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Improved Time-related Checking in Routing Solvers 

ABSTRACT 

To solve routing problems with given constraints, an initial routing solution is obtained in 

a construction phase and iteratively improved in a subsequent improvement phase. With O(1) 

time complexity to check for constraint satisfaction per change with p being the total length of all 

paths changed between a known solution and a new candidate solution, current approaches have 

O(p²) time and space complexity when replacing the current solution with a new one. This does 

not scale when routing problems involve paths that have hundreds of nodes. This disclosure 

describes techniques to perform efficient pre-computations to reduce the time and space 

complexity to O(p log p), thus significantly saving time and resources. The pre-computations 

check constraint satisfaction for new candidate solutions generated with small variations from a 

current solution that is known to respect the constraints. The new candidate solutions are 

described by the chains of their paths that are changed in comparison to the current solution. The 

checking and pre-computations are performed with a general algorithm and associated query 

scheme for each subproblem, and run in linear time in the number of chains. As a result, the time 

and space complexity of the operation is reduced to O(p log p), where p is the total length of all 

changed paths in the new solution.  
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BACKGROUND 

Operators of vehicle fleets need to determine optimal route assignments for vehicles in 

the fleet based on the allocated tasks and time constraints for the fleet as a whole and/or each 

individual vehicle within the fleet. For example, an operator of a fleet of vehicles used for 

delivering packages would need to assign routes to each vehicle within the fleet based on the 

start and end time of the delivery operation, delivery addresses associated with each package, the 

earliest and latest times by which the packages must be delivered, etc. 

A typical vehicle routing problem has a fixed number of nodes, N, that must be visited by 

a fleet of m vehicles. Each vehicle has distinct and fixed start and end nodes such that there are 

2m different start and end nodes that are inputs to the problem. A solution to the problem is an 

assignment of each vehicle to a path p, which is a sequence of distinct nodes n1 … nk, where n1 

and nk are the start and end nodes of the vehicle, respectively.  

Apart from path constraints, vehicle routing problems may include additional 

contractions, such as dimension constraints that represent permissible values for various physical 

parameters (e.g., weight, volume, number of items, distance, time, etc.). Such constraints can be 

associated with nodes, paths, or vehicles involved in the problem. For instance, each node ni may 

have a maximum permissible cumulative interval for a parameter, Cumul(ni); each pair of nodes 

may have a permissible transition interval for another parameter, Transit(ni, ni+1); each path p 

may have a limited capacity for a parameter, Capacity(p); etc. One or both bounds of intervals 

for a dimensional constraint may be infinite. A permissible solution to the vehicle routing 

problem requires computing the values for the dimensional parameters for nodes, node pairs, 

paths, and vehicles as appropriate and ensuring that the values are within permissible bounds. 
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The routing for all vehicles within a fleet under the given path and dimensional 

constraints can be determined via various approaches, such as local search. Local search is 

typically split into at least two phases: construction and improvement, respectively. An initial 

routing solution is obtained in the construction phase and iteratively improved in the subsequent 

improvement phase. For instance, the initial candidate solution candidate solution for each path 

v1…vm can be represented as sequences of chains: 

v1…vm = (v1
1v

1
2…v1

m1)(v
2

1v
2
2…v2

m2)...(v
n
1v

n
2…vn

mn) = c1c2…cn 

where each chain cj = vj
1… vj

mj is a subpath of some path of the solution. 

 

Fig. 1: Generating a new candidate solution with small changes to a current solution 

As Fig. 1 shows, each iteration in the improvement phase involves generating a new 

candidate solution with a small change to the current solution. Fig. 1(a) shows a current solution 
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that depicts the nodes n1…nk in the respective route for each of the vehicles v1…vm in a fleet. The 

new candidate solution shown in Fig. 1(b) differs from the current solution of Fig. 1(a) only in 

terms of four of the nodes being swapped between v1 and v2 (as indicated by the dotted red 

rectangle), with the rest of the routing remaining identical to the current solution. Therefore, each 

new solution can be represented in terms of the set of paths that differ from the current candidate 

solution, with each changed path in turn described as a sequence of chains as above. If the new 

solution satisfies the routing constraints better than the current solution, it can replace the current 

solution. 

Typically, most of the new solutions generated during the improvement phase do not 

satisfy the constraints and/or improve the current solution. As a result, there are usually 1,000 to 

1,000,000 times more checks with the current solution that are discarded compared to the ones 

that result in the current solution being replaced with a new solution. 

A similar iterative process of checking and replacing the current solution with a more 

optimal solution may be employed to find the initial solution during the construction phase. 

Employing the approach during the construction phase results in several orders of magnitudes 

more comparisons without solution replacement than those in which a new solution replaces an 

existing one, as in the improvement phase. However, the difference between the two is typically 

substantially less than that in the improvement phase. 

Given the large number of comparisons among solutions that are involved in the 

application of local search for determining optimal routing solutions, the performance of the 

process is dependent on the time O(p) taken for performing each comparison, where p is the total 

length of the paths that are changed from the current solution to form the new solution. For some 

families of routing problems, the performance of performing an O(p) time procedure for each 
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comparison might be acceptable. However, the approach does not scale when routing problems 

involve paths that have hundreds of nodes. 

Given that the new solutions being compared with the current solutions are small 

variations of the current solution, the complexity of performing future comparisons can be 

improved by performing relevant pre-computation whenever a current solution is replaced with a 

current one. A common approach is to pre-compute the relevant characteristics (e.g., travel time) 

of all subpaths involved in the new solution with which the current solution is replaced. Such 

pre-computation can typically be performed in O(p2) time and space, with the characteristics of 

all subpaths stored in a matrix indexed by the start and end of the subpath. 

DESCRIPTION 

This disclosure describes techniques to perform efficient pre-computations to check 

constraint satisfaction for new candidate solutions to routing problems that are generated with 

small variations from a current solution that is known to respect the required constraints. The 

new candidate solutions can be described by the chains of their paths that are changed in 

comparison to the current solution. 

A general algorithm that can run in linear time in the number of chains of the path can be 

applied to propagate the given constraints from the first node of the first chain to the last node of 

the last chain. For each subproblem connected respectively to each constraint, a query scheme 

that can run in linear time can be used to propagate the given constraints from the first to the last 

nodes of a specific chain. Assuming O(1) time complexity for comparing relevant values for 

each change between a new candidate solution and the current solution, the algorithm and 

associated query scheme enable pre-computations for a new candidate solution to be performed 
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with O(p log p) complexity, where p is the total length of all paths that changed in the new 

solution compared to those in the current solution. 

For instance, the satisfaction of the cumulative, transit, and capacity dimensional 

constraints for each of the chains within the solution being examined can be checked by 

iteratively applying the general algorithm as follows: 

feasible_interval = Cumul(start(path)) ∩ Capacity(p); 

previous_node = start(path); 

for chain in path: 

feasible_interval += Transit(previous_node, chain[0]); 

feasible_interval ∩= Cumul(chain[0]) ∩ Capacity(path); 

feasible_interval ∩= FirstNodeCapacityIntersection(chain) 

if feasible_interval is empty: return Infeasible 

 

feasible_interval += TransitSum(chain) 

feasible_interval ∩= PathCapacityIntersection(p, chain) 

feasible_interval ∩= LastNodeCapacityIntersection(chain) 

if feasible_interval is empty: return Infeasible  

 

previous_node = chain[-1] 

return Feasible 

 

Specifically, the algorithm involves preserving the feasible interval of the first and last 

nodes of the current chain and returning Feasible or Infeasible depending on whether the 

given constraints can be satisfied or not, respectively. 

To deal with infinities the algorithm can employ extended interval structure that contains 

four fields: min, max, num_pos_inf, num_neg_inf, with the first two being finite real value 

and the latter two being nonnegative integers. The relevant checking operations can then be 

performed in O(1) time based on intersection, addition, and emptiness tests defined as follows: 
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I is empty iff I.num_pos_inf == I.num_neg_inf == 0 and I.min > I.max. 

 

a ∩ b = c, with fields 

c.min = max(a.min if a.num_neg_inf = 0 else -inf, 

            b.min if b.num_neg_inf = 0 else -inf); 

 if c.min = -inf, c.min = 0; 

c.max = min(a.max if a.num_pos_inf = 0 else +inf, 

            b.max if b.num_pos_inf = 0 else +inf); 

 if c.max == +inf, c.max = 0; 

c.num_neg_inf = min(a.num_neg_inf, b.num_neg_inf) 

c.num_pos_inf = min(a.num_pos_inf, b.num_pos_inf) 

 

a + b = c, with 

c.min = a.min + b.min 

c.max = a.max + b.max 

c.num_neg_inf = a.num_neg_inf + b.num_neg_inf 

c.num_pos_inf = a.num_pos_inf + b.num_pos_inf 

 

FromTo(a, b) = c, with 

c.min = b.min - a.min 

c.max = b.max - a.max 

c.num_neg_inf = b.num_neg_inf - a.num_neg_inf 

c.num_pos_inf = b.num_pos_inf - a.num_pos_inf 

 

The query schemes associated with the algorithm can be similarly computed in O(1) time, 

thus ensuring that the entire procedure to check for constraint satisfaction can run in time that is 

linear in terms of the number of chains of the path. For instance, satisfaction of constraints 

related to Transit and Capacity as mentioned above can be checked by computing relevant values 

via corresponding functions as illustrated by the following examples: 

1. TransitSum: The TransitSum function is a well-known range sum query scheme that returns 

the sum of Transit(ni, ni+1) for i in [1, c) when applied on a chain n1…nc. The values 

sum_transits of a path n1…nk are pre-computed with: 

sum_transits(ni) = 0 if i = k; OR 

sum_transits(ni) = transition(ni, ni+1) + sum_transits(ni+1) if i ≄ k 
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Information about the first and last node of a chain is sufficient for computing the answer for 

each subsequent query on the chain. Therefore, TransitSum(n1…nc) returns 

FromTo(sum_transits(nc), sum_transits(n1)). Such an extension of the range sum query 

scheme can be used to deal correctly with infinities. 

2. PathCapacityIntersection: PathCapacityIntersection(p, n1 … nc) can be defined as ⋂ i in [1,c] 

Capacity(p) + TransitSum(ni … nc). The i-th term of this intersection is the interval of 

feasible values of cumul(nc) based on the path capacity constraint on ni and the transition 

constraints between nodes ni and nc. The commutation properties of sum and intersection can 

be used to compute the equivalent efficiently: 

Capacity(p) + FromTo(sum_transits(nc), ⋂ i in [1,c] sum_transits(ni)) 

The above computation enables decoupling the path capacity of the chain in the current 

solution from that of the candidate. The intersection ⋂ i in [1,c] sum_transits(ni) can be 

computed efficiently by adapting the conventional range max query scheme with O(n log n) 

time and space pre-computation and O(1) time query such that is takes the form of a range 

intersection query on extended intervals. When the current solution is replaced by a more 

optimal candidate solution, the values for transit_sum_riq are pre-computed for each changed 

path n1…nk as transit_sum_riq[0][ni] = sum_transits[ni] with layer = 1 .. floor(log2(k)), w = 

2layer, for all i: 

transit_sum_riq[layer][ni] = transit_sum_riq[layer-1][ni] ∩ transit_sum_riq[layer-1][ni+w] 

if i ≤ k - w; OR 

transit_sum_riq[layer][ni] = transit_sum_riq[layer-1][ni] if i > k - w 
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When checking for constraint satisfaction, the query ⋂ i in [a,b] sum_transits(ni) when a < b can 

be answered by computing layer = floor(log2(b - a)), w = 2layer and returning 

transit_sum_riq[layer][na] ∩ transit_sum_riq[layer][nb-w+1]. 

3. NodeCapacityIntersection: LastNodeCapacityIntersection(ni…nj) can be defined as ⋂ i in 

[1,c] Cumul(ni) + TransitSum(ni … nc). The i-th term of this intersection is the interval of 

feasible values of cumul(nc) based on the node capacity constraint on ni and transition 

constraints between ni and nc. When the current solution is replaced by a more optimal 

candidate solution, the values for node_capacity_riq are pre-computed for each changed path 

n1…nk as node_capacity_riq[0][ni] = Cumul(ni) with layer = 1 .. floor(log2(k)), w = 2layer, for 

all i: 

node_capacity_riq[layer][i] = node_capacity_riq[layer-1][i - w] + TransitSum(ni-w…ni) ∩ 

node_capacity_riq[layer-1][i] if i ≤ w; OR 

node_capacity_riq[layer][i] = node_capacity_riq[layer-1][i] if i > w 

When checking for constraint satisfaction, the query LastNodeCapacityIntersection(na…nb) can 

be answered by computing layer = floor(log2(b - a)), w = 2layer and returning 

node_capacity_riq[layer][a+w-1] + TransitSum(na+w-1, nb) ∩ node_capacity_riq[layer][b]. 

FirstNodeCapacityIntersection is defined and computed in a symmetrical manner. 

As the above examples illustrate, the query schemes can be used not only to check for 

constraint satisfaction, but also to compute the minimum feasible value of cumul at the end of a 

given path. Moreover, the same schemes with mirror values can compute the maximum feasible 

value of cumul at the beginning of the path. These two values can in turn be used to compute 

with the same time and space complexity characteristics the values of several parameters related 
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to paths, such as the cost of being early at the beginning of a path, the cost of being late at the 

end of a path, the minimum span of a path, the cost of the minimum span, overtime cost, etc. 

The techniques described in this disclosure can be provided as a basic building block via 

any suitable mechanism, such as a code library, an application programming interface (API), etc. 

The techniques can be implemented when using local search to determine solutions to routing 

problems within any relevant application, platform, or service, such as digital maps, vehicle fleet 

management, etc. Further, the techniques can be used for performing relevant pre-computations 

when solving other types of problems, such as scheduling, as well as within other types of 

problem-solving approaches, such as evolutionary algorithms. 

Assuming O(1) time complexity to check for constraint satisfaction per change with p 

being the total length of all paths changed between a known solution and a new candidate 

solution, current approaches provide O(p²) time and space complexity when replacing the current 

solution with a new one. Implementation of the techniques can reduce the time and space 

complexity to O(p log p), thus significantly saving the time and resources required to determine 

optimal routes, especially in scenarios that involve long routes and hundreds to thousands of 

nodes with numerous constraints on various factors, such as time, capacity, etc. 

CONCLUSION 

This disclosure describes techniques to perform efficient pre-computations to reduce the 

time and space complexity to O(p log p), thus significantly saving time and resources. The pre-

computations check constraint satisfaction for new candidate solutions generated with small 

variations from a current solution that is known to respect the constraints. The new candidate 

solutions are described by the chains of their paths that are changed in comparison to the current 

solution. The checking and pre-computations are performed with a general algorithm and 
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associated query scheme for each subproblem, and run in linear time in the number of chains. As 

a result, the time and space complexity of the operation is reduced to O(p log p), where p is the 

total length of all changed paths in the new solution.  
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