
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

February 2023

Improved Time-related Checking in Routing Solvers Improved Time-related Checking in Routing Solvers

Steven Gay

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Gay, Steven, "Improved Time-related Checking in Routing Solvers", Technical Disclosure Commons,
(February 08, 2023)
https://www.tdcommons.org/dpubs_series/5671

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5671&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5671?utm_source=www.tdcommons.org%2Fdpubs_series%2F5671&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Improved Time-related Checking in Routing Solvers

ABSTRACT

To solve routing problems with given constraints, an initial routing solution is obtained in

a construction phase and iteratively improved in a subsequent improvement phase. With O(1)

time complexity to check for constraint satisfaction per change with p being the total length of all

paths changed between a known solution and a new candidate solution, current approaches have

O(p²) time and space complexity when replacing the current solution with a new one. This does

not scale when routing problems involve paths that have hundreds of nodes. This disclosure

describes techniques to perform efficient pre-computations to reduce the time and space

complexity to O(p log p), thus significantly saving time and resources. The pre-computations

check constraint satisfaction for new candidate solutions generated with small variations from a

current solution that is known to respect the constraints. The new candidate solutions are

described by the chains of their paths that are changed in comparison to the current solution. The

checking and pre-computations are performed with a general algorithm and associated query

scheme for each subproblem, and run in linear time in the number of chains. As a result, the time

and space complexity of the operation is reduced to O(p log p), where p is the total length of all

changed paths in the new solution.

KEYWORDS

● Vehicle fleet

● Routing problem

● Local search

● Route optimization

● Dimensional constraint

● Time complexity

● Space complexity

● Constraint satisfaction

2

Gay: Improved Time-related Checking in Routing Solvers

Published by Technical Disclosure Commons, 2023

BACKGROUND

Operators of vehicle fleets need to determine optimal route assignments for vehicles in

the fleet based on the allocated tasks and time constraints for the fleet as a whole and/or each

individual vehicle within the fleet. For example, an operator of a fleet of vehicles used for

delivering packages would need to assign routes to each vehicle within the fleet based on the

start and end time of the delivery operation, delivery addresses associated with each package, the

earliest and latest times by which the packages must be delivered, etc.

A typical vehicle routing problem has a fixed number of nodes, N, that must be visited by

a fleet of m vehicles. Each vehicle has distinct and fixed start and end nodes such that there are

2m different start and end nodes that are inputs to the problem. A solution to the problem is an

assignment of each vehicle to a path p, which is a sequence of distinct nodes n1 … nk, where n1

and nk are the start and end nodes of the vehicle, respectively.

Apart from path constraints, vehicle routing problems may include additional

contractions, such as dimension constraints that represent permissible values for various physical

parameters (e.g., weight, volume, number of items, distance, time, etc.). Such constraints can be

associated with nodes, paths, or vehicles involved in the problem. For instance, each node ni may

have a maximum permissible cumulative interval for a parameter, Cumul(ni); each pair of nodes

may have a permissible transition interval for another parameter, Transit(ni, ni+1); each path p

may have a limited capacity for a parameter, Capacity(p); etc. One or both bounds of intervals

for a dimensional constraint may be infinite. A permissible solution to the vehicle routing

problem requires computing the values for the dimensional parameters for nodes, node pairs,

paths, and vehicles as appropriate and ensuring that the values are within permissible bounds.

3

Defensive Publications Series, Art. 5671 [2023]

https://www.tdcommons.org/dpubs_series/5671

The routing for all vehicles within a fleet under the given path and dimensional

constraints can be determined via various approaches, such as local search. Local search is

typically split into at least two phases: construction and improvement, respectively. An initial

routing solution is obtained in the construction phase and iteratively improved in the subsequent

improvement phase. For instance, the initial candidate solution candidate solution for each path

v1…vm can be represented as sequences of chains:

v1…vm = (v1
1v

1
2…v1

m1)(v
2

1v
2
2…v2

m2)...(v
n
1v

n
2…vn

mn) = c1c2…cn

where each chain cj = vj
1… vj

mj is a subpath of some path of the solution.

Fig. 1: Generating a new candidate solution with small changes to a current solution

As Fig. 1 shows, each iteration in the improvement phase involves generating a new

candidate solution with a small change to the current solution. Fig. 1(a) shows a current solution

4

Gay: Improved Time-related Checking in Routing Solvers

Published by Technical Disclosure Commons, 2023

that depicts the nodes n1…nk in the respective route for each of the vehicles v1…vm in a fleet. The

new candidate solution shown in Fig. 1(b) differs from the current solution of Fig. 1(a) only in

terms of four of the nodes being swapped between v1 and v2 (as indicated by the dotted red

rectangle), with the rest of the routing remaining identical to the current solution. Therefore, each

new solution can be represented in terms of the set of paths that differ from the current candidate

solution, with each changed path in turn described as a sequence of chains as above. If the new

solution satisfies the routing constraints better than the current solution, it can replace the current

solution.

Typically, most of the new solutions generated during the improvement phase do not

satisfy the constraints and/or improve the current solution. As a result, there are usually 1,000 to

1,000,000 times more checks with the current solution that are discarded compared to the ones

that result in the current solution being replaced with a new solution.

A similar iterative process of checking and replacing the current solution with a more

optimal solution may be employed to find the initial solution during the construction phase.

Employing the approach during the construction phase results in several orders of magnitudes

more comparisons without solution replacement than those in which a new solution replaces an

existing one, as in the improvement phase. However, the difference between the two is typically

substantially less than that in the improvement phase.

Given the large number of comparisons among solutions that are involved in the

application of local search for determining optimal routing solutions, the performance of the

process is dependent on the time O(p) taken for performing each comparison, where p is the total

length of the paths that are changed from the current solution to form the new solution. For some

families of routing problems, the performance of performing an O(p) time procedure for each

5

Defensive Publications Series, Art. 5671 [2023]

https://www.tdcommons.org/dpubs_series/5671

comparison might be acceptable. However, the approach does not scale when routing problems

involve paths that have hundreds of nodes.

Given that the new solutions being compared with the current solutions are small

variations of the current solution, the complexity of performing future comparisons can be

improved by performing relevant pre-computation whenever a current solution is replaced with a

current one. A common approach is to pre-compute the relevant characteristics (e.g., travel time)

of all subpaths involved in the new solution with which the current solution is replaced. Such

pre-computation can typically be performed in O(p2) time and space, with the characteristics of

all subpaths stored in a matrix indexed by the start and end of the subpath.

DESCRIPTION

This disclosure describes techniques to perform efficient pre-computations to check

constraint satisfaction for new candidate solutions to routing problems that are generated with

small variations from a current solution that is known to respect the required constraints. The

new candidate solutions can be described by the chains of their paths that are changed in

comparison to the current solution.

A general algorithm that can run in linear time in the number of chains of the path can be

applied to propagate the given constraints from the first node of the first chain to the last node of

the last chain. For each subproblem connected respectively to each constraint, a query scheme

that can run in linear time can be used to propagate the given constraints from the first to the last

nodes of a specific chain. Assuming O(1) time complexity for comparing relevant values for

each change between a new candidate solution and the current solution, the algorithm and

associated query scheme enable pre-computations for a new candidate solution to be performed

6

Gay: Improved Time-related Checking in Routing Solvers

Published by Technical Disclosure Commons, 2023

with O(p log p) complexity, where p is the total length of all paths that changed in the new

solution compared to those in the current solution.

For instance, the satisfaction of the cumulative, transit, and capacity dimensional

constraints for each of the chains within the solution being examined can be checked by

iteratively applying the general algorithm as follows:

feasible_interval = Cumul(start(path)) ∩ Capacity(p);

previous_node = start(path);

for chain in path:

feasible_interval += Transit(previous_node, chain[0]);

feasible_interval ∩= Cumul(chain[0]) ∩ Capacity(path);

feasible_interval ∩= FirstNodeCapacityIntersection(chain)

if feasible_interval is empty: return Infeasible

feasible_interval += TransitSum(chain)

feasible_interval ∩= PathCapacityIntersection(p, chain)

feasible_interval ∩= LastNodeCapacityIntersection(chain)

if feasible_interval is empty: return Infeasible

previous_node = chain[-1]

return Feasible

Specifically, the algorithm involves preserving the feasible interval of the first and last

nodes of the current chain and returning Feasible or Infeasible depending on whether the

given constraints can be satisfied or not, respectively.

To deal with infinities the algorithm can employ extended interval structure that contains

four fields: min, max, num_pos_inf, num_neg_inf, with the first two being finite real value

and the latter two being nonnegative integers. The relevant checking operations can then be

performed in O(1) time based on intersection, addition, and emptiness tests defined as follows:

7

Defensive Publications Series, Art. 5671 [2023]

https://www.tdcommons.org/dpubs_series/5671

I is empty iff I.num_pos_inf == I.num_neg_inf == 0 and I.min > I.max.

a ∩ b = c, with fields

c.min = max(a.min if a.num_neg_inf = 0 else -inf,

 b.min if b.num_neg_inf = 0 else -inf);

 if c.min = -inf, c.min = 0;

c.max = min(a.max if a.num_pos_inf = 0 else +inf,

 b.max if b.num_pos_inf = 0 else +inf);

 if c.max == +inf, c.max = 0;

c.num_neg_inf = min(a.num_neg_inf, b.num_neg_inf)

c.num_pos_inf = min(a.num_pos_inf, b.num_pos_inf)

a + b = c, with

c.min = a.min + b.min

c.max = a.max + b.max

c.num_neg_inf = a.num_neg_inf + b.num_neg_inf

c.num_pos_inf = a.num_pos_inf + b.num_pos_inf

FromTo(a, b) = c, with

c.min = b.min - a.min

c.max = b.max - a.max

c.num_neg_inf = b.num_neg_inf - a.num_neg_inf

c.num_pos_inf = b.num_pos_inf - a.num_pos_inf

The query schemes associated with the algorithm can be similarly computed in O(1) time,

thus ensuring that the entire procedure to check for constraint satisfaction can run in time that is

linear in terms of the number of chains of the path. For instance, satisfaction of constraints

related to Transit and Capacity as mentioned above can be checked by computing relevant values

via corresponding functions as illustrated by the following examples:

1. TransitSum: The TransitSum function is a well-known range sum query scheme that returns

the sum of Transit(ni, ni+1) for i in [1, c) when applied on a chain n1…nc. The values

sum_transits of a path n1…nk are pre-computed with:

sum_transits(ni) = 0 if i = k; OR

sum_transits(ni) = transition(ni, ni+1) + sum_transits(ni+1) if i ≄ k

8

Gay: Improved Time-related Checking in Routing Solvers

Published by Technical Disclosure Commons, 2023

Information about the first and last node of a chain is sufficient for computing the answer for

each subsequent query on the chain. Therefore, TransitSum(n1…nc) returns

FromTo(sum_transits(nc), sum_transits(n1)). Such an extension of the range sum query

scheme can be used to deal correctly with infinities.

2. PathCapacityIntersection: PathCapacityIntersection(p, n1 … nc) can be defined as ⋂ i in [1,c]

Capacity(p) + TransitSum(ni … nc). The i-th term of this intersection is the interval of

feasible values of cumul(nc) based on the path capacity constraint on ni and the transition

constraints between nodes ni and nc. The commutation properties of sum and intersection can

be used to compute the equivalent efficiently:

Capacity(p) + FromTo(sum_transits(nc), ⋂ i in [1,c] sum_transits(ni))

The above computation enables decoupling the path capacity of the chain in the current

solution from that of the candidate. The intersection ⋂ i in [1,c] sum_transits(ni) can be

computed efficiently by adapting the conventional range max query scheme with O(n log n)

time and space pre-computation and O(1) time query such that is takes the form of a range

intersection query on extended intervals. When the current solution is replaced by a more

optimal candidate solution, the values for transit_sum_riq are pre-computed for each changed

path n1…nk as transit_sum_riq[0][ni] = sum_transits[ni] with layer = 1 .. floor(log2(k)), w =

2layer, for all i:

transit_sum_riq[layer][ni] = transit_sum_riq[layer-1][ni] ∩ transit_sum_riq[layer-1][ni+w]

if i ≤ k - w; OR

transit_sum_riq[layer][ni] = transit_sum_riq[layer-1][ni] if i > k - w

9

Defensive Publications Series, Art. 5671 [2023]

https://www.tdcommons.org/dpubs_series/5671

When checking for constraint satisfaction, the query ⋂ i in [a,b] sum_transits(ni) when a < b can

be answered by computing layer = floor(log2(b - a)), w = 2layer and returning

transit_sum_riq[layer][na] ∩ transit_sum_riq[layer][nb-w+1].

3. NodeCapacityIntersection: LastNodeCapacityIntersection(ni…nj) can be defined as ⋂ i in

[1,c] Cumul(ni) + TransitSum(ni … nc). The i-th term of this intersection is the interval of

feasible values of cumul(nc) based on the node capacity constraint on ni and transition

constraints between ni and nc. When the current solution is replaced by a more optimal

candidate solution, the values for node_capacity_riq are pre-computed for each changed path

n1…nk as node_capacity_riq[0][ni] = Cumul(ni) with layer = 1 .. floor(log2(k)), w = 2layer, for

all i:

node_capacity_riq[layer][i] = node_capacity_riq[layer-1][i - w] + TransitSum(ni-w…ni) ∩

node_capacity_riq[layer-1][i] if i ≤ w; OR

node_capacity_riq[layer][i] = node_capacity_riq[layer-1][i] if i > w

When checking for constraint satisfaction, the query LastNodeCapacityIntersection(na…nb) can

be answered by computing layer = floor(log2(b - a)), w = 2layer and returning

node_capacity_riq[layer][a+w-1] + TransitSum(na+w-1, nb) ∩ node_capacity_riq[layer][b].

FirstNodeCapacityIntersection is defined and computed in a symmetrical manner.

As the above examples illustrate, the query schemes can be used not only to check for

constraint satisfaction, but also to compute the minimum feasible value of cumul at the end of a

given path. Moreover, the same schemes with mirror values can compute the maximum feasible

value of cumul at the beginning of the path. These two values can in turn be used to compute

with the same time and space complexity characteristics the values of several parameters related

10

Gay: Improved Time-related Checking in Routing Solvers

Published by Technical Disclosure Commons, 2023

to paths, such as the cost of being early at the beginning of a path, the cost of being late at the

end of a path, the minimum span of a path, the cost of the minimum span, overtime cost, etc.

The techniques described in this disclosure can be provided as a basic building block via

any suitable mechanism, such as a code library, an application programming interface (API), etc.

The techniques can be implemented when using local search to determine solutions to routing

problems within any relevant application, platform, or service, such as digital maps, vehicle fleet

management, etc. Further, the techniques can be used for performing relevant pre-computations

when solving other types of problems, such as scheduling, as well as within other types of

problem-solving approaches, such as evolutionary algorithms.

Assuming O(1) time complexity to check for constraint satisfaction per change with p

being the total length of all paths changed between a known solution and a new candidate

solution, current approaches provide O(p²) time and space complexity when replacing the current

solution with a new one. Implementation of the techniques can reduce the time and space

complexity to O(p log p), thus significantly saving the time and resources required to determine

optimal routes, especially in scenarios that involve long routes and hundreds to thousands of

nodes with numerous constraints on various factors, such as time, capacity, etc.

CONCLUSION

This disclosure describes techniques to perform efficient pre-computations to reduce the

time and space complexity to O(p log p), thus significantly saving time and resources. The pre-

computations check constraint satisfaction for new candidate solutions generated with small

variations from a current solution that is known to respect the constraints. The new candidate

solutions are described by the chains of their paths that are changed in comparison to the current

solution. The checking and pre-computations are performed with a general algorithm and

11

Defensive Publications Series, Art. 5671 [2023]

https://www.tdcommons.org/dpubs_series/5671

associated query scheme for each subproblem, and run in linear time in the number of chains. As

a result, the time and space complexity of the operation is reduced to O(p log p), where p is the

total length of all changed paths in the new solution.

REFERENCES

1. Kindervater, Gerard AP, and Martin WP Savelsbergh. "10. Vehicle routing: handling edge

exchanges." in Local search in combinatorial optimization, pp. 337-360. Princeton

University Press, 2018.

2. “OR-Tools | Google Developers” available online at

https://developers.google.com/optimization accessed January 23, 2023.

12

Gay: Improved Time-related Checking in Routing Solvers

Published by Technical Disclosure Commons, 2023

https://developers.google.com/optimization

	Improved Time-related Checking in Routing Solvers
	Recommended Citation

	tmp.1675751233.pdf.TCKzR

