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The order-picking process in a warehouse is critical in managing customer orders, especially in retail stores. It is expensive 

because fulfilling online orders takes up to 70% of all warehouse activities. Procedures in order picking, including different 

route selection schemes, can significantly increase yield and reduce costs. The research shows that a suitable routing method 

can reduce the travel time of the order picker to fulfill the order. However, the number of orders may vary. This paper 

presented a dynamic simulation analysis based on a real scenario of a various number of orders in an integrated car 

manufacturing warehouse. The simulation reduced the travel time of the voters by about 44.89%. This simulation model helps 

to visualize the potential reduction in customer waiting times, leading to increased customer satisfaction. 
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1. INTRODUCTION 
 

Order picking is an important process in warehouse management practice, and finding ways to increase picking productivity 

and make it work effectively is a critical research area. The research objective is to have an optimal order-picking process to 

improve warehouse operational efficiency. Many studies show that order picking is one of the most critical processes in a 

warehouse. Petersen and Aase (2017) stated that the order-picking process accounts for 50%–75% of the total operating cost 

of a typical warehouse. Reports show that 55% of all operating costs in a typical warehouse can be attributed to order picking, 

and the process takes up to 70% of operation time (Habazin et al., 2017; Bartholdi and Hackman, 2011; Dharmapriya and 

Kulatunga, 2011). Order picking remains a very capital-intensive operation even in automated warehouses (Goetschalckx 

and Ashayeri, 1989) because there are many sub-processes in the order picking stage. It includes batching, routing, and sorting 

processes; hence the performance of the order-picking process in a warehouse or distribution center can be measured based 

on the order fulfillment lead time (Mercedes et al., 2019). It highlights the importance of performance analysis and 

improvement of order-picking process systems as it directly impacts achieving most companies’ objective of the shortest 

order fulfillment lead time. 

Order picking is retrieving products from specified storage locations based on customer orders. However, the warehouse 

design can result in more complex order-picking processes. Therefore, ensuring the order-picking process is smooth is vital 

to avoid interruption or discomfort in delivering the goods to the customers. This study focused on an order-picking process 

with limited picking quantity by an order picker.  

According to the job description by most human resource departments in the United States, the order picker task is not 

limited to picking items and getting them ready for shipment (Order Picker, 2022). An order picker also loads and unloads 

goods from containers and updates the inventory systems. Sometimes, an order picker is also responsible for product 

assembly. Formally, the job of an order picker starts when he receives an order note at the depot, goes to identified locations 
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to retrieve items according to the order list, and delivers them to the packaging point for distribution to the customers (Chan 

and Chan, 2011). Bhavin and Vivek (2017) and many other researchers confirmed that the main objective of warehouse 

management is to fulfill 100% of the customers’ demand. It is done by ensuring that the customers are satisfied with effective 

resource utilization when the product is delivered correctly, on time, at the right place, and in good condition. Therefore, a 

warehouse needs a proper system for its order-picking process and related subprocesses, such as storage assignment, resource 

allocation, workforce handling, and task allocation (Kusrini et al., 2018; Sahin-Arslan and Erkem, 2019). 

Different warehouses have different priorities that make choosing the order-picking process challenging. Therefore, the 

study aimed to evaluate whether specific strategies in order picking could reduce operating costs while keeping the service 

level as high as possible. It will affect the demand-supply system, the order pickers, and the staff. Therefore, optimizing the 

order-picking process is crucial in inner warehouse movement and transportation. 

A good strategy to find the shortest path and time to complete orders according to the customers’ needs is highly needed. 

Furthermore, the order picker must ensure the order is completed successfully within regular working hours. James and Dale 

(2004) mentioned that order fulfillment models should include basic procedures for picking orders: picker-to-part, zone 

picking, wave picking, and sorting systems. In the picker-to-part process, the picker moves to the storage area that contains 

the items based on the order. The warehouse is divided into distinct zones in zone picking, with one picker assigned to each 

zone. Each order picker is in charge of a zone, and each item is divided into several picking lists. In the wave-picking process, 

the order picker moves to collect the items for several orders. The process performance is measured by how fast all the items 

in the order list are picked. In contrast, the sorting systems process has no movement of the order picker. Instead, the products 

are brought to the picker by an automated system. 

Simulation is an analysis process for warehouse performance evaluation (Verriet et al., 2013). It presents a warehouse 

simulation model that is applied in the early stage of the development process. Gagliardi et al. (2007) used a discrete event 

simulation model to improve warehouse operations to evaluate strategies for handling stock-keeping units (SKUs) and 

allocating space needed for each item. The results showed reduced operation costs and maintained a high-level service for 

the warehouse. Hrihorkiv et al. (2010) focused on the warehouse’ order-picking process. The results showed that by choosing 

an appropriate combination of optimization methods, the picker travel distance could be reduced by about 50%. Andriansyah 

et al. (2009) proposed a simulation modeling approach based on aggregate process times for the performance analysis of 

order-picking workstations in automated warehouses. The simulation was not limited to a single warehouse (Andriansyah et 

al., 2011). A layered warehouse simulation model was built from reusable components, which allowed varying the number 

of storage aisles and workstations in a mini load-workstation order-picking system. Although the proposed model could 

handle more than one warehouse, it was limited to one type of warehouse topology.  

Li et al. (2020) proposed a four-door dangerous goods warehouse and a route planning method for forklifts to ensure 

safety and increase the operational efficiency of the warehouse. The study revolutionized the warehouse design by elevating 

the routing optimization of two forklifts operating in the four-door warehouse. Jorge et al. (2012) simulated an order-picking 

system in a pharmaceutical warehouse to increase operational efficiency. The study highlighted the optimal number of order 

pickers required for the picking activities. Consequently, the improvement in the service and an optimal number of order 

pickers reduced total operating costs. Furthermore, a suitable number of order pickers can lead to higher staff motivation and 

customer service satisfaction. Other simulation research related to order picking process, warehouse layout, and methods was 

conducted by Renaud and Ruiz (2008), Wu et al. (2010), Gu et al. (2010), Chawla et al. (2019), and Hashemi et al. (2020). 

Order-picking practices combine the basic procedures mentioned earlier. Furthermore, they require proper coordination 

and thoroughness (Chin, 2018). Choosing an order-picking system depends on cost, movement complexity, number of 

customer orders, size, and number of items. This study of the automotive manufacturing company focused on the most 

common practice of picker-to-part. In this approach, an order picker picks all the ordered items from the racks at once to 

minimize time. However, some companies limit the number of items collected at once due to the picking vehicle’s limited 

capacity. In addition, increment in order volume also affects the performance. Minimizing the travel time of the pickers and 

optimizing the staff working hours and loads without additional cost is critically important to reduce the waiting time for 

customers involved in the order system. Therefore, this study considered the potential increase and variation in order volume 

(characterized by the number of orders) while having a fixed number of order-pickers in the system. The problem was 

analyzed using simulation models as it does not affect the actual system (Hwang and Cho, 2006; Petersen and Aase, 2004; 

Kostrzerovski, 2020; Wilkenhaus et al., 2022). The study setting is described in Section 2, details on the simulation part are 

explained in Section 3, and results and discussion are illustrated in Section 4. 
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2. CURRENT SCENARIO 

 

2.1 Demand and order patterns 

 

The major input for the simulation model is the expected demand (number of items ordered) to be handled by the order-

picking operation. This study’s setting was the manufacturing company in which the order made per day was identical and 

small. Figure 1 shows the average number of items ordered by customers per month. The demand was high for the first quarter 

as the number of items delivered to customers was almost 40000. However, the demand fell in the second and third quarters. 

Furthermore, the number of working days was less due to technical issues in the warehouse. The number of orders per month 

in 2015 during the day shift was 25000–38000 items. The maximum and the minimum number of items ordered daily were 

approximately 2520 and 470, respectively. 

 

 
 

Figure 1. Total items ordered per month in 2015. 

 

Based on the number of orders and items (Figure 1), the order-picking process could be completed within the designated 

time of normal working hours. However, as the company is predicted to future growth in the demand for local cars, the limited 

number of order-pickers with limited picking capacity is concerning. Therefore, this study simulated bigger orders to test the 

model’s stability in reacting to various demand patterns. The main elements in the simulation model were the daily order 

volume, the order size, the number of items in the order, and the quantity ordered of each item.   

The process of order-picking start depends on the warehouse layout. The layout plan for the warehouse under study had 

four shelves with four front (A, B, C, D) and four end sub-aisles (E, F, G, H) (Figure 2). Each aisle was an open-ended route. 

Each shelf was loaded with items ready to be picked. In this case, an order-picker (OP) was free to go to any side of the 

shelves and may return to the same point. Order-pickers started their working operation by collecting information on the 

number of customer orders. They gathered at the main platform in each zone to receive a delivery order (DO). DO form was 

based on orders made online by the customers. Once the form was received, the items were identified. Next, the OP started 

moving from the platform to the ordered items area.  

The study analyzed the current demand based on order patterns. The objective was to pick all items in the order form in 

the shortest path or minimum order-picking time. The capacity and volume to be picked for each OP were considered in this 

situation. Each OP could pick a maximum of 25 items at a time, and they were free to use any route as long as all the items 

were fully collected. There were nine nodes (where the items were stationed) and seven OPs who picked the items based on 

the test run using Excel Solver. The OP started at node 1. Each OP continued to pick at the remaining eight nodes. At the end 

of the process, all the items collected were gathered at the packaging point (destination point).  

Considering the highest number of items of 68,265 picked in a month in 2015, each OP needed to pick 9752 items. For 

example, OP 1 was expected to collect 9752 items from node 1. Next, OP 2 had to go directly to Node 7 and collect 5905 

items. After finishing the job at Node 7, OP 2 needed to move to Node 8 to collect the remaining 3847 items to complete the 

total items picked of 9752. Therefore, the OP had to travel the same route back and forth to collect all the items. The shortest 

path for OP 1 was 1 → 8. Meanwhile, the path for OP 2 was 1 → 7 → 8. The full results of the total items picked for all OPs 

are summarized in Table 1.   
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Figure 2. Layout plan for Zone 1. 

 

Table 1. Total items to be picked by each OP – initial results. 

 

From 

(Node) 
OP1 OP2 OP3 OP4 OP5 OP6 OP7 Limit 

1 0 0 0 0 0 3780 0 3780 

2 0 0 0 0 2701 1124 0 3825 

3 0 0 0 0 2670 0 0 2670 

4 0 0 0 0 4200 0 0 4200 

5 0 0 0 3659 181 0 0 3840 

6 0 0 4557 6093 0 0 0 10650 

7 0 5905 5195 0 0 0 0 11100 

8 9752 3847 0 0 0 0 0 13600 

9 0 0 0 0 0 4848 9752 14600 

Limit 9752 9752 9752 9752 9752 9752 9752 68265 

 

Based on Figures 1, 2, and Table 1, the limited number of OPs might not be able to complete the total pick within the 

stipulated timeframe, given a potential increase in demand. Therefore, a simulation analysis on the potential increase in the 

number of items to be picked was proposed to support the potential increment.   

 

3. SYSTEM DESCRIPTION 
 

3.1 Description of the order-picking process 

 

Order picking is the process of picking up goods or items requested by customers from the storage and preparing them 

for delivery within a targeted time. This study was done in a warehouse that stores small parts in bins, shelves, and aisles. 

Under this situation, the OPs started collecting order forms from the depot or the first point. The OPs needed to move between 

aisles toward the closest cross-aisle. Therefore, the proposed routing algorithm chose the shortest way for each aisle in which 

the individual OP needed to return to the front cross-aisle or to cross the aisle through its entire length to the rear cross-aisle. 

Since the items were placed on both sides of the storage rack, the OPs could take items closest to the following consecutive 

items. Every item collected was placed in the packaging point. The items were organized according to the order form and 

were ready to be delivered to the respective customers. 
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3.2 Model and simulation algorithm 

 

A dynamic programming (DP) method was used to find the shortest path and the optimal number of items to be picked by 

each OP. Roodbergen (2001) introduced this method in which numerous operations in a warehouse were tested in a one-

block environment. Therefore, a complete understanding of the procedure of one-block operation was essential before the 

procedure could be applied when a greater number of blocks were involved. Routing policies in one block layout include 

optimal algorithms, not heuristics. This DP method was used to find the shortest time with all items collected by the OPs. 

This model was adjusted to suit the situation in the study.  

The basic model, the shortest path problem (SPP), can be defined as an undirected graph, 𝐺 = (N, E) where |𝑁| =
𝑛nodes are connected by edges (arcs), |𝐸| = 𝑚from a specified node S, the source. Each arc is numbered sequentially and 

is given a cost function𝑐 ↦ ℜ. This c can be in terms of time, distance, or currency. For example, 𝑐𝑖𝑗 represents the distance 

traveled from any node i to j; thus, the distance and the shortest path that starts from a given node S can be calculated. The 

main objective of SPP is to find the minimum cost of all paths from S to all nodes in N.   

The mathematical model for the objective function of SPP is adapted from a formulation by Letchford et al. (2013). In 

the model, a block layout is considered where the OP cannot proceed directly from the current location to the next location 

due to the different picking aisle and barrier of an aisle. This basic model was modified to suit the multi-picker situation in 

the current study. The set of edges (arcs) is denoted by E, and the set of Steiner points is defined by P. In addition, V denotes 

the number of vertices in a graph, w
k

ij
 is the number of units of commodity k passed on directly from vertex i to j, and Cap 

represents the capacity of each picker. The formulation from the Steiner Traveling Salesman Problem (TSP) was written as 

follows:    

 

Minimize   ∑ 𝑐𝑖𝑗𝑥𝑖𝑗(𝑖,𝑗) ∈ 𝐸
  Equation (1) 

subject to ∑ 𝑥𝑖𝑗 = 1, 𝑖 = 1, . . . , 𝑛𝑛
𝑖=1   Constraint (2) 

∑ 𝑥𝑖𝑗 = 1, 𝑗 = 1, . . . , 𝑛𝑛
𝑗=1   Constraint (3) 

𝑥𝑖𝑗 = {
1 path from node 𝑖 to node 𝑗 is considered
0 otherwise

   

∑ 𝑥𝑖𝑗 ≥ 1  ∀ 𝑖 ∈𝑗∈𝑉
(𝑖,𝑗)∈𝐸

𝑉\𝑃   Constraint (4) 

∑ 𝑥𝑖𝑗𝑗∈𝑉
(𝑖,𝑗)∈𝐸

− ∑ 𝑥𝑖,𝑗+1𝑗∈𝑉
(𝑖,𝑗+1)∈𝐸

= 0                       ∀    𝑖 ∈ 𝑉  Constraint (5) 

∑ 𝑊𝑖1
𝑘 − ∑ 𝑊1𝑘

𝑘 = −1       ∀ κ ∈ V \ (𝛲 ∪ {0})𝑗∈𝑉
(𝑗,1)∈𝐸

𝑗∈𝑉
(𝑗,1)∈𝐸

  Constraint (6) 

∑ 𝑊𝑗𝑘
𝑘 − ∑ 𝑊𝑘𝑗

𝑘 = 1       ∀ κ ∈ V \ (𝛲 ∪ {0})𝑗∈𝑉
(𝑘,𝑗)∈𝐸

𝑗∈𝑉
(𝑗,𝑘)∈𝐸

  Constraint (7) 

∑ 𝑊𝑖𝑗
𝑘 − ∑ 𝑊𝑗𝑖

𝑘 = 1       ∀ 𝑖 ∈ 𝑉 \(𝛲 ∪ {0, 𝑖})𝑗∈𝑉
(𝑗,𝑖)∈𝐸

𝑗∈𝑉
(𝑖,𝑗)∈𝐸

  Constraint (8) 

𝑤𝑖𝑗
𝑘 ≤ 𝐶𝑎𝑝 ∗ 𝑥𝑖𝑗   ∀(𝑖, 𝑗) ∈ 𝑉\(𝑃 ∪ {0})  Constraint (9) 

𝑥𝑖𝑗 ∈ {0,1}        ∀(𝑖, 𝑗) ∈ 𝐸  Constraint (10) 

𝑊𝑖𝑗
𝑘  ≥ 0           ∀( 𝑖, 𝑗) ∈ 𝐸, 𝑘 ∈ 𝑉 \(𝛲 ∪ {0})  Constraint (11) 

 

Equation (1) minimized the total distance traveled, assuming a linear cost structure for the movement. It was subject to 

the following constraints. Constraints (2) and (3) showed whether the items were available to be picked or not at the current 

node (i, j). Constraint (4) ensured that each vertex not corresponding to a Steiner point was visited only once, while Constraint 

(5) guaranteed that the starting point for the next move equaled the next starting point. Constraints (6)–(9) corresponded to 

the multi-commodity flow constraints based on Claus (1984). Constraints (10) - (11) denoted that the path from node i to 

node j existed (but may not be considered). 

This study added a capacity constraint for each OP so that each OP could collect only 25 items per round. For example, 

if the total number of items to be collected was 75, the OP needed to travel back and forth from the packaging point O to the 

current node i (item placed) thrice. If the distance from O to i is d, the total distance is 3d; hence 75 items were collected. 

Due to this requirement, the procedure was modified to suit the current situation in this manufacturing company and later for 

other manufacturers with the same procedure. 
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4. RESULTS AND DISCUSSION 

 

The model was solved using the DP method (Nordin et al., 2019). This section discusses the simulation algorithm. 

 
4.1 Real-Life Application 

 

This study selected an automobile part-manufacturing company as its case study. The parts included body parts, suspension, 

engine parts, modular assemblies, engineering plastic parts, and car lamp assemblies. The company had contract customers 

who ordered items in large quantities and various sizes. The order-picking process was based on the item sizes. If the orders 

were big items, the orders were assembled using a pallet-picking strategy, with forklifts moving back and forth within the 

warehouse. On the other hand, if the order involved small items, seven OPs were assigned to assemble the items and gather 

them at the packaging point before the order was passed to the delivery point. This study considered the order-picking process 

for small items due to its nature of being manually picked in several manufacturing companies in Malaysia. 

 

4.2 Simulation process for order-picking in a warehouse  

 

A few assumptions were made to map the warehouse layout to run the simulation task: 

1. The number of OP was limited to seven. 

2. Each OP could pick only 25 items per trip (from previous studies). 

3. The order-picking process was within normal working hours only.   

4. The number of items to be picked by each OP was divided equally.   

5. Every OP was familiar with the routes and picking area. 

6. OP started their task at the depot.  

7. The time of lifting and disembarking items was added to the time travel between two consecutive nodes. 

8. The OP followed the S-shape routing method (Roodbergen, 2001).   

 
The simulation process was divided into four steps: 

 

STEP 1. The order size was generated using excel random numbers with minimum and maximum order sizes of 50 and 150 

items, depending on the item type. This distribution was based on current data obtained from the customer demand to the 

manufacturing company. 

 

STEP 2.  Five similar data sets were simulated based on the demand patterns discussed in Section 3.  

 

STEP 3. The shortest path and distance for seven OPs were simulated, whereby each serving time was limited to 25 items. 

For every maximum number of items collected, the current OP continued to pick the remaining items from the previous 

nodes. 

 

STEP 4. The total distances for each simulated order were converted to equivalent travel times to suit the second objective 

of finding the minimum travel time for the OP to collect simulated items. 

 
Based on the company’s current data, a simulation was done for 50 and 150 orders per day. This model applied a Monte 

Carlo simulation technique based on the order data dated 30th October 2015. Nine items were involved in the order forms, 

and 13 orders were made for the items. The nine items were named Item A, Item B, Item C, Item D, Item E, Item F, Item G, 

Item H, and Item I. The number of occurrences for each item is displayed in Table 2.  

Based on these values, a simulation for nine items was generated to obtain the expected number of items ordered for 50 

orders and 150 orders made by a customer in a day. These data were simulated using Microsoft Excel (2007). The total 

number of items needed for a day for 50 orders in the first iteration was 11380 for nine nodes. Meanwhile, for 150 orders, 

the total number of items needed to be collected at nine different stations for the first iteration was 38415. These numbers 

were generated using random numbers based on current data in the company and assumed to be uniformly distributed. 
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Table 2. Probability of occurrence for each item.  

 

 Current (Small) Simulated Data 

 13 orders 50 orders (medium) 150 orders (large) 

 Item 

occurrence 

Probability of 

occurrence 

Item 

occurrence 

Probability 

of occurrence 

Item 

occurrence 

Probability of 

occurrence 

Item A 4 0.3077 15 0.3077 46 0.3077 

Item B 4 0.3077 15 0.3077 46 0.3077 

Item C 6 0.4615 23 0.4615 69 0.4615 

Item D 2 0.1538 8 0.1538 23 0.1538 

Item E 1 0.0769 4 0.0769 12 0.0769 

Item F 1 0.0769 4 0.0769 12 0.0769 

Item G 1 0.0769 4 0.0769 12 0.0769 

Item H 1 0.0769 4 0.0769 12 0.0769 

Item I 1 0.0769 4 0.0769 12 0.0769 

Total 21  81  244  

 

4.2 Simulation model 

 

The simulation for 50 orders is shown in Table 3. The simulation for 150 orders followed the same procedure as the 50 orders. 

For each simulation, the data was generated up to 50 orders until five consecutive iterations. The first simulated data set is 

shown in Table 3. 

 

Table 3. First iteration for 50 orders. 

 

Order Number 

(n=1, …, 50) 

Random 

Number  

Number of Items 

in an Order 

Random Number of 

Items (i=1, …, 6) 
Items Involved 

Total Number 

of Items 

1 94 1 92 H=200 200 

2 17 4 36, 16, 59, 13 B=45, A=45, C=30, A=45 165 

3 14 4 57, 86, 87, 45 C=30, F=150, F=150, C=30 360 

4 15 4 64, 96, 85, 1 C=30, I=200, F=150, A=45 425 

5 9 4 25, 91, 42, 9 B=45, H=200, C=30, A=45 320 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
46 100 1 15 A=45 45 

47 94 1 1 A=45 45 

48 18 4 63, 94, 18, 71 C=30, H=200, A=45, D=60 335 

49 20 4 13, 67, 81, 77 A=45, C=30, E=60, E=60 195 

50 50 6 66, 25, 66, 46, 53, 80 C=30, B=45, C=30, C=30, C=30, 

E=60 

225 

Total number of orders for the first iteration: 11380 items 

 
The simulation processes for large and medium orders (Figure 3) show that for the first order number, n = 1, the first 

random number was 94. This number represented the number of orders expected to occur based on the customer’s demand. 

Based on the number 94, the order demand from the customer was only one item. Next, another random number was created 

in the first order to identify the type of items ordered. The number of items can be up to six per order for each customer. 

Therefore, for the second random number, 92, item i was classified under item H with a total of 200 items. For the first order, 

the total number of items was 200. For this first iteration, the total number of items involved for 50 orders was 11380. 

The remaining iterations followed the same procedure as in Figure 3 and Table 3. After five iterations and simulated 

data set, 60365 items were to be picked for 50 orders (Table 4). The breakdown total for each item (Item A to Item I) is listed 

in the final row. For instance, for item A, the total number of items ordered after the first iterations were 11380 items. The 

average and standard deviation for each item showed that the data was spread in a normal distribution. Therefore, the 

simulation was stopped after five trials. 
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Figure 3. Process of retrieving items using simulation process. 

 

Table 4. Simulated data for 50 orders for five consecutive simulations. 

 

 Simulated Data: 50 Orders (Medium)  

 First data set Second data set Third data set Fourth data set Fifth data set Average Standard deviation 

Item A 1620 1350 1845 1530 1890 1647 224.10 

Item B 1170 1440 1710 1665 1845 1566 265.08 

Item C 1800 1530 1440 2040 1230 1608 316.50 

Item D 780 840 960 1200 1500 1056 295.77 

Item E 660 840 540 780 660 696 116.96 

Item F 1200 1200 1500 1050 1050 1200 183.71 

Item G 1350 450 1500 900 300 900 530.33 

Item H 1800 1400 1800 1600 2200 1760 296.65 

Item I 1000 1000 1400 2200 2600 1640 726.64 

Total 11380 10050 12695 12965 13275 12073 1341.65 

 

Simulation carried out five times (Table 5) showed that the numbers tripled for large order (Table 6) compared to the 

medium order. The simulated data for 150 orders also followed a normal distribution.  

 

Table 5. Total number of items ordered for large, medium, and current orders. 

 

Data Set 13 Orders (Current/Small) 50 Orders (Medium) 150 Orders (Large) 

Total items for the first data set 1550 11380 38415 

Total items for the second data set 1280 10050 36400 

Total items for the third data set 1600 12695 34050 

Total items for the fourth data set 1630 12965 40210 

Total items for the fifth data set 1585 13275 38605 

 
Table 6. Simulated data for 150 orders for five iterations. 

 

 Simulated Data: 150 Orders (Large)  

 First data set Second data set Third data set Fourth data set Fifth data set Average Standard deviation 

Item A 4500 4860 4680 4995 4680 4743 189.86 

Item B 4320 4770 5040 5265 5445 4968 441.60 

Item C 4875 4650 4560 5520 4380 4797 441.72 

Item D 3600 2640 2520 2760 3240 2952 453.78 

Item E 1920 2280 1800 1620 1860 1896 242.24 

Item F 5550 3900 3900 3300 1950 3720 1296.44 

Item G 3450 3300 3150 3750 2250 3180 565.24 

Item H 6000 4800 4000 6600 8600 6000 1772.01 

Item I 4200 5200 4400 6400 6200 5280 1005.98 

Total 38415 36400 34050 40210 38605 37536 6408.87 

 

The spread of the number of items between large, medium, and current orders (Figure 4) in the current scenario showed 

that the company could complete picking items within the designated time. The OPs had to work during normal hours with 

daily and night shifts without extra working hours to test whether the company could manage various numbers of orders 

within normal working time. The results showed that the demand fluctuated widely for large orders. The difference between 



Mohd Nordin et al. Dynamic Simulation Analysis For Various Numbers Of Orders  

 

240 

the number of items ordered large, and medium was larger than that of current and medium orders. Furthermore, the trend 

for the current order was stable almost every day, unlike large orders.   

 

 
 

Figure 4. Comparison between large, medium, and current order. 

 

Based on these data, the total travel time for the seven OPs in collecting the items for a day was calculated instead of 

the total distance traveled because, in real-time and real-life situations, time is more reliable in finding the shortest path. 

Therefore, all items and the measured distances were converted accordingly to the travel time. 

 

4.3 Part A: Finding total distance and total travel time for limited-picking capacity 

 

The model was solved by additional picker constraints in DP (Table 5) and computed using the Excel Solver. Results obtained 

for each case showed an optimal solution. The shortest path was calculated by considering the current/small, medium, and 

large numbers of items to be picked and every turn (penalty). In the previous studies by Nordin et al. (2018) and Nordin et 

al. (2019), the total distance was 5776.26 cm without adding the capacity constraint. The total distance was 6320 cm in the 

current practice used in the warehouse company. When the capacity constraint was added to the model, the total distance for 

each picker could be reduced by 12.33%. Next, the model’s reliability and stability were tested by simulating data to represent 

the current scenario of the picking system. This simulated data for the study considered the limited picking capacity of each 

OP.   

In the first result for 13 orders, the total distance for the pickers was reduced to 5712.69 cm when this capacity constraint 

was added. However, when the order was increased to 50 orders (almost 74%), the distance for the picker was increased to 

5509.79 cm. It was observed that the larger number of orders to be fulfilled led to fewer router-picking choices. On the other 

hand, for the third case of 150 orders, the distance for the picker was reduced to 5023.6 cm. It was a surprising finding 

because, by logic, larger order leads to bigger items to be picked and, thus, longer picking times. However, the choices of 

routes became more stable, and the pickers stopped at fewer nodes.   

Furthermore, time is more reliable in determining whether the model can handle such a big task with limited resources 

in real-world situations. In this case, the resources were the number of OPs. Only seven OPs were assigned in the warehouse 

to complete the current order within the normal working hours a day. With 13 orders, the total distance for the pickers was 

5712.69 cm, equivalent to almost five normal working hours to complete the picking task. It complied with the current 

scenario where the warehouse provided two shifts (day and night) to collect items to fulfill the customer’s demand.     

The simulations for data of 50 and 150 orders were conducted to check whether the pickers could meet customers’ 

demands within eight working hours a day. The tests showed that OPs could meet the demands set by customers in 4.64 hours 

(278.55 minutes) for 13 orders. The converting method from centimeters to minutes followed the concept introduced by 

Clarence Perry (1920). The neighborhood unit, ‘pedestrian shed,’ is a community model that considers the distance people 

are willing to walk before opting to drive (Morphocode, 2018). A 5-minute walk is about 400 meters based on the average 

walking speed of a normal person. Following this benchmark, the total travel times obtained were based on the equivalent 

conversion in the following procedure. The calculation is shown for the 50 orders, and the remaining orders follow the same 

procedure.   

All OPs except OP7 picked an equal number of items, and the optimal solution was obtained using Microsoft Excel. 

The process used the current manpower and sources from the manufacturing company (Table 7). Then, the total distances 

were converted to total time using Morphocode (Figure 5). 
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Table 7. Shortest route(s) obtained for each OP (50 orders) based on the third iteration.  

 

Order Picker Total No. of Item No. of Stop(s) and route Total Distance (cm) Total time (minutes) 

OP 1 1814 2: Nodes 1 and 3 555.13 5.04 

OP 2 1814 2: Nodes 1 and 4 652.14 5.91 

OP 3 1814 2: Nodes 2 and 5 224.72 2.04 

OP 4 1814 2: Nodes 1 and 6 741.20 6.72 

OP 5 1814 2: Nodes 2 and 7 446.00 4.05 

OP 6 1814 2: Nodes 1 and 8 768.80 6.97 

OP 7 1811 3: Nodes 1, 2, and 9 1697.17 15.39 

Total Items: 12695 5085.16 46.12 

 

 
 

Figure 5. Parameters for conversion from distance (cm) to time (hours) using Morphocode (2018). 

 

The total travel time, t, can be calculated as follows: 

 

Say, with 50 orders in the third simulation,  

𝑇𝐼 = 12695 𝑖𝑡𝑒𝑚𝑠  

𝑝 =
𝑇𝐼

7
; 𝑤ℎ𝑒𝑟𝑒

12695

7
≈ 1814𝑖𝑡𝑒𝑚𝑠  

Then for i = 1,  

 𝑥1 =
𝑝

𝑘
; such that 𝑥1 =

1814

25
≈ 72.56𝑡𝑟𝑖𝑝𝑠 

  For 𝑦1 = 𝑥1 × 𝑑1, thus 𝑦1 = 72.56 × 555.13 ≈ 40280.2𝑐𝑚 

   Hence, 𝑧1 = 402.802𝑚 

 

By referring to Morphocode (2018), a 5-minute walk was equivalent to 400 m. The mathematical expression can be 

written as: 

 

 𝑚1 =
402.802𝑚

400𝑚
× 5𝑚𝑖𝑛 ; therefore 𝑚1 = 5.04𝑚𝑖𝑛 𝑜𝑟 𝑡1 = 0.09 hours  

 

Therefore, the travel time needed by the first OP to collect 1814 items was five minutes. This formula was used to 

calculate the travel times of the remaining six OPs with respect to their total distances. Finally, the total travel time to complete 

12695 items was 46 minutes. The time taken was faster than the actual 13 orders made by the customer.  

  

Given, 

 k = Total item can be picked by order picker per trip 

TI = Total average item to be picked with respect to number of orders 

p = Number of item to be picked by each picker 

i = Number of order picker by turn where i = 1, 2, 3, …, 7 

id  
= Distance for every picker i 

ix
 

= Number of trips needed for every i based on p per k 

iy
 

= Total distance for each picker i in centimetres 

iz
 

= Total distance for each picker i in metres 

im
 

= Travel time for each picker i in minutes 

it  
= Travel time for each picker i in hours 
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Table 8. Shortest route(s) obtained for each order picker (150 orders) based on the third iteration.  

 

Order Picker Total No. of Item No. of Stop(s) and route Total Distance   Total time (minutes) 

OP 1 4865 2: Nodes 2 and 4 409.00 9.95 

OP 2 4865 3: Nodes 2, 3, and 5 804.48 19.57 

OP 3 4865 2: Nodes 3 and 6 329.81 8.02 

OP 4 4865 2: Nodes 2 and 7 446.00 10.85 

OP 5 4865 2: Nodes 3 and 8 502.73 12.23 

OP 6 4865 2: Nodes 2 and 9 665.17 16.18 

OP 7 4860 2: Nodes 1 and 3 555.13 13.50 

Total Items: 34050 3712.32 90.30 

 

In this scenario, the choice of routes for each OP was similar to the routes in Table 7. However, OP 2 traveled the longest 

distance since the OP needed to stop over three different nodes. For this purpose, the company could adjust or provide a 

suitable mechanism for this OP since he had to travel more than others. The potential mechanism could be alternate schedules 

for the pickers. The total travel time for 150 orders was calculated Using the same procedure based on the shortest route 

obtained for large order sizes (Table 8). In this scenario, the total travel time to complete 34050 items was 90.30 minutes 

(almost 1.5 hours). It shows that the company may need to reorganize or restructure the current warehouse if they want to 

increase customer orders within the normal working hours of eight hours a day. 

 

Table 9. Total time and distance for each large and medium order. 

 
 First Simulation Second Simulation Third Simulation Fourth Simulation Fifth Simulation 

 

Total 

distance 

(cm) 

Total time 

(minutes) 

Total 

distance 

(cm) 

Total time 

(minutes) 

Total 

distance 

(cm) 

Total time 

(minutes) 

Total 

distance 

(cm) 

Total time 

(minutes) 

Total 

distance 

(cm) 

Total time 

(minutes) 

150 

Orders 
5035.05 138.16 4041.84 105.09 3712.32 90.30 5856.73 168.24 5522.4 152.28 

50 

Orders 
4052.83 32.93 4018.4 28.85 5085.16 46.12 5719.82 52.97 5933.06 56.28 

 

The total distance and time for each large and medium order based on the five simulations are shown in Table 5. The 

values obtained showed that the manufacturing company could handle the situation if there is an increase or variety in the 

number of orders with the current capacity constrained by the limited number of OPs. The company may cut costs by 

providing single shifts to the workers. However, the OP’s capability and strength in picking orders need to be considered for 

real-life situations. 

A comparison was carried out for each category’s total number of items and the possible percentage reduction in total 

traveling time by each OP. The percentage reduction in total distance per picker per trip was calculated to be 12.1% (from 

5712.69 cm to 5023.60 cm). 

 

Table 10. Comparison between small, medium, and large order sizes.  

 

Description Current Data Simulated Data 

 13 orders (small) 50 orders (medium) 150 orders (large) 

Number of nodes (items) 9 9 9 

Number of OP 7 7 7 

Total distance per picker per trip (cm) 5712.69 5509.79 5023.60 

Total travel time per picker per trip (minutes)  278.551 237.582 673.391 

Total demand volume 7645 60365 187680 

Average demand per order 1529 12073 37536 

 

In this case, the company might be able to maintain the operating expenses as there is no need to increase the manpower, 

and the company’s aim to complete the orders can be achieved. These results can be a new benchmark for this model, and 

the system can manage big data (if needed). This new approach will reduce the waiting time at the customers’ end and increase 

customer satisfaction.   
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4.4 Part B: Finding total distance and total travel time for unlimited picking capacity 

 

The number of items to be picked was simulated based on the unlimited picking capacity to check whether the total distance 

for the pickers was reduced for all three order types. Based on the new capacity constraint (Cap = 25) where w was the 

number of items to be picked for every trip by each picker, the total distances for 13 orders, 50 orders, and 150 orders were 

calculated (Table 8). The total percentages reduced for each number of orders were calculated using Equation (2):  

 
𝑂𝑙𝑑𝑣𝑎𝑙𝑢𝑒−𝑁𝑒𝑤𝑣𝑎𝑙𝑢𝑒

𝑂𝑙𝑑⥂𝑣𝑎𝑙𝑢𝑒
× 100%  (2) 

 

The old value was the total distance before the capacity constraint was added to the model, while the new value was the 

distance + capacity constraint for each order picker. Therefore, the percentage reduced in the total distance for each OP when 

the value of Cap was added into the current mathematical model for the first actual data was calculated using Equation (3): 

 
5776.26−5712.69

5776.26
× 100% = 1.1%  (3) 

 

The other respective values for each simulated data are shown in Table 8. 

The total travel time between the limited and unlimited picking capacities was calculated, and it was found that the time 

travel using the newly modified model was lesser (Table 11). Furthermore, the new constraint added to the model was more 

reliable and reduced to more than 50% of the travel time for each OP. For example, for 150 orders, it took almost a day to 

complete the customer demand with a total travel time of 23.16 hours (1389.55 minutes).   

 

Table 11. Comparison between limited and unlimited picking capacities based on small, medium, and large order sizes. 

 

Description 

Current Data 

(Small Order) 

Simulated Data 

(Medium and Large Data) 

13 orders (cm) 
13 orders 

(minutes) 
50 orders (cm) 

50 orders 

(minutes) 

150 orders 

(cm) 

150 orders 

(minutes) 

Limited picking capacity 

(New) 
5712.69 278.55 5509.79 237.58 5023.60 673.39 

Unlimited picking capacity 

(Old)  
5776.26 505.42 5793.18 506.90 15880.59 1389.55 

Percentage reduced 1.10% 44.89% 4.89% 53.13% 68.37% 51.54% 

 

However, once the capacity constraint is added to the model, the total travel time is reduced to only 11.22 hours (673.39 

minutes). It should help the industry recalculate and reorganize its warehouse operation for potential business growth. For 

example, if they have limited manpower, the company may limit their order to fewer than 150 orders a day. On the other 

hand, if they have a higher monetary budget, they may want to increase the manpower to comply with the large number of 

orders made within a day. This model may be helpful for any industry with similar operations and constraints to this selected 

case study. 

 

5. CONCLUSION 

 

This paper presented the modified DP method for the order-picking process in the warehouse with limited picking capacity 

as the constraint for OPs. The main objective of this paper was achieved when all the items in every node were well-visited 

and fully picked. In addition, the second objective of obtaining the shortest path and minimum travel time for each OP was 

also achieved. The model could cater to a case of larger sets of data with the number of order pickers maintained. Results 

showed that total operation time could be optimized with proper routing and order-picking tasks, despite the increase in the 

number of orders picked and completed. Furthermore, each OP could optimize its picking capacity.   

By selecting the optimum path, the OPs had more time to collect more orders, and the waiting time for the customer 

was also reduced, leading to customer satisfaction. Future research can relate to the OPs’ motivation since everybody has an 

equal load while picking orders. The whole study demonstrated that the efficiency of the order-picking process could be 

improved by considering the situation. This study’s procedure can be applied to other areas with a similar situation. 
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