Uppor Heating Zone
Lower Heating Zone
Bottom Section
Transito Plates
DESCRIPTION OF CRYSTAL CONTAINER
DESCRIPTION OF AUXILIARY EQUIPMENT
Crystal Container Lowering Mechanism 7
Temporature Controls
Thermocouples
DETERMINATION OF VERTICAL TEMPERATURE GRADIENT MAINTAINED IN THE FURNACE
CALIBRATION OF CRYSTAL CONTAINER LOWERING MECHANISM
PROCEDURE FOR GROWING SINGLE CRYSTALS
RESULTS OF GROWING SINCLE CRYSTALS
CONCLUSIONS AND RECOMPENDATIONS
BIBLIOGRAPHY

..

viii

LIST OF FIGMES

<u>Pinaro So</u> .		<u>Pace No</u> .
۳ بل	Typical Fluorescence Response Spectra of Anthracene Raphthacene Colloidal Suspensions	
2	Typical Fluorescence Response Spectra of Anthracene Esphthacene Isopropanol Solutions	en e
3	Intensity Ratio as a Function of Saphthacone Content in Anthracene for Colloidal Suspensions	al was about
ί. ζ.	Differential Intendity Ratic as a Function of Differential Haphthacene Content in Anthracene for Colloidal Suspensione	23
5	Comparison of Purification Techniques of Anthraceus (photograph)	2 8 4 2 8 1
Č.	Vacuum Cublimation Apparatus (photograph)	37
ry I	Co-Distillation Apparatus	5. 5.
	Cection I, Part A - The Upper Heating Mone of the Furnace	्र
Ş	Section I, Part B - The Upper Meating Some of the Furnace	
10	Section II, Part A - The Lover Heating Some of the Furnace	n ger Hussige
11	Section II, Part B - The Lower Heating Zone of the Furnace	a المراجع المراجع المراجع
12	Section III, - The Bottom Section of the Furnace	
13	Transito Platos for Furnaco	28 s
14	Crystal Container	لغني (2) النبي (2)
15	Crystal Container	

ix .

Pigure 10.

Page Ho.

1 6	Drive System for Lowering of Crystal Container	ema f
27	Drive System for Lowering of Crystal Container (photograph)	0°.
	Neating Elements and Controls of Furnace	Santa Santa
19	Furnace for the Growth of Single Crystals	بنام ج جو ²
20	Two Zone Bridgman Furnace (photograph)	
21	Temperature Gradient in Crystal Furnace	0
22	Calibration of Crystal Container Lowering Mechanism (LOW SETTING)	
23	Calibration of Crystal Container Lowering Mechanism (HIGH SETTING)	
24	Single Crystals (photograph)	100

LIST OF TABLES

<u>Teble No</u> .		Pare Ho.
1	Fluorescence of Colloidal Suspensions of Maphthacene and Anthracene	Ĵ.
2	Differential Intensity Ratio of Colloidal Suspensions of Maphthacene and Anthracene	19
3	Fluorescence of Isopropanel Solutions of Naphthacene and Anthracene	23
4	Comparison of Fluorescence Intensities and Ratio Variations with Constant Maphthacene Content in a Colloidal Suspension (.6 ppm)	25
5	Comparison of Fluorescence Intensities and Ratic Variations with Constant Naphthacene Content in a Colloidal Suspension (22.4 ppn)	20
б	Comparison of Fluorescence Intensities and Ratio Variations with Constant Maphthacene Content in a Colloidal Suspension (74.7 ppm)	25493 . 677
7	Comparison of Fluorescence Intensities and Ratio Variations with Constant Naphthacene Content in a Colloidal Suspension (291 ppm)	ette din Pari sust
ŝ	Deviations of Fluoresconce Intensities and Ratio from the Mean Experimental Value for Colloidal Suspensions of Maphthacene and Anthracene	30
9	Analytical Results of Colloidal Anthracone Samples	an a
10	Dimerization of Anthracene to Dianthracene	4. 6. 1 8. 1 8. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9. 1 9
11	Temperature Gradient and Fluctuations in Furnace	an a

.

12. 2. 7 .	
- 3 6 8 3 4 4 6 6 4	
	· · · · · · · · · · · · · · · · · · ·

•

Pare No.

12	Calibration of Crystal Container Lowering Nochanism (LON SETTING)	80 - 1, 10 - 1, 10 - 100 100 - 100 100
13	Calibration of Crystal Container Lowering Michanicm (HICH SETTING)	
14	Fluctuations of Lowering Speed	an and
15	Growing Single Crystals	

INTRODUCTION

Organic Semiconductors

Organic semiconductors can be defined as structures containing an appreciable number of carbon-carbon bonds and which have, in general, an electrical conductivity which is intermediate between that of metals and insulators (typically 10^{-20} to 10^2 ohm⁻¹ cm⁻¹). The conductivity increases, usually exponentially, with temperature. Four types of organic systems have exhibited semiconductor properties (4):

- (a) Simple molecules such as anthracene
- (b) Free radicals or free radical ions
- (c) Charge-transfer complexes (iodine-perylene)
- (d) Polymers (irradiation or pyrolysis)

<u>Conductivity.</u> The electrical conductivity, 6, of a pure organic semiconductor varies with temperature T in the following manner:

$$\mathbf{G} = \mathbf{G}_{o} \exp \left[-\frac{1}{2kT} \right]$$
 (1)

- where $\mathbf{6}_{\mathbf{0}}$ = constant of the material (conductivity at T approaching infinity)
 - Eg = apparent energy gap or activation energy for conductance)
 - k = Boltsman's constant
 - T = absolute temperature

Measurements of conductivity at various temperatures are used with equation (1) to determine the energy gap, Eg. The energy gap is the difference in energy between the highest level in the valance band and the lowest level in the conduction band and is considered the activation energy for conductance. Generally Eg is of the order of one electron-volt (ev), although experimental values range from 0.1 ev for cyanthrone to 1.35 ev for naphthalene (16).

One of the objectives of this study is to obtain a better understanding of the mechanism of electronic conduction and to find the characteristic functions in molecular structures that contribute to the electrical conductance.

<u>Purity</u>. The first problem in the investigation of conduction is organic conductors is the preparation of the samples. A criterion for purity is anthracens, for example, is that the material should possess the fluorescence proper to itself and not, which can arise from traces of other aromatic compounds. Garrett (16) discusses four methods of purification: crystallization from a solvent, sublimation, chromatography and zone refining. Little is known of the relative merits of each technique and Garrett (16) writes, "Clearly it is going to be necessary, scenar or later, to undertake a critical comparison of these purification methods with a degree of vigor that has not yet been attempted."

Pure material is required to permit intrinsic measurements free of the effects of contamination. Trace impurities present even below the parts per million level, have a significant effect on the electrical and optical properties.

Polycrstalline and Single Crystal Samples. Measurements on compressed powlers (16) and evaporated films (27) should be viewed with suspicion. The main reasons for doubt are interfacial effects, the role of surface conduction and anisotropy. Anisotropy in electrical properties involves changes in property with different crystallographic directions. From the point of view of the history of research with the better known organic conticonductors, the usefulness of polycrstalline samples is considerably less than that of single crystals. The growing of single crystals of organic materials is made easier by the use of highly purified materials as spurious nucleation on insclubles is then absent.

Purpose of Investigation

The author intends to study the intrinsic electrical and optical properties of organic semiconductors. This investigation, <u>The Purification, Analysis and Growth of</u> <u>Single Crystals of Organic Semiconductors</u>, includes the first three steps of the complete project. In order to determine the part played by impurities in the organic semiconductors

a quantitative analytical method must first be determined, sensitive to levels below one part per million. Secondly, a critical comparison of the many purification techniques must be conducted. Finally the highly purified samples must be grown into single crystals.

Conductivity Studies of Anthracene

Anthracons is found in very small amounts in coal tar. It has a melting point of 217° C, a boiling point of 354° C (15) and exhibits a blue-violet fluorescence in both the crystalline and dissolved states. The crystal structure is a monoclinic one and belongs to the C_{2h}° space group (34). Most of the materials studied in detail as organic semiconductors are monoclinic and belong to the space group C_{2h}° . Anthracene exhibits some conduction (considered to be electronic) and it has been the most extensively studied organic semiconductor, probably because of its availability and simplicity of structure. Considerable published information on anthracene exists for correboration. For these reasons this investigation is concorned primarily with anthracene. When the techniques have been refined with anthracene other organic materials can be studied.

Mette and Pick (24), Ionkuchi (19) and Richl (33) carried out conductivity nonsurements on single crystals of anthracene. No test of purity was applied, but they stress

that it is desirable that investigations be done on the purest available compounds.

Anthracene exhibits anisotropy in electrical characteristics and both measurements of the temperaturedependence of the conductivity and energy gap are reported to vary with different crystal directions (16). Measurements on polycrystalline materials such as compressed powder samples and evaporated films are not considered very reliable for this reason, as well as interfacial effects and the role of surface conduction.

ANALYSIS OF ANTHRACEME-MAPHTHACEME MIXTURES BY FLUCRESCENCE MEASUREMENTS

The assay of trace impurities in anthracene prepared for growth of large single crystals offers considerable difficulty. The analysis of anthracene purified by zone refining or other techniques requires analytical methods sensitive to less than 1 ppm of impurity content.

The fluorescance of anthracene and of the anthracenenaphthacone system has been studied widely. As little as one part per million (ppm) of naphthacene is reported (32) to influence the system fluorescence. The fluorescence of anthracene has been studied using single crystals (12,23,36), microcrystalline suspensions (3), potassium bromide pellets (43), and in dilute solution (12,32,37). Naphthacene fluorescence in the presence of anthracene has been investigated in solid solution (13,27,32), in dilute solution (12,13,32) and with anthracene-coated screens (7).

Pure crystalline maphthacene exhibits very weak fluorescence (32). Nowever, in dilute solid solution in anthracene, the normal blue-violet fluorescence of anthracene is almost completely quenched by the green maphthacene fluorescence. When mixed crystals are heated to the melting point, the green fluorescene vanishes at the instant the mixture is liquified. The same phenomenon occurs when crystals are dissolved in benzens. Haphthacene flucrescence does not result from the direct excitation of the low concentration of naphthacene present, nor does it arise from absorption of energy from the emission of the anthracene (27,32). In solid solution it is postulated that the anthracene host absorbs the exciting energy and transfers it to the naphthacene solute by means of sensitized flucresence (32,42), or by excitation migration (11,12,13,27). When naphthacene-anthracene molecules are separated beyond crystal lattice distances either by fusion or by a liquid solvent, the energy transfer cannot occur as readily as in colid solution.

The present investigation presents a very simple fluorescence technique for quantitative analysis of traces of naphthacene in anthracene, suploying a collidal suspension. Sensitivity approaching 0.1 parts per million (mole basis) naphthacene in anthracene is readily obtainable. The method is convenient to use: sample preparation is simple, the sample size is small and manipulative techniques are uncomplicated. For rapid semiquantitative analysis, it provides a visible fluorescence-color correlation with the level of impurity.

EXPERIMENTAL

Apparatus

A Farrand Optical Co. Spectrofluorometer equipped with a 150-watt Xenon are Lamp, an R.C.A. 1920 physemultiplier tube, two grating monochromators and a one continueter fused-quartz sample cuvette was employed for all fluorometric measurements. The phototube was connected by an R.C.A. microarmeter to a Varian strip recorder, type C-10.

Reagents

Pure anthracene was prepared by synthesis from anthraquinone using the method described by Fieser (10) followed by some refining (7).

Naphthacene (melting point 340-342°C) was purchased from Matheson, Coleman and Bell Co. (Catalog No. 9082) and used without further purification.

Reagent grade isopropyl alcohol was obtained from Baker Chemical Co. (Catalog No. 9084).

Procedure

Proparation of Standard Samples. An accurately weighed sample of anthracene, 125 mg, was dissolved in 250.0 ml of isopropyl alcohol, producing a stock solution containing 0.5 mg of anthracene per ml. Naphthacene (35 mg) was similarly dissolved in 250.0 ml of isopropyl alcohol producing a stock solution containing 0.140 mg per ml. Successive dilutions of 2-ml aliquots of the naphthacene stock solution with isopropyl alcohol gave stock solutions containing 1.218 (10^{-8}), 2.44 (10^{-10}), 9.73 (10^{-12}) and 3.91 (10^{-13}) moles of naphthacene per ml. The standard solutions were mixed in propertion required to prepare 39 naphthacene-anthracene mixtures, with naphthacene content ranging from 0.6 to 4360 ppm in anthracene.

Colloidally Suspended Samples. A colloidal suspension of each sample was formed by rapidly adding 125 ml of distilled water to 4 ml of the standard alcohol sample. Colloidal suspensions prepared in this manner exhibit strong naphthacens fluorescence, indicating that the naphthacene co-precipitates with the anthracene. Fluorescence measurements were made with the exciting monochromator adjusted to produce peak fluorescence; Anthracene is excited maximally at 365 mu. The Tyndall and Rayleigh types of emission (28), which produce light of the same wavelength as the incident source, do not present a problem with the anthracene-naphthacene system. The exciting wavelength used, 365 mu, lies below the fluorescent emission of the system which is at 400 to 510 mu. Colkidelly suspended samples remain stable (no settling out) for periods up to 1-2 hours.

Ş

Clear Solution Samples. Clear solutions in isopropanol were made by adding 125 ml of icopropanol to 4 ml of the standard alcohol samples. The fluorescence of these solutions was measured as described above.

RESULTS AND DISCUSSION

At the exciting wavelength of 365 mu, colloidal suspensions of maphthacene-anthracene exhibit six fluorescence emission peaks. Three fluorescence emission peaks can be resolved for anthracene, at 405 (maximum), 430 and 450 mu. Three fluorescence emission peaks can also be resolved for maphthacene at 510, 540 and 575 mu, the maximum being at 510 mu. These results are similar to those described for dilute solution spectra (3, 32, 37). Typical fluorescence emission spectra of maphthacene-anthracene colloidal suspensions are presented in Figure 1. Fluorescence spectra of clear alcohol colutions are shown in Figure 2.

Semiguantitative Evaluation of Results

As naphthacene content increases from 0.6 to about 300 ppm, the intensity of anthracene fluorescence at 405 mu decreases, and that of naphthacene at 510 mu increases. This is most readily followed by measurement of the emission peak height. Table 1 summarizes the results of the experimental data obtained.

Above 300 ppm naphthacene, the intensity of the naphthacene peak decreases. This is brought about by solf-quenching of the fluorescence obission caused by marked interaction between naphthacene molecules at higher concentrations.

RELATIVE FLUORESCENCE INTENSITY

N

()

TABLE 1

FLUORESCENCE OF COLLOIDAL SUSPENSIONS OF NAPHTHACENE AND ANTHRACEME

NAPH CONC TN A (PPF Corrected	THACENE ENTRATION NTHRACEME 4-MOLE HASIS) Uncorrected	FLUORESCENCE COLOR	FLUORESCENCE INTENSITY MAPHTHACENE I 510 mu	ANTHRACEME I 405 mu	<u>INTENSITY</u> <u>RATIO</u> R=(I 510/I 405)
•6	0	blue-violet	.137	7.20	•026
•775	•175	blue-violet	•28	7.1	.0394
•834	• 254	Jerolo-Louis	•42	7•1 	•040
1.00/	•407 2003	UETOTA-ATO A Contraction	•40 . <i>K</i> ∂	6 1 e.	•U)2
1 55	•701 1.05	blue-violes blue-violes	• 20	2 • 40 ≷.5	•00L3
2.0	1.20	blue-violet	.610	7.6	-080%
2.7	2.10	blue-violet	. 58	5.2	112
3.5	2.90	blue-violet	1.0	7.6	132
5.0	4.36	blu-violet	1.29	6.55	.197
5.8	6.23	blue-violet	2.10	8.04	•262
9.1	ĉ.51	5 1 no	2.9	3.L	-345
10.9	10.3	blue	2.75	6.8	.405
13.1	12.5	blue	2.99	6.2	.482
16.5	15.0	blue-rreen	3.24	5.68	.571
22.4	21.8	blue-green	4.63	6.18	•749
31.1	30.5	bluo-green	5.0	4.73	1.0 6
39.8	39.2	blue-groon	5.27	4.09	1.30

TALLE 1 (CONTINUED)

MAPHTHACENE CONCENTRATION IN ANTHRACENE (PPM-HOLE BASIS) Corrected Incorrected	FLUORESCENCE COLOR	FLUORESCENCE INTENSITY NAPHTHACEME I 510 mu	ANTHRACEME I 405 ma	INTENSITY RATIO R=(I 510/I 405)
53.1 52.5	21 11 2 2 11	5.69	4.0	1.42
74.7 74.1	g r een	5.8	2.50	2.25
87.9 87.3	green	4.52	1.8	2.52
146. 145.	g r een	9•79	1. 93	4.94
175 174	green	10.5	1.62	6.43
199 193	green	10.7	1.32	5.3
199 ropeat	groen	10.4	1.47	7.02
219 218	g r een	12.2	1.79	6 . 3
291 290	g r een	11.3	1.24	9,11
437 436	g r oen	8 .5 6	1.23	6.95
727 726	g r een	9.9	•65	15.2
871 870	groon	11.1	.70	15.88
1090 1090	green	10.13	• 50	20.3
1452 1452	green	9.4	. 498	18.8
5130 513 0	g r een	9.42	•374	25.2
24 3 0 2420	green	6.3	•37	22.4
2780 2780	green	ð . 2	•37	22.1
2780 repeat	reen	8.7	•366	23.8
3050 3050	green	7.42	•33	22.5
3200 3200	g r een	8.33	•345	24.1
3780 3780	green	7.05	•342	20 . Ś
4360 4360	g r een	6.88	.29	23.0
pure naphthacene	none	0	0	0

The visually observable fluorescence emission offers a rapid semiquantitative estimation of maphthacene content. The color of the colloidal suspensions changes much more markedly than does that of the solid anthracene in either . single crystal or polycrystalline form.

Above 40 ppm naphthacene, the intensity of the 510 mm naphthacene emission peak is greater than that of the 405 mm anthracene peak, and complete of greater concentration all appear green upon excitation. However, with the colloidal suspension technique, the blue anthracene fluorescence at 405 mm is spectrometrically measurable up to 4360 ppm naphthacene, contrary to the statement by Sloan (38) that it is completely extinguished at 0.3 ppm naphthacene content.

Quantitative Evaluation of Colloidal Spectra

Figure 3 presents a log-log plot of peak intensity ratio of naphthacene to anthracene, $R = \{I_{510mu}/I_{405mu}\}$ as a function of added naphthacene content. The realtionship is linear in the range of 10 to 500 ppm naphthacene, but shows curvature below 10 ppm. Observation of the fluorescence of the "pure" standard anthracene indicated the presence of naphthacene by an intensity ratio of 0.025. On the assumption that the linearity should hold even at low naphthacene content, the linear portion of the curve was extrapolated. This extrapolation suggested that naphthacene in the "pure"

standard amounted to 0.6 ppm. When all of the observations were rectified for this additional 0.6 ppm naphthacene content in the original, all of the experimental points coincided closely with the linear prodicted curve. Hence, it may be concluded that the log naphthacene concentration is proportional to the log fluorescence intensity ratio up to a concentration of 300 ppm. The established realtionship may be represented by the straight line equation

$$\log C = 1.06 \log R + \log 28.1$$
 (2)

or by the exponential equation

$$C = 28.1 R^{1.06}$$
 (3)

where C is the naphthacene concentration, ppm, in anthracene and R is the intensity ratio. This relationship was used in the estimation of napthacene in unknowns assuming that the linearity is continuous to concentrations as low as C.10 ppm.

Above the 300-600 ppm level, self-quenching of the fluorescence causes small deviations, and above 600 ppm increasing deviations from linearity.

Table 2 lists the differential naphthacene concentration and differential intensity ratio of naphthacene-anthracene mixtures in a colloidal suspension. The differential

Table 2

DIFFERENTIAL INTENSITY RATIO OF COLLOIDAL SUSPENSIONS OF MAPHTHACENE AND ANTHRACENE

DIFFER CONCEN (ppm-r	TRATION IN Jolo basis)	<u>THA CE ME</u> ANTHRACEN		DIFFER	ENTIAL RATIO	(<u>ntensity</u>)
$\begin{array}{c} 0\\ .07\\ .175\\ .234\\ .467\\ .701\\ 1.05\\ 1.4\\ 2.9\\ 4.33\\ 10.5\\ 1.5\\ .51\\ 12.5\\ .51\\ 12.5\\ .51\\ 12.5\\ .52.5\\ .51\\ .52.5\\ .52.$				$\begin{array}{c} 0 \\ \bullet 0064 \\ \bullet 0134 \\ \bullet 0201 \\ \bullet 026 \\ \bullet 0353 \\ \bullet 0545 \\ \bullet 0996 \\ \bullet 171 \\ \bullet 2319 \\ \bullet 3796 \\ \bullet 5453 \\ \bullet 1027 \\ \bullet 4910 \\ \bullet 5453 \\ \bullet 1027 \\ \bullet 4910 \\ \bullet 5453 \\ \bullet 1027 \\ \bullet 4910 \\ \bullet 5453 \\ \bullet 1027 \\ \bullet 4910 \\ \bullet 5453 \\ \bullet 1027 \\ \bullet 4910 \\ \bullet 5453 \\ \bullet 1027 \\ \bullet 1$		
*based of ratio of	a standard •026	having .	ó ppm	naphthacene	and an	intensity

naphthacene concentration in anthracene is the amount of naphthacene added to the "pure" standard anthracene which contained C.6 ppm. The differential intensity ratio is the difference in intensity ratio between the "pure" standard and the prepared sample.

Figure 4 is a plot of the log differential peak intensity ratio various the log differential maphthacene concentration. In the differential concentration range of 0.07 to 300 ppm the log differential concentration is proportional to the log differential fluorescence intensity ratio and can be represented by the straight line equation

$$\log dC = 1.06 \log dR + \log 27.6$$
 (4)

or by the exponential equation

$$dC = 27.6 dR^{1.06}$$
 (5)

where dC is the differential naphthacene concentration, ppm, in anthracene and dR is the differential intensity ratio. The above results indicate that were a "pure" standard of zero ppm available, equations 2 and 3 could be used in the extended naphthacene concentration range of C.07 to 300 ppm.

Comparison of Colloidal Suspension Spectra With Solution Spectra

The results of fluorescence measurements on dilute colutions of maphthacene-anthracene in isopropanol are summarized in Table 3. The results indicate that mixtures of maphthacene-asthracene in isopropanol solution are much more insensitive to fluorescence analysis than are the colloidal suspensions. The fluorescence intensity ratic of dilute maphthacene-anthracene solutions changes from zero to 0.0368 in the range of 0.6 to 2130 ppm maphthacene content, while the intensity ratic of colloidal suspensions varies from 0.026 to 25.2. At concentrations as high as 4360 ppm maphthacene in anthracene the observed fluorescence of dilute solutions is blue. Spectrometric measurement at higher maphthacene levels indicated nome emission at 510 mu, but the intensity of this bears no significant relationship to the maphthacene content.

The strong fluorescence of colloidal suspensions when compared to dilute solutions indicates that the naphthacene co-precipitates with the anthracene allowing an energy transfer to occur by means of sensitized fluorescence or excitation migration.

Precision and Reproducibility

The fluorescence intensity versus concentration data of colloidal suspensions display considerable scatter, which is due primarily to colloidization techniques. Repeated runs at the same napthacene concentration in anthracene often exhibited different heights of the maximum anthracene

FLUORESCENCE OF ISOPROPANOL SOLUTIONS OF NAPHTHACEME AND ANTHRACEME

NAPHTHACENE CONCENTRATION	FLUORESCENCE COLOR	FLUORESCEN TEMPENSTAY	Cit	INTENSITY RATTO
IN ANTHRACENE (ppm-mole basis)	00204	NAPHTHACEME (I 510 mu)	ANTIRACENA (I 405 mu)	R=(I 510/I 405
•60	blus-viclet	0	•93	0
53.1	blue	0	1.62	0
219	blue	003	•94	0032
2100	blue	.13	3.25	.0 368
pure naphthacene	none		0	0

.

and naphthacene peaks. This is demonstrated in the data of Tables 4,5,6, and 7 for naphthacene concentrations of 0.6, 22.4, 74.7 and 291 ppm respectively. This can probably be attributed to the mixing operation of the standard alcohol sample with the distilled water, which for each run can result in a different particle size in the colloidal phase. Bowen and Lawley (3) measured the fluorescence of microcrystalline suspensions of anthracene. They report that the intensity of the anthracene emission peak at 405 mu increased as the anthracene particle size decreases. They postulated that these results occur "because much of the fluorescence is unable to escape through the large flat surfaces (of the particles), and undergoes numerous reflexions within the thin layer, emerging at the narrow faces." Change in particle size would bring about changes in the surface-volume ratio of the fluoroscing solids. Smaller particles with greater specific surface would show greater emission intensity if the fluorescence is wholly or almost wholly a surface phenomenon.

It is corollary that a decrease in particle size of naphthacene causes an increase in the maximum naphthacene emission peak. This effect of particle size is eliminated in part by use of the intensity ratio which remains relatively constant for a given naphthacene concentration in anthracene and a given colloidal concentration, as may

COMPAR AND RA NAPHTI	ISON OF TIO VAR ACEME C	FLJORESCE IATIONS WI ONTENT IN	NCE INTENSITIES TH CONSTANT A COLLOIDAL	-
	5	JSPENSION		
<u>CONCENTRATION</u> <u>IN ANTHRACEME</u> (ppm-mole basis)	$\frac{RUN}{105}$.	FLUORLSCEN INTENSITY ANTARACEME (I 405)	<u>CE</u> <u>DEVIATION C</u> <u>FLUORESCENC</u> <u>INTENSITY</u> <u>PROM EXP</u> . <u>MEAN</u> (d)	DE SQUARD OF <u>DEVIATION OF</u> <u>FLUOR. INT.</u> <u>FROM EXP</u> . <u>MEAN</u> (d ²)
• 60 • 50 • 60 • 60	12345	7.00 6.93 8.30 6.50 7.30	22 24 +1.08 72 +.08	•0464 •0576 1.17 •519 •0064
	noan	= 7.22 <u>FLJORESC</u> <u>INTENSI</u> <u>NAPH</u> . (I 510)	(d) = 2.34 ∑(d ENCE <u>TY</u>	¥ = 1.30
•60 •60 •60 •60 •60	1 2 3 4 5 	.180 .130 .220 .170 .190 an= .138	008 003 +.032 018 +.002 Σ(d) = .068 Σ(d) ²	$ \begin{array}{cccc} .64 & (10^{-4}) \\ .64 & (10^{-4}) \\ 10.2 & (10^{-4}) \\ 3.24 & (10^{-4}) \\ .04 & (10^{-4}) \\ .1 & (10^{-4}) \end{array} $
		<u>INTENSI RATIO</u> (R=I 510/1	<u>IT</u> I 405)	
.50 .60 .50 .60 .60	12 945	.0257 .0255 .0255 .0262 .0260	0003 0004 +.0005 +.0002 0	$ \begin{array}{c} 9 \\ 10 \\ 10 \\ 25 \\ 4 \\ 10 \\ -3 \\ 10 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3 \\ -3$
	mean	n = .0260	$\Sigma(d) = .0014 \Sigma(d)^2$	= 54 (10-3)

.

COMPARISON OF FLUORESCENCE INTENSITIES AND RATIO VARIATIONS WITH CONSTANT NAPHTHACEME CONTENT IN A COLLOIDAL SUSPENSION

NAPHTHACENE CONCENTRATION IN ANTHRACENE (ppm-mole basis)	$\frac{RJN}{NOS}$.	FLUORESC INTENSI ANTHRACE (I 405)	ENCE DEVIA TY FLUOR ME INTE FROM	TION OF ESCENCE MSITY EXP. AN 3)	SQUARE OF DEVIATION OF FLUOR. INT. FROM EXP. MEAN (d2)
22.4 22.4 22.4 22.4	1 2 4 	5.51 4.32 5.35 6.13 n = 5.46	+.05 64 11 +.72 $\sum (d) = 1.52$	∑.(d) ²	$25 (10^{-4})$ $.41$ $.0121$ $.519$ $= .944$
		FLUORESC INTENSI <u>NAP</u> N (1 510	ENCE TY		
22.4 22.4 22.4 22.4 22.4	1 2 3 4	3.01 2.76 3.02 <u>4.63</u> = 3.36	$\begin{array}{r}35 \\60 \\34 \\ +1.27 \\ \sum (d) = 2.56 \end{array}$	Σ(d) ²	.122 .256 .116 <u>1.61</u> = 2.10
		INTENS RATI (R=I 510	<u>1111</u> 0 71 405)		
22.4 22.4 22.4 22.4	1 2 3 4	-546 -573 -565 -749 = -608	06: 03: 04: +.14: ∑.(d) = .2∂	$\sum_{i=1}^{2} \left(\sum_{i=1}^{2} \alpha_{i} \right)^{2}$.00534 .00122 .00135 .0199 = .0267

COMPARISON	OF FLUORES	CENCE INTENSIT	ISS
AND RATIO V	ARIATIONS	WITH CONSTANT	
HAPHTHACENE	CONTENT 1	N A COLLOIDAL	
	SUSPENSI	ION	

<u>HAPHTHACERE</u> CONCENTRATION IN ANTHRACENE (ppm-mole basis)	RUH HOS. INTENS (D) ANTHRAC (I 405	CENCE DEVIAT ITY FLUORES ENE INTENS PROMES MEA (G	ION OF SCENCESQUARE OF DEVIATION OF FLUOR. INT.ITYFLUOR. INT.XP.FROM EXP.MMEAN (J²)
74•7 74•7 74•7 74•7 74•7	1 2.09 2 2.55 3 2.02 4 2.40 5 <u>2.58</u> mean= 2.45	+.24 +.10 43 05 +.13 ∑.(a) = .95	$.0573.010.185.0025.0169\sum_{(a)}^{2} = .272$
	FLJORE INTEN NAP (I	<u>SCENCE</u> SITY H. 510)	
74•7 74•7 74•7 74•7 74•7	1 5.09 2 4.91 3 3.60 4 4.36 5 <u>5.80</u>	+.32 +.14 -1.0941 +1.13	$ \begin{array}{r} .102 \\ .0196 \\ 1.19 \\ .163 \\ 1.23 \\ \hline $
	INTE RA (R=I	<u>NUITY</u> <u>710</u> 510/1 405)	
74•7 74•7 74•7 74•7 74•7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05 01 12 12 +.21	.0025 .0001 .0144 .0144 .0144
	mean =1.94	∑(à) = .51	$\sum (d)^2 = .127$

COMPARISON OF FLUORESCENCE INTENSITIES AND RATIO VARIATIONS WITH CONSTANT MAPHTHACENE CONTENT IN A DOLLOIDAL SUSPENSION

<u>NAPHTHACENE</u> <u>CONCENTRATION</u> <u>IN ANTHRACENE</u> (ppm-mole basis)	RUN MOS. (n)	FLUORES INTENS ANTHRA (I 405	CENCE DEVIA ITY FLUOR CENS INTE FROM	TION OF ESCENCE NSITY EXP. AN E)	SQUARE DEVIATIO FLUOR. FROM EX NEAN (12	<u>OF</u> ON OF INT. P.
291 291 291 291 291	1 2 3 4 5 	1.37 1.25 1.49 1.21 1.24 = 1.31	+.05 05 +.15 10 <u>07</u> Σ(a) = .47	∑.(i) ²	.0036 .0036 .0324 .01 .0049 = .0545	
		FLUORE INTEN MAP (I 5	SCENCE SITY 71. 710)			
291 291 291 291 291	12345	9.53 9.51 10.9 10.49 11.3			•75€ •793 •25 •0031 •31	
	nean	=10.4 <u>I (TER</u> <u>RAT</u> (R=I 51	$\sum_{i=3,20} \sum_{i=1,20} \sum_{i=1,20$	∑(d) ² =	= 2 . 52	
291 291 291 291 2 91 2 91	12345	5.95 7.61 7.61 3.60 9.10	99 33 55 +-72 +3-24		.980 .109 .397 .519 1.54	
	mean	= 7.94	L(d) = 2.91	$\sum (a)^2 =$	- 3.54	

be seen from the values listed in Table 6. The precision of the duplicate determinations of intensity ratio is ± 1.4 , ± 15.5 , ± 9.3 and ± 10.6 percent relative standard deviation for a collidal suspension containing 0.6, 22.4, 74.7 and 291 ppm naphthacene concentration in anthracene. These results indicate the superiority of the fluorescence intensity ratio, R, as a reliable measure of naphthacene content.

Concentrations as low as 0.1 ppm naphthacene in anthracene can be determined by fluorescence measurements using the colloidization technique. The sensitivity of this method can probably be extended to 0.01 ppm naphthacene content by further optimization of the technique, such as optimum colloidal concentrations, a parer standard and a more sensitive photomultiplier tube particularly in the 510 mu range. The R.C.A. IP22 photomultiplier tube is suggested since it is twice as sensitive at this level as is the R.C.A. 1P28 which was used in all determinations. It should be noted that little amplification of the photomultiplier tube output was required with the colloidal suspensions tested. The spectrofluorometer was capable of amplification 100 fold beyond the range utilized. A more sensitive photomultiplier tube at the 510 mu level would, however, permit resolution of naphthacene at lower concentrations. Resolution at this point appears to limit the sensitivity of the method.

FROM THE MEAN EXPERIMENTAL VALUE FOR COLLOIDAL SUSPENSIONS OF NAPHTHACEME AND ANTHRACEME

FLUORESCENCE INTENSITY OF ANTHRACENE (I 405 mu)

MAPH. <u>COM.</u> <u>IN ANTH</u> . (ppm)	$\frac{\text{AVERAGE}}{\text{DEVIATION}}$ $\frac{\text{FROM MEAN}}{(\Sigma(d))}$	$\frac{S TANDARD}{DEVIATION}$ $S = \sqrt{\Sigma(a)^2 / (n-1)^2}$	PERCENT RELATIVE STANDARD DEVIATION (S/mean)	<u>RANCE</u> I IOO	CONFIDENCL INTERVAL (2)	(95%)
.60	•47	•67	9.3	1.30	•9	
2224	•33	•56	10.3	1.36	•9	
74.7	•19	•26	10.7	.67	•9	
291	•094	•116	8.74	.28	•9	
	FLUORESCE	NCE INTENSITY	OF NAPHTHAC	ZENE (15	10 mu)	
-60	•014	-019	10.1	.05	-03	
22.4	•64	-34	25	1.87	1	
74.7	•614	-32	17.1	2.12	1	
291	•64	-31	7.3	1.79	-9	
	<u>1</u>	NTENSITY RATIO	(R = I 510)) <u>/ I 405</u>)		
•60	•00028े	•00037	1.4	•0009	.0005	·
22.4	•07	•094	15.5	•.%/3	.1	
74.7	•122	•13	9.3	•/3	.2	
291	•73े	•64	10.6	2•23	1	

PURIFICATION TECHNIQUES OF ANTHRACENE

Synthesis of Anthracons

<u>Experimental Technique</u>. Anthracene was propared by synthesis from anthraquinone using the method described by Fiscer (10). Anthracene so produced should be free of the natural contaminates found in the coal tar anthracene.

Results. The propared anthracene was analyzed by the fluorescence technique and is listed as sample 6 in Table 9. The synthetically propared anthracene contains 0.810 ppm of maphthacene. Although the solid crystal is clightly yellow in color, the colloidal suspension fluoresces a blue-vielet. It is apparent that . Chracene so prepared is surpassed is purity only by zone refined (sample 15) and multiple co-distilled (sample 13) anthracene.

Washing Anthracono

Experimental Technique. Crude anthracone, 90 - 95% practical grade anthracene, Baker Catalog number AX1600 was washed four times with small pertions of cold acetone using the standard technique described by Adams and Johnson (1).

Results. Washed anthracono from crude coal tar anthracene does not appear to show any significant improvement over the untreated crude anthracene as shown in Figure 5. The analysis of washed (sample 2) and untreated crude anthracene (sample 1) is given in Table 9. Crude anthrace and washed anthracene

FIGURE 5, COMPARISON OF PURIFICATION TECHNIQUES OF ANTHRACENE

ANALYTICAL RESULTS OF COLLOIDAL ANTURACENE SAMPLES

SAMPLE NO.	<u>Source of</u> <u>AMTURACE ME</u> COL SO	DESCRI OR OF F LID C S	PTION LUORESCENCE OLOR IN OLLOIDAL USPENSION	FLUORE INTEN ANTH. (I 405ma)	SCENCE SITY MAPHTH (I 510ma)	<u>INTENSITY</u> RATIO R	<u>NAPHTHACEME</u> <u>CONTENT</u> (PPM)
1	959 Anthracene Eastman P420 (CRJDE)	Brown	G r een	1.42	5.22	3. 68	125
2	Crude, washed	Brown- yellow	Green	1.53	5.27	3•34	110
З	Crude, washed recrystallized	Green- white	Green	2.10	6.12	2.91	97
4	Crude, washed recrystallized 3 times	Pale yellow- green	Blue-green	4.00	2.50	0.625	18.0
5	Crude, washed recrystallized 4 times	whito (slight pale gre	Eluo een)	5.60	2.77	0.495	14.0
Ó	Crude, Sublimed	Yellow	Blue-green	4.20	3 .7 0	0.381	26.0
7	Crude, sublined recrystallized	Pale yellov	B lu a -_Oreen	5.21	3.00	0.576	1 6•3

یں دربا

Table 9 (Continued)

<u>EASPLE NO</u> .	SOURCE OF AMTHRACE ME	DESCRI COLOR OF SOLID	PTION FLUORESCENCE COLOR IM COLLOIDAL SUSPENSION	FLJORESCEN INTENSIT ANTI (I 405mu)(I	CEA <u>NAPHTH</u> 510mu)	INTENSIA RATIO (R)	<u>CONTENT</u> (PPM)
	Propared from anthraquinone	Slight yellow	Bluo-violet	5.32	0.20	0.0376	0.810
ò	Crude, [*] dimorized heatod	(i r eon	Groon	1.43	5.12	3.50	119
10	Crude, co-distilled	White	Plue-violet	11.0	1.35	G .122 8	3.00
11	Crude, washed, rocrystallized, co-distilled	White	Blue-violet	6 .00	0.600	0.100	2.50
12	Crude, washed, recrystallized, cc-distilled twice	White	Blug-violst	6 .8	0.37	0.0544	1.20
13	Crude, washed, recrystallized, co-distilled 3 times	White	Slus-violet	7.57	C.13	0.0237	0•47

* The dimor of anthracene (dianthracene) was analyzed as a colloidal suspension. The suspension did not show visible fluoremecence and the fluorescence intensity at 405 mm and 510 mm was 0 and 0 respectively.

<u> Table 9 (Continued)</u>

SAMPLE NO.	SOURCE OF ANTHRACEME	DESCR COLOR OF BOLID	IPTION FLUORESCENCE COLOR IN COLLOIDAL SUSPENSION	FLUORESC INTEMSIA ANTH (I 405mu)(I	<u>APHT()</u> 510mu)	INTERSITY RATIO (R)	CONTENT (PP 4)
14	Blue-violat Fluorascent grade Mathason, Coleman	White n	Bluo-violat	7.10	0.50	0.0704	1.60
15	Fisher scientific zone refined	e Whita	Blue-violet	∂ ∎0	0.23	0 .02 88	0.68
16	Prepared from Anthraquinons, zone refined	White	Blue-violet	7.21	0.187	0.0260	0.60

From crude contain 125 and 110 ppm naphthacene respectively. The fluorescence of colloidal suspensions of both materials is a deep green color.

Recrystallization

Experimental Tochnique. Crude washed anthracene was recrystallized from a benzene solution four times in succession using crystallization procedures described by Adams and Johnson (1).

Results. One crystallization from benzone visually improves the appearance of crude washed anthracene as shown in Figure 5, although the naphthacene content is only slightly changed (Table 9) from 110 ppm to 97 ppm. Three and four recrystallizations yield a material containing 13 and 14 ppm naphthacene respectively (samples 4,5). After four recrystallizations the anthracene sample appears white and in a colloidal suspension fluoresces blue.

Sublimation

<u>Experimental Technique</u>. Six to ten grame of crude anthracene were charged into the McCarter vacuum sublimation apparatus shown in Figure 6. The sublimer has a 70 mm O.D. lower section and the flat grind is 70 mm, and groeved for an O-ring. The jacket for the condenser is 57 mm O.D.

FIGURE 6, VACUUM SUBLIMATION APPARATUS

and the bottom of the cone opening is 45 nm in width. Sublimate forms on the inside surface of the cone and is easily removed by scraping. The system is evacuated to 8-20 decreases of mercury by a mechanical vacuum pump. Heat is then supplied to the cil bath by a heating mantle. It is important not to heat the system before evacuation since anthracene exidizes at elevated temperatures in air. The temperature of the system is kept constant at 110°C by a Thermo-O-Watch Controller, limit model L-6.

<u>Results</u>. Sublimation proves to be a far superior method for purifying anthracene than the recrystallization method. Crude anthracene subjected to sublimation (sample 6) forms yellow powdery crystals containing 26 ppm naphthacene. In a colloidal suspension the material fluoresces blue-green as indicated in Table 9. During operation, the condenser of the sublimer develops a series of condensed anthracene layers which exhibit successive changes in color from white, yellow, yellow-green to green. Sublimation should be suspended when the yellow layer first appears. This usually occurs when 70-75% of the charge has been sublimed.

A second sublimation does not produce a parer product, but a subsequent recrystallization from benzone solution gives a reasonably good material (sample 7) containing 16.8 ppm of naphthacene. The main disadvantages of sublimation is the small size of charge and slowness of operation (2 - 3 hours).

Dimerisation of Anthrucone

When solutions of anthracene are exposed to direct sunlight or ultraviolet light (310-375 millimicrons) dimerization occurs depositing dianthracene as a relatively inert and sparingly soluble compound. The reaction is:

Pringchois (52) suggests that the absorption of the exciting light brings the anthracene molecule directly into the electronic state from which emission can take place. The molecule is highly reactive while in this state, and if a substance with which it can react (a second excited anthracene molecule) is present, reaction may occur before the molecule returns to the ground state with fluorescence emission. The reacting molecules are "quenched" and the dimer should show no fluorescence characteristics. The dimer is reported (35) to nelt at 270-200°C with the reformation of anthracene.

<u>Experimental Technique</u>. A one to two per cent solution of crude anthracene in xylene is irradiated by ultra-violet light (310-375 millimicrons) for periods up to seventeen hours. A glass cooling coll is inserted into the reaction beaker to keep the temperature in the range of 21-31°C. A magnetic stirrer is employed to increase the surface area in contact with the ultra-violet rays. The insoluble dimer is filtered and washed with fresh solvent. Attempts to sublime anthracene or other volatile impurities from dianthracene at temperatures below 200°C and pressures of 50 microns showed that such volatile materials were not present. The dimer is converted back to anthracene by heating, in a nitrogen atmosphere, to 180-270°C. The decomposition temperatures of the dimer were studied by means of differential thermal analysis.

A second method of converting dianthracene to anthracene was employed by subjecting dianthracene to repeated zone refining in a nitrogen atmosphere at temperatures slightly above the melting point of anthracene monomer. After five passes of the heater, (1.3 inches per hour) the dimer is completely converted to anthracene as noted by the complete melting of the material in the direct area of the zone refiner heater.

Naphthacene (Matheson, Coleman and Bell Co., catalog no. 9082, melting point 340-342°C) was subjected to the same techniques as described above for anthracene to determine if a dimer is formed when exposed to ultra-violet rays.

DIMERIZATION OF ANTHRACEME TO DIANTHRACEME

Run 1

Charge - 4.375 g. anthracene, 700 ml xylene

TIME (min.)	TEMPERATURE SOLUTION	<u>YIELD</u>	PER CENT YIELD
(444.51.0.7	(°C)	و تندينه لين)	(100+)
С	21	С	0
115	27	0 . 6∂05	15.6
235	29	1.2308	28.2
445	31	1.3771	42.9
625	31	2.2695	51.9

Run 2

Charge - 7.1607 S. anthracene, 075 ml. xylene

TIM	TEMPERATURE SOLUTION	YIELD	PER CENT
(min.)	(°C)	(grams)	(wt.)
0	22	0	0
330	28	1.\$194	25.4
1010	31	4.315	60.1

.

Results. The conversion of anthracene to dianthracene using ultra-violet light as a function of exposure time is summarized in Table 10. A study of the thermal decomposition of dianthracene by means of differential thermal analysis indicates a molting point for the dimer of 266.3°C. With rapid heating, there was no evidence of anthracene in the sample. However, with slow heating rates, decomposition started at 160°C and continued at an accelerating pace until it was complete at about 270°C. Such samples, on re-freezing showed complete reconversion to anthracene, molting at 214.5°C. The zone refining of dianthracene, a technique not previously reported in the literature, converted the dimer to exceptionally high yields of bluefluorescent anthracene (42 passes at a rate of 1.3 inches per hour).

Analysis of the dimer by the fluorescence technique, shown in Table 9 indicates that the dimer exhibits no fluorescence chracteristics as predicted by Pringsheim (32).

Pure naphthacene did not form a dimer after 10 hours of exposure to ultra-violet light. This would seem to indicate that complete separation of anthracene and naphthacene is possible by the dimerization technique. However, fluorescence analysis of the anthracene formed (sample 9) from the dimer, which has been decomposed back to anthracene does not

appear to show a significant improvement over untreated erude anthracene. It is postulated that these result. occur because maphthacene dimerizes to some extent when in solution with anthracene forming either a maphthacene dimer or a maphthacene-anthracene dimer. This can be related to the fact that pure maphthacene shows no fluorescence characteristics. In a solid solution with anthracene the maphthacene fluoresces by means of sensitized fluorescence or excitation migration. In a similar manner the maphthacene molecules are excited into the electronic state where they are highly reactive and can react with a second activated maphthacene molecule to form the dimer.

Co-distillation of Anthracene

The co-distillation of anthracene with ethylone glycol (8) has been used by Mikada (26), Feazle and Smith (9) and by Musicant (25) to produce anthracene equivalent to commercially available scintillation grades.

Apparatus. The apparatus used for co-distilling anthracene is shown schematically in Figure 7. The design of the apparatus is a modification of one suggested by Musicant (25). The condenser chamber consists of a 4 inch 0.D. by 13 inch long section of Pyrex. The chamber is loosely fitted with a grooved aluminum top containing 1/4 inch 0.D. copper tubing which serves as a cold finger condensor. The aluminum top also acts as a safety release in case of excessive pressure. A nickel-chromium wire screen is placed in the bottom of the chamber to collect condensed anthracene. Thre reactor is a two-neck, 500-ml Pyrex round bottom flask. A plug of cotton is placed in the connecting section between the reactor and the condenser chamber to prevent vapors from flowing directly into the bottom of the condenser chamber. A 1/2 inch resistance heater tape is employed to prevent condensation of anthracene in the 3/4 inch O.D. side tube. Heat is supplied to the reactor by a heating mantle. All joints are ball joints to enable assemblage of the apparatus.

FIGURE /
CO-DISTILLATION APPARATUS
NEWARK COLLEGE OF ENGINEERING
MELVIN DRUIN
SCALE : 1.5" = 12"

Experimental Technique. Twenty five grame of washed, once-recrystallized anthracene and 300 ml of ethylene glycol are charged directly into the round bettem flack. Powerstate supplying power to the realetance tape and the heating manth, are set at 65 and 100 volts respectively. Anthracene is condented as fine particles on the cold finger condenser, sides of chamber wall and on the wire screen while othylene glycol is recycled back to the round bettem flack. Heating is discontinued after 0-10 hours. Anthracene is then filtered and washed 4 or 5 times with distilled vator to remove adhering sthylene glycol.

The original anthracene was co-distilled three successive times and various samples so obtained were analyzed. The results are reported in Tab 5.9.

Crudo anthracono was also co-distilled once with ethylene glycol and analyzed by the fluorescence technique as reported in Table 9.

Recults. Table 9 gives the analytical results on the co-distilled anthracene analyzed by the fluorescence technique. The co-distillation of anthracene with ethylene glycel proves to be the most superior purification technique encountered (see Figure 5). The material so obtained is believed to be adequate for crystal growth and subsequent electrical measurements. One co-distillation, two co-distillations and three co-distillations of washed, ence-recrystallized anthracene produce scintillation grade anthracene of 2.50 ppm, 1.20 ppm and 0.470 ppm naphthacene content. It is apparent that anthracene so prepared is purer than commercially available zone refined (sample 15) and synthetically prepared-zone refined (sample 16) anthracene of 0.66 ppm and 0.60 ppm naphthacene content respectively.

Co-distilled anthracene prepared from crude coal tar anthracene contains 3.00 ppm maphthacene. This indicates that washing and recrystallization prior to co-distillation is not meeded.

Zone Refining of Anthracene

The theory and technique of zone refining as first disclosed by Pfann (30) has been applied to organic compounds by Henington, Handley and Cook (17), Wynne (44) and by Czorny (7). The basis for zone refining is the passage in one direction of a series of molten zones through a rod of impure material. Impurities, in the charge, travel with or opposite to the zone depending on their ability to raise or lower the melting point of the material.

The full details of the purification of anthracene by zone refining can be found in the thesis by Czorny (7).

The following is quoted from the Abstract of this thesis.

"The sogregation coefficient of anthracene from naphthacene was found to be about 0.6 at a refining rate of 3 in./hr. Calculations showed that 60 zone passes are required for ultimate purification under the experimental conditions employed here. This was confirmed by experiment."

Experimental Tochnique. A Fisher zone refiner with an automatic recycle was employed by the author to zone refine anthracene and dianthracene (see page 39). The material to be zone refined is introduced as a fine powder into a heavy walled Pyrex tube sealed at one end. 6 mm I.D. by 2 mm wall thickness. The tube is sealed off under a nitrogon atmosphere using the same technique employed for the crystal containers (see pare 99). The number of cycles made by the heating clement were recorded on a Bristol temperature recorder according to the technique described by Cumprecht (14). Instead of inserting the thermocouple into the material being refined as suggested by Gumprecht the thermocouple was taped to the outside surface of the Pyrex tube at a point corresponding to the beginning of the heating cycle.

<u>Results</u>. Zone refining of anthracene produces highly purified materials believed adequate for single crystal growth as indicated in Table 9. Anthracene so prepared is second only to multiple co-distilled material in naphthacene content. The main disadvantages of zone refining are the excessive number of zone passes required (50 passes at a rate of 1.5 inches per hour) and the relatively small size of charge.

CONCLUSIONS AND RECOMFENDATIONS OF PURIFICATION OF ANTHRACEME

The most promising methods of purification of anthracene, which were chemical synthesis, washing, recryptallization from solvents, sublimation, dimarization, co-distillation and zone refining have been investigated. The relative merits of each method were explored and discussed with particular attention to co-distillation which is considered by the author to be the most applicable. Both crude coal tar anthracene and washed, once-recrystallized anthracene have given material of comparable purity by co-distillation. Therefore it is recommended that the processes of purification of crude anthracene prior to single crystal growth be three successive co-distillations with othylene glycel.

METHODS OF GROWING SINGLE CRYSTALS

A single crystal is a monolithic solid in which the molecules are arranged in a regularly repeating pattern. Many techniques have been developed for growing single crystals of organic compounds. It is the purpose of the author to grow organic single crystals with controlled amounts of crystal imperfections and selected impurities. This involves stringent requirements both on the selection of the method of crystal growth and the implementation of the technique.

In general, the method selected for the growth of single crystals depends on the chemical properties, crystal structure, and the melting point of the material. Due to differences in these properties, a method suitable for growing crystals of one material may be quite useless for another material. Many trials are often necessary before good crystals of a given material may be produced. Crystals growing is often more a combination of art and "divine faith" than a science. Buckley (6) has written, "It should be remembered that, in the proparation of large clear crystals, the touch of the artist is about as important as the application of established scientific principles."

From Sublimation

. :

Single crystal flekes of anthracene have been produced

by Lipsett (22) and Nakada (26) by means of sublimation. The chief advantages of this method are that the crystal grown is not contaminated with a solvent and the crystal flakes are convenient for resistivity measurements as slicing is not required. However, crystal habit (nucleation orientation) cannot be controlled.

From Solution

Techniques for growing single crystals of anthracene have been reported by Lipsett (22) and by Kallman and Pope (20). Advantages of growth of crystals from solution are that less demand is placed on power supplies, low temperatures well below the melting point of the pure substance are employed, and the problem of finding a suitable crucible material is non-existent. Contamination of the crystal with a solvent is a problem. The rate at which crystals can be grown from solutions is generally much smaller than the rate of growth from the pure melt. Common rates of linear growth from solution are in the order of 10^{-2} cm per hour, while rates from the pure melt are contimeters per hour.

From The Melt

In the past the most successful technique for preparing single crystals has been growth from the melt, composition of the melt being near that of the desired crystal. Although first used for metals, the method is suitable for the growth

of organic crystals. The main advantages are that contamination of the crystal with a solvent is non-existent, large growth rates are possible and large single crystals can be prepared. Sany organic materials cannot be grown into single crystals from the pure liquid phase because the substance melts with irreversible decomposition and there exists a solid state phase transformation between the melting point and the temperature to which the crystal is finally cooled. Single crystal growth from the melt can be accomplished in a wide variety of methods. These include: Tammann's method of growing single crystals, the method of Obeimov and Schubnikov, Bridgman's method, Kapitza's method, Czochralski's method, the method of Nacken, the method of Kyropoulos and the method of Stober. Detailed description of each method are given by Buckley (6).

From the Welt by the Bridgman Method. The method of Bridgman (5) has been used successfully for the growth of large single crystals of anthracene by Lipsett (21,22), Nakada (26), Sangster and Irvine (36), Feazel and Smith (9), and Pimentel and McClellan (31). The principle of this method is as follows. A specially shaped container is filled with the material to be grown into a crystal. The crystal is grown in an inert atmosphere from the melt in the sealed container which is slowly lowered through a

temperature discontinuity which includes the freezing point of the substance. Crystallization of the melt occurs progressively upwards from the bottom of the container as it is lowered through the temperature discontinuity. The furnaces employed in the use of the Bridgman technique are designed so as to produce a large temperature gradient along the path of the moving container at the point of crystallization. The lowering of the container must be slower than the velocity of crystallization in the direction of the container. If the velocity is faster, portions of the melt will be forced to solidify before the orientating influence of the advancing crystal face has reached the section. The result is the formation of a differently orientated crystal. If. the purity of material, the thermal conditions in the furnace, the shape of the container and the rate of lowering the container are suitable, a single crystal can be grown.

DESIGN CRITERIA

The growth of single crystals by the Bridgman method depends on the design of a suitable crystal growing apparatus and auxiliary equipment with the collowing design criteria:

- (a) establishment and control of the correct temperature distribution within the furnace
- (b) crystal container which initiates growth at a single point or constriction
- (c) convenience in operation involving the insertion and removal of the crystal container and the inspection of the material in the container during melting and growth
- (d) a lowering mechanism which lowers the container
 smoothly and continuously through the furnace
 at constant rates of the order 0.5 to 3 inches/day
- (e) a convenient operation in maintenance of the furnace

Temperature Gradient Within The Furnace

The ideal form of a temperature gradient as recommended by Lipsett (22) is shown schematically.

"The temperature at the top of the furnace is in the upper right-hand corner of the diagram. This should not be high enough to cause any decomposition of the material. The temperature in the top section of the furnace should decrease fairly gradually until the lowest part of the top section is reached, and then should abruptly drop. The heat input to the furnace should be adjusted so that the melting point of the material is approximately in the mid-point of the sharp temperature drop. In the bottom section of the furnace the temperature may fall off more rapidly than in the top, provided the fall is not so large as to interfere with the annealing of large crystals, and if convenient the temperature at the bottom of the furnace may be that of the room." (22)

The horisontal gradient, in any horizontal plane of the furnace, should be uniform (horizontal). This condition is attained through proper insulation of the furnace.

Crystal Container

Material of Construction. The melt and the growing

crystal are housed in the same container. Since the melt phase is in intimate contact with the container wall, there must not be any reaction between the melt and the container material. Should reaction occur, the melt phase becomes contaminated with the container material. The container material must also have a thermal coefficient of expansion close to that of the crystal. If this condition is not satisfied and the groum pertion of the crystal tends to stick to the container as they are being cooled, large stresses caused by differential thermal contraction will arise between the container and the crystal. A small disturbance such as a chemical reaction or an inperfection in the container wall may induce nucleation which may prevent single crystal growth. Thus it is important to select a material of construction for the crystal container that has a smooth, non-reactive surface.

The object of all crystal containers is to initiate the growth of a single crystal at a constriction or point. Should the wall of the container above the constriction slope gradually outwards to the full diameter, the chances of obtaining a good single crystal are increased. A crystal container may be designed either to produce a seed crystal (large single crystals are later grown in another container from the seed) or a single crystal by a process of celfseeding.
Self-seeding. Tammenn (41) was the first to grow single crystals by the method of self-seeding. He constructed a tube of uniform cross section and tapered it to a fine capillary at one end. As the bottom section is first cooled below the melting point, several seeds of different orientation are produced. Certain directions are more suitable for the rapid extension of the crystal. Providing the tube is long enough, one of the seeds would have the opportunity to grow outwards to the full diameter by squeezing to one side all other grains. The marrower the tube, the shorter the length of tube required. Statistically there will be fewer competing grains, the narrower the tube.

Seed Crystal. Some investigators have used seed crystals to grow single crystals (22,29,40). A section of a seed crystal grown is introduced into another container with new material added above the seed. The main disadvantage with using seed crystals is that it is impossible to see the liquid-solid interface. Thus it is difficult to control growth on the seed and still be certain that the seed itself is not completely melted.

Convenience of Operation of the Furnace

The crystal container should be inserted and removed from the furnace with little difficulty in a period of

5-10 minutes. The furnace should not have to be disassemblod during this operation.

During melting and growth the condition of the material should not be determined by having to lift the container momentarily out of the furnace. The sudden change in temperature will produce large stresses in the crystal which can cause dislocations and other imperfections.

Lowering Mechanism

The crystal container must be lowered smoothly and continuously through the furnace at a constant rate of the order of 0.5 to 3 inches per day. These rates have proved successful for single crystal growth of anthracene by the Bridgman technique (9,21,22,36). The rate of growth is dependent on the rate of diffusion of the latent heat of fusion at the liquid-solid interface. The rate must be such that the temperature of the growing nucleus is less than its melting point. The rate of growth is also dependent on the rate of formation of nuclei large enough to grow at the temperature of the liquid-solid interface.

Convenient Operation in Maintenance of the Furnace

A well designed furnace requires little maintenance. The most likely malfunction of the furnace would be in the resistance heaters. All heater leads should be

connected to external wiring by means of short screws and nuts. It has been found (21) that hard soldered joints at these points tend to break after a number of heqting and cooling cycles. The furnace should also be designed with ease in operation and maintenance in mind. Each section of the furnace should be independently maintained, that is, one section at a time can be disassembled.

DESCRIPTION OF FURNACE

The furnace is a modification and refinement of one described by Lipsett (21) and is composed of cix major parts; the upper heating zone, the lower heating zone, the bottom section and three transite plates. Each heating zone consists of an inner Pyrex tube heated by a wrapping of resistance wire and an outer Pyrex pipe which provides thermal insulation.

The Upper Neating Zone

The upper heating some consists of an outer Pyram pipe soction conforming to the dimensions shown in Figure 3, and an inner heated Pyrex tube section shown in Figure 9. The ends of both soctions have been ground equare and fire polished. Three 24/40 standard taper outer joints scaled to the Pyrem pipe allow for temperature measurements and control. The Pyrem pipe is insulated with a covering of aluminum foil, 3/4-inch thick magnesia (rolled diameter of 4.5 inches) and an outer cover of choose cloth painted with three coats of a saturated solution of sodium silicate in water. Holes are cut at intervals in the insulation to serve as windows. These windows allow observation of the progress of melting and growth. When not in use, these heles are plugged with glass wool. The crystal may easily be viewed by helding a light against a

்1

window while looking in at a directly opposite window. The inculation also chields from light any material to be grown into a crystal which is sensitive to photochemical reactions (under certain conditions this is the case for anthracene).

The inner Pyrex tube has three separately controlled registance heaters R_1 , R_2 and R_3 shown in Figure 18, which create the temperature gradient along the length of tubing. The heaters are each made of 20 feet of 22 gage chronol resistance wire, wound at 3/16 inch spacings covering a section 7.5 inches in length. Each heater was constructed in the following manner:

- (a) Three strips of hⁿ asbestos tape were noistened and applied vertically to the inner Pyrex tube, spaced at 120° intervals.
- (b) Two strips of asbestos tape were moistened and applied circumferentially about the inner Pyrex tube at both ends of the heating section.
- (c) The appestod strips were dried with a heating lamp. When dry, the strips adhered to the walls of the Pyrex tube.
- (d) The resistance wire was attached to the asbestos strip at one end of the heating section and wrapped tightly around the Pyrem tube. Care was taken to maintain the correct spacing between turns.

The total resistance per heater, including two 2.5-foot long leads, is 21 ohms. Each lead was insulated with sections of Pyrex tubing and led through a 1/3 inch diameter hole in the top transite plate (Figure 13) to a terminal strip bolted directly to the top transite plate. At the terminal strip further wiring connections were made to power leads. By selecting a total resistance per heater of 21 ohms the furnace might prove useful for growing crystals with molting points considerably higher than that of anthracene.

The Lower Heating Zona

The lower heating zone consists of an outer Pyrex pipe section and an inner Pyrex tube section shown in Figures 10 and 11 respectively. Two 2k/40 standard toper outer joints are scaled to the outer Pyrex pipe. The outer Pyrex pipe is insulated in the same manner as the Pyrex pipe of the upper heating zone. The inner Pyrex tube has one heater, R_{k} , shown in Figure 16. The heater is 20 feet of 22 gage chromel resistance wire wrapped on a logarithmic spacing starting with 1/16 inch at the top and increasing to 1/4 inch at the bottom of the section. The "afterheater" has been included to avoid plastic deformation which occurs if the crystal is cooled too quickly. This is achieved by minimizing thermal losses

from the sides of the crystal and thus forcing most of the heat to flow uniformly along the length of the crystal. With the use of afterheaters, Sonnett and Sawyer (2) have grown germanium crystals with etch pit densities of less than one hundred per cn^2 . The two heater leads were insulated with sections of Pyrex tubing and led through 1/3 inch diameter holes in the bottom transite plate (Figure 13) to a terminal strip bolted directly to the transite plate.

Bottom Section

The bottom soction of the furnace consists of a section of Pyrex tubing shown in Figure 12. The section is held against the bottom transite plate by two tube clamps. A 2 inch diameter rubber stopper is placed in the bottom of the section while a crystal is being grown. This helps to prevent loss of heat by convection and protects the crystal container from accidental breakage.

Transite Plates

The top, middle and bottom transite plates were grooved on a lathe according to the dimensions given in Figure 13. The outer groove (0.D. 5 11/32 inch) houses the outer Pyrex pipe and the inner groove (0.D. 2 3/32 inch) the Pyrex tube. Thermocouples, resistance heater leads and the fbberglass cord pass out of the furnace through 1/4 inch, 1/3 inch and 1/3 inch diameter holes reppectively drilled in the top transite plate.

OUTER GROOVE 1/8"HOLE FOR Ο Ο _OD. 5 "/32", ID. 4 "/32" FIBERGLASS INNER GROOVE 0 CORD -----0 0 _OD. 2 8/32", ID. 2" 000 1/8" RESISTANCE 0 1/4" THERMOCOUPLE HOLE HEATER LEAD HOLE ____ 1/2" HOLE FOR BOLT n 0 TRANSITE TOP PLATE 8" SQ. Ο 1/2" THICK V.K 6/32" DEEP 0 0 TRANSITE Ο O 6/32" DEEP I" THICK 6/32" DEEP 0 0 1/8" RESIST. HEATER /LEAD HOLE FIGURE 13 TRANSITE PLATES FOR FURNACE TRANSITE NEWARK COLLEGE BOTTOM PLATE Ο 0 OF ENGINEERING SCALE : 3" = 12"

MELVIN DRUIN

MIDDLE PLATE

8" SQ.

8" sa. 6/32" DEEP-I" THICK-

17.

The middle transite plate supports the upper heating zone and divides the annuli of the upper and lower heating zones. The plate permits the upper section to be maintained above the melting point of the solid while the lower section is held several degrees below its freezing point.

The bottom transite plate supports and insulates the lower heating zone. Two 1/8 inch diameter holes were drilled to allow the resistance heater leads to pass out of the furnace to a terminal strip bolted directly to the transite plate.

Each transite plate has four 1/2 inch holes by which plates are bolted directly to the unistrut frame which extends from floor to ceiling. The unistrut makes possible a convenient operation of maintenance by permitting either heating section to be separately disassembled by merely lowering or raising the bottom or top transite plate (see Figures 19 and 20).

DESCRIPTION OF CRYSTAL CONTAINER

Many types of containers have been employed for growing single crystal (5,18,22,39). In all cases the object is to initiate the growth of a single crystal at a constriction or point. The Pyrex crystal container used by the author (Figure 14) is a modification of the type used by Huber and his associates (18) and by Lipsett (22). A difficulty encountered by Lipsett when using this type of container is that the latent heat of fusion of anthracene at the liquid-solid interface can be conducted away only with considerable difficult. The problem can be solved by decreasing the rate of descent of the crystal container through the furnace.

With the design in Figure 14, a single crystal can be grown even if it is not possible to achieve a single nucleus at the point of constriction. In the bottom capillary portion of the container it is probable that the growth is multi-crystalline throughout. Since the walls of the container above the capillary portion slope fairly gradually outwards to the full diameter, it is highly probable that one of the growing grains will predominate provided the container is sufficiently long. This process of self-seeding is recommended over the use of a seed crystal. Inability to see the liquid-solid interface makes it difficult to control growth of a seed crystal and still be certain

that the seed itself has not been completely malted. A second reason for using a long crystal container is that anthracene cannot be malted in air without serious exidation or charring at the surface. Thus the charge to the crystal container is anthracene powder or flabes which are scaled off in vaccum. When malted in the furnace the anthracene fills only a small section of the container. The small (0.125 inch) round shoulder is used for attaching the fiberglass cord to the crystal container.

A second crystal container was designed by the author, shown in Figure 15, as an improvement over the design shown in Figure 14. The upper section of the container is a reservoir section used to contain the material during the loading of the crystal container. Nuch a section eliminates the loading problems encountered in the original design (diameter of opening too shall and loading time too long). To increase the probability that only one single crystal is formed, an S curve section has been included in the design of Figure 15. If several nuclei are formed at the point of the first capillary section. they will grow through the section until the first curved portion is reached. It is highly probable that only one of the growing grains will be properly criented to grow past this section. There are five additional curved portions of the S curve which ensures one curviving

grain to serve as the unique seed for the remainder of the charge. A Pyrex skirt has been included to protect the 3 curve section during the leading of the material into the container. The skirt may also be used as a guide when rasing the crystal container through the furnace. The container is raised to a position in the furnace such that the end of the container (shirt) is immediately below the middle transite plate. Thus the chaillary point is at a point 22.5 inches below the surface of the top transite plate.

DESCRIPTION OF AUXILIARY DOUTPUENT

Crystal Container Lowering Mechanism

The crystal container which is suspended in the furnace by a 0.034 inch-diameter fiberglass wire (Figures 19 and 20) is lowered by the motor and gear train mechanism shown in Figures 16 and 17. Specifications are:

- "I" 1/70 hp Bedine DC gearhead motor, 40 inch-pounds torque, 1.5 RPM minimum output speed.
- "P" Insco speed reducer, model 00141, ratios of input to output speeds are 1000/1, 500/1, 250/1, 100/1, 50/1, 25/1, 10/1, 5/1, 2.5/1, and 1/1.

"S" Heller 8-12 DC motor controller, reversible.

The traveler rod was grooved on a lathe with 1d threads per inch. Guide ring R guides the fiberglass wire off and on the winding rod N in a single wrapping of uniform spacing. This is necessary to prevent overlapping of the fiberglass wire which would result in a variability of rate of travel. The guide ring R is prevented from rotating by a 2 inch steel pin which extends from its base to a grooved slot in the supporting table. Two steel spur gears of 1.75 inch pitch diameter allow the winding rod N and the traveler rod T to rotate at the came rate. Both rods are supported at each end by two cast iron pillow blocks. The fiberglass wire passes from the winding rod W over two pulleys mounted above the furnace, through a 1/8 inch hole in the top transite plate. A small weight is attached to the wire, by means of a swivel hock, which keeps the wire taut when no crystal container is suspended in the furnace. Calibration and reliability of the lowering mechanism is summarized in Tables 12, 13 and 14.

KEY

B - PILLOW BLOCK C-SLEEVE COUPLING G-SPUR GEAR M-1/70 H.P. BODINE MOTOR P-SPEED REDUCER R-GUIDE RING S-S-12 CONTROLLER T-TRAVELER ROD V-110 VOLTAGE SUPPLY W-WINDING ROD

FIGURE 16 DRIVE SYSTEM FOR LOWERING OF CRYSTAL CONTAINER NEWARK COLLEGE OF ENGINEERING MELVIN DRUIN

FIGURE 17, DRIVE SYSTEM FOR LOWERING OF THE CRYSTAL CONTAINER

Temperature Controls

The circuit diagram for the electrical supply to the resitance heaters R_1 , R_2 , R_3 and R_4 and the temperature control circuits are shown in Figure 18. Voltages to R₁ and R₂ are controlled by variable transformers, type 116. Thermometers T_3 and T_4 which bracket the critical crystal-growing zone actuate capacitance controllers (Therm-O-Watch limit model L-6). The action of the Thern-O-Watch is based on the fact that once the oscillator head (clips onto thermometer) is tuned, a slight increase in the capacity of its circuit due to the closeness of a liquid (Percury) near the sensing clip will cause oscillations to cease and the relay in the amplifier to operate. The amplifier contains two 110 volt outlets that are turned alternately on and off in response to the action of the oscillator head. Thus the Therm-O-Watch automatically switches current on and off to heaters R_3 and R_k as required to maintain constant temperature. With adjustable thermometers, range 0 to 250°C, the sensitivity of the controller is $\pm 0.5^{\circ}$ C at 215°C. The calibration of the temperature gradient maintained inside the furnace is surmarized in Table 11.

Thermocouples

The thermocouples used were 24 gage copperconstantan insulated with fiberglass. Originally one thermocouple was used to determine the vertical temperature gradient in the furnace. This method was also used by Lipsett (21,22). The thermocouple was inserted through the 1/4 inch hole in the top transite plate and measurements of temperature were determined at ten different points inside the furnace tube with a Leeds and Northruppetentiometer. Since the time required to collect the data was at least 30 minutes the method was discarded. Ten thermocouples were installed at ten points inside the furnace tube as described and numbered as follows:

6 inches below the surface of the top transite plate 31 11 27 11 2 12 Ħ 11 22 £1 Ħ n :7 tt 73 23.5 貄 11 tt 14 13 <u>†</u>? 5 24.5 ٩t ŝŝ \$1 糖 15 ÷6 26 1÷ 17 17 22 57 <u>*</u>7 27.5 11 61 11 11 11 28.5 #3 ŧ 17 11 **1**7 11 ÷9 29.5 11 11 51 17 8.8 6 a 710 30.5 " **9**9 ٢ż 83 ŧ

The thermocouples enter the furnace through three 1/4-inch diameter holes drilled in the top transite plate.

The thermocouple leads are connected to a Thermo Electric 12 position rotary selector switch. This switch is connected to the potentiometer and an ice bath (cold junction). Calibration of the temperature gradient maintained inside the inner Pyrex tube is surmarized in Table 11.

Details of the assembled furnace and auxiliary equipment are presented in Figures 19 and 20. The furnace has an over-all height of 5 feet. A longer furnace may be made merely by stacking a third heated section on top of the upper heating zone.

.

Two Zone Bridgman Furnace

DETERMINATION OF VERTICAL TERPERATURE GRADIENT MAINTAINED IN THE FURNACE

In order to grow a single crystal of anthracene, for example, the correct temperature distribution within the furnace must be established. The best form of the vertical temperature gradient within the furnace has been discussed on page 55. The vertical temperature gradient within the furnace was determined by use of the 10 copper constantan thermocouples installed inside the inner Pyrex tube. Oscillator heads O_1 and O_2 , shown in Figure 16, were clipped on thermometers T_3 and T_4 with the bottom of the sensing clip at 210°C and 139°C respectively. Powerstate P_1 , P_2 , P_3 and P_4 were set at 35, 25, 60 and 60 volts respectively. These settings which were arrived at through trial result in the desired temperature gradient.

Temperatures within the critical crystal growing zone (230° to 197°C) of the furnace show a maximum variation of less than 1°C for a period of three days as shown in Table 11. A plot of the average temperature (during the three day period) versus the distance from the surface of the top transite plate is shown in Figure 21. The vertical temperature gradient desired in a Bridgman furnace has thus been accomplished. Temperatures at the top of the furnace are not high enough to cause decomposition of the

Table 11

TEMPERATURE GRADIENT AND FLUCTUATIONS IN FURMACE

DATE TIME THER DETER THER DOCUPLE FEADING VOLTACE TELPURATURE VOLTS) mv OC) r_1 T4 Т 5 P₁ P₂ P₃ P_k T_2 9 10 1 2 3 Ŀ. 5 Ó 7 ð. 5/1/63 10:00AM 35 25 60 60 1:30PM 35 25 60 60 205 213 208 138 54 12.23 11.61 11.71 10.81 9.09 8.55 8.12 7.52 6.64 5.64 2:45PM 35 25 60 60 211 218 208 138 55 12.44 11.84 11.61 10.81 9.09 8.50 3.06 7.47 6.61 5.61 4:30PM 35 25 60 60 214 221 208 139 54 12.67 12.03 11.64 10.83 9.12 8.55 8.11 7.52 6.64 5.61 5/2/63 10:15AH 35 25 60 60 211 218 208 139 54 12.32 11.81 11.72 10.85 9.13 8.55 8.13 7.53 6.65 5.62 11:50AM 35 25 60 60 212 220 208 139 54 12.41 11.85 11.60 10.86 9.13 8.53 8.10 7.52 6.64 5.62 2:30PM 35 25 60 60 212 220 208 139 54 12.45 11.91 11.61 10.90 9.14 8.53 8.09 7.50 6.64 5.63 7:00PM 35 25 60 60 210 221 208 139 56 12.52 11.91 11.64 10.82 9.11 8.51 8.08 7.49 6.64 5.62 5/3/63 11:00AM 35 25 60 60 212 221 208 139 54 12.43 11.89 11.64 10.92 9.15 8.54 8.10 7.52 6.64 5.62 1:25PM 35 25 60 60 212 221 208 139 54 12.53 11.93 11.63 10.92 9.10 3.53 8.09 7.50 6.63 5.63

Table 11 (Continued)

TEMPERATURE GRADIENT AND FLUCTUATIONS IN FURNACE

DATE	TIVE	THER MOCOUPLE TEMPERATURE									
		1	2	3	4	5	6	7	8	è	10
5/1/ 63	10:00AM										
	1:30PM	253.9	242.6	244.5	228.2	196.2	186	177.7	166.5	148.6	128.5
	2:45PI	257.6	246.9	242.2	228 . 2	196.2	185	176.5	165.5	14 8	127.6
	4 : 30PM	261.7	250. 3	242. \$	228.3	197	186	177.5	16 6 .5	148.6	127 . 6
5/2/ 63	10:15AM	255.5	246.3	244.5	22 å.6	197.3	186	177.8	166.7	148.8	128
	11:50AM	257.1	247	242.1	228.7	197.3	185.6	177.3	166.5	148.6	128
	2:30P?1	257.3	248.1	242.2	229.5	197.4	185.6	177.1	1 66	148.6	129.2
	7:00P 时	259	248.1	242.8	228.2	196.6	185.2	177	165.8	143.6	128
5/3/63	ll:00AM	257.4	243.1	242.8	230	197.5	185. 8	177.3	166.5	148.6	128
	1:25PM	259.2	248.5	2 42.6	230	196.5	185. 6	177.1	166	148.5	128.2
Average		253 . 2	247.9	242. ೆ	228 . 9	197	135.6	177.2	166.2	148.5	12 8

KEUFFEL & ESSER CO. MADE IN U.S.A.

しょ

anthracene. The temperature in the upper heating zone decreases gradually until the lowest portion of the top heating zone is reached. At this point the temperature abruptly drops from 240° to 200° C in a distance of 1/2 inch. The melting point of anthracene is found approximately at the mid-point of the sharp temperature drop. In the lower heating zone of the furnace the temperature falls off more rapidly than in the upper zone. However, it is expected that the gradient is not so large as to interfere with the annealing of the single crystal. With the type of vertical temperature gradient established in the furnace, little regulation of temperature is required. A slight decrease or increase in the temperature of the furnace leaves the liquid-solid interface unmoved at a point 23.5 inches below the surface of the top transite plate.

CALIERATIC, OF CREDIAL CONTAINER LOWERING CLICHANIEN

The crystal container lowering mechanism shown in Figures 15 and 17 was calibrated by lowering a weight (equal to the approximate weight of loaded crystal container) continuously through the furnace at various rates governed by the speed control knob on the Heller 5-12 motor controller. The Insce speed reducer was hept constant at a ratio of input/output of 1/1. Lowering time and distance traversed were recorded.

Results

The results of the calibration of the crystal container lowering mechanism are shown in Table 12, Table 13, Figure 22 and Figure 23. The minimum lowering speed attainable is 0.490 inches/day, and maximum speed 13.9 feet/hour. A comparison of Tables 12 and 13 indicates that the lowering speeds can be increased 18-21.4% by putting the high-low switch of Weller 5-12 meter controller to high setting.

Fluctuations of Lowering Speed

A weight (equal to approximate weight of loads erystal container) was lowered smoothly and continuously through the furnace for a period of seven days. The control settings were selected of as to give a rate of descent of 1 inch per day, a rate which is used to prove single crystall of enthraces. Table 14 indicates that

Table 12

CALIBRATION OF CRYSTAL CONTAINER LOWERING MECHANISH (LCM SETTING)

Hellor S-12

Forward-stop-reverse switch - reverse High-low switch - low

Insco speed reducer Ratio of input/output - 1/1

<u>Heller S-12</u> <u>Speed Control</u> <u>Setting</u>	LONGRING TIME (min.)	<u>DISTANCE</u> LOMERED (Inches)	RPH OUTPUT	LONDRING RATE (Inches/dar)
5	3	7.03	1.99	3370
5	6	14.15	2.00	3390
lş.	3	6 . 35	1.30	3 05 0
4	6	12.88	1.62	3080
3	2	5.63	1.59	2700
3	4.5	8.44	1.59	270C
2	6	11.25	1.59	2700
2	3	4.69	1.32	2250
2	6	9.47	1.34	2250
1	3	4.00	1.16	1950
<u>]</u>	6	0.15	1.15	1950
Off	3	3.25	0.922	1500
210	6	0 .55	0.925	1570
10	3	1.70	0.481	C20
10	5	2.00	0.437	ે2 ં
9	Ċ	2.05	ି - 2 ୨୦	492
9	6	2.02	0.206	436
Table 13

CALIBRATION OF CRYSTAL CONTAINER LOWERING TECHANISTI (HICH DETTING)

Weller S-12

Forward-stop-reverse switch - reverse High-Low switch - high

Insco speed reducer Retio of input/output - 1/1

<u>Heller S-12</u> Speed Control Setting	Lowerine Time (Ein.)	Distance Distance Lowered (inches)	<u>RPM Output</u>	<u>Lowering</u> Rato (inches/day)
5	3	ð.34	2.36	4000
5	5	13.33	2. 36	4C OO
4	3	7.72	2.19	3710
Ъ,	5	12.84	2.18	3700
3	Ĵ.	5.72	1.90	3220
3	6	13.58	1.92	3260
2		5.75	1.63	2760
2	3	5.78	1.63	2760
1	3 ∎5	5.64	1.37	2320
1	27	4.76	1.35	2280
022	3	3.92	1.11	1080
220	2	4.00	1.13	1920
10	5	3.47	0 .5 89	1000
10		5.50	0.5%4	990
9	l _ê	1.64	0.348	591
9	6	2.47	0.349	591

76510 14

FLUCTUATION OF LONGRING SPILLD

Reller S-12 Pervard-stop-reverse suitch - reverse High-low suitch - high Speed control suitch - 10

Indeo open reducer Retio of input/catput -1000/1

<u>Dete</u>	<u>1120</u>		Levering The (unla.)	<u>Joasurod</u> <u>Distanco</u> Lowerco (inches)	Lowering Rate (in./day	<u>Rate</u> <u>Rate</u>) <u>Doviatic</u> <u>From Nec</u> (d)	Lovering Rate m Rate m Doviation Prom Mean (6 ²)
5/31	1:20	PII	6	0	G	¢	0
ं/३	11: 30	AM	4210	2.01	0₊952	+0.012	1.44 (10-4)
6 / 4	11:50	A.1	5070	3.74	0.949	-0.001	1 (10 ⁻⁶)
6/6	11:05	AM	3505	5.5 2	0.944	-0.00 6	3 (1 ం ^{—్})
6/7	2:30	PN	10,150	6.00	0.944	-C.006	36 (10 ⁻⁶)
					0.950	<u>Σ</u> (1) ²	= 2.17 (10-4)
				Standa	rd deviat	$zion = \frac{1}{2}$ (0.0035 in./day

10 X 10 TO THE INCH KEUFFEL & ESSER CO. Щ Й

(.

at the selected settings the rate of descent in the furnace can be maintained at a speed of $0.950^{\pm} \ 0.0035$ inches/day.

PROCEDURE FOR GROWING SINCLE CRYSTALS

Loading Crystal Container

The material to be grown single crystal form is first pulverized finely by crushing with a clean spatula, on a glass watch glass. The material is collected and introduced into the crystal containar (Figure 14), which has proviously been cleaned with an alchohol-sodium hydroxide cleaning solution. Approximately 12-13 grams of material are packed tightly into the container to a height of 12 inches.

A constriction is pulled in the crystal container above the rounded shoulder. The container is then dvacuated until a pressure of 10 microns is attained. Care must be taken at the start of evacuation that the powdered material is not drawn out of the container. This is accomplished by controlling the vacuum so that the initial pressure drop occurs clowly. An inert atmosphere of holium or mitrogen gas is introduced into the container and the contents are again evacuated to 10 microne or less. This procedure is repeated 3 or 4 times to evapp out all air and the container is then coaled off (at the previously made constriction) under a total pressure of 10 microne or less. The crystal is grown in an inert atmosphere because materials such as anthracene may not be melted in air without serious exidation or charring.

Inserting Crystal Container Into Furnace

Power to the furnace is first turned on. Powerstats P_1, P_2, P_3 and P_k and Thermo-O-Watch controllers C_1 and C_2 are set at the necessary values in order to obtain the required vertical temperature gradient within the furnace (Table 11). The fiberglass cord is lowered out of the bottom section of the furnace. The small weight which keeps the wire taut when no crystal container is suspended in the furnace is removed from the univel Well and is replaced by a sling which is attached to the crystal container directly below the small round shoulder. The fiberglass cord is wound up on the winding rod W so as to raise the crystal container through the lower and upper heating sections at a rate of 491 inches/ day. Raising of the crystal container proceeds until the entire container is in the upper heating zone which is maintained at a temperatue above the melting point of the material.

Lowering of Crystal Container

When the material is molton (after 2 hrs.), the crystal container is lowered smoothly and continuously through the furnace at a rate of 0.950 ± 0.0005 inches

per day by the gear train mechanism shown in Pigures 16 and 17.

During the descent of the crystal container, the ten thermocouple temperatures are measured with the potentionator in order to check that all heaters are functioning properly. Observations of the progress of melting and growth are performed by viewing the crystal container through the small holes cut in the outer magnesia insulation. The lowering rate is closhed by measuring the actual distance traversed for a given time interval.

RESULTS OF GROWING SINGLE CRYSTALS

When growing single crystals the operational procedures and furnace described previously are employed. The methods described have been used with success to produce single crystals of anthracene and ethyl-p-aminobenzoate with diameters of 1/2 inch. The operating conditions are summarized in Table 15.

Anthracene (blue-violet fluorescence grade)

Blue-violet fluorescent grade anthracene purchased from Matheson, Coleman and Bell Co. and used without further purification was grown into a single crystal with dimensions of 1/2 inch in diameter and 6 inches in length. The crystal was grown in a helium atmosphere at a rate of 0.900 inches/day over a total period of twenty days (June 12 to July 2, 1963). During this growth period temperatures within the critical growing zone of the furnace showed a maximum variation of less than 1° C. The average temperatures at ten positions within the inner Pyrex tube are shown in Table 15.

Discussion of Results. The crystal shows large somes of single character, gross evidence of the presence of impurities (maphthacene) and several faults as shown in Figure 24. The crystal is not clear throughout. It

Table 15

GROWING SINCLE CRYSTALS	
-------------------------	--

MATERIAL	TIME PERIOD	<u>IME</u> <u>VOLTAGE</u> <u>RIOD</u> (VOLTS)				TIERDOLE TER TOIPERATURE			AVERAGE THERIDCOUPLE READING											
	(DVT2)	Pl	P2	Р 3	Р 4	T 1	5 1	-0 7 * 7 * 3	" T * 4	т 5	l	2	3	4	av .) 5	6	7	8	9	10
ANTHRACENE (Blug-Viole Fluor.)Crad	20 t e	31	25	60	60	200	213	500	139	5 8	11.54	11.4	10.95	10.31	8.72	8.29	7.84	7.32	6 .5 9	5.58
ANTHRACENE (From Dimer) 24	31	25	60	60	1 98	210	200	139	56	-	•	10.94	-	8.71	ೆ .22	7.83	7.32	6 .5 8	5.58
e thyl-p- ami Benzoate	110 20	1 8	15	35	30	9ප්	101	36	48	35	-		4•43	•••	3.20	2.59	2.36	2.21	2.03	1.87

* Controlled by Thermo-O-Watch Controllers C_1 and C_2

- Thermocouple Faulty

Table 15 (Continued)

GROWING SINGLE CRYSTALS

MATERIAL	TI E PERIOD	AVERACE THEREDOCULPLE TEMPERATURE									
	(DATE)	1	2	3	4	5	6	. 7:	d'a toa	Ş	10
ANTHRACENE (Blue-Violet Fluor.)Grade	20	241	238.5	230 . 5	218.5	189	1ಿ೦	172.5	163	147.5	127
ANTHRACEESS (From Dimer)	24	-	f b	230.4	-	188.5	179. 6	172.4	1 63 ·	147.4	127
ETHYL - P-AMIA BENZOATE	10 2 8	 .	-	103.5		76.7	63	57•7	54•3	4 9∙≋	46

١

- Thermocouple Faulty

FIGURE 24, SINCLE CRYSTALS; Anthracene (Blue-violet fluorescence grade), Anthracene (from the dimer) Ethyl-p-aminobenzoate (benzocaine)

has a light brown color throughout the main section and a dark brown color at either end. The impurity concentration of the crystal is not of a uniform nature as demonstrated by observation under ultra-vielet light (310-375 millimicrons). The brown portions fluoresce a variety of shades of green indicating variations in naphthacene concentration.

Anthracene (prepared directly from the dimer)

A single crystal of anthracene was prepared directly from its dimer, dianthracene, with dimensions of 1/2 inch in diameter and 4 inches in length. The crystal was grown in a nitrogen atmosphere at a rate of 0.983 inches/day for a total period of 24 days (Aug. 24 to Sept. 17, 1963). Preparation of the dimer by exposing a solution of anthracene to ultra-violet light was previously discussed. The dimer was then loaded into the crystal container and inserted into the furnace. After a period of two hours during which it was exposed to temperatures slightly above the melting point of anthracene the dimer was converted to anthracene. Temperatures within the furnace showed a maximum variation of less than 1°C during the 24 day growth period. Average temperatures at ten positions in the furnace tube are shown in Table 15.

Discussion of Results. The crystal shows large zones of single character, gross evidence of the presence of impurities (maphthacene) and many faults as shown in Figure 24. It may be seen that the crystal contains a greater number of faults and more sections of a polycrystalline nature than does the crystal grown from the blue fluorescence grade anthracene. The impurity concentration of the crystal becomes greater in the direction of growth. This may be readily observed by means of ultra-vielet light.

Here attention must be paid to the purity of the initial charge to the container as this has a definite influence on the resulting crystal. Fluorescence analysis of the blue-violat grade anthracene and the technical anthracene purified by the dimerization method establish the impurity concentrations as 1.6 and 119 ppm naphthacene in anthracene. As demonstrated, the greater the impurity concentration in the initial charge the greater the pile up of impurity in the dimerization of growth and the greater the number of faults.

Ethyl-p-aminobenzcate

Reagent grade othyl-p-aminobenzoate (benzocain), purified by sublimation methods similar to those proviously discussed for anthracone, was grown into a 7 inch by 1/2 inch diameter single crystal. The crystal was grown in a nitrogen atmosphere at a rate of 0.975 inches/day for a total period of 28 days (July 10 to Aug. 7, 1953). Temperatures in the furnace proper were measured by the iron-constantan thermocouples at ten points inside the furnace tube and showed a maximum variation of less than 1°C. Average temperatures during the growth period are shown in Table 15.

Discussion of Results. The crystal shows large zenes of single character and little evidence of the presence of impurities as shown in Figure 24. There are many faults which resemble air bubbles. These faults were created as a result of cealing the container under a mitrogen atmosphere of 1-2 pounds/sq. inch gage, instead of the usual pressure of 10 microns or less. As the container was heated the mitrogen expanded and bubbled through the material.

CONCLUSIOUS AND RECOMMENDATIONS

A furnace was designed and built for growing of large single crystals of organic compounds by the Bridgman technique. Single crystals of anthracene and ethyl-p-aminobenzoate with diameters of 1/2 inch have successfully been grown in the furnace. It has been shown that the purity of the initial charge to the crystal container has a definite influence on the resulting crystal. An improved design of the original crystal container, with a primary view to insure that only one single crystal is indeed formed in the process has been performed. It is believed that this container will eliminate many of the problems encountered by this author in the process of growing single crystals.

High purity anthracene of fluorescent quality has been prepared by multiple co-distillation of 90-95 percent anthracene with othylene glycol. Anthracene prepared by this method is purer than zene refined anthracene, having a 0.470 ppm naphthacene content. It is believed that this material will be adequate for crystal growth and subsequent electrical measurements. Co-distillation is generally applicable to many organic compounds which are of interest as semiconductors.

It is recommended that a three-meck, two-liter Pyrex round bottom flask be substituted for the reactor of the co-distillation apparatus which is currently in use. Larger quantities of pure anthracene may then be produced and with a Therm-O-Watch limit model L-6 the temperatue of the system may be controlled more accurately.

Zone refining of anthracene is not recommended although it produces an excellent quality of material because of the excessive number of zone passes required and the relatively small size of charge. Similarly snythetic preparation is not recommended because of the relatively complicated and tedious process involved and the small yields of satisfactory anthracene produced.

A very simple fluorescence technique for quantitative analysis of traces of asphthacene in anthracene has been developed. This method employs a colloidal suspension of the sample. Sensitivity approaching 0.1 ppm naphthacene in anthracene has been obtained. For rapid semiquantitative analysis, it provides a visible fluorescence color correlation with the level of impurity. The method is convenient to use because it employs small samples and uncomplicated manipulative techniques. Further work is required to determine the ultimate sensitivity of the fluorescence technique. The sensitivity of this method can probably be extended to 0.01 ppm naphthacene content by determining the optimum colloidal concentrations, using a purer standard prepared from co-distillation and by employing a more sensitive photomultiplier tube particularly in the 510 mu range. It is recommended that an R.C.A. 1P22 photomultiplier tube, which is twice as sensitive at this level, be used in place of the R.C.A. 1P28.

BIBLIOGRAPHY

٢.

- (1) Adams, R., and Johnson, J. R., <u>Laboratory</u> <u>Experiments in Organic Chemistry</u>, Fourth Edition. New York: The Macmillan Co., 1960, pp. 80, 73-84.
- (2) Bounett, D. C., and Sawyer, B., <u>Bell System</u> <u>Tech. J., 35</u>, 1956, pp. 637.
- (3) Bowon, U. J., and Lawley, P. D., "Crystal Size and Fluorescence Intensity, <u>Nature</u>, <u>164</u>, 1949, pp. 572.
- (4) Bronner, <u>Interials in Desigh Engineering</u>, <u>51</u>, April, 1960, pp. 12-13.
- (5) Bridgman, P. N., Proc. Am. Acad. Arts Sci., 60, 1925, pp. 305.
- (6) Buckley, H. E., <u>Crystal Growth</u>. New York: John Wiley and Sohs, Inc., 1951.
- Czorny, Bohdan, <u>The Electrical and Optical</u> <u>Properties of Organic Semiconductors</u>.
 M.S. Thesis, Newark College of Engineering, Newark, New Jorsey, 1963.
- (8) Eastman Kodak Co., <u>U.S. Patent</u> 2,213,755.
- (9) Feazel, C. E., and Smith, C. D., <u>Rev. Sci. Instr.</u> 19, 1948, pp. 817.
- (10) Fisser, Louis F., <u>Experiments in Organic Chemistry</u>, Third Edition. Boston: D.C. Beath and Company, 1955, pp. 159-64.
- (11) Franck, J., and Teller, E., "Digration and Photochemical Action of Excitation Energy in Crystals," <u>J. Chem. Phys.</u> 5, 1938, pp. 861.
- (12) Furst, Kallmann and Brown, "Fluorescence Efficiencies of Organic Compounds," <u>J. Chem. Phys.</u>, <u>26</u>, 1957, pp. 1321-22.

- (13) Ganguly, S. C., "Fluorescence of Anthracene in Presence of Maphthacene," <u>Nature</u>, <u>151</u>, 1943, pp. 573.
- (14) Cumprecht, D. L., "A Cycle Counter for Zone-Refining Systems," <u>Chem. Eng.</u>, November, 1962, pp. 140.
- (15) <u>Handbook of Chemistry and Physics.</u> C. D. Hodgman, R. C. Weast and S. M. Selby (eds.), Forty-Third Edition. Cleveland, Ohio: Chemical Rubber Publishing Co., 1961-62, pp. 806.
- (16) Hannay, N. B., <u>Semiconductors</u>. A.C.S. Reinhold Publishing Co., New York: 1959, Chapt. 15 by Garrett.
- (17) Hennington, Handley and Cook, "Zone Refining Organice." <u>Chem. and Ind.</u>, 16, April, 1956, pp. 292.
- (13) Huber, O., Humble, F., Schneider, H., and Steffen, R., <u>Helv. Phys. Acta</u>, <u>22</u>, 1949, pp. 410.
- (19) Inockuchi, H., Bull, Chem. Soc. Japan, 29, 1956, pp. 131.
- (20) Kallman, M., and Pope, M., "Preparation of Thin Anthracene Single Crystals," <u>Rev. Sci. Instr.</u>, <u>29</u>, 1953, pp. 993.
- (21) Lipsett, F. R., "Furnace for the Growth of Naphthalses and Anthracene Crystals," <u>Rev. Aci.</u> Instr., <u>29</u>, Nay, 1958, pp. 423-24.
- (22) Lipsett, F. R., "On the Production of Single Crystals of Naphthalone and Anthracene," <u>Can. J. Phys.</u>, <u>35 No. 3.</u> March, 1957, pp. 234-294.
- (23) Lipsett, F. R., and Dekker, A. J., "Fluorescence Spectra of Some Organic Solid Solutions," <u>Can. J. Phys.</u>, <u>30</u>, 1952, pp. 165-73.
- (24) Notte, N., and Pick, N. Z., <u>Physik</u>, 134, 1953, pp. 565.
- (25) Musicant, Louis, <u>Private Communication</u> Irvington, New Jersey, October 25, 1965.

- (25) Bakada, Ichiroch, "The Optical Properties of Anthracono Single Crystals," <u>J. Phys. Soc. of</u> <u>Japan, 17 Fo. 1.</u> January, 1952, pp. 113-118.
- (27) Horthrop, D. C., and Simpson, O., "Electronic Properties of Aromatic Hydrocarbons, Fluorescence Transfer in Solid Solutions," <u>Proc. Roy. Sec.</u> (London), A234, 1956, pp. 136-49.
- (28) Parker, C. A., and Rees, W. T., "Fluorescence Spectrometry A Review," <u>The Analyst</u>, <u>37</u>, 1962, pp. 83-111.
- (29) Petrauskas, A. A., and Caudry, F. J., <u>Appl. Phys.</u>, <u>20</u>, 1949, pp. 1257
- (30) Pfann, William G., Zone Melting. New York: John Wiley and Sons, Inc., 1958.
- (31) Pimentol, G. C., and McClellan, A. L., <u>J. Chem.</u> <u>Phys.</u>, <u>20</u>, 1952, pp. 270.
- (32) Pringsheim, Peter, <u>Fluorescence and Phosphorescence</u>, First Edition. New York: Interscience Publishers, Inc., 1949.
- (33) Riehl, N. V., Zhur. Fiz. Khim., 6, 1955, pp. 959.
- (34) Robertson, J. N., <u>Rev. Mod. Phys.</u>, <u>30</u>, 1958, pp. 155.
- Rodd, E. N., <u>Chemistry of Carbon Compounds</u>, Vol. 111
 B. Ansterdam: Elsevier Publishing Company, 1956, pp. 1362.
- (36) Sangster, R. C., and Irvine, J. W., <u>J. Chem. Phys.</u>, 24 1956, pp. 670.
- (37) Shpol'ski, E. V. S., Ilina, A. A., and Bazilevich, V. V., "Fluorescence Spectra of Anthracene, 1, 2-Bezanthracene, and Some of Their Derivatives," <u>Dokl. Akad. Nauk SSSR</u>, <u>62, 1948</u>, pp. 227-30. <u>Chem. Abs., 43</u>, 1949, 495a.
- (33) Sloan, <u>Physics and Chemistry of the Organic Solid</u> <u>State</u>. New York: Interscience Publishers, 1963, pp. 192.
- (39) Stochbarger, D. C., <u>Rev. Sci. Instr.</u>, <u>7</u>, 1935, pp. 133.

- (40) Takaki, H., Makamura, S., Makamura, Y., Hayashi, J., Furukawa, K., and Aso, H. J., J. Phys. Soc. (Japan), 9, 1954, pp. 204.
- (41) Tammann, G., <u>Netallocraphy</u>, translated by Dean and Swenson. New York: The Chemical Catalog Co., 1925, pp. 26.
- (42) Van Duuren, B. L., "Effects of the Environment of the Fluorescence of Aromatic Compounds in Solution," <u>Chom. Revs.</u>, <u>63</u>, August, 1963, pp. 325-351.
- (43) Van Duuron, B. L., and Bardi, C. E., "Reflectance Fluorescence Spectra of Archatic Compounds in Potassium Bromido Pellets," <u>Anal. Chem.</u> <u>35</u>, 1963, pp. 2198-2202.
- (44) Wynne, Edwin A., "Application of Zone Refining to the Purification of Organic Compounds," <u>Microchem. J.</u>, 5, 1961, pp. 175-103.