

Transesophageal Echocardiography Use for Orthotopic Liver Transplant

Colton Sedberry, BSN, RN

Affiliation: Texas Christian University

Grant/Financial Support: None

KEYWORDS: Transesophageal echocardiography, Liver graft, Liver transplantation

Abstract.

Transesophageal echocardiography (TEE) is an invaluable tool used in cardiac surgery. So why is it not consistently used in other high-risk surgeries, such as orthotopic liver transplantation (OLT)? Hemorrhage, acute cardiac dysfunction, fluid shifts, and other intraoperative pathologies associated with OLT present many challenges for the anesthesia provider. Therefore, timely identification, evaluation, and intervention of intraoperative pathology are necessary to maintain hemodynamic stability. Traditionally, intra-arterial and pulmonary artery catheters (PACs) were used as hemodynamic monitors. Recently, however, transesophageal echocardiography (TEE) has been used for noncardiac surgery to assess hemodynamic status. This poster discusses perioperative care and current literature surrounding TEE and OLT using a case study approach. Patients undergoing OLT with both TEE and PAC had the lowest hospital length of stay (LOS), 30-day mortality, and infusion of fluids. This suggests that the addition of TEE with traditional monitors may be the safest method of hemodynamic monitoring.

About the Author: Colton Sedberry is a registered nurse pursuing his DNP in Nurse Anesthesia at Texas Christian University in Fort Worth, Texas.

Transesophageal Echocardiography Use for **Orthotopic Liver Transplantation**

Colton Sedberry, BSN, RN, Texas Christian University

Introduction/Background

· This scholarly project focuses on a high-risk patient undergoing an orthotopic liver transplant (OLT).

6 ke ki (***) (2008)

11100% (MI to 14 100)

trugna et al. (Int. (2017)

Network at all 1971 (1983)

ef all.1411/220103

- · Hemorrhage, acute cardiac dysfunction, fluid shifts, and other intraoperative pathologies associated with OLT present many challenges for the anesthesia provider.
- · Each stage of OLT presents different challenges and varying hemodynamic shifts, (Figure 1).¹
- · Timely identification, evaluation, and intervention of intraoperative pathology are necessary to maintain hemodynamic stability.
- Traditionally, intra-arterial and pulmonary artery catheters (PACs) were used as hemodynamic monitors.²
- TEE utilization as a hemodynamic monitor is becoming more popular in OLT, either exclusively or in addition to PAC.²
- The consideration that the use of TEE may have improved this patient's intraoperative management was the inspiration for this scholarly project.

Purpose

- The first objective of this project is to identify what benefits are gained from the use of TEE in addition to traditional hemodynamic monitoring techniques (CVP/PAOP) during OLT.
- The second objective is to determine how these findings affect fluid and medication administration in the hemodynamically unstable patient.

Case Summary

Pre-Anesthetic Evaluation

- A 50-year-old Caucasian female underwent general endotracheal anesthesia for an OLT.
- Medical history: cirrhosis, refractory ascites, portal hypertension, portal vein thrombosis, hepatitis C, thrombocytopenia, anemia, obesity, and coronary artery disease.
- Surgical history: splenic embolization, coronary artery bypass graft, and cesarean section.
- Current medication: furosemide 100 mg daily, spironolactone 300 mg daily, lactulose 30 mg four times daily, midodrine 5 mg twice a day, rifaximin 550 mg twice a day, montelukast 10 mg daily. gabapentin 600 mg three times a day, trazodone 50 mg daily, vitamin B12 500 mcg daily, and ferrous sulfate 60 mg daily. Assessment: abdominal distention, tenderness, jaundice, and +1
- edema to bilateral lower extremities

Intraoperative Course

- Preoperative VS: BP 148/75, HR 89, SpO2 92%, RR 24 IV induction: 100 mg lidocaine, 100 mg propofol, 5 mcg sufentanil,
- 50 ma rocuronium. Direct larvngoscopy with Miller #2 blade for introduction of 7.0
- endotracheal tube (ETT). Ventilation mode: SIMV/PS
- Maintenance: Sevoflurane and vecuronium
- Hemodynamic monitors: arterial line and introducer with PA catheter.
- Initial hemodynamic values: CVP 22, PA pressure 33/21, CI 2.4
- Hemodynamic infusions: Epinephrine and norepinephrine.
- Total fluids and blood products: 1.5 L of 5% albumin, 6 units
- PRBCs, 5 units FFP, and 1 unit of platelets. Rapid transfusion and warming device was used for fluid and blood
- product administration.
- Profound hypotension occurred at various points throughout the case, at times with unknown etiology. The greatest period of hemodynamic instability was during the post-anhepatic stage (donor liver reperfusion)

Postoperative Course

Patient remained intubated and transferred to CVICU. 48 hours postoperatively, patient remained intubated and required a furosemide infusion and dialysis to treat acute kidney injury.

D	Hosention/Pre-Anheputic	Anhepatie	Reperfusion	FR 54Hz . tBurk
Prelaul	1	44	*	20 · _ =
		1.00		Gen
Afterload Cardiat estput	*	**	+	
	4			
Figure 1. Hemodynan	nic Changes During	Various Stage	s of OLT ¹	
Reference	Type of Shudy	Tutol Potients	Diognosis	Taken and the second
Anishevich et al. ^(h) (2007) Aubuchon al ab. ^(h) (2013)	Case report Case report	1	EV010 Nervi dragniteria Stanistici N/C	
Boone et et."" (2011)	Case series		KT.	
Chen et al. (17) (20095	Case report		ivolo	
Cowmaki at al. (2005)	Class report		1/VORD	# Dist 4.55 cm
Dollar at ed. 114 (2017)	Oper setters	2	0	: Dist 5.10 cm
die to Morense et al. 191 (1993)	Prospective	18	Hypovoletska	+ Dist 3.79 cm2
Engle et al. ¹¹⁴¹ (2010)	Coun report		Tekningho	Figure 2. TEE image d
Ellenberger et ol. ¹¹ 7 (2006)	Case report	3.	(V090	J
5.8 m et al. (*** (1989)	Prospective	14	471	
			Heart failure	
Executedulty et al. 1181 (20114)	Case report		11/07/0	
Gelegorkey et et 1141 (2001)	Case perios	2	107	
Hortey at al. (1996)	Const series	2	10000	
Hughes at M 101 (2009)	Cause respects		Heart follow	
Kim et al. ⁽¹⁰⁾ (2016)	Case report		KCT .	
Lim et al 110 (1995)	Cosin report	100	11/070	
Mondael ar us/Phi (2015)	Cose corms	256	Heart Stiture	
Muthan et al. 111 (2012)	Class report	1	10	
Peaks at at Imm (2018)	ilat capective	2770	10	
Pleasance of al. (2) (2012)	Prospective	21	Hyposcillation	
Planarasic at al. (14 (2004)	Cane report		£1	
Proh all al. IPh (1996)	Citize better	2	10	
Protect at all (197) (2016)	Cone moort	÷.	ICT .	
Separate at al. (11-(2017)	Cosis report	1	67	
Sheema at at III) (2005)	Cosis report	· · · · · ·	Contine temporente	
Shriout et al. Inte (2014)	Introspective	100	Intraoperative MACE	
Shelber et ul. ⁽¹⁴⁾ (1991)	Pospettei		ICT .	
Sunarii or al ⁽²⁰⁾ (1994)	Retrospective	100	Hopf failure CT Hopf failure	
Total Intel 100 (Technol 1	Trans control		Second day	

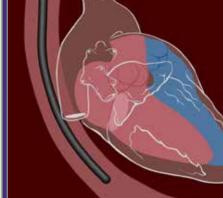


Figure 3. Positioning of TEE probe in Relation to Heart.⁸

Supporting Evidence

TEE as a Hemodynamic Monitor

Cons series

Table 1. New Diagnoses Made from TEE Assessments in OLT

- One systematic review (SR) qualitatively assessed 39 articles that included 3,193 participants addressing new diagnoses.³ Table 1 details the main diagnoses from each.³
- One prospective database analysis including 99 participants undergoing noncardiac surgery (7 undergoing OLT) observed 165 new findings with the additional use of TEE to PAC monitoring.6
- A retrospective cohort study included 100 participants undergoing TEE assessment for OLT: 88% of patients had at least 1 abnormal intraoperative TEE finding during OLT.⁴ The most common finding included microemboli (44%), right ventricular dysfunction (31%), and thromboemboli (27%).⁴ TEE was also found to accurately distinguish hemodynamic instability caused by RV dysfunction and hypovolemia.⁴

Influence of TEE on Fluid and Medication Administration

- One SR included 7 noncomparative studies involving a change in management attributed to TEE use. Change in management ranged from 17 to 81%.⁵ One prospective database analysis including 99 participants undergoing noncardiac surgery performed a subgroup analysis of 17 liver and lung
- transplant patients.⁶ TEE-guided interventions occurred as follows⁶ (p < 0.05):
- > Vasodilator therapy in 63% of patients
- > Vasopressor therapy in 56% of patients
- Fluid management in 50% of patients
- One observational cohort study including 318 participants compared TEE, PAC, and TEE+PAC.² The TEE+PAC group had the shortest median hospital length of stay (LOS) and had the lowest 30-day mortality rate.² TEE+PAC group received the lowest volume of crystalloid and the lowest perioperative infusions.² The TEE group had the least perioperative time with MAP < 60 mmHg.²

Discussion

- The literature review found evidence that intraoperative TEE use for OLT was proficient at rapidly identifying multiple pathologies and guiding fluid and vasoactive agent administration.
- However, there was not a high quality of evidence supporting new TEE findings with better patient outcomes. Both SRs were unable to perform a metanalysis because of limited analytical data and variance in study methodology.3,5
- Additionally, sample sizes for the 3 reviewed observational cohort studies were relatively small.2,4,6
- The subjective nature of the anesthesia provider's interpretation of data and decision to implement a treatment was a common limitation found in the reviewed literature.
- Anesthesia providers' level of experience or certification with TEE was also variable throughout the studies. However, this may reflect a realistic view of clinical practice
- The best outcome-based evidence retrieved suggests that TEE combined with PAC produces optimal patient outcomes.² The authors found that the patients undergoing OLT with both TEE and PAC had the lowest hospital LOS, 30-day mortality, and infusion of fluids.² This suggests that the addition of TEE with traditional monitors may be the safest method of hemodynamic monitoring.

Conclusions and Recommendations for Practice

- · TEE can be used to promptly identify pathology associated with hemodynamic instability and provide information on valvular morphology and cardiac function.
- While the research displays an influence of TEE findings on fluid, vasopressor, and vasodilator usage during OLT, more research needs to be taken to verify the positive impact of this influence.
- Until beneficial outcomes have been validated, the use of TEE cannot be recommended as a comprehensive intervention for every OLT.
- TEE should be used based on the anesthesia provider's judgment. along with other monitoring tools

Recommendation for Future Research

- Higher-quality research should be performed to validate the outcome-based benefits of TEE findings and subsequent intraoperative interventions.
- Future research with more rigorous study designs that include greater control and randomization should be performed.
- Data acquisition via creation of large database analyses would control for confounding factors and selection bias.

References

- 1. Dalia AA, Flores A, Chitilian H, Fitzsimons MG. A comprehensive review of transesophageal echocardiography during orthotopic liver transplantation. J Cardiothorac Vasc Anesth. 2018;32:1815-1824. https://doi.org/10.1053/j.jvca.2018.02.033.
- Liber RE, Volt MR, Tare T, Inday JV. Influence of intraoperative transcophageal ethocardiography and pulmonary artery catheter monitoring on outcomes in live transploration. *Transplant Direct* 2005;e525–e525. doi: 10.1097/NR0.0000000000972
 De Marchi L, Wang CJ, Skubas NJ, et al. Safety and benefit of transcophageal
- echocardiography in liver transplant surgery: a position paper from the society for the advancement of transplant anesthesia (SATA). *Liver Transplant*. 2020;26:1019-1029. doi: 10 1002/# 25800
- Shillcutt, Sasha K, Ringenberg KJ, Chacon MM, et al. Liver transplantation: intraoperative transesophageal echocardiography findings and relationship to major postoperative adverse cardiac events. J Candidharac IascAnesth. 2016;30:107-114. https://doiora ezorovytaj edu/10.1053/i ivra 2015.09.009
- org.ezproxitcu.edu/10.1053/j.)vta.2015.09.009. ayad A, Shilloutt S, Meineri M, Ruddy TD, Ansari MT. Comparative effectiveness and harms of intraoperative transesophageal echocardiography in noncardiac surgery: a systematic review. Semin Cardiothorac Vasc Anesth. 2018;22:122-136.doi: 10.1177/1089253218756756
- Hofer CK, Zallinger A, Rak M, et al. Therapeutic impact of intra-operative transcesophageal echocardiography during monardiac surgery. *Anaesthesia* 2005;59:3-9. https://doi. org.ezproxytc.edu/10.1111/j.1365-2044.2004.03459.x.
- 7. Zerillo J, Hill B, Kim S, DeMaria S, Mandell MS. Use, training, and opinions about effectiveness of transesophageal echocardiography in adult liver transplantation among anesthesiologists in the United States. Semin Cardiothorac Vasc Anesth. 2018;22:137-145.doi:
- 10.1177/1089253217750754 Patrick J. Lynch. Transesophageal echocardiography ultrasound diagram. Wikimedia Commons. December 23, 2006. Accessed March 8, 2022. https://commons.wikimedia.org/wiki/File:Transesophageal_echocardiography_diagram.svg

Texas Christian University "The Science Behind the Art" Volume 10 - No.3 2022