



# UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS LICENCIATURA EN BIOLOGÍA

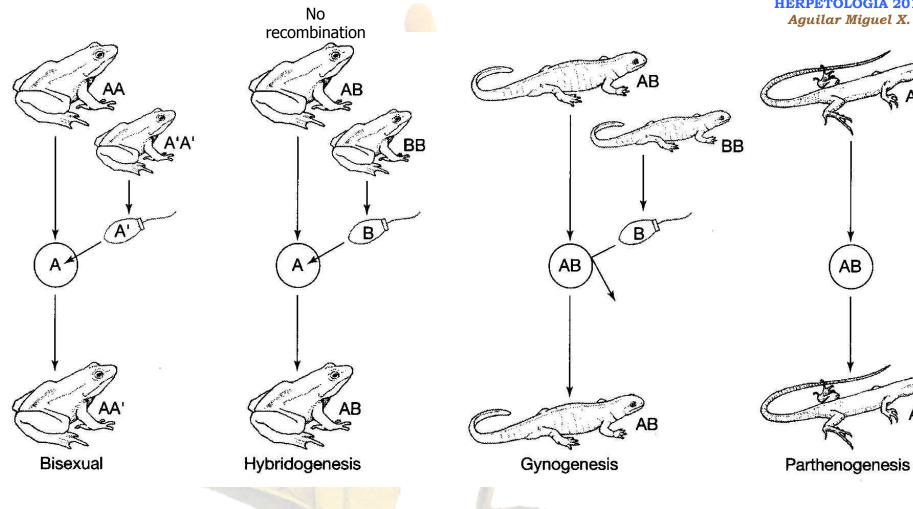
### MATERIAL DIDÁCTICO VISIÓN

UNIDAD DE APRENDIZAJE HERPETOLOGÍA

### BIOLOGÍA REPRODUCTIVA AMPHIBIA

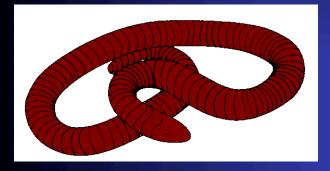
Autor: M. en C. Xóchitl Aguilar Miguel



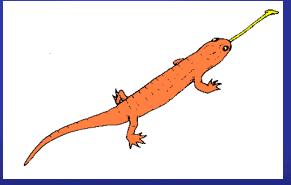

### REPRODUCCIÓN SEXUAL VS ASEXUAL



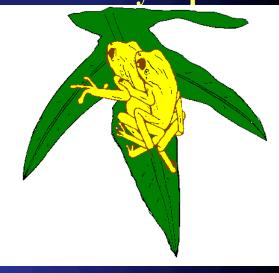
- SEXUAL
  - ❖ GAMETO MASCULINO + GAMETO FEMENINO = CIGOTO
  - **❖**MEIOSIS- RECOMBINACIÓN DE GAMETOS
- ASEXUAL
  - **❖**ORIGINADOS POR HÍBRIDOS
  - **❖** POBLACIONES DE HEMBRAS
  - \*REPRODUCCIÓN CLONAL
  - Ej. Rana hibridogénesis
  - Ej. Ambystoma gynogénesis


#### REPRODUCCIÓN Sexual vs. Asexual






#### **CLASE AMPHIBIA**


### **GYMNOPHIONA** cecilias



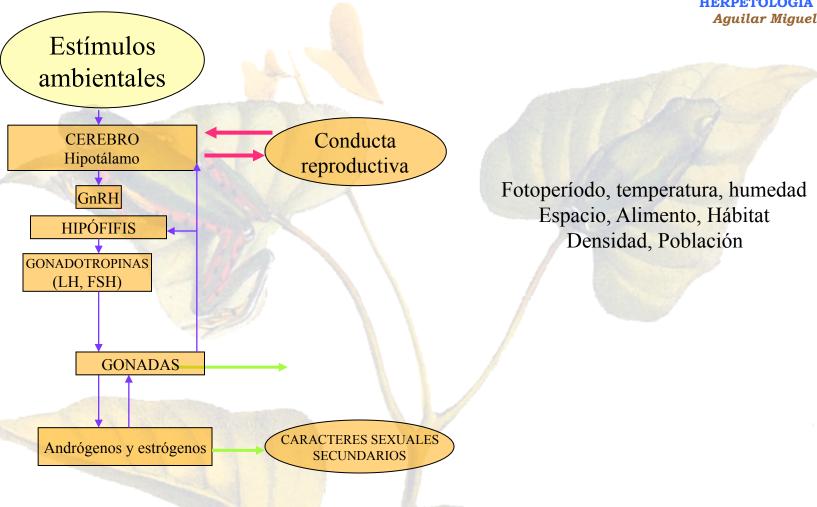
URODELA salamandras ajolotes



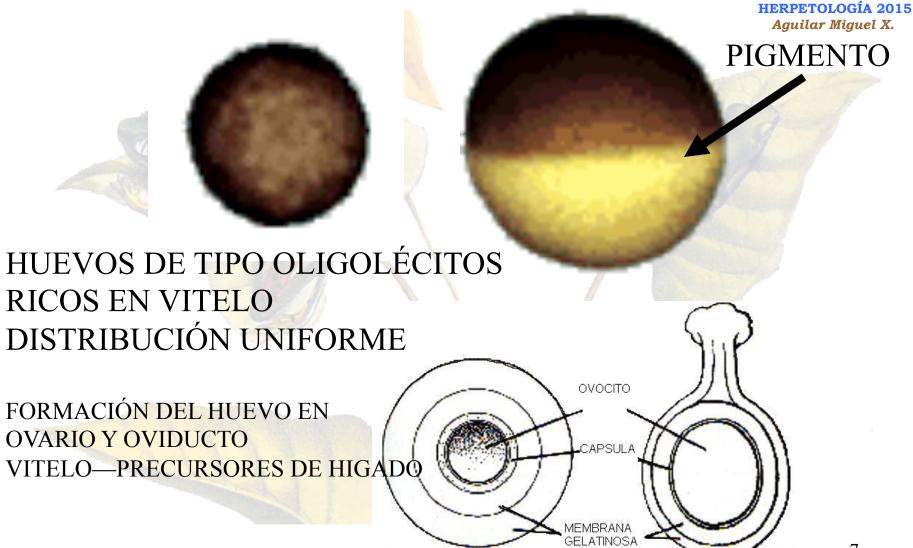
ANURA ranas y sapos



ovíparos

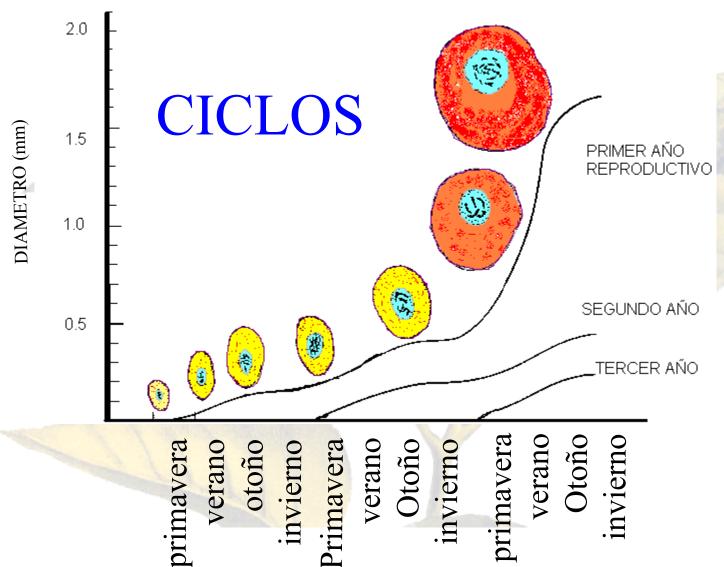

vivíparos

### REPRODUCCIÓN




HERPETOLOGÍA 2015
Aguilar Miguel X.

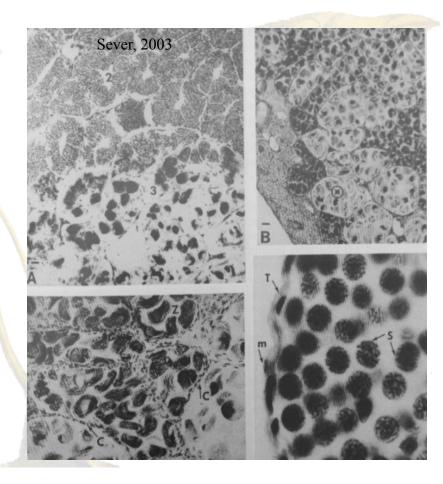
CONTROL NEURONAL, HORMONAL Y CONDUCTUAL




DESARROLLO DEL EMBRIÓN A PARTIR DEL HUEVO ANAMNIÓTICO



## OVOGENESIS






# ESPERMATOGÉNESIS ESPERMATORIS ESPERMATORIS

HERPETOLOGÍA 2015 Aguilar Miguel X.

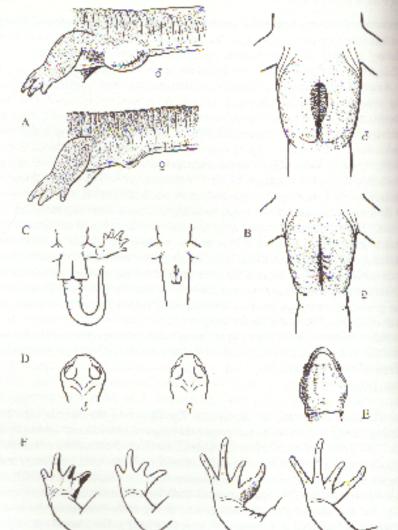
- La madurez de las células sexuales masculinas es interesante, especialmente en Urodelos.
- Formado por dos testículos, conductos eferentes y la cloaca, mayormente glandular
- Largos testículos, con maduración sincrónica en sentido caudal-cefálico.
- En las imágenes se puede observar la sincronía de la diferenciación de las espermatogonias.
- La cloaca con función muy importante para la producción de mucopolisacaridos hidrofílicos, para la producción del espermatóforo.





### CARACTERÍSTICAS SEXUALES




Taricha granulosa



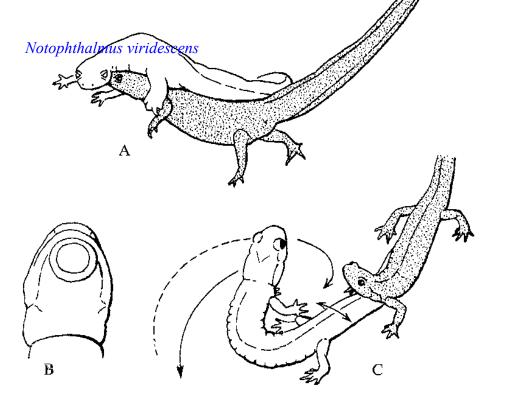
Litoria gracilenta

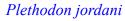
Hydromantes

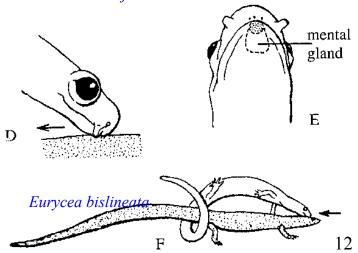




Aneides


### **CORTEJO**


"AMPLEXUS"


¿ COMO SE LLEVA A CABO EL RECONOCIMIENTO?

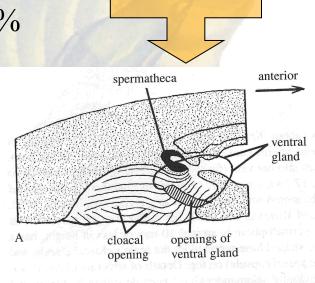
¿MARCAJE DE TERRIRORIO?

¿DIRECCIÓN Y/O CONDUCCIÓN PARA EL ENCUENTRO CON EL ESPERMATOFORO?








### **AMPLEXO**



FERTILIZACIÓN
CECILIAS-FECUNDACIÓN INTERNA 100%
SALAMANDRAS 90% INTERNA
ANUROS 98% EXTERNA



CECILIAS- organo intromitente (phalodeum)todos SALAMANDRAS –ESPEMATÓFORO la mayoría ANUROS- APOSICIÓN DE CLOACAS (5 sp)



capsule

gelatinous

almacenaje

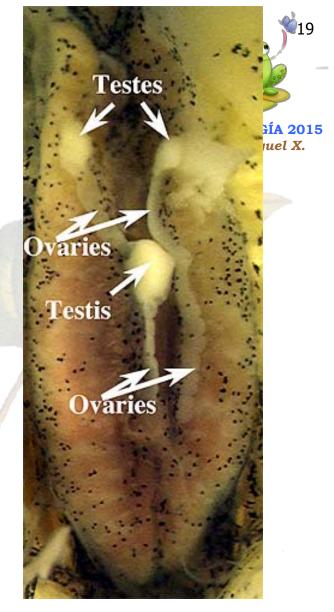


#### CUIDADOS PARENTALES

costos y beneficios






Table 7-1 Distribution of genetic sex determination (GSD) and temperature-dependent sex determination (TSD) in amphibians and reptiles. Patterns are summarized for each family in which the condition is known. XY and ZW systems indicate male and female heterogamety, respectively. Data indicate only the occurrence of each pattern in particular families. Only those families for which GSD or TSD have been studied are listed.

| Taxon                      | GSD:<br>Hotorogamety | TSD        | Taxon         | GSD:<br>Heterogamety        | TSD |
|----------------------------|----------------------|------------|---------------|-----------------------------|-----|
| rodela                     |                      | UID (CLID) | Emydidae      | ZW, XY                      | Yes |
| Ambystomatidae             | ZW                   | No         | Kinosternidae | s <del></del> :             | Yes |
| Plethodontidae             | ZW, XY               | No         | Podocnemidae  |                             | Yes |
| Proteidae                  | XY                   | No         | Pelomedusidae |                             | Yes |
| Salamandridae              | ZW, XY               | No         | Staurotypidae | XY                          | No  |
| Sirenidae                  | ZW                   | No         | Testudinidae  |                             | Yes |
| nura                       |                      | No         | Trionychidae  | ms <del>-d</del> = m hr.iii | No  |
| Bombinatoridae             | XY                   | No         | Crocodylia    |                             | Yes |
| Bufonidae                  | zw                   | No         | Sphenodontida |                             | Yes |
| Discoglossidae             | ZW                   | No         | Squamata      |                             |     |
| Hylidae                    | XY                   | No         | "Agamidae"    | Yes                         | Yes |
| Leiopelmatidae             | ZW, OW               | No         | Amphisbaenia  | ZW                          | ?   |
| "Leptodactylidae"          | XY                   | No         | Anguidae      |                             | Yes |
| Pelodytidae                | XY                   | No         | Boidae        | ZW                          | No  |
| Pipidae                    | zw                   | No         | Colubridae    | ZW                          | No  |
| "Ranidae"                  | ZW, XY               | No         | Elapidae      | zw, zzw, zww                | No  |
| estudines                  |                      |            | Gekkonidae    | ZW, ZZW, XY, XXY            | Yes |
| Bataguridae                | ZW, XY               | Yes        | Iguanidae     | XY, XXY, XO                 | ?   |
| Carettochelyidae           | West West            | Yes        | Lacertidae    | ZW, ZZW                     | ?   |
| Chelidae                   | XY                   | No         | Pygopodinae   | XY, XXY                     |     |
| Cheloniidae<br>Chelydridae | DETER                |            | JAsmoda ÓN    | DEL SE                      | EX  |
| Dermatemydidae             |                      | Yes        | Varaniga.     | TTCO (D                     | CPC |
| Dermochelyidae             | Land Land            | Yes        | Viperidae     |                             | No  |

MACHOS HEMBRAS

Soyrce: 🚧 🗸 1995, Hillis and Green 1990, Janzen and Paukstis 1991, Lang and Andrews 1994, and Viets et al. 1994.

# ANOMALÍAS DE LA REPRODUCCIÓN CAUSA DE DECLINACIÓN



Abnormal gonads in a male *Xenopus* frog, the result of exposure to the herbicide atrazine. The frog has become a hermaphrodite, that is, it has both male (testes) and female (ovaries) sex organs. *Credit: Tyrone Hayes/UC Berkeley, courtesy PNAS* 



CARACTERÍSTICAS
DE REPRODUCTORES

PROPORCIÓN DE SEXOS

ESTRATEGIA REPRODUCTIVA

**ARRIBAMIENTO** 

SITIOS
DE
APAREAMIENTO

### CICLO DE VIDA Y MODOS REPRODUCTIVOS







DESARROLLO DIRECTO

Eleutherodactylus





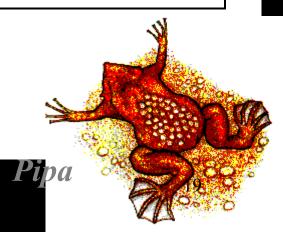
Notophthalmus
Presenta un estadio juvenil "eft"

# HERPETOLOGÍA 2015 Aguilar Miguel X.

PUESTA DE LOS HUEVOS SOBRE UN RÍO



NIDO EN ESPUMA




#### TRANSPORTE DE RENACUAJOS



Denaiobales

INCUBACIÓN ACUÁTICA





INCUBACIÓN TERRESTRE



Frectonotus

DESARROLLO DIRECTO



**VIVIPARISMO** 



Nectophrynoides

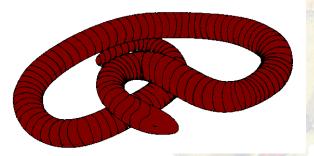
INCUBACIÓN GÁSTRICA



Rheobatrachus

#### **HERMAFRODITISMO:**

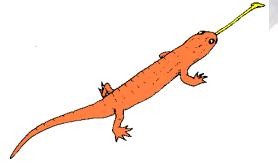





Organo Bidder
activo, cuando se
castran machos
normales, estos órganos
se diferencian a ovarios
Aunque exista una
Predeterminación genética

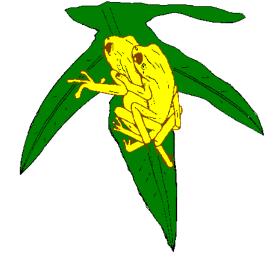
#### DESARROLLO LARVAL Y METAMORFOSIS

### HERPETOLOGÍA 2015 Aguilar Miguel X.


### **GYMNOPHIONA** cecilias



salamandras ajolotes


**URODELA** 





SE PARECEN AL ADULTO CON BRANQUIAS

> SE PARECEN AL ADULTO CON BRANQUIAS, DENTICIÓN LARVAL LA MAYORÍA CARNÍVOROS



VARIABLE
DÍAS O AÑOS COMO LARVA
METAMORFOSIS ES DRAMÁTICA
SIN ALIMENTARSE MIENTRAS OCURRE
CAMBIOS EN AP. DIGESTIVO,
RESPIRATORIO, CIRCULATORIO, EXCRETOR
OSIFICACIÓN ETC. 22



#### **METAMORFOSIS**



del griego μετα- (meta), que indica alteración, y μορφή (morphè), forma

Es un proceso por el cual un objeto o entidad cambia de forma

### PREPARACIÓN DEL ORGANISMO

**ACUÁTICOS** 





#### METAMORFOSIS EN Anura

IMPLICACIONES ECOLÓGICAS?

UTILIZACIÓN DE DIFERENTES RECURSOS DURANTE SU VIDA

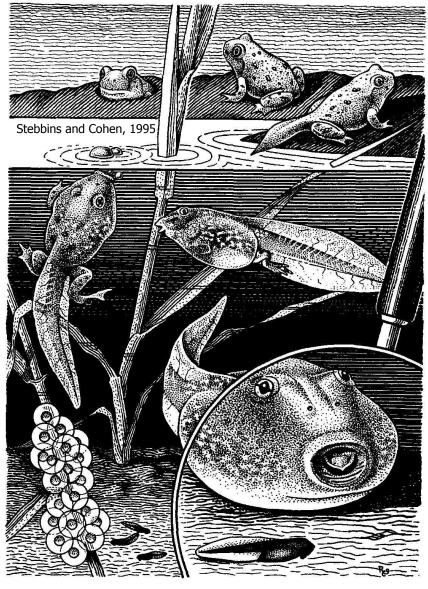
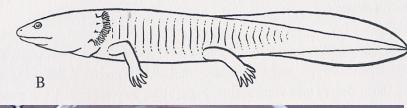




Fig. 1.2 Life stages of an "amphibious" amphibian, the Western Spadefoot Toad (Scaphiopus hammondii).



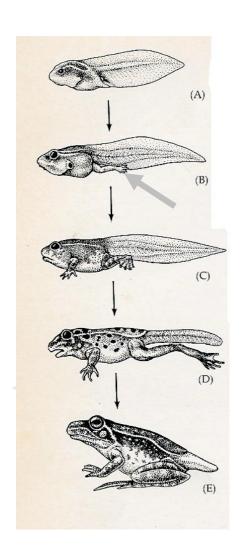
# URODELOS.- reabsorción de la cola, la reabsorción de branquias externas.













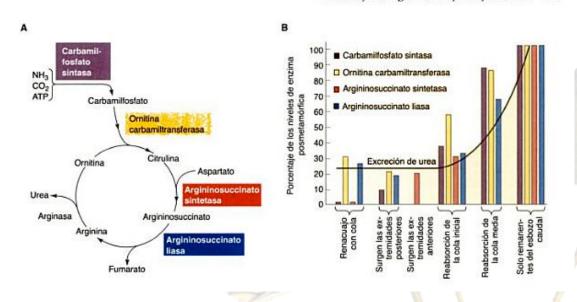

| Cuadro 18-1 Resumen de algunos cambios metamórficos en los anuros |                                                                                                                               |                                                                                                                                                                                                 |  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Sistema                                                           | Larva                                                                                                                         | Adulto                                                                                                                                                                                          |  |  |
| Locomotor                                                         | Acuático, aletas caudales                                                                                                     | Terrestre; tetrápodo sin cola                                                                                                                                                                   |  |  |
| Respiratorio                                                      | Branquias, piel, pulmones; hemoglobinas larvarias                                                                             | Piel, pulmones; hemoglobinas del adulto                                                                                                                                                         |  |  |
| Circulatorio                                                      | Arcos aórticos, aorta; venas yugulares an-<br>terior, posterior y común                                                       | Arco carotídeo; arco sistémico; venas<br>cardinales                                                                                                                                             |  |  |
| Nutritivo                                                         | Herbívoros: tubo digestivo largo y espiral;<br>simbiontes intestinales; boca pequeña;<br>mandíbulas córneas, dientes labiales | Carnívoros: tubo digestivo corto; protea-<br>sas; boca grande con lengua larga                                                                                                                  |  |  |
| Nervioso                                                          | Carencia de membrana nictitante, porfi-<br>rospina, sistema de la línea lateral, neu-<br>ronas de Mauthner                    | Desarrollo de los músculos oculares, mem<br>brana nictitante, rodopsina; pérdida del<br>sistema de la línea lateral, degeneración<br>de las neuronas de Mauthner; membran<br>timpánica          |  |  |
| Excretor                                                          | Principalmente amoníaco, algo de urea<br>(amonotélicos)                                                                       | Principalmente urea; elevada actividad de<br>las enzimas del ciclo de la ornitina-urea<br>(ureotélicos)                                                                                         |  |  |
| Tegumentario                                                      | Delgada bicapa epidérmica con una delga-<br>da dermis; sin glándulas mucosas o glán-<br>dulas granulares                      | Epidermis escamosa estratificada con que<br>ratinas del adulto; la dermis bien desa-<br>rrollada contiene glándulas mucosas y<br>glándulas granulares que secretan pépti<br>dos antimicrobianos |  |  |

Fuente: según Turner y Bagnara 1976 y Reilly y col. 1994.

## FASES METAMÓRFICA SQUILLA Miguel X.



RENACUAJO PREMETAMÓRFICO


RENACUAJO PROMETAMÓRFICO

COMIENZO DEL CLIMAX METAMÓRFICO

**CLIMAX** 

#### CAMBIOS METABÓLICOS



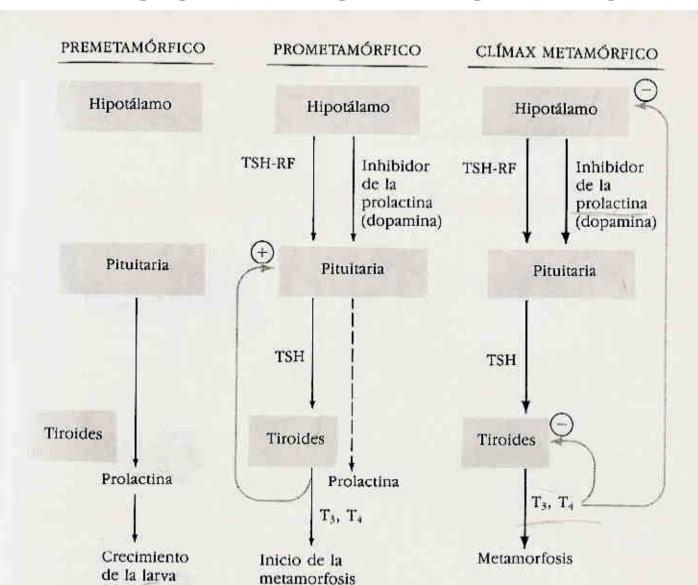


### **AMONOTÉLICOS**

Ciclo de la urea mediante el cual los desechos nitrogenados son detoxificados y excretados con mínima perdida de agua, mediante actividad enzimática generada por los cambios metamórficos.

#### UROTÉLICOS




#### REGRESIÓN DE LA COLA

• Experimentos en *Xenopus laevis*, proponen que las enzimas lisosómicas son responsables de digerir las células de la cola.

 Existe especificidad regional, determinado con experimentos de transplante de regiones de tejido.



### CONTROL HORMONAL



HERPETOLOGÍA 2015
Aguilar Miguel X.



### HETEROCRONÍA

En biología del desarrollo, la heterocronía abarca a todos aquellos cambios en el ritmo de los procesos ontogenéticos que dan lugar a transformaciones de la forma y tamaño de los organismos.

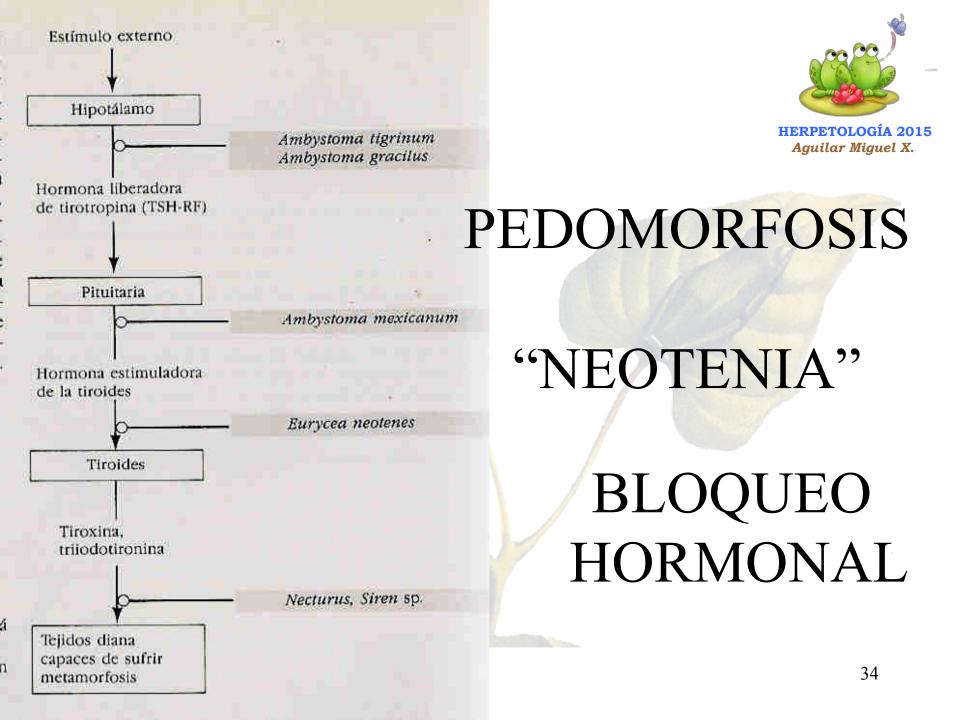
En este proceso se distinguen dos componentes fundamentales:

- 1.el comienzo y el término del proceso
- 2.el ritmo al que éste se produce.

El término heterocronía es relativo: un proceso de desarrollo en una especie sólo puede ser descrito como heterocrónico en relación con el mismo proceso en otra especie (considerada como el estado basal o ancestral) que opera con diferentes tiempos de comienzo y fin, y/o a diferentes ritmos.

**EJEMPLO:** 

*AMBYSTOMATIDAE* 






\* Neotenia (del griego neo-, 'joven', y teinein, 'extenderse') es uno de los procesos de heterocronía que se caracteriza por la conservación del estadio juvenil en el organismo adulto, debido a un retardo pronunciado (en correlación con su ancestro u organismos cercanamente emparentados) del ritmo de desarrollo corporal, en comparación con el desarrollo de las células germinales y órganos reproductores, que se lleva a cabo normalmente.

\* Pedomorfosis (también escrito paedomorfosis) o juvenificación es un cambio fenotípico y a veces genotípico, en el cual el individuo adulto de una especie mantiene ciertas características juveniles. La pedomorfosis también va acompañada de una capacidad incrementada para nuevos cambios evolutivos.

**EJEMPLO:** Ambystoma—obligada vs facultativa



#### BIBLIOGRAFÍA CONSULTADA1



- Alberch, P. and J. Alberch. 1981. Heterochronic mechanisms of morphological diversification and evolutionary change in the neotropical salamander Bolitoglossa occidentalis (Amphibia: Plethodontidae). J. Morphol. 167: 249–264.
- Allen, B. M. 1916. Extirpation experiments in Rana pipiens larva. Science 44: 755–757.
- Arnold, S. J. 1977. The evolution of courtship behavior in New World salamanders with some comments on Old World salamanders, p. 141–183. In: The reproductive biology of amphibians. D. H. Taylor and S. I. Guttman (eds.). Plenum Press, New York.
- Alberch, P., S. J. Gould, G. F. Oster, and D. B. Wake. 1979. "Size and shape in ontogeny and phylogeny" Paleobiology 5: 296-317.
- Atkinson, B. G., C. Helbing and Y. Chen. 1996. Reprogramming of genes expressed in amphibian liver during metamorphosis. In L. I. Gilbert, B. G. Atkinson and J. R. Tata (eds.), Metamorphosis: Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 539–566.
- Duellman, W. E. and L. Trueb. 1986. Biology of amphibians. McGraw-Hill, New York.
- Exbrayat, J. M. 2006. Reproductive Biology and Phylogeny of Gymnophiona (Caecilians). Edited. Enfield: Science Publishers, Pp. 395.



#### BIBLIOGRAFIA CONSULTADA 2

- Gilbert, S. 2013. Develoment Biology. Edition Tenth. University of Helsinki and Swarthmore College.
- Jamieson, G. M. 2003. Reproductive Biology and Phylogeny of Anura. Edited. Jamieson B. G. Science Publishers, Pp. 452.
- McDiarmid, R. W. and R. Altig. 1999. Tadpoles: the biology of anuran larvae. Univ. of Chicago Press, Chicago.
- Nussbaum, R. A. 1985. The evolution of parental care in salamanders. Misc. Publ. Mus. Zool. Univ. Mich 169:1–50.
- Pough, F., Andrews R. Crump, M. Cladle J. y A. Savitsky. 1998. Herpetology.
   PrenticeHall. Pp. 579
- Sever, D. M. 2003. Reproductive Biology and Phylogeny of Urodela. Edited. Jamieson B.G. Science Publishers, Pp. 627
- Smith, K. K. 2002. Sequence heterochrony and the evolution of development. Journal of Morphology 252 (1): pp. 82-97.
- Taylor, D. H. & S. I. Guttman. 1977. The Reproductive Biology of Amphibians. Plenum Press. New York and London. Pp. 475



### **GUIÓN**

EL PRESENTE MATERIAL DIDÁCTICO VISUAL, SIRVE DE APOYO EN LA UNIDAD DE APRENDIZAJE DE HERPETOLOGÍA, CONSIDERANDO LA UNIDAD III. BIOLOGÍA REPRODUCTIVA EN ANFIBIOS.

EL TITULO DE LA PRESENTACIÓN ES: BIOLOGÍA RERPODUCTIVA EN AMPHIBIA.

INTEGRA CARACTERÍSTICAS GENERALES DE LA REPRODUCCIÓN EN LA CLASE AMPHIBIA Y CON DIFERENCIAS A NIVEL DE ORDEN, ESTRATEGIAS REPRODUCTIVAS, METAMORFOSIS, CON EJEMPLOS DE CASO PARA EVENTOS REPRODUCTIVOS EN ALGUNAS ESPECIES.

EN LAS ILUSTRACIONES INCLUIDAS EN ESTA PRESENTACIÓN SE DAN LOS CRÉDITOS CUANDO TIENEN ©, SI NO SE INDICA, ES QUE SE TIENE FORMATO LIBRE EN LA RED, SON EL COMPLEMENTO DE LA PARTE TEÓRICA CONSULTADA EN LA BILIOGRAFÍA.