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A class of composite designs involves factorial, axial, and center points. Factorial points are with a variance-optimal design 

for a first-order or interaction model, and axial points provide information about the existence of curvature. The center points 

allow for efficient estimation of the pure quadratic terms. From these properties, a class of composite designs is recommended 

if resources are readily available and a high degree of precision of parameter estimate is expected and evolves from their use 

in sequential experimentation. However, there are often cost constraints imposed on experiments. Previous studies show that 

resolution, orthogonal quadratic effect property, and saturated or near-saturated design reduce the number of experiments. 

This study extends the response model approach with noise factors to composite designs satisfying these properties. These 

modified composite designs are further discussed and examined in terms of scaled prediction error variance and extended 

scaled prediction variance, which provides a good distribution of the prediction variance of the response. Based on these 

criteria, the best performance design is suggested according to the number of control and noise factors. As a result, we show 

that the modified designs showing robustness to noise factors and stability of predictive variance are a class of modified small 

composite designs and modified augmented-pair designs.  
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1. INTRODUCTION 
 

A set of properties that should be considered when choosing a response surface design is a good fit of the model to the data,  

a good distribution of prediction variance of the response, and cost constraints imposed on experiments. Besides these, many 

other important characteristics are suggested (Myers et al. 2016). Some properties conflict with each other, so trade-offs 

almost always exist when choosing an appropriate design. Generally, a larger experiment can consider that a high degree of 

precision of parameter estimate is expected and evolves from their use in sequential experimentation. However, there are 

often cost constraints imposed on experiments.  

Following previous studies (Hartley, 1959; Westlake, 1965; Draper, 1985; Shoemaker et al., 1991; Morris, 2000; Box 

and Draper, 2007; Angelopoulos et al., 2009; Nguyen and Lin, 2011; Georgiou et al., 2014), several proposals and algorithms 

were shown to reduce the number of experiments in a class of composite designs for the response surface methodology.  

Some well-known composite designs from the literature are the central composite designs (CCDs, Box and Wilson, 

1951), the small composite designs (SCDs, Draper, 1985; Draper and Lin, 1990), Type 1 SCD, Type 2 SCD (Nguyen and 

Lin, 2011), the augmented-pair designs (APDs, Morris, 2000), and the modified mean orthogonal composite designs 

(Georgiou et al., 2014). These studies introduce a method for generating efficient and economical response surface designs 

using and combining available designs.  

There are several response surface alternatives for solving the robust parameter designs (RPDs) problem and for 

conducting process robustness studies (Taguchi and Wu, 1980; Taguchi, 1986, 1987; Welch et al., 1990; Shoemaker et al., 

1991; Park and Antony, 2008; Bingham and Nair, 2012). RPDs are a principle that emphasizes the proper choice of levels of 

control factors in a system. The term RPD entails designing the system to achieve robustness to inevitable changes in the 

noise factors. The modeling of both control factor (x) and noise factor (z) in the same model has been called a response model 

approach (Myers et al., 2016). The response model approach models both the x and z in the same model. For this approach, 

the combined array in which a design is chosen to allow estimability of a reasonable model in x and z is often less costly and 

reasonably sufficient.  
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This study extends the response model approach to well-known composite designs. It considers a situation in which 

these designs have control and noise factors. Designs constructed in this manner shall be called modified composite designs. 

The modified composite designs are further discussed and examined in terms of scaled prediction error variance (SPEV, 

Borror et al., 2002) and extended scaled prediction variance (ESPV, Oh et al., 2017, 2018; Oh, 2022), which provides a good 

distribution of prediction variance of the response. Based on these criteria, the best performance design is suggested according 

to the number of control and noise factors. The remainder of this paper is organized as follows: Section 2 shows a class 

composite design and response model approach with control and noise factors. Section 3 extends a response model approach 

to composite designs, which proposes modified composite designs and the choice of candidate designs in modified composite 

designs. Concluding remarks are presented in section 4. 

 

2. A CLASS OF COMPOSITE DESIGNS AND ROBUST PARAMETER DESIGN  
 

2.1 Composite designs for second-order response surfaces 

 

If the supposed response surface model suffers from a lack of fit due to some surface curvature, then the model needs to be 

more complex than a simple first-order or first-order plus interactions model. In this case, a second-order response surface 

model (RSM) is a reasonable choice. In this study, the following second-order model can be used: 

 

y = β0 + x
′β + x′Bx + ε,  (1) 

 

where y is the response, n × 1 vector, x is n × 𝑝1 vector, β is a 𝑝1 × 1 vector containing the regression coefficients of the 

controllable factors, B is 𝑝1 × 𝑝1 a matrix whose main diagonals exhibit the regression coefficients associated with the pure 

quadratic effects of the control factors and whose off-diagonal is one-half of the mixed quadratic (interaction) effects of the 

controllable factors. In Eq. (1), we assumed that ε is NID(0, 𝜎2).  
Some well-known classes of designs in second-order RSM are the CCDs, the SCDs, Type 1 and 2 SCD, the APDs, and 

the modified mean orthogonal composite designs.  

Much of the motivation for the CCD evolves from its use in sequential experimentation. This study divides the sequential 

experimentation process into the first and second stages. It involves the use of a two-level factorial or fraction combined with 

the following 2𝑝1 or 𝑛0 center points. As a result, the CCD has factorial points, 2𝑝1 axial points, 𝑛0 center runs. The factorial 

points represent a variance-optimal design for a first-order model or first-order + two-factor interaction model. Center points 

provide information about the existence of curvature in the system. If the curvature is found in the system, the additional axial 

points allow for efficient estimation of the pure quadratic terms (Myers et al. 2016). 

The APDs consist of a first-order two-level orthogonal design with 𝑛1 runs and 𝑛0 center points in the first stage. This 

design is then augmented by 𝑛2 = (
𝑛1
2
) runs. For each pair of runs 𝑥𝑢  and 𝑥𝑣  in 𝑛1 , a run in 𝑛2  is generated as 𝑥𝑢𝑣 =

−0.5(𝑥𝑢 + 𝑥𝑣). This procedure adds one new design run, 𝑥𝑢𝑣, for each pair of runs (𝑥𝑢 , 𝑥𝑣) in x. 
The run size of the APD design in the first stage is minimal, and the quadratic effects of APDs are always orthogonal to 

all main effects and interaction effects. It is called an orthogonal quadratic effect (OQE) property by Nguyen and Lin (2011).  

The SCDs get their name from the idea of the CCD, but the factorial portion is a special resolution Ⅲ fraction in which 

no four-letter word is among the defining relations. The total run size is reduced from that of the CCD. Since not all SCDs 

have the OQE property, Nguyen and Lin (2011) have provided a new algorithm that can augment any first-order design with 

additional design points to form a good design for fitting second-order models. For Type 1 SCD (SCD1), the 2𝑝1 axial points 

are fixed in the second stage, and an algorithm is used to search for the best first-order design, which should be used in the 

first stage. For Type 2 SCD (SCD2), a small first-order design is used at the first stage. The 2𝑝1 axial points are anticipated 

in the second stage.  

The modified mean orthogonal composite designs give a general construction method. The axial points of traditional 

CCDs are replaced by some edge points of the hypercube that circumscribes the sphere of zero center and radius. Georgiou 

et al. (2014) showed that these designs satisfy the OQE property if their factorial part is of resolution Ⅳ or higher.  

Table 1 displays the run sizes of different composite designs with 𝑛0 for sequential experimentations regarding the 

number of factors, 𝑝1, 𝑎nd parameters, 𝑝. It can be seen that no class of design in Table 1 is the best design based on runs. 

Because all designs except CCD should be considered if the runs are expensive, while CCDs are highly recommended if 

resources are readily available and a high degree of precision of parameter estimates is expected. 
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Table 1. Comparison of run sizes for SCD, SCD1, SCD2, CCD, APD, and Georgiou’s design 

 

𝑝1 𝑝 SCD SCD1 SCD2 CCD APD Georgiou’s design 

3 10 10 10 10 14 10 10 

4 15 16 16 16 24 36 16, 20 

5 21 21 22 26 26 36 21, 22, 24, 26, 36 

6 28 28 28 36 44 36 28, 36 

7 36 36 38 38 78 36 36, 38 

8 45 46 48 48 80 78 45, 46 

9 55 56 58 58 146 78 55, 56, 58 

10 66 66 68 68 148 78 66, 68 

 

2.2 Response model approach with control and noise factors 

 

In many experimental situations, the model of the control and noise variables may involve second-order or quadratic terms 

in the control variables. Therefore, we consider a plausible model between the response variable y and the 𝑝1 controllable 

variables where x = (𝑥1, 𝑥2, ⋯ , 𝑥𝑝1)′ and the 𝑝2  noise variables where z = (𝑧1, 𝑧2, ⋯ , 𝑧𝑝2)′ which can be described in a 

matrix form as:  

 

y(x, z) = β0 + x
′β + x′Bx + z′γ + x′∆z + ε, (2) 

 

where γ is a 𝑝2 × 1 vector of regression coefficients for the main effects of the noise variables and ∆ is a 𝑝1 × 𝑝2 matrix of 

the control factor induced by noise factor interaction effect. In Eq. (2), we assume that ε is NID(0, 𝜎2) and that the noise 

factors have been scaled so that they have mean zero and covariance matrix Var(z) = 𝜎𝑧
2V. V is an 𝑝2 × 𝑝2  symmetric 

positive definitive matrix. We also assume that V = I so that the noise factors are uncorrelated and have identical, constant 

variances. As in Borror et al. (2002) and Myers et al. (2016), there are many scenarios where these assumptions are certainly 

reasonable. These could include situations when the noise factors are process variables that are difficult to control or raw 

material properties. On the other hand, if the noise factors are certain environmental variables, such as temperature and 

relative humidity, then they are most likely correlated. It is also customary to assume that 𝜎𝑧
2 and the elements of V are known 

based on knowledge of and experience with the noise factors under RPDs. 

According to Myers et al. (1992), concerning the noise variables (z) and the random error (ε), the model for the response 

mean is obtained by considering the conditional expectation of y(x, z) in Eq. (2). They show: 

 

∫∫ y(x, z)𝑝(z, ε)𝑑z𝑑ε = 𝐸z,ε[y(x, z)] = β0 + x
′β + x′Bx,  (3) 

 

where 𝑝(z, ε) is the joint conditional probability density function of z and ε, given x. The notation 𝐸z,ε[y(x, z)] denotes the 

expectation E[y(x, z)] for z and ε, 
Similarly, the model for the response variance is  

 

𝑉𝑎𝑟z,ε[y(x, z)] = 𝑉𝑎𝑟z,ε[(γ
′ + x′∆)z] + 𝜎2 = 𝜎𝑧

2(γ′ + x′∆)(γ′ + x′∆)′ + 𝜎2, (4) 

 

where γ′ + x′∆ is the vector of partial derivatives of 𝑦(x, z) considering noise variables z. Thus, this is the slope of the 

response surface in the direction of the noise variables z. Equations (3) and (4) represent the mean and variance response 

surfaces developed from the model containing both control and noise variables. The estimated response surfaces are obtained 

by replacing parameters with the fitted model's ordinary least square (OLS). The estimated process mean and variance  

response surfaces are given by, 

 

�̂�z,ε[y(x, z)] = �̂�0 + x
′β̂ + x′B̂x = x(2)′β̂1  (5) 

𝑉𝑎�̂�z,ε[y(x, z)] = �̂�𝑧
2(γ′̂ + x′∆̂)(γ′̂ + x′∆̂)

′
+ 𝜎 2̂ , (6) 

 

where the regression coefficient �̂�0, the elements of the vector β̂, and the elements of the matrix β̂ are contained in the vector 

β̂1. And x(2)′ is a vector of the controllable variables expanded to a second-order model containing the constant 1, the first-

order terms, the second-order terms, and the control-by-control factor interactions. �̂�2 is the residual mean square error from 
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the fitted response model. Most authors formulate the standard robust parameter design problems using Equations (5) and 

(6). 

Borror et al. (2002) developed a SPEV for the mean model in Eq. (5). The form for the variance of the prediction error 

is 

 

𝑉𝑎𝑟z,ε [y(x, z) − �̂�z,ε[y(x, z)]] = 𝑉𝑎𝑟ε(�̂�z,ε[y(x, z)]) + 𝑉𝑎𝑟z,ε[(γ
′ + x′∆)z] + 𝜎2 . (7) 

 

The SPEV is desirable to evaluate designs for experiments involving noise factors and is an appropriate measure for 

making comparisons among competing RPDs. The SPEV is found by multiplying an expanded form of Eq. (7) by the number 

of runs and dividing by 𝜎2 to give  

 
𝑁𝑉𝑎𝑟z,ε[y(x,z)−x

(𝑚)′�̂�∗]

𝜎2
= N[x(𝑚)′𝑃11x(𝑚)] + 𝑁(γ′ + x′∆)(γ′ + x′∆)′ , 

(8) 

 

where x(𝑚) represents the control variables expanded to the form of the model used for those variables, 𝑃11 represents the 

variance-covariance matrix, γ̂ + x′∆̂ is the mean of γ′ + x′∆.  

To remove 𝜎2  from (γ′ + x′∆)(γ′ + x′∆)′/𝜎2 , the elements of γ and ∆ are constants, and x is a design point in the 

region of interest. It will subsequently be convenient to define the elements of the vector γ, denoted by 𝛾𝑖, and the elements 

of the matrix ∆, 𝛿𝑖𝑗, as multiples of the process standard deviation 𝜎. That is 𝛾𝑖 = 𝑡𝑖𝜎 and 𝛿𝑖𝑗 = 𝑡𝑖𝑗𝜎. For instance, if it is 

believed that the noise variables equally influence the response, then 𝑡𝑖 = 𝑡1 for each noise variable where 𝑡1 can take on any 

non-negative value (Borror et al., 2002). Finally, SPEV is as follows: 

 

𝑁[x(𝑚)
′
𝑃11x(𝑚) + 𝑝2(𝑡𝑖

2 + 2𝑡𝑖𝑡𝑗x
′1 + 𝑡𝑗

2x′Jx)] , (9) 

 

where 1 is an 𝛾𝑖 × 1 vector of 1′s and J is an 𝛾𝑖 × 𝛾𝑖 matrix of 1′s. 
Oh et al. (2017) proposed a measure for the prediction variance of future values (z𝑓) of z as a prediction method for 

examining design robustness and showed an ESPV for the response surface approach to RPDs, and adopted this idea for the 

extended scaled quantity as follows: 

 
N𝑉𝑎�̂�z𝑓,β̂OLS

∗ [�̂�(x,z𝑓)]

𝜎2
= N[x(𝑚)

′
𝑃11x(𝑚) + 𝑡𝑟(𝐶) + 𝑝2(𝑡𝑖

2 + 2𝑡𝑖𝑡𝑗x
′1 + 𝑡𝑗

2x′Jx)] . 
(10) 

 

Also, we assume that 𝜎𝑧
2 is known, and the high and low levels of 𝑧𝑗 are at ±𝜎𝑧 in coded form. Thus, 𝜎𝑧

2 = 1. In Eq. 

(10), β̂OLS
∗  denotes the vector containing all estimates of the parameters in Eq. (2). Because the z𝑓 in the expectation refer to 

future values of the noise factors; after running the experiment and fitting the model, z is a random variable. Although the 

OLS estimates of y(x, z) contain noise factor information, these z values refer to past noise factor values obtained when z can 

be controlled at the research or development level. 𝐶 is the matrix for linear, quadratic, and interaction terms involving only 

the control variables. The value of 𝐶 is simply 
Var[γ̂′+x′∆̂]

𝜎2
, and Covz𝑓,β̂OLS

∗ [β̂0 + x
′β̂ + x′B̂x, (γ′̂ + x′∆̂)z𝑓] = 0. Note that, if 

𝑡𝑖 = 𝑡1 and 𝑡𝑖𝑗 = 𝑡2 (where 𝑡1 ≥ 0 and 𝑡2 ≥ 0), then Equation (10) becomes 

 

𝑁[x(𝑚)
′
𝑃11x(𝑚) + 𝑡𝑟(𝐶) + 𝑝2(𝑡1

2 + 2𝑡1𝑡2x
′1 + 𝑡2

2x′Jx)] . (11) 

 

When computing the RPDs, we consider a situation where the noise variables influence the response equally. To obtain 

the general form of Eq. (10), we can modify the Eq. (11) in terms of 𝑡1 and 𝑡2 as follows: 

 

𝑁[x(𝑚)
′
𝑃11x(𝑚) + 𝑡𝑟(𝐶) + 𝑝2(𝑡1

2 + 2𝑡1
2𝑟x′1 + 𝑡1

2𝑟2x′Jx)] , (12) 

 

where 𝑟 is the appropriate constant. Also, it can be seen that Eq. (9) and Eq. (12) hold the relationship SPEV = ESPV −
𝑁𝑡𝑟(𝐶). Oh et al. (2107) proposed that 𝑁𝑡𝑟(𝐶) represents a property of the variability in the noise variables themselves. A 

detailed review and comments on Eq. (11) and Eq. (12) can be found in Oh et al. (2017) and Oh (2022). 

Based on SPEV and ESPV values for each modified composite design, we will investigate which design provides a good 

distribution of prediction variance of the response. Therefore, we illustrate a comparison of well-known composite designs 

in the order of ESPV in terms of (𝑡1 = 𝑡2), (𝑡1 > 𝑡2, 𝑟 < 1), and (𝑡1 < 𝑡2, 𝑟 > 1). In addition, we will illustrate the fraction 
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of the design space plots (FDS plots, Zahran et al., 2003) of ESPV that are in order of ESPV in terms of (𝑡1 = 𝑡2), (𝑡1 >
𝑡2, 𝑟 < 1), and (𝑡1 < 𝑡2, 𝑟 > 1) in part of the application of graphical evaluation.  

FDS plots give the researcher more detailed information by quantifying the fraction of the design space where scale 

prediction variance (SPV) is less than or equal to any pre-specified value.  

Zahran et al. (2003) noticed how the design's maximum and minimum SPV values occur at different radii of the variance 

dispersion graphs (VDGs; Giovannitti-Jensen and Myers, 1989) with other associated volumes. Zahran et al. (2003) 

developed FDS plots to complement the VDGs. While the VDGs show where various value SPV are observed in the design 

space, the FDS plots summarise the prediction performance for the entire design space with a single curve.  

 

3. EXTEND A RESPONSE MODEL APPROACH TO COMPOSITE DESIGNS 
 

3.1 Response model approach with control and noise factors 

 

Suppose one focuses on the response model approach in which a single model is constructed for both control, x, and noise 

factor, z, with the simultaneous development of Eq. (3) and Eq. (4). In that case, the product array is not needed. For this 

approach, the combined array, in which a design is chosen to allow estimability of a single model in x and z, is often less 

costly. Also, combined arrays offer more flexibility in estimating effects or regression coefficients and savings in run size 

(Borkowski and Lucas, 1997; Myers et al., 2016). Because the response surface approach emphasizes efficient estimation of 

the appropriate response model in x and z, the combined array is suitable with the flexibility needed in the selected model 

terms. From this point of view, the response model approach and the combined array are pretty compatible. Many authors 

have suggested combined array designs (Welch et al., 1990; Shoemaker et al., 1991; Montgomery, 1991; Lucas, 1994; Myers 

et al., 1992, Box and Jones, 1989). 

The candidate designs to examine are well-known composite designs such as the CCDs, SCDs, APDs, and Georgiou’s 

designs. The modified composite designs proposed in this study are constructed from a class composite design by removing 

the axial points for the noise factors. For example, 𝐷1 is the design matrix of CCD for three control factors with 𝑛0 = 4 and  

 

𝐷1 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1
1 −1 −1
−1 1 −1
1 1 −1
−1 −1 1
1 −1 1
−1 1 1
1 1 1

−𝛼 0 0
𝛼 0 0
0 −𝛼 0
0 𝛼 0
0 0 −𝛼
0 0 𝛼
0 0 0
0 0 0
0 0 0
0 0 0)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐷2 =

(

 
 
 
 
 
 
 
 
 
 
 
 
 

−1 −1 −1
1 −1 −1
−1 1 −1
1 1 −1
−1 −1 1
1 −1 1
−1 1 1
1 1 1

−𝛼 0 0
𝛼 0 0
0 −𝛼 0
0 𝛼 0
0 0 0
0 0 0
0 0 0
0 0 0)

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

axial point α, and 𝐷2 is the design matrix of modified CCD that deleted the axial runs associated with the one noise factor. 

The values of axial points were chosen based on the designs' cuboidal, rotatability, and spherical properties. Note that 

the pure quadratic terms for the noise factors are typically unnecessary and omitted in this study. The modified central 

composite designs (MCCDs), modified small composite designs (MSCDs), modified augmented-pair designs (MAPDs), and 

modified Georgiou’s designs (MGDs) are constructed from standard CCDs, SCDs, APDs, and Georgiou’s design which are 

by deleting the axial runs associated with the noise variables, respectively. This study considers a process robustness study 

involving a few control and noise factors, and a design region of interest is cuboidal. 

 

3.2 Numerical comparisons and the choice of candidate designs in modified composite designs 

 

This study aims to extend a response model approach to well-known candidate composite designs and propose the best 

performance design considering the number of control and noise factors under SPEV and ESPV. To this end, we compare 

candidate designs C2N1, C3N1, C3N2, C4N1, C4N2, C4N3, C5N1, C5N2, and C5N3 for several composite designs except 

for MGDs in Table 1. C2 and N2 indicate the number of control and noise variables, respectively. For instance, C2N1 is a 
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combined array with two control factors and one noise factor. In the case of MGDs, it is not easy to select a candidate group 

because all design runs except for 𝑝1 = 3 are two or more. Oh et al. (2017) propose a measure of ESPV for evaluating RPDs 

on MCCDs. This paper is on how ESPV of work can be reduced by changing control and noise variables under MCCDs. Oh 

(2022) shows a graphical evaluation of ESPV when the number of noise variable increase in RPDs and has sufficiently dealt 

with situations where the noise factor is equal to or greater than the control factor.  

Therefore, this study considers the MCCDs, MSCDs, MSCD1s, and MAPDs as candidate designs. Generally, the axial 

point distance should be chosen between 1 and √𝑝1 + 𝑝2 but rarely outside this range (Wu and Hamada, 2000). But, since 

MAPDs are designed to consider only three levels, α is deemed to be 1 in this paper.  

Here, we illustrate the graphical evaluation for the MCCDs, MSCDs, MSCD1s, and MAPDs regarding SPEV or ESPV 

as the number of control and noise factors. And we compare candidate designs using FDS plots to evaluate the relative 

stability performances of the design space. The FDS plots of ESPV are shown in terms of 𝑡1, 𝑡2 and 𝑟 which ESPV are in 

terms of 𝑡1 = 𝑡2, 𝑡1 > 𝑡2, 𝑟 < 1, and 𝑡1 < 𝑡2, 𝑟 > 1 in Figure 1.  

Figure 1 shows several FDS plots of ESPV that are in order of 𝑁𝑡𝑟(𝐶), ESPV in terms of (𝑡1 = 𝑡2, 𝑟 = 0, 𝛼 = 1), (𝑡1 >
𝑡2, 𝑟 < 1, 𝛼 = 1), and (𝑡1 < 𝑡2, 𝑟 > 1, 𝛼 = 1). As in Myers et al. (2016), the FDS plots for an ideal design will have a large 

fraction of the design space with small SPEV or ESPV values and be relatively flat, which corresponds to the stability of 

SPEV or ESPV throughout the region.  

 

<C2N1>                                                                  <C3N1> 

 
 

<C3N2>                                                                    <C4N1> 
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<C4N2>                                                                    <C4N3> 

 
 

<C5N1>                                                               <C5N2> 

 
 

<C5N3> 

 
Note: The first plot in each FDS plots is on a very different ESPV scale than those. SPEV shows the same pattern as ESPV because there is a SPEV=ESPV- 𝑁𝑡𝑟(𝐶) relationship. 

 

Figure 1. FDS plots for ESPV from C2N1 to C5N3 in MCCD, MSCD, MSCD1, and MAPD 
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Table 2. Comparison of candidate designs for SPEV and ESPV with 𝑛0 = 3 

 

CnNn Design (runs) 
Scaled Prediction Error Variance Extended Scaled Prediction Variance 

𝑡1 > 𝑡2 𝑡1 = 𝑡2 𝑡1 < 𝑡2 𝑡1 > 𝑡2 𝑡1 = 𝑡2 𝑡1 < 𝑡2 

C2N1 

𝑝1(2) 
𝑝2(1) 

MSCD (11) MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MSCD1 (11) 

MCCD (15) 

MAPD (13) 

C3N1 

𝑝1(3) 
𝑝2(1) 

MSCD (17) MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MSCD1 (17) 

MCCD (25) 

MAPD (39) 

C3N2 

𝑝1(3) 
𝑝2(2) 

MSCD (21) MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MSCD1 (21) 

MCCD (25) 

MAPD (39) 

C4N1 

𝑝1(4) 
𝑝2(1) 

MSCD (23) MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MSCD1 (23) 

MCCD (27) 

MAPD (39) 

C4N2 

𝑝1(4) 
𝑝2(2) 

MSCD (27) MCCD 

>MAPD 

>MSCD 

>MSCD1 

MCCD, 

MAPD 

>MSCD 

>MSCD1 

MCCD 

>MAPD 

>MSCD 

>MSCD1 

MCCD 

>MAPD 

>MSCD 

>MSCD1 

MCCD, 

MAPD 

>MSCD 

>MSCD1 

MCCD 

>MAPD 

>MSCD 

>MSCD1 

MSCD1 (27) 

MCCD (43) 

MAPD (39) 

C4N3 

𝑝1(4) 
𝑝2(3) 

MSCD (35) MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MSCD1 (35) 

MCCD (75) 

MAPD (39) 

C5N1 

𝑝1(5) 
𝑝2(1) 

MSCD (29) MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD, 

MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MAPD, 

MCCD 

>MSCD, 

MSCD1 

MAPD 

>MCCD 

>MSCD, 

MSCD1 

MSCD1 (29) 

MCCD (45) 

MAPD (39) 

C5N2 

𝑝1(5) 
𝑝2(2) 

MSCD (37) MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MCCD 

>MAPD 

>MSCD, 

MSCD1 

MSCD1 (37) 

MCCD (77) 

MAPD (39) 

C5N3 

𝑝1(5) 
𝑝2(3) 

MSCD (49) MAPD 

>MCCD 

>MSCD 

>MSCD1 

MAPD 

>MCCD 

>MSCD 

>MSCD1 

MAPD 

>MCCD 

>MSCD 

>MSCD1 

MAPD 

>MCCD 

>MSCD 

>MSCD1 

MAPD 

>MCCD 

>MSCD 

>MSCD1 

MAPD 

>MCCD 

>MSCD 

>MSCD1 

MSCD1 (45) 

MCCD (77) 

MAPD (81) 
Note: ‘n’ of ‘CnNn’ represents the number of control and noise factor. This result is to generate a random variable in uniform distribution for some point 

(𝑥1, 𝑥2,⋯ , 𝑥𝑝1). 𝑝1 and 𝑝2 represent the number of control factors and the number of noise factors. 

 

From this viewpoint, we can identify relatively good or poor design performance among the candidate designs, and the 

results are summarized in Table 2. In Table 2, ‘>’ indicates the order ESPV non-stability. For example, if MSCD is more 

stable than MCCD, we note MSCD<MCCD. And if MSCD and MSCD1s are the same regular pattern in design space, we 

note ‘MSCD, MSCD1s’. Table 1 shows the order of SPEV and ESPV throughout the design space. From Eq. (9) and Eq (10), 

SPEV is ESPV-𝑁𝑡𝑟(𝐶). 
MSCD1s and MSCD are stable curves in all FDS plots. Although MCCD is relatively flat in small-size design, 𝑝1 +

𝑝2 ≤ 5, when the noise factors enter and increase in a combined array, MCCD and MAPDs are relatively poor designs with 

a steep curve. As for the control and noise factors, the number of runs rapidly outgrows the resources of most experiments. 

The number of experimental runs shows next to the design name in Table 2. In Table 2, it can be seen that the number of 

experiments for MCCDs and MAPD relatively increases when it is 𝑝1 + 𝑝2 ≥ 7. 

The MSCDs and MSCD1s have a relatively larger number of experiments than the MCCDs and MAPDs. In particular, 

in the MCCD, considering seven factors requires 32 more runs of an experiment than six factors. The MAPD experiment 

considering eight factors, needs 42 more runs than runs of an experiment for seven factors. When looking at the FDS plots 

of C4N2, C4N3, C5N1, and C5N2, it can be seen that the MAPDs are less sensitive to noise factors in terms of ESPV or 

SPEV than the MCCDs. 
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Therefore, examining both runs of the experiment and SPEV or ESPV indicates the MSCD1s and MSCD are all relatively 

good performance designs. In particular, the MSCD1s are designs that have even the OQE property. 

 

4. CONCLUSIONS 
 

As previously indicated, the number of experimental runs should be one of the design criteria for the cost-effectiveness of 

the design. A larger experiment can often provide the improved fit of the model to the data and reasonable model parameter 

estimates but at the expense of driving up the total cost of the experiment.  

This study introduces a class of composite designs to reduce the number of experimental runs to which resolution, OQE 

property, and fractional factorial design techniques are applied. Moreover, it expands these designs to a response model 

approach with noise factors. These modified designs evaluated design performance with SPEV and ESPV indicators to judge 

the stability of predicted variance.  

The modified designs showing robustness to noise factors and stability of predictive variance are classes of modified 

SCD (MSCDs, MSCD1s, and MSCD2s) and MAPDs. As for the control and noise factors, the number of runs rapidly outgrows 

the resources of most experiments. These designs have fewer experiments than MCCDs, and MSCD1s and MSCD2s have 

OQE properties. When looking at the FDS plots of 6 ≤ 𝑝1 + 𝑝2 ≤ 7, it can be seen that the MAPDs are less sensitive to noise 

factors in terms of ESPV or SPEV than the MCCDs. Therefore, selecting a design that provides small experimental runs and 

stability for prediction variance is essential in the response model approach with the noise factor. 
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