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Abstract

When non-trivial local structures are present in a topological space X, a common ap-

proach to characterizing the isomorphism type of the n-th homotopy group πn(X, x0) is

to consider the image of πn(X, x0) in the n-th Čech homotopy group π̌n(X, x0) under the

canonical homomorphismΨn : πn(X, x0)→ π̌n(X, x0). The subgroup kerΨn is the obstruc-

tion to this tactic as it consists of precisely those elements of πn(X, x0), which cannont be

detected by polyhedral approximations to X. In this paper we present a definition of

higher dimensional analouges of Thick Spanier groups use higher dimensional Spanier

groups to characterize kerΨn. In particular, we prove that if X is paracompact, Hausdroff,

and UVn−1, then kerΨn is equal to the n-th Spanier group of X. We also use the perspec-

tive of higher Spanier groups to generalize a theorem of Kozlowski-Segal, which gives

conditions to ensure thatΨn is an isomorphism.
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Chapter 1

Homotopy Groups and Polyhedra

1.0.1 Homotopy & Homotopy Groups

We begin with the notion of homotopy; the idea of homotopy is to define continuous
deformation between maps of topological spaces. A path in a space X will mean a
continuous map p : I→ X where I = [0, 1] is the unit interval. Let us first give the general
definition of homotopy and then we will move into the notion of homotopy of paths;
Indeed,

Definition 1.1. Suppose that f , g are continuous maps of some space X into a space Y. We
will say that f is homotopic to g if there exists a continuous mapping F : X× I→ Y so that

F(x, 0) = f (x) and F(x, 1) = g(x)

For every x ∈ X. We call the mapping F a homotopy between the maps f and g(we
may also write ft = ft(x) = F(x, t). In the case that both f , g are homotopic then we will
denote this by writing f ≃ g.

1.1 Homotopy Groups and Polyhedra

1.1.1 Homotopy & Homotopy Groups

We begin with the notion of homotopy; the idea of homotopy is to define continuous
deformation between maps of topological spaces. A path in a space X will mean a
continuous map p : I→ X where I = [0, 1] is the unit interval. Let us first give the general
definition of homotopy and then we will move into the notion of homotopy of paths;
Indeed,

Definition 1.2. Suppose that f , g are continuous maps of some space X into a space Y. We
will say that f is homotopic to g if there exists a continuous mapping F : X× I→ Y so that

F(x, 0) = f (x) and F(x, 1) = g(x)

For every x ∈ X. We call the mapping F a homotopy between the maps f and g(we
may also write ft = ft(x) = F(x, t). In the case that both f , g are homotopic then we will
denote this by writing f ≃ g.

1



Figure 1.1: A path in a space X

Remark 1.3. In the spcial case that g is the consant mapping and f ≃ g; we say that f is
nullhomotopic.

Example 1.4. Let X = Y = R2. Let f (x) = sin(x), g(x) = cos(x); then f ≃ g by the straight
line homotopy. That is,

F(t, s) = ft(s) = (1 − t)sin(s) + t cos(s)

Hence, we can “deform” the function sin(x) to the function cos(x). In fact, we can do
this for any cotinuous maps in the plane. Next, we move away from general continuous
functions to the idea of homotopic paths; we define this now.

Definition 1.5. We say that two paths p0, p1 : I → X are path homotopic if they have
the same initial point x0 and the same terminal point x1, and in addition if there exists a
continuous mapping H : I × I→ X so that:

H(s, 0) = p0(s) and H(s, 1) = p1(s)

H(0, t) = x0 and H(1, t) = x1

For all s, t ∈ I.

2



Figure 1.2: Homotopy of paths

Example 1.6. Let X = Rn for n ∈ N and x0, x1 ∈ X. If p1, p2 are paths of X so that
p1(0) = p2(0) = x0 and p1(1) = p2(1) = x1 then p1 and p2 are homotopic by the following
homotopy: pt(s) = (1 − t)p0(s) + tp1(s). In fact, for any convex subspace X of Rn all paths
with initial point x0 and terminal point x1 are homotopic. This is because if p0, p1 are paths
that lie in X then so does the homotopy pt.

Proposition 1.7. The relation of homotopy which we will denote ≃ and path homotopy (denote
≃p) (with fixed endpoints) is an equivalence relation. If p is a path under the equivalence relation
of homotopy we will denote it by [p].

Proof. It’s immediate that the relation is reflexive for p ≃ p by the constant homotopy
pt = p. Symmetry is not much harder for suppose that p0 ≃ p1 for homotopy pt, then
observe that p1 ≃ p0 through the inverse homotopy p1−t. Transitivity is slightly more
involved, but not difficult. For assume that p0 ≃ p1 through homotopy pt and if p1 ≃ q0

where q0 ≃ q1 through homotopy qt then we can deduce that p0 ≃ q1 via homotopy rt

defined so that

rt =

p(2t) 0 ≤ t ≤ 1
2

q(2t − 1) 1
2 ≤ t ≤ 1.

Note that the definition of rt will agree with t = 1
2 as we have assumed that p1 = q0.

Contiuity of R(s, t) = rt(s) follows from the pasting lemma.
♣

We now define the notion of finite path concatenation; that is given two paths p0, p1 :
I→ X so that p0(1) = p1(0), there exists a product path p0 · p1. This will first traverse p0 and
then p1; in particular this concatenation can be defined explicitly as follows:

p0 · p1(s) =

p0(2s) 0 ≤ s ≤ 1
2

p1(2s − 1) 1
2 ≤ s ≤ 1.
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Observe that p0, p1 by this definition are traversed ”twice as fast” as to complete the
total path in unit time. Note that this product operation will respect homotopy classes.
Indeed, if p0 ≃ p1 and q0 ≃ q1 through the homotopies pt, qt respective and in addition
p0(1) = q0(0) so that p0 ·q0 is defined, then pt ·qt is as well and gives a homotopy p0 ·q0 ≃ p1 ·q1.
Note that there is a dual to the notion of path that we will call the reverse path. Suppose
that X is a space where x0, x1 ∈ X and p is a path from x0 to x1; the reverse path p is defined
by p(s) = p(1 − s).

Figure 1.3: Concatenation of homotopic paths

Let us now turn our attention to the notion of based spaces and based maps:

Definition 1.8. Let X be a topological space with a distinguished point x0 ∈ X. We call
the pair (X, x0) a based space whenever we consider a space with it a corresponding point
x0 ∈ X.

A based map is a continuous map f : (X, x0) → (Y, y0), f (x0) = y0 (i.e basepoints are
preserved). Let Top

∗
denote the category whose objects are based spaces and morphisms

are based maps; this category will appear often in our future definitions. While homotopy
of paths is an important concept in its own right, we shall restrict our attention to a
particular subset of such paths which we will call loops.

Definition 1.9. Let (X, x0) be a pointed topological space. A loop based at x0, will be a
path γ : I→ X where γ(0) = γ(1) = x0.

Note here that the point x0 will be referred to as the basepoint. Loops are of particular
interest to us since we may form a special group through the operation of loop concate-
nation. First let (X, x0) be a based space and consider the set of all homotopy classes [γ] of
loops γ : I → X with basepoint x0; this set is denoted π1(X, x0) where an element is of the
form [γ]. The set π1(X, x0) is a group:

Proposition 1.10. π1(X, x0) is a group where the product operation is defined by [γ0][γ1] = [γ0 ·γ1]

The proof of this fact can be found in (Insert reference to Hatcher). For any homotopy
equivalence [γ] there is a corresponding identity denoted [ex0] so that [γ] · [ex0] = [ex0 · γ] =
[γ · ex0] = [ex0 · γ] = [γ] (so ex0 is a two sided identity). In addition, there is a notion of
inverse; that is given any homotopy equivalence of loops [γ] there exists an inverse loop
[γ−] so that [γ] · [γ−] = [γ · γ−] = [γ− · γ] = [ex0] (and so γ− is a two sided inverse).

Definition 1.11. Let X,Y be spaces. We will say that X is homotopic to Y (or alternativly
X and Y have the same homotopy type) if there exists continuous mappings f : X → Y
and g : Y→ X so that the compositions g ◦ f : X→ X and f ◦ g : Y→ Y are homotopic to
the identity maps idX : X→ X and idY : Y→ Y respectivly.
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Remark 1.12. The above definition generalizes to based maps in an obvious way; so that
given two based spaces (X, x0), (Y, y0) if there exists maps f : X → Y, g : Y → X where
f (x0) = y0, g(y0) = x0 then when the compositions g ◦ f : X → X, f ◦ g : Y → Y are
homotopic to idX : X → X and idY respectivly then the based spaces will be homotopic.
In addition there is another generalization we can make to the homotopy theory of pairs
(X,A) where A is a distinguished subspace of X. So then we may consider a map between
pairs f : (X,A)→ (Y,B) and then the notion of homotopic relative spaces is clear from the
previous definition and generalization to based spaces.

We can define the n-th homotopy group in a similar manner to how we have defined
the fundamental group. First, let us establish some additional notation that we will need
throughout the rest of this exposition:

1. Recall that I = [0, 1] is the unit interval. We then define In =
∏n

i=1[0, 1] be the n-cube.

2. We will let ∂In denote the boundary of In which is a subspace consisting of points
with at least a single coordinate equal to 0 or 1.

3. Let (X, x0) be a based space; we define πn(X, x0) to be the set of homotopy classes of
maps p : (In, ∂In)→ (X, x0), where we have that homotopies must satisfy: pt(∂In) = x0

for every t (In particular, the map p in this case is an n-loop).

4. We letΩn(X, x0) (orΩnX when context is absolute) be the set of n-loops in X based at
x0.

Remark 1.13. Note that for πn(X, x0) we may extend the definition to the case of n = 0;
Indeed, then by the above we have that I0 is just a single point and ∂In = ∅. Thus we can
conclude that π0(X, x0) is just the set of path components of X.

Generalizing the construction of the fundamental group π1(X, x0) we may define the
notion of concatention of n-loops of Ωn(X, x0) for n ≥ 2 with n ∈N.

Definition 1.14. Let (X, x0) be a based space and γ0, γ1 : In
→ X be n-loops of X. We define

the n-loop concatenation of γ0, γ1 as follows:

(γ0 · γ1)(s1, s2, . . . , sn) =

γ0(2s1, s2, . . . , sn) s1 ∈ [0, 1
2 ]

γ1(2s1 − 1, s2, . . . , sn) s1 ∈ [1
2 , 1].

Note that this operation is well defined as only the first coordinate is used in the
sum operation. Similar arguements as in the proof of π1(X, x0) being a group work for
πn(X, x0). Observe here that we mention the product as a “sum” and not just a product.
This is because for n ≥ 2 it’s always the case that πn(X, x0) is an abelian group (unlike the
fundamental group). To see why this is the case let γ0, γ1 be n-loops and observe that the
following homotopy below represents the expression: γ0 · γ1 ≃ γ1 · γ0

5



Figure 1.4: The product operation in πn(X, x0) for n ≥ 2 is abelian

Hence we see from the above that for n ≥ 2; πn(X, x0) is abelian. Note that the maps
(In, ∂In) → (X, x0) may be identified with based maps (Sn, s0) → (X, x0) using a choice
of homeomorphism In/∂In � Sn to X. Let s0 = ∂In/∂In be the basepoint of Sn which is
mapped to the basepoint x0 of X. In this way, we can view πn(X, x0) as a homotopy
class of maps (Sn, s0)→ (X, x0). With this interpretation of πn(X, x0) the sum of homotopy
classes[γ0] + [γ1] may be realized as the following composition:

Sn φ
−→ Sn

∨ Sn γ0∨γ1
−→ X

where φwill collapse the equator Sn−1 as a subspace of Sn to a point. We may take the
basepoint s0 to lie in this Sn−1. This deformation creates a “bouquet” of spheres which is
then mapped into the space X via the instructions of γ0, γ1.

Figure 1.5: The path concatenation of n-loops

We also have the concept of the reverse path; which we give the definition of below:

Definition 1.15. Let γ : In
→ X be an n-loop. By the reverse of an n-loop we mean the

n-loop γ−(t1, t2, . . . , tn) = γ(1 − t1, t2, . . . , tn) for every (t1, t2, . . . , tn) ∈ In.

Proposition 1.16. Let {Xα}α∈I be a family of path connected spaces. Consider th directe product∏
αXα; then there exists a canonical isomorphism:

πn

(∏
α

Xα
)
�
∏
α

πn(Xα).
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Proof. Observe that given a mapping f : Y →
∏
αXα is the same as the family of maps

fα : Y→ Xα. Letting Y to be Sn and Sn
× I yields the desired result.

♣

Next, let us consider the set of all n-loops in a based space (X, x0); we denote this set
by Ωn(X, x0).

Definition 1.17. Let (X, x0) be a based space and Ωn(X, x0) be the set of all n-loops of X
based at x0. We can topologize Ω(X, x0) by equipping it with the compact-open topology.
When Ωn(X, x0) is defined in this manner we call it the n-th loop space.

Observe that the above may be identified with the space of maps f : (In, ∂In)→ (X, x0).

Remark 1.18. Note that we can view the homotopy groups πn(X, x0) of a based space
(X, x0) as the n-loop space under homotopy; that is we have the relationship

(Ωn(X, x0)/≃) = πn(X, x0)

Next, we define the notion of an induced homomorphism

Definition 1.19. Let f : (X, x0) → (Y, y0) be a based map and n ≥ 1 for n ∈ N. Then there
exists an induced homomorphism f# : πn(X, x0)→ πn(Y, y0) defined by

f#([γ]) = [γ ◦ f ]

The above definition follows directly from the fact that a functor between categories
maps morphisms of the source category to the target category. In particular, π1 is a functor
(as well as πn for n ≥ 2).

Let us now consider the dependence of the choice of basepoint for πn(X, x0) for n ≥ 2.
Consider any p : I → X that joins two distinct base points x0, x1 of the based space (X, x0).
Then there exists an induced isomorphism p# : πn(X, x0) → πn(X, x1). To consturct p# we
first construct the map η of Sn onto the wedge sum of the “boquet” Sn

∨ I which maps the
basepoint of Sn into ∂I. Next, take an n-loop γ : Sn

→ X which will preserve the basepoint
x0 and in addition construct the mapping

p# : Sn η
−→ Sn

∨ I
γ∨p
−→ X

preserving the basepoint of Sn into x1. Lastly, it’s not difficult to verify that p#(γ0+γ1) =
p#(γ0) + p#(γ1) and (p−1)# = (p#)−1.Observe that the construction of p# can be seen in Fig. 6.

Figure 1.6: Change of base point
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This construction will also be valid for the case of n = 1 for Fundametnal groups.
Hence, in path connected spaces of any dimension n; we have that the choice of basepoint
is up to ismorphism equivalent.

Theorem 1.20. Let Grp, Ab denote the category of groups and abelian groups respective. Then
π1 : Top

∗
→ Grp is a functor. In addition, for n ≥ 2 we have that: πn : Top

∗
→ Ab is a functor.

A proof of the above can be found in (Hatcher Refrence).An important feature of higher
homotopy groups is the fact that the fundamental group naturally acts on πn(X, x0) in such
a way that extends the conjugation action of π1(X, x0). We shall extend this action to an
action of the fundamental groupoid on πn(X, x0).

Definition 1.21. Suppose γ ∈ Ωn(X, y0) and p : I → X is a path from x0 to x1, then there
exists a canonical map γ ∗ p ∈ Ωn(X, x0) that corresponds to the action of the fundamental
groupoid on

∐
γ∈X πn(X, a0). In particular, (γ ∗ p)|[1/3,2/3]n ≡ p and (γ ∗ p)(∂[s, 1 − s]n) = γ(3s)

for s ∈ [0, 1
3 ]. We shall refer to γ ∗ p as the path conjugate of p by γ.

Note that this is well defined up to homotopy. If [γ0] = [γ1] and [p] = [q], then
[γ0 ∗ p] = [γ1 ∗ q]. In addition: [γ0 ∗ (p · q)] = [γ0 ∗ p][γ0 ∗ q]

Let us now define the notion of n-connectedness; this will be of particular importantce
in our case for we may apply this to the Hurewicz theorem to determine certain properties
of homotopy through machiney of homology.

Definition 1.22. Let X be a space; we will say that X is n-connected if for every x ∈ X and
0 ≤ k ≤ n we have that πn(X, x0) is trivial.

Remark 1.23. Note that a based space (X, x0) is said to be 0-connected if and only if X is
path connected (i.e π0(X, x0) = 1).

Example 1.24. As an example of n-connected spaces consider the n-sphere as a based
space (Sn, s0). Then Sn is (n − 1) connected for every n ≥ 1.

Let us now turn our attention to the Hurewicz homomorphism and the Hurwicz
theorem. First, let us define the homomorphism.

Definition 1.25. Let (X, x0) be a based path connected space in n ∈N. Then there exists a
group homomorphism

h# : πn(X)→ Hn(X)

Where πn(X) is the n-th homotopy group and Hn(X) is the n-th singular homology
group. It is defined in the following manner: Let un ∈ Hn(Sn) be a canonical generator,
then we have that a homotopy class of maps f ∈ πn(X, x0) is taken to f#(un) ∈ Hn(X).

Alternatively, the Hurewicz homomorphism h∗ can be thought of as a natural trans-
formation between the functors πn(X, x0) and Hn(X). More explicity, we see that given
the spaces (X, x0), (Y, y0) ∈ Ob(Top

∗
) we have that the following square commutes with

components h#X, h#Y

(X, x0) πn(X, x0) Hn(X)

(Y, y0) π(Y, y0) Hn(Y)

f πn( f )

h#X

Hn( f )

h#Y

8



The Hurewicz homomorphism is of particular importance as in most cases compu-
tation of homotopy groups is significantly more difficult than computation of homology
groups. The Hurewicz Theorem stipulates under a certain connectedness condition h#

will be an isomorphism; which we present now.

Theorem 1.26. Let (X, x0) be a based space. If X is (n− 1)-connected for n ≥ 2 then the Hurewicz
homomorphism

h# : πn(X, x0)→ Hn(X)

is an isomorphism.

See (Refrence Hatcher 4.32 for proof).

1.1.2 Polyhedra

Let us now turn our attention to polyhedra; we start off with the idea of a simplex which
leads to the notion of a geometric simplicial complex.

Definition 1.27. Suppose {v0, v2, . . . , vk} is an affinely independent set of k+ 1 points inRn.
We define the simplex spanned by them denoted by [v0, . . . , vk] to be the set

[v0, . . . , vk] =

 k∑
j=0

α jv j : α j ≥ 0,
k∑

j=0

α j = 0


with appropriate subspace topology.

Figure 1.7: A 0-Simplex, 1-Simplex, and 2-Simplex

We will call each v j a vertex of the simplex. In addition, we can define the dimension
of a simplex to be the integer k as given above. We also will call a simplex a k-simplex if it’s
of dimension k. To make this more clear, a 0-simplex will simply be a point, a 1-simplex
is a segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so on for higher
dimensions.

Definition 1.28. A simplicial complex is a collection K of simplices in some Euclidean
subspace RJ that meets the following stipulations:

1. Given σ ∈ K, we have that every face of σ is in K.

2. Given two simplicies of K their intersection is either empty or a face of each other.

9



Figure 1.8: A simplicial complex

Remark 1.29. The dimension of a simplicial complex will be the maximum dimension of
the simplicies in K. If no such maximum exists then we define the dimension to be infinite
which we denote by∞.

Remark 1.30. Suppose L ⊆ K, we will say that L is a subcomplex of K if whenever σ ∈ L
we have that every face of σ is itself in L. A subcomplex is itself a simplicial complex.

Remark 1.31. For K a simplicial complex of Rn, the union of all simplicies in K with
inherited subspace topology from Rn is a topological space which is denoted by |K| and
which we shall call the polyhderon of K

Definition 1.32. Let A be a nonempty collection of finite sets. We will say that A is an
abstract simplicial complex precisely when if S ∈ A and if X ⊆ S then X ∈ A.

More succiently, an abstract simplicial complex is a collection of finite sets which is
closed under taking subsets. IfA is an abstract simplicial complex, whenever X ∈ A we
will say that X is a simplex of A. There exists a notion of dimension of both a simplicial
complex and its simplicies.

Definition 1.33. The dimension of a simplex dim(X) will be defined to be ones less than
it’s cardinality; dim (X) = |X| − 1 where |X| denotes the cardinality of a set. In a similar
spirit, the dimension of an abstract complexA is the maximal cardinality of it’s elements:

dim(A) = max {dim(X) | X ∈ A}

Note that if no such maximum exists then the dimension will be defined to be infinite.

In an abstract simplicial complex we define the vertex set as the union of all one point
sets of a complex K . We may consider a subcollection S of a complex A; if S is itself a
complex then we shall callS a subcomplex. LetA,B be two abstract simplicial complexes
and let VA,VB denote their vertex sets respectivly. We will say thatA,B are isomorphic
if there exists a bijection map ϕ : VA → VB so that {p0, p1, . . . , pn} ∈ A if and only if
{ϕ(p0), ϕ(p1), . . . , ϕ(pn)} ∈ B.

10



Given the idea of an abstract simplicial complex; we should want to transmute its
abstract structure to something geometrically tractable. Indeed, our first steps towards
this construction is given by the following definition.

Definition 1.34. Suppose A is a simplicial complex and VA is its corresponding vertex
set. Take G to be the set of all subsets {p0, p1, . . . , pn} of VA so that span(p0, p1, . . . , pn) = X
where X is a simplex ofA. We call G the vertex scheme.

G is itself an example of an abstract simplicial complex. We shall now see an important
theorem relating to this idea.

Theorem 1.35. Every abstract simplicial complex A is isomorphic to the vertex scheme of some
simplicial complex K. In addition, two simplicial complexes will be said to be linearly isomorphic
if and only if their vertex schemes are isomorphic as abstract simplicial complexes.

A proof can be found in (insert citation to Munk.). Equipped with the above theorem
we can now approach the crux of the matter.

Definition 1.36. If the abstract simplicial complex A is isomorphic to the vertex scheme
of some simplicial complex K, we call K a geometric realization ofA (unique up to linear
isomorphism).

Definition 1.37. We define a polyhedron to be a topological space that is homeomorphic
to the geometric realization of some abstract simplicial complex.

Example 1.38. The simplest example of a polyhedron is the standard Euclidean n-simplex.
This is given by the simplex ∆n

∈ Rn+1

∆n =
{
(t0, t1, . . . , tn) ∈ Rn+1

| t j ≥ 0 for all j;
n∑

j=0

t j = 1
}
.

Let us now give an example of an abstract simplicial complex that we will make
frequent use of throughout this paper.

Example 1.39. Suppose that (X, x0) is a based path connected space. Let O(X) denote the
set of all open covers of X which are direct by refinement. In addition, let O(X, x0) be the
set of all open covers with a distinguished element that contains the basepoint. We define
the nerve of an open cover (U,U0) ∈ O(X, x0) denoted by N(U), as the abstract simplicial
complex whose vertex set is written N(U)0 = U and verticies A0, . . . ,An ∈ U span some
n simplex given that

⋂n
i=0 Ai , ∅.

Definition 1.40. Let v be a vertex of A a simpicial abstract or geometric complex. We
define the star of v inA to be the union of the interiors of those simplices ofA that have
v as their vertex; that is

St(v,A) =
⋃

i

{int(σ) | v ⊆ σ}

where σi is a simplex ofA and i ranges over some index set I.

11



Figure 1.9: The star of a simplicial complexA at a vertex v

Remark 1.41. The open star of a vertex is contractible. One may use the straight line
homotopy to see this.

Given the star of a simplicial complex, we may consider it’s closure. We give this
definition as follows:

Definition 1.42. Let A be an abstract or geometric simplicial complex and v a vertex of
A. We may define the closed star denoted by St(v,A) as the union of all simplices σi ofA
that have v as a vertex, and in adiditon is the polytope of some subcomplex ofA.

Definition 1.43. Let σ be a simplex of a simplicial complex A. We define the star of a
simplex to be the intersection of all stars of its vertices; that is

St(σ) =
⋂
v∈σ

St(v,A)

Definition 1.44. Let X be a space and |K| the geometric realization of some abstract
complex. Suppose f , g : X→ |K| are contnuous maps such that for every x ∈ X there exists
a simplex σ ∈ K so that f (x), g(x) ∈ |σ| In this case, f and g are said to be contiguous.

In additon to defining the star of a subcomplex we can define the notion of a star of a
simplex itself, let us give this definition

Theorem 1.45. Suppose that f , g are contiguous maps; then f and g are homotopic.

A proof of this may be seen in [18].

12



Chapter 2

Shape Theory

2.0.1 Canonical Maps

We begin our discussion with the notion of maps between nervers of covers and “canonical
maps“.

Let O(X, x0) denote the set of open covers of a based space (X, x0) with a distinguished
element that contains the basepoint x0. Since N(U) is an abstract simplicial complex we
can consider its geometric realization |N(U)| and take the distinguished element U0 as its
basepoint.

Definition 2.1. Suppose that (V,V0) is an open cover that refines (U,U0). We can con-
struct a simplicial mapping pUV : N(V) → N(U), which we call the projection (Where
N(V),N(U) are nerves of their respective covers).

In particular, note that pVU will send the vertex V ∈ N(V) to some vertex U ∈ V so
that V ⊆ U. Also, we must have that V0 is sent to U0 by the projection. We can consider
the induced mapping |pUV| : |N(V)| → |N(U)|which is unique up to based homotopy and
hence the homomorphism

pUV# : πn(|N(V)|,V0)→ πn(|N(U),U0)|

induced on homotopy groups will be independent of the selection of simplicial map.
Next, recall the notion of a normal open cover; an open cover is normal whenever it admits
a partition of unity which is subordinated toU. We will let Λ denote a subset of O(X, x0)
which shall consit of the pairs (U,U0) withU a normal open cover of X.

Definition 2.2. Let (U,U0) be an open cover of a space X. We will say that a map
pU : X → |N(U)| is a based canonical map if p−1

U
(St(U,N(U))) ⊆ U for every U ∈ U and

pU(x0) = U0.

Theorem 2.3. Let X be a space and V an open cover that refines U. Further, let pU,V be the
canonical map between these covers. Then the induced map pU,V# is surjective on all fundamental
groups.

Proof. First observe, that if N(V) and N(U) are homeomorphic, then it’s immediate that
pU,V# is a surjection. In addition, if π1(N(U),U0) � 0 then obviously pU,V# is a surjection
as well. So assume that the nerves N(U) and N(U) are not homeomorphic. We aim to
show, that pU,V# is still a surjection; Indeed, let [η] ∈ π1(N(U),U0)

♣

13



Definition 2.4. LetU be an open cover of some based space X with basepoint x0. Consider
the nerve N(U) of this cover and its geometric realization |N(U)|. Further, let pUV# be the
induced projection between nerves andΛ a subset of open covers of X where those covers
U ∈ Λ are normal with partition of unity subordinated to U. Then we define the n-th
homotopy shape group as follows:

π̌n(X, x0) = lim
←−−

(πn(|N(U)|,U0), pUV#,Λ)

where the bonding maps πn(|N(V)|,V0)→ πn(|N(U)|,U0) are induced by refinement.

Canonical maps are unique up to based homotopy. In fact, whenever (V,V0) is a
refinement of (U,U0) we have that pUV◦pU and pU will be homotopic as based maps. This
implies that the homomorphisms pU# : πn(X, x0)→ πn(|N(U)|,U0) will satisfy pUV# ◦pU# =

pU# . This induces the following canonical homomorphisms.

Definition 2.5. Let X be a based space with basepoint x0,U an open cover of X and consider
the family of homomorphisms pU# : πn(X, x0) → πn(|N(U)|,U0) where pUV# ◦ pV# = pU# .
These homomorphisms induced the n-th canonical shape homomorphism given by

Ψn
X : πn(X, x0)→ π̌(X, x0)

whereΨn
X([γ]) = ([pU ◦ γ]).

Of particular interest is to examine when kerΨn
X = 1. In this case, the n-th shape

group homomorphism will retain all data from the n-th homotopy group. When Ψn
X is

injective, we will say that the space X is πn-shape injective. From this, one can ascertain a
description of the elements of πn(X, x0) as sequences in the inverse limit of n-th homotopy
group of polyhedra.

14



Chapter 3

n-Spanier groups and Thick n-Spanier
groups

3.0.1 n-Spanier groups

Let us begin by constructing the notion of the n-Spanier group. We will let X̃ denote
the set of homotopy classes (rel. endpoints) of paths starting at x0 (i.e the star of the
fundamental groupoid of X at x0. Multiplication of homotopy classes of paths is taken in
the fundamental groupoid of X so that [p][q] = [p · q] with p(1) = q(0).

Definition 3.1. Let (X, x0) be a based space andU an arbitrary open cover of X. We define
the n-Spanier group with respect to U to be the subgroup of the n-th homotopy group
πn(X, x0) which is generated by elements of the form [p ∗ γ] where p : I → X is a path and
γ(Sn) ⊆ U for some U ∈ U. In this sense we can write this subgroup as follows:

πSp
n (U, x0) = ⟨[p ∗ γ] | γ(Sn) ⊆ U,U ∈ U⟩.

Figure 3.1: A generator of the 2-Spanier group

Remark 3.2. When n = 1, the first Spanier group π1(U, x0) is generated by the conjugate
path concatenation in the following manner:

πSp
1 (X, x0) = ⟨[p · γ · p−] | ∃U ∈ U s.t Im(γ) ⊆ U⟩

Note that here we use path concatenation instead of path conjugation since when n = 1
these operations agree.
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Remark 3.3. It should be observed that in our definition of n-Spanier groups we are
actually using what is called the “unbased n-Spanier group” while there also exists a
notion of “based n-Spanier groups”. We omit these designations as the spaces we will
work with will at least be locally path connected and these definitions agree for such a
space. [2]

Remark 3.4. The first Spanier group is a normal subgroup of the fundamental group. For
n ≥ 2 it’s immediate that πSp

n (U, x0) is normal in the n-th homotopy group (as πn(X, x0) is
abelian for n ≥ 2).

It’s important to note that the generators of πSp
n (X, x0) are those homotopy classes of

path conjugates [p ∗ γ] while a generic element has the form
∏n

j=1[p j ∗ γ j] ∈ π
Sp
n (U, x0).

Definition 3.5. The n-Spanier group with respect to X is given by

πSp
n (X, x0) =

⋂
U

πSp
n (U, x0)

whereU ranges over all open covers of X.

Figure 3.2: A generic element of the 2-Spanier group.

Remark 3.6. Let (X, x0) be a based space andU an arbitrary open cover of X. An alternative
consturction of the n-Spanier group is to conceptualize it as the inverse limit of a system
of refined coverings of X. More explicity, if V is an open cover of X such that U refines
V, then we have the inclusion relation: πSp

n (U, x0) ⊆ πSp
n (V, x0). This relation gives us the

existense of the inverse limit of πSp
n (U, x0); that is

πSp
n (X, x0) = lim

←−−
(πSp

n (U, x0))

where the bonding maps are the inclusion homomorphisms πSp
n (U, x0)→ πSp

n (V, x0).
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Remark 3.7. Spanier groups are preserved by basepoint-change in the following sense:
If q : I → X where q is a path from x0 to x1, then the base-point change isomorphism
ρq : πn(X, x1)→ πn(X, x0) given by ρq([γ]) = [q ∗ γ] will statisfy ρq(π

Sp
n (U, x1)) = πSp

n (U, x0)
for any open coverU. In fact, it follows that:

ρq(π
Sp
n (X, x1)) = πSp

n (X, x0).

Definition 3.8. Suppose that X is a space. We will say that X is n-semilocally simply
connected if and only if for each x ∈ X there exists an open subset U of X that contains x
so that every n-loop in U is null-homotopic in X.

3.0.2 Defining Thick n-Spanier groups

Definition 3.9. The first Thick Spanier group is defined in [2] and is utilized to formula
the short exact sequence. An open probelm is to extend this sequence to dimensions of
n ≥ 2; we aim to define the higher Thick n-Spanier groups as a step forwards towards
a resolution. Prior to doing this; however, we need to utilize caution in how we define
them. Let us first recall the definition of the first thick Spanier for ease of refrence

Definition 3.10. LetU be an open cover of any space X. The first Thick Spanier group of
X with respect toU is given by

Π
Sp
1 (U, x0) = {p · γ · p−1

| p ∈ P(X, x0), γ ∈ Ω(U1 ∪U2, p(1)) for U1,U2 ∈ U}.

It should also be noted that the first Thick=Spanier group with respect to X is given by⋂
UΠ

Sp
1 (U, x0). Let us now turn our attention to bringing to fruition a suitable definition

for the higher thick Spanier groups. In doing so, let us first recall our motivation for such
a construction. Our concern for higher thick Spanier groups comes from the fact that the
first Thick Spanier group fits into the following short exact sequence

0 Π
Sp
1 (U, x0) π1(X, x0) π1(|N(U)|,U0) 0

pU#

In other words, ΠSp
1 (U, x0) is defined precisely to provide the simplest description of

the generating set for ker(pU#. Of primary interest in this paper, is to eastblish such a
sequence in the case of the higher homotpy groups πn and thus any such definition of
the Thick n-Spanier shall fit into the analogous sequence under certain stipulations of
connectedness properties of the space X and the coverU. Let us first give an example of
why this sequence fails to be exact if the regular n-Spanier groups are used

Example 3.11. Fix n ≥ 2 and let Bn(ϵ) = {(x1, x2, . . . , xn, 0) ∈ Rn+1
|
∑

i x2
i < ϵ} and write

Bn for Bn(1). Further, let p : Sn
→ Bn(1) be the vertical projection p(x1, x2, . . . , xn, xn+1) =

(x1, x2, . . . , xn, 0). We identify Sn−1 with ∂Bn(1). Now, fix k ≥ 5 and let F be a finite open
cover of Sn−1 by contractible open sets such that

1. If F ∈ F then diam(F) < 1
k

2. If a single element of F is removed, then it no longer covers Bn.

3. Any non-empty intersection of elements of F is homeomorphic to Rn−1.

Further, for each F ∈ F , let C(F) denote the convex hull of F∪Bn
(

1
2k

)
and set B = {C(F) |

F ∈ F }. Now, observe that {C(F) | F ∈ U} is an open cover of Bn andU = {p−1(C(F)) | F ∈ F }
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is an open cover of Sn. Note that every element ofU is contractible and contains a “small”
neighborhood of both the north pole (0, 0, 0, . . . , 0, 1) and the south pole (0, 0, 0, . . . , 0,−1).
Hence, for distinct U1 = p−1(C(F1)),U2 = p−1(C(F2)) inU, U1 ∩ U2 is either contractible (if
F1 meets F2) or homotopy equivalent to S1 (when F1 ∩ F2 = ∅).

Consider that πSp
n (U, x0) = 0 since every element ofU is contractible. Note; however,

that
⋂
U , ∅ and so |N(U)| consists of a single |U|-simplex. In particular, πn(|N(U)|,U0) =

0. Of course, we have that πn(Sn) � Z and the sequence

0 πSp
n (U, x0) πn(X, x0) πn(|N(U)|,U0) 0

pU#

fails to be exact.

Recall that Π1(U, x0) is defined so that its generators are path-conjugates of loops
having image in a union of two intersecting elements of U, we show that for Πn(U, x0)
we don’t wish to place an upper bound on the number of elements the path-conjugated
loop has image in. Consider m ≥ 2 and define G(m)

n (U, x0) to be the subgroup of πn(X, x0)
which consists of all [p ∗γ] ∈ π(X, x0) where p ∈ P(X, x0), γ ∈ Ωn(X, p(1)) and such that there
exists U1,U2, . . . ,Um ∈ U such that

⋂m
i=1 Ui , ∅: aditionally, Im(γ) ⊆

⋃m
i=1 Ui. Note that

by taking k large enough, we may ensure that the elements of F are small enough such
that |F | = |U| > m. Now, suppose that [p ∗ γ] ∈ G(m)

n (U, x0) where Im(γ) lies in
⋃m

i=1 Ui

for U1,U2, . . . ,Um ∈ U (recalling that
⋂

i Ui contains both the north and south pole). Since
|U| > m the sets U1,U2, . . . ,Um do not cover Sn. So we see that γ is null-homotopic in
Sn such that G(m)

n (U, x0) = 0. Observe that it’s stil the case that πn(|N(U)|,U0) = 0 and
πn(Sn, x0) � Z. So we observe the following sequence will not be exact:

0 G(m)
n (U, x0) πn(Sn, x0) πn(|N(U)|,U0) 0

pU#

Let us give one more example before presenting the definition of higher thick Spanier
groups

Example 3.12. Let X consist of an arc A with a 2-sphere attached at each endpoint of A.
The basepoint x0 lies in the interior of A. Now, since X ≡ S2

∨ S2, we have that π3(X) � Z3

which is generated by the Hopf fibrations g1, g2 : S3
→ S2 in each wedge-summand and

the Whitehead product [ f1, f2]. LetU = {U1,U2} be an open cover of X where U1 contains
the first sphere of X and a small neighborhood of x0 in the second sphere. In a similar
manner, U2 will contain the second sphere and a small neighborhood of x0 in the first
sphere; we choose these so that U1 ∩ U2 is contractible. Now, |N(U)| is an arc and thus
π3(|N(U),U0) = 0. However, it’s clear that πn(U, x0) = ⟨[ f1], [ f2]⟩ � Z2. Hence, due to
connectivity issues, the following sequence fails to be exact:

0 πSp
n (U, x0) πn(Sn, x0) πn(|N(U)|,U0) 0

pU#

From the above examples we can formulate a definition for the higher thick Spanier
groups; we give them as follows.

Definition 3.13. Let (X, x0) be a based space and letU be an open cover of X. Then the The
n-th Thick Spanier Group of X with respect toU is the subgroup ΠSp

n (U, x0) of πn(X, x0)
which consists of all elements [p ∗γ] where p ∈ P(X, x0), γ ∈ Ωn(X, α(1)) and such that there
exists m ∈N and U1,U2, . . . ,Um ∈ U where

⋂m
i=1 Ui , ∅ and im(γ) ⊆

⋃m
i=1 Ui. We may also

write:

18



Π
Sp
n (U, x0) = {[p ∗ γ] ∈ πn(X, x0) | p ∈ P(X, x0), γ ∈ Ωn(X, p(1));

m⋂
i=1

Ui , ∅ , Im(γ) ⊆
m⋃

i=1

Ui}.

Definition 3.14. Let (X, x0) be a based space. We define the thick n-Spanier group with
respect to X as

Π
Sp
n (X, x0) =

⋂
U

Π
Sp
n (U, x0)

whereU ranges over all open covers of X.

We have now defined the higher thick Spanier groups; let us return to an example to
observe that without certain assumptions on a given space we still may not have exactness.

Example 3.15. Let X consist of an arc A with a 2-sphere X1,X2 attached at each endpoint of
A (let the basepoint x0 lie in the interior of A). Observe that X ≃ S2

∨S2 and thatπ3(X) � Z3

which is generated by Hopf fibrations gi : S3
→ Xi and the Whitehead product [ f1, f2] for

the inclusions fi : S2
→ Xi (note that we take path conjugates of these so that they are all

based at a0). Construct an open coverU of X under the following stipulations

• At least three elements ofU cover the arc A

• The restriction ofU to each Xi gives an open cover of the 2-sphere of the same type
constructed in (insert example).

With this cover, we have that ΠSp
3 (U, x0) � Z2 generated by [g1], [g2]. Note; however,

that |N(U)| consists of an arc with two simplicies attached at each end. From this, we see
that π3(|N(U),U0) = 0. So then

0 Π
Sp
n (U, x0) πn(Sn, x0) πn(|N(U)|,U0) 0

pU#

is not exact. The reasoning here is that ΠSp
3 (U, x0) need not include Whitehead products

of generators of ΠSp
2 (U, x0).

The last example above tells us that we need to impose connectedness assumptions on
both the space X and the open coverU if we are to find the above sequences to be exact.

3.0.3 Properties of Thick n-Spanier groups

Let us now examine how the n-Spanier group and the thick n-Spanier group relate; first
it’s important to note that it need not be true that πSp

n (U, x0) = ΠSp
n (U, x0).

Example 3.16. Suppose n ∈ N with n ≥ 1 and let X = Sn. Now, defineU = {U1,U2} to be
an open cover of X where U1∩U2 is the disjoint union of n-connected hemispheres; this is
equivalent to the twice punctured n-sphere (which is homotopic to Sn−1). We’ve assumed
that U1 and U2 are n-connected; hence, it’s clear that their homotopy groups are trivial.
On the other hand, observe that ΠSp

n (U, x0) = Z since it contains a generator of πn(X).

Theorem 3.17. Supposed (X, x0) is a based path connected space. Then X is n-semilocally simply
connected if and only if X has an open coverU so that πSp

n (U, x0) is trivial.
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Proof. Suppose X is n-semi-locally simply connected. Then by definition every point of
X has an assocaited neighborhood U where every n-loop η can be contracted to a single
point. Let U be an open cover of X and consider πSp

n (U, x0) with any generator [p ∗ γ].
A generator of the Spanier group is just an n-loop contained in some neighborhood U
of U. Since all elements of the Spanier group are formed by a product of generators
and X is n-semi-locally simply connected we have that πSp

n (U, x0) is trivial. Conversely,
suppose that X exhibits an open coverU such that πSp

n (U, x0) is trivial. Then any element
is null-homotopic and it follows at once that X is n-semi-locally simply connected. ♣

This means, that whenever X is n-semilocally simply connected it follows that it’s n-th
Spanier group must be trivial. Note; however, the converse is not always true. Let us give
an example

Example 3.18. Let,

Sk =

(x1, . . . , xn+1) ∈ Rn+1
∣∣∣∣ (x1 −

1
k

)2
+

n+1∑
j=2

x2
j =

1
k2


We define the n-dimensional earring by En =

⋃
k∈N Sk.

Figure 3.3: The 2-dimensional Earring Space .

It has been shown by Eda-Kawamura in [8] thatEn is (n−1)-connected and additionally,
the canonical homomorphism

πn(En)→
∞∏

k=1

πn(Sk) � Zω

is an isomorphism. Further, using this fact, the authors of [?] show that πSp
n (En) � 0.

Example 3.19. Let us given another non-trival example. Let (n,m) be a pair of integers; we
will call this pair dyadic unital when the dyadic rational 2m−1

2n is containted in (0, 1). For
each dyadic unital pair (n,m) consider the upper semi-circle which is given byD(n,m) =
{(x, y) ∈ R2

| (x − 2m−1
2n )2 + y2 = ( 1

2n )2; x ≥ 0}. In addition, define B = [0, 1] × {0}; this will be
the “base” of the dyadic arc space. In total, we define the Dyadic Arc space as follows:

D = B ∪
⋃
(n,m)

D(n,m)
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Figure 3.4: The Dyadic Arc SpaceD.

where the base point is x0 = (0, 0). It is of particular interest that the base B of the
Dyadic Arc is nowhere semi-locally simply connected. It has been shown that the π1(D)
embeds as a subgroup in the inverse limit lim

←−−
F2n−1 (which is also equivalent to its first

shape group π̌1(D).

Example 3.20. It should be noted in general by (insert ref) that all one-dimensional spaces
have trivial Spanier groups. Perhaps the most extereme examples this would apply to are
those spaces which are nowhere semi-locally simply connected (i.e they are everywhere
“wild”). This is because the Spanier group is a subgroup of the shape kernel for every
space and the shape kernel is trivial for one-dimensional spaces; It thus follows that the
Spanier group is trivial.

Proposition 3.21. For every based space (X, x0) we have that

πSp
n (X, x0) ⊆ ΠSp

n (X, x0)

In addition, if every open cover U admits a refinement V so that ΠSp
n (V, x0) ⊆ πSp

n (V, x0),
then we have the equality: ΠSp

n (X, x0) = πSp
n (X, x0).

This follows from the observations we have made above. Let us now turn our attention
to two properties that will determine when the n-Spanier and thick n-Spanier agree

Corollary 3.22. If U is an open cover of X where all finte intersections of elements of U are
(n− 1)-connected, then the Thick n-th Spanier group ofU is equal to the n-th Spanier group with
respect toU.

It has been shown in [1] that whenever a space is T1 and paracompact it must be that
Π

Sp
1 (X, x0) = πSp

1 (X, x0) (our goal will be to generalize this for n ≥ 2). Let us recall that
if U is some open cover of a space X and x ∈ X, then the star of x with respect to U is
defined to be the union: St(x,U) =

⋃
{U ∈ U | x ∈ U}. Let us now introduce the notion of

barycenteric refinement

Definition 3.23. A barycentric refinement of a cover U is an open refinement V of U
such that, for each x ∈ X, there is a U ∈ U where St(x,V) ⊆ U.

In particular, it’s known that any T1 space is paracompact if and only if every open
cover has an open barycentric refinement. We know extend this result to the case of n ≥ 2.
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Remark 3.24. Spanier groups define a natural group topology on πn(X, x0) generated by
the basis of normal subgroups πSp

n (U, x0) at the identity element [cx]. Hence, a general
open set in πn(X, x0) is a coset [γ]πSp

n (U, x0) forU ∈ Λ. To see that this is indeed the case let
[α], [β] ∈ πn(X, x0) and consider W = [α][β−]πSp

n (U, x0); it’s clear that U = [α]πSp
n (U, x0),V =

[β−]πSp
n (U, x0) are both neighborhoods of [α], [β−] respectivly and it’s clear that U · V−1 =

[α]πSp
n (U, x0)[β−]πSp

n (U, x0) ⊆ W. This estbalishes that Spanier groups indeed define a
topology on homotopy groups.

In order to see this topologically enriched version ofπn(X, x0) is functorial, it will suffice
to show that a map induces a continuous homomorphism on homotopy groups. Observe
that since the Spanier topology is a group topology, it suffices to check continuity at the
identity element. That is given a based map f (X, x0) → (Y, y0) and an open cover V of
Y, we define U = { f −1(V) | V ∈ V}. It’s easy to see that the induced homomorphism
f# : πn(X, x0) → πn(Y, y0) will statisy f#(πn(U, x0)) ⊆ πn(V, x0). So then we see that f# is
continuous with respect to the topology.
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Chapter 4

Comparison with the Shape Kernel

We now want to establish a certain collection of results regarding the relationship between
the shape kernelΨn

X and the nth-Thick Spanier group. Up to this point we’ve observed that
πSp

n (X, x0) ⊆ kerΨn
X for any space X and that if X is T1 and paracompact then ΠSp

n (X, x0) =
πSp

n (X, x0). We now will establish the following result that yields an equality between the
shape kernel and the nth Spanier group.

It has been established in [6,Proposition 4.8] that πSp
1 (X, x0) ⊆ kerΨX. In addition, it

has been shown in [1] that ΠSp
1 (X, x0) ⊆ kerΨX. We will now show that both of these

results generalize to the case of n > 1.

Theorem 4.1. πSp
n (X, x0) ⊆ kerΨn

X for any space X.

Proof. Let [α] ∈ πSp
n (X, x0) and letU be an open cover of X. Define VU = p−1[St(U,N(U))],

andV = {VU | U ∈ U} (which is also an open cover of X). Now, since [α] ∈ πSp
n (V, x0) we

can write

[α] =
m∏

i=1

[βi ∗ γi]

where γi : Sn
→ VUi for Ui ∈ U. Now observe that VUi = p−1

U
[St(U j,N(U))]. Since,

p(VUi) ⊆ St(U,N(U)) although note that St(U,N(U)) is contractible and consequently pU◦γi

is null-homotopic in N(U) for all i ∈ I. This then implies that the induced projection can
be written

PU#([α]) =
m∏

i=1

[pU ◦ βi ∗ pU ◦ γi] = 0

this then implies that [α] ∈ ker(pU)#.
♣

Theorem 4.2. If X is T1 and paracompact, then ΠSp
n (X, x0) = πSp

n (X, x0).

Proof. Let X be T1 and paracompact and U an arbitrary open cover of X. Further, let V
be a barycentric refinement ofU. Assume g ∈ ΠSp

n (V, x0) is a generator so that g = [p ∗ γ]
where p : I → X is a path and γ : Sn

→
⋃m

j=1 V j for V j ∈ V; It will suffice to show that g is
a generator of πSp

n (U, x0). Indeed, observe that there are 2m
− 1 possible open sets ofV for

which the terminal point p(1) can lie. So let k be such that 1 ≤ k ≤ m where p(1) ∈
⋂k

i=1 Vi;
then p(1) ∈ Vi for every i = 1, . . . , k. It follows that

k⋃
i=1

Vi ⊆ St(p(1),V) ⊆ U
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for some U ∈ U. Recall, [p∗γ] is a loop in U and conseuqently a generator ofπSp
n (U, x0).

The inclusion Πn(V, x0) ⊆ πSp
n (U, x0) follows.

♣

Corollary 4.3. If X is metrizable, then ΠSp
n (X, x0) = πSp

n (X, x0).

We next aim to establish that in the case where the space X is T1 and paracompact we
have that kerΨn

X = Π
Sp
n (X, x0). We need to first make a few definitions.

Definition 4.4. LetU,V ∈ Λ. We say thatV is a barycentric-star refinement ofU if for
every x ∈ X, we have that St(x,V) ⊆ U for U ∈ U. We use the notationU ≤∗ V to denote
this.

Lemma 4.5. If X is T1 and paracompact, then for every open cover U there is an open cover V
such thatU ≤∗ V.

Proof. Suppose X is paracompact, U is an open cover of X and let V = {Vα | α ∈ A} an
open locally finite refinement ofU. By (lemma I need to put in here) since X is normal, let

W = {Wα | α ∈ A}

be a shrinking of V. Now, W must be a locally finite also. Pick x ∈ X and let
Ax =

⋂
{Vα | x ∈ W̄α} ♣

Definition 4.6. We will call a map σ : |∂∆n| → X U -admissable if there exists a k ∈ N
where the extension map ρ : sdk(|∂∆n|)n−1 → X such that for any n-simplex τ of sdk

|∂∆n|

we have that ρ(τ) ⊂ U for some U ∈ U.

To show the opposite inclusion kerΨn ⊆ π
Sp
n (X, x0) takes considerably more effort and

we need introduce some additional concepts and notation before our presentation of its
proof.

Lemma 4.7. Suppose X is paracompact, Hausdorff, and UVn. For everyU ∈ O(X), there exists
V ∈ O(X) such thatU ≤n

∗
V.

Lemma 4.8. If m,n ∈ N, U is an open cover of X, and f : ((sdm
∆n+1)n, d0) → (X, x0) is a map

such that for every (n + 1)-simplex σ of sdm
∆n+1, we have that f (∂σ) ⊆ U for some U ∈ U, then

f#(πn((sdm
∆n+1)n, d0)) ⊆ πSp

n (U, x0).

Proof. The case of n = 1 is proved in [2]. Indeed, suppose n ≥ 2 and let K = sdm
∆n+1. The

set W = { f −1(U) | U ∈ U} is an open cover of Kn such that f#(πSp
n (W, d0)) ⊆ πSp

n (U, x0)
and for every (n + 1)-simplex σ in K, we have that ∂σ ⊆ f −1(U) for some U ∈ U. Then
it will suffice to prove that πSp

n (W, d0) = πn(Kn, d0). Let S be the set of n-simplices of K.
Observe that since n ≥ 2, Kn is simple connected. By standard simplical homology we
have that the reduced singular homology groups of Kn must be trivial in dimensions < n
and Hn(Kn) is finitely generated free abelian. A set of free generators for Hn(Kn) can be
selected by fixing the homology class of a simplicial map gσ : ∂∆n+1 → Kn that sends ∂∆n+1

homeomorphically onto the boundary of an (n + 1)-simplex of σ ∈ S. Hence, Kn is (n − 1)-
connected and the Hurewicz homomorphism h : πk(Kn, d0) → Hk(Kn) is an isomorphism
for all 1 ≤ k ≤ n. In particular, let pσ : I → Kn be any path from d0 to gσ(d0). Then
πn(Kn, d0) is freely generated by the path-conjudates [pσ ∗ gσ], σ ∈ S. By assumption, for
every σ ∈ S, [pσ ∗ gσ] is a generator of πSp

n (W, d0). Since πSp
n (W, d0) contains all generators

of πn(Kn, d0), the equality πSp
n (W, d0) = πn(Kn, d0) must follow.

♣
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To characterize the triviality of relative Spanier groups, we establish the following:

Definition 4.9. Suppose n ≥ 0. We say a space X is

1. semilocally πn-trivial at x ∈ X if there exists an open neighborhood U of X such that
every map Sn

→ U is null-homotpic in X.

2. semilocally n-connected at x ∈ X if there exists an open neighborhood U of X such
that every map Sk

→ X, 0 ≤ k ≤ n is null-homotpic in X.

It should be noted that we will say X is semilocally πn-trivial (resp. semilocally n-
connected) if it has this property at all of its points.

Proof. Let U ∈ O(X). Since X is UVn, for every U ∈ U and x ∈ U, there exists an open
neighborhood W(U, x) such that W(U, x) ⊆ U and such that for all 1 ≤ k ≤ n, each map
f : ∂∆k+1 → W(U, x) extends to a map g : ∆k+1 → U. LetW = {W(U, x) | U ∈ U, x ∈ U}
and note thatU ≤n

W. Since X is paracompact Hausdorff, by Lemma 3.30 we have that
there exists V ∈ O(X) such thatW ≤∗ V. Fix x′ ∈ X. Then St(x′,V) ⊆ W(U, x) for some
x ∈ U ∈ U. Then St(x′,U) ⊆ U. Moreover, if 1 ≤ k ≤ n and f : ∂∆k+1 → St(x′,V) is a map,
then since f has image in W(U, x) there exists an extension g : ∆k+1 → U. This proves that
U ≤

n
∗
V.

♣

We will next present two lemmas, for these we introduce some common notation we
will appeal to. Let n ∈ N be fixed, a geometric simplicial complex K which consists of
(n+1)-simplices and their faces, and a subcomplex L ⊆ K with dim(L) ≤ n. Let M[k] = L∪Kk

denote the union of L and the k-skeleton of K. Since, L ⊆ Kn,M[n] = Kn is the union of the
boundaries of the (n+ 1)-simplicies of K. At a later time we shall consider the cases where
(1) K = sdm

∆n+1 and L = sdm ∂∆n+1 and L = {d0}. We now introduce our Lemmas:

Lemma 4.10. (Recursive Extensions). Suppose that 1 ≤ k ≤ n, U ≤∗ V ≤k−1
∗
W,m ∈ N and

f : M[k−1]→ X is a map such that for every n+1-simplex σ of K, we have f (σ∩M[k−1]) ⊆Wσ

for some Wσ ∈ W. Then there exists a continuous extension g : M[k] → X of f such that for
every (n + 1)-simplex σ of K, we have g(σ ∩M[k]) ⊆ Uσ for some Uσ ∈ U.

Proof. Supposing the hypothesis, we need to extend f to the k-simplicies of M[k] that don’t
lie in L. Let τ be a k-simplex of M[k] that does not lie in L and let Sτ be the set of (n + 1)-
simplices in K that contain τ. By assumption, Sτ is non-empty. We make some general
observations to begin. Note that since f maps the (k − 1)-skeleton of each (n + 1)-simplex
σ ∈ Sτ into Wσ and ∂τ lies in this (k − 1)-skeleton, we have f (∂τ) ⊆

⋂
σ∈Sτ Wσ. Thus, for all

τ, we have that:

f (∂τ) ⊆
⋂
σ∈Sτ

St(Wσ,V)

.
Fix a vertex vτ of τ and let xτ = f (vτ). Then xτ ∈Wσ ⊆ St(xτ,W) whenver σ ∈ Sτ. Now,

obsreve that since V ≤k−1
∗
W, we may find Vτ ∈ V such that St(xτ,W) ⊆ Vτ and such

that every map ∂∆k → St(xτ,W) extends to a map ∆k → Vτ. In particular, f |∂τ : ∂τ→ Wσ

extends to a map τ→ Vτ. We define g : M[k]→ X so that it will agree with f on M[k − 1]
and so that the restriction of g to τ is a choice of continuous extensions τ→ Vτ of f |∂τ .

We now select sets Uσ. Fix an (n + 1)-simplex σ of K. If the k-skeleton of σ lies entirely
in L, we choose any Uσ ∈ U which satisfies Wσ ⊆ Uσ. Now, suppose that there exists at
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least one k-simplex in σwhich is not in L. Then whenever τ is a k-simplex of σ not in L, we
have that Wσ ⊆ St(xτ,W) ⊆ Vτ. Fix a point yσ ∈Wσ. The assumption thatU ≤∗ V implies
that there exists a Uσ ∈ U such that St(yσ,V) ⊆ Uσ. In this case, we have Wσ ⊆ Vτ ⊆ Uσ
whenever τ is a k-simplex of σ not in L.

Lastly, we will checek that g satisfies the desired property. Once again, fix an (n + 1)-
simplex σ of K. If τ is a k-simplex of σ not in L, our definition of g gives g(τ) ⊆ Vτ ⊆ Uσ. If
τ′ is a k-simplex in σ ∩ L, then g(τ′) = f (τ′) ⊆ Wσ ⊂ Uσ. This shows that g(σ ∩M[k]) ⊆ Uσ
for each (n + 1)-simplex σ of K. ♣

The next lemma is a direct, recursive application of the previous lemma.

Lemma 4.11. Assume there exists a sequence of open covers as follows:

U =Wn ≤∗ Vn ≤
n−1
∗
Wn−1 ≤∗ · · · ≤

2
∗
W2 ≤∗ V2 ≤

1
∗
W1 ≤∗ V1 ≤

0
∗
W0 =W

and a map f0 : M[0]→ X such that for every (n+1)-simplex σ of K, we have f0(σ∩M[0]) ⊆W
for some W ∈ W. Then there exists an extension fn : M[n]→ X of f0 such that for every (n + 1)-
simplex σ of K, we have fn(∂σ) ⊆ U for some U ∈ U.

We are now in the appropriate situation to give the proof. We shall apply the extension
results of the previous two lemmas, that is K = sdm

∆n+1 for some m ∈N and L = sdm ∂∆n+1

so that M[k] = L ∪ Kk consists of the boundary of ∆n+1 and the k-simpices of sdm
∆n+1 not

in the boundary. Observe that M[n] is the union of boundaries of the (n + 1)-simplices of
sdm
∆n+1. We now proceed with the proof;

Lemma 4.12. Let n ≥ 1. Suppose X is paracompact, Hausdorff, and UVn−1. Then for every open
coverU of X, there exists (V,V0) ∈ Λ such that ker(pV#) ⊆ πSp

n (U, x0).

Proof. Suppose U ∈ O(X). Since X is paracompact, Hausdorff, and UVn−1 we can apply
Lemma 3.33 and Lemma 3.34 to find a sequence of refinements:

U =Un ≤∗ Vn ≤
n−1
∗
Un−1 ≤∗ · · · ≤

2
∗
U2 ≤∗ V2 ≤

1
∗
U1 ≤∗ V1 ≤

0
∗
U0

and then one last refinement U0 ≤∗ V0 = V. Let V0 ∈ V be any set containing x0

and recall that since X is paracompact Hausdorff (V,V0) ∈ Λ. Now, we will show that
ker(pV#) ⊆ πSp

n (U, x0). Note that p−1
V

(St(V,N(V))) ⊆ V for some choice of canonical map
pV.

Suppose [ f ] ∈ ker(pV#) is represented by a map f : (|∂∆n+1|, d0)→ (X, x0). Our objective
is to show that [ f ] ∈ πSp

n (U, x0). Then, pV ◦ f : |∂∆n+1| → |N(V)| is null-homotopic
and extends to a map h : |∆n+1| → |N(V)|. Indeed, set YV = h−1(St(V,N(V))) so that
Y = {YV | V ∈ V} is an open cover of |∆nn + 1|. We will find a particular simplicial
approximation for h using this coverY [17]: Let λ be a Lebesgue number for the coverY
so that any subset of∆n+1 of diameter less than λ lies in some element ofY. Find an m ∈N
such that each simplex in sdm

∆n+1 lies in a set YVa ∈ Y for some Va ∈ V. Note that the
assignment a 7→ Va on vertices extends to a simplicial approximation h′ : sdm

∆n+1 → N(V)
of h; that is a map h′ such that

h(St(a, sdm
∆n+1)) ⊆ St(h′(a),N(V)) = St(Va,N(V))

for every vertx a. Now, let K = sdm
∆n+1 and L = sdm ∂∆n+1 so that M[k] = L ∪ Kk. First,

we will extend f : L → X to a map f0 : M[0] → X. For every vertex a in K, pick a point
f0(a) ∈ Va. In particular, if a ∈ L, take f0(a) = f (a). This choice is well defined since on
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boundary vertices a ∈ L. This is because we have that pV ◦ f (a) = h(a) ∈ St(Va | |N(V)|)
and thus f (a) ∈ p−1

V
(St(Va, |N(V)|)) ⊆ Va.

Note that h′maps every simplexσ = [a0, a1, . . . , ak] of K to the simplex of the nerver N(V)
spanned by {h′(ai) | 0 ≤ i ≤ k}. By definition of the nerve, we have that

⋂
{Vai | 0 ≤ i ≤ k} , ∅.

Now, select a point xσ ∈
⋂
{Vai | 0 ≤ i ≤ k}. Note that by our initial selection of refinements

we haveU0let∗V. If σ = [a0, a1, . . . , an+1] is an (n + 1)-simplex of K, then St(xσ,V) ⊆ Uσ for
some Uσ ∈ U. In particular, { f0(ai) | 0 ≤ i ≤ n + 1} ⊆

⋃
{Vai | 0 ≤ i ≤ n + 1} ⊆ Uσ. Thus, f0

map the 0-skeleton of σ into Uσ. If 1 ≤ k ≤ n, then τ is a k-face of σ∩ L with ai ∈ τ, then we
have that pV ◦ f0(int(τ)) = pV ◦ f (int(τ)) = h(int(τ)) ⊆ h(St(ai,K)) ⊆ St(Vai , |N(V)|). It then
follows

f0(τ) ⊆ p−1
V

(St(Vai , |N(V)|)) ⊆ Vai ⊆ Uσ.

This implies that for every n-simplex in σ∩L, we have that f0(τ) ⊆ Uσ. So we conclude
that for every (n + 1)-simplex σ of K, we have that f0(σ ∩M[0]) ⊆ Uσ.

Observe that by our choice of sequence of refinements, we are precisely in the situation
to apply Lemma 3.34. In doing so, we obtain an extension fn : M[n] → X of f such that
for every (n+ 1)-simplex σ of K, we have that fn(∂σ) ⊆ Uσ for some Uσ ∈ Un =U. Further,
by (check that I have lemma) we have that

[ f ] = [ fn|∂∆n+1] ∈ π
Sp
n (U, x0).

This proves the opposite inclusion.
♣

One of the properties we have made us of thus far is the notion of πn-shape injectivity.
Of particular use, is a weaker property, which we can introduce now:

Definition 4.13. We will say that a space X is n-homotopically Hausdorff at x ∈ X if no
non-trivial element of πn(X, x) has a representing map in every neighborhood of x. We say
that X is n-homotpically Hausdoff it it is n-homotopically Hausdorff at all of its points.

It should be observed at once that if a space isπn-shape injectieve then it’s automatically
n-homotopically Hausdorff. Let us now give an example which highlights the use of the
equality of the n-th Spanier group and the Shape Kernel.

Example 4.14. Fix an integer n ≥ 2 and let ℓ j : Sn
→ E be the inclusion of the j-th

sphere defined f : En → En to be the shift map which is given by f ◦ ℓ j = ℓ j+1. Let
M f = En × [0, 1]/ ∼, (x, 0) ∼ ( f (x), 1) which is the mapping torus of f . We identify En with
the image of En × {0} in M f and take b0 to be the basepoint of M f . Now, let α : I → M f be
the loop where α(t) is the image of (b0, t). Then M f is locally contractible at all points other
than those in the image of α. Also, every point α(t) has a neighborhood that deformation
retracts onto a homeomorphic copy of En. So, observe that since En is UVn−1, so is
X. Notice that πSp

n (M f , b0) = ker(πn(M f , b0) → π̌n(M f , b0)) (and this follows from (Insert
Theorm)).

In particular, the Spanier group of M f contains all elements [αk
∗ g] where g : Sn

→ En

is a based map with k ∈ Z. Using the universal covering map E→ M f that “unwinds” α
and the relation [g] = [α ∗ ( f ◦ g)] in πn(M f , b0), it is not hard to show that these are in fact
the only elements of the n-th Spanier group. We see that

ker(πn(M f , b0)→ π̌n(M f , b0)) = {[αk
∗ g] | [g] ∈ πn(En, b0)}
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this is an uncountable subgroup.
It follows from this description that, even though M f is not πn-shape injective, M f is

n-homotopically Hausdorff. Indeed, it suffices to check this at the points α(t), t ∈ I. Let’s
give the argument for α(0) = b0, the other points are similar. If 0 , h ∈ πn(M f , b0) has
a representative in every neighborhood of b0 in M f , then clearly h ∈ ker(Ψn). Hence,
h = [αk

∗ g] for [g] ∈ πn(En, b0). Since M f retracts onto the circle parameterized by αk, the
hypothesis on h can only hold if k = 0. However, there exists a basis of neighborhoods
of b0 in M f that deformation retracts onto an open neighborhood of b0 in En. Thus, we
see [g] has a representative in every neighborhood of b0 in πn(En, b0), giving h = [g] ∈
ker(πn(En, b0)→ π̌n(En, b0)) = 0.

4.1 When isΨn an Isomorphism?

Kozlowski-Segal [?] that if X is paracompact Hausdorff and UVn, then Ψn : πn(X, x0) →
π̌n(X, x0) is an isomorphism. In fact, this result was first proved for compact metric spaces
in [15]. The assumption that a space is UVn assumes that small maps Sn

→ X may be
contracted by small null-homotopies. For instance, the cone CEn is UVn−1 but not UVn.
Note; however, that CEn is contractible and so Ψn is clearly an isomorphism of trivial
groups. Our Spanier group based approach allows us to generalize Kozlowski-Segal’s
theorem in a way that includes this example by removing the need for “small” homotopies
in dimension n. For the sake of brevity, we will cometimes supress the pointedness of
open covers and just writeU for elements of Λ.

Lemma 4.15. Let n ≥ 1. Assume that X is paracompact, Hausdoff, and UVn−1. If ([ fU])U∈Λ ∈
π̌1(X, x0), then for everyU ∈ Λ, there exists [g] ∈ πn(X, x0) such that (pU)#([g]) = [ fU].

Proof. Let (U,U0) ∈ Λ and pU be fixed, consider representing a map fU : (|∂∆n+1|, d0) →
(|N(U)|,U0). Let U′ = {p−1

U
(St(U, |N(U)|)) | U ∈ U}. Since p−1

U
(St(U, |N(U)|)) ⊆ U for all

U ∈ U, we have U ≤ U′. Applying Lemma 3.30 and LemmaX we select the following
sequence of refinements of U′. First, we choose a star refinement U′ ≤∗∗ W so that for
every W ∈ W, there exists a U′ ∈ U such that St(W,W) ⊆ U′. In this case, we can choose
the projection map pU′W : |N(W)| → |N(U′)| so that if pU′W(W) = U′ on vertices, then
St(W,W) ⊆ U′ in X. This choice will be important near the end of the proof.

To constuct g, we must take further refinements. First, we choose a sequence of
refinements

W =Wn ≤∗ Vn ≤
n−1
∗
Wn−1 ≤∗ · · · ≤

2
∗
W2 ≤∗ V2 ≤

1
∗
W1 ≤∗ V1 ≤

0
∗
W0

followed by one last refinementW0 ≤∗ V0 =V. Let V0 ∈ V be any set which contains
x0 and recall that since X is paracompact Hausdorff (V,V0) ∈ Λ. For some choice of
canconical map pV, we have that p−1

V
(St(V,N(V))) ⊆ V for all V ∈ V.

Recall that we have assumed the existence of a map fV : (∂∆n+1, d0)→ (|N(V)|,V0) such
that pUV#([ fV]) = [ fU]. Set YV = f −1

V
(st(V,N(V))) so thatY = {YV | V ∈ V} is an open cover

of ∂∆n+1. As before, we find a simplicial approximation for fV. Find m ∈ N such that the
star St(a, sdm∂∆n+1) of each vertex a in sdm ∂∆n+1 lies in a set YVa ∈ Y for some Va ∈ V.
Since fV(d0) = V0, we can take Vd0 = V0. Then the assignment a 7→ Va on vertices extends
to a simplicial approximation f ′ : sdm ∂∆n+1 → |N(V)| of fV, i.e a simplicial map f ′ such
that

fV(St(a, sdm ∂∆n+1)) ⊆ St( f ′(a), |N(V)|) = St(Va, |N(V)|)
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for every vertex a.
We can begin to define g with the constant map {d0} → X which sends d0 to x0.

In preparation for applications of Lemma 3.35, let K = sdm ∂∆n+1 and L = {d0} so that
K[k] = Kk. First, we define a map g0 : M[0] → X by selecting, for each vertex a ∈ K0, a
point g0(a) ∈ Va. In particular, set g0(d0) = x0. This choice is well defined since we have that
pV(x0) = V0 ∈ St(Vd0 ,N(V)) and thus g0(d0) = x0 ∈ p−1

V
(St(Vd0 ,N(V))) ⊆ Vd0 . Indeed, note

that f ′maps every simplex σ = [a0, a1, . . . , ak] of K to the simplex of |N(V)|which is spanned
by {Vai | 0 ≤ i ≤ k}. Now, by definition of the nerve, it must be that

⋂
{Vai | 0 ≤ i ≤ k} , ∅.

Pick a pint xσ ∈
⋂
{Vai | 0 ≤ i ≤ k}. By our initial choice of refinements, we have that

U0 ≤∗ V. If σ = [a0, a1, · · · , an] is an n-simplex of K, then St(xσ,V) ⊆ U0,σ. Thus, g0 maps
the 0-skeleton of σ into U0,σ. If d0 ∈ σ, then g0(d0) ∈ p−1

V
(St(Vd0 ,N(V))) ⊆ Vd0 ⊆ U0,σ. This

then implies that for every n-simplex σ of K, we have that g0(σ ∩M[0]) ⊆ U0,σ. From the
above, we are now ready to recursivley apply Lemma 3.35. Indeed, it will be observed
that this is similar to the proof of Lemma 3.37 where the dimension n + 1 is shifted down
by one so we omit the details here. We obtain an extension g : K =M[n]→ X of g0 so that
for every n-simplex σ of K, we have g(σ) ⊆Wσ for some Wσ ∈ W =Un. Now that we have
g defined, we want to show that fU ≃ pU ◦ g. Since f ′ ≃ fV (by simplicial approximation),
pUV ≃ pUU′ ◦ pU′W ◦ pWV (for any choice of projection maps), and pUV ◦ fV ≃ fU (for any
choice of projection pUV), it will suffice to show that

pUU′ ◦ pU′W ◦ pWV ◦ f ′ ≃ pU ◦ g.

We will do this by proving that the simplicial map F = pUU′ ◦ pU′W ◦ pWV ◦ f ′ : K →
|N(U)| is a simplicial approximation for pU ◦ g. Recall that this can be done by verifying
the “star-condition” pU ◦ g(St(a,K)) ⊆ St(F(a) : |N(U)|) for any vertex a ∈ K [17]. Since,
n ≥ 1, we have that W ≤∗∗ V. Hence, just like our choice of pU′W we may choose
pWV so that whenever pWV(V) = W, then St(V,V) ⊆ W. Also, we choose pU′U to map
p−1
U

(St(U, |N(U)|)) 7→ U on vertices. Fix a vertex a0 ∈ K. To check the star-conditon, we’ll
check that pU ◦ g(σ) ⊆ St(F(a0),N(U)|) for each n-simplex σ having a0 as a vertex. Pick an
n-simplex σ = [a0, a1, . . . , an] ⊆ K having a0 as a vertex. Recall that f ′(ai) = Vai for every
i. Set pWV(Vai) = Wi and pU′W(Wi) = p−1

U
(St(Ui, |N(U)|)) ∈ U′ for some Ui ∈ U. Then

F(ai) = Ui for every i. it now suffices to check that pU ◦ g(σ) ⊆ St(U0, |N(U)|). Recall that
by our selection of pU′W, we have that St(W0,W) ⊆ p−1

U
(St(U0, |N(U)|). Then it’s enough

to check that g(σ) ⊆ St(W0,W). By construction of g, we have that g(σ) ⊆ Wσ for some
Wσ ∈ W. Since g(a0) ∈W0 ∩Wσ. We have that g(σ) ⊆Wσ ⊆ St(W0,W), this completes the
proof.

♣

We now state and prove our second theorem,

Theorem 4.16. Let n ≥ 1 and x0 ∈ X. If X is paracompact, Hausdorff, UVn−1, and semilocally
πn − trivial, thenΨn : πn(X, x0)→ π̌n(X, x0) is an isomorphism.

Proof. By hypothesis X is paracompact, Hausdorff, and UVn−1, we hae that πSp
n (X, x0) =

ker(Ψn) by (TM). Since X is semilocally πn-trivial, we have that πSp
n (U, x0) = 1 for some

U ∈ Λwith ker(pV# ⊆ π
Sp
n (U, x0). So then

pV# : πn(X, x0)→ πn(|N(V)|,V0)

is an injection. Let ([ fU])U∈Λ ∈ π̌n(X, x0). By Lemma 3.40, for eachU ∈ Λ, there exists
[gU] ∈ πn(X, x0) such that pU([gU]) = [ fU]. IfV ≤W, then
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pV#([gV]) = [ fV] = pVW#([ fW]) = pVW# ◦ pW#([gW] = pV#([gW])

Now, since pV# is injective, it follows that [gW] = [gV] whenever V ≤ W. Setting
[g] = [gV] givesΨn([g]) = ([ fU])U∈Λ. Hence,Ψn is surjective.

♣

4.2 Examples

Let us give a few examples that illustrate the use of the above theorems. These will aid us
to understand more clearly what their utility is.

Example 4.17. Fix n ≥ 2. When X is a metrizable, UVn−1 space, the cone CX and unreduced
suspension SX are also UVn−1 and semilocallyπn-trivial but need not be UVn. In particular,
this occues when X = En or if X = Y ∨ En where Y is a CW-complex. In such cases, it can
be seen that Ψn : πn(SX) → π̌n(SX) is an isomorphism. In addition, one point unions of
such cones and suspensions (e.g CX ∨ CY or CX ∨ SY) will also meet the hypotheses of
Theorem 3.41 (checking this; however, may be fairly technical [3]) but need not be UVn.

Example 4.18. The converse of Theorem 3.41 does not hold. For n ≥ 2, En is UVn−1 but
not semilocally πn-trivial at the wedgepoint x0. However, Ψn : πn(En, x0) → π̌n(X, x0) is
an isomorphism where both groups are canonically isomorphic toZω [8]. In addition, the

infinite direct product
∏
N Sn,Ψk : πk

(∏
N Sn, x0

)
→ π̌k

(∏
N Sn, x0

)
is an isomorphism for

all k ≥ 1 even though
∏
N Sn is not UVk−1 when k − 1 ≥ n.

Example 4.19. Let n ≥ 2 and X = E1 ∨ Sn (See Figure 3.5). Note that since E1 is aspherical
[5] and [6] and X is semilocally πn-trivial. Note; however, that X is not UV1 since it has
E1 as a retract. It has been shown in [3] that

πn(X) �
⊕
π1(E1)

πn(Sn) �
⊕
π1(E1)

Z

and that Ψn is injective. In particular, we may represent elements of πn(X) as finite-
support sums

∑
β∈π1(E1) mβ with mβ ∈ Z. We will show thatΨn is not surjective.

First, identify π1(X) with π1(E1) and recall from [7] that we may represent the elements
of π1(E1) as countably infinite reduced words indexed by countable linear order (with a
countable alphabet β1, β2, β3, . . . ). We see here that β j is represented by a loop S1

→ E1

going around the j-th circle. Let X j be the union of Sn and the largest j circles ofE1 such that
X = proj lim j X j. Next, identify π1(X j) with the free group F j on generators β1, β2, . . . , β j

and note that πn(X j) �
⊕

F j
Z. In this sense, we may view an element of πn(X j) as

finite-support sums
∑

w∈F j
mw of integers indexed over reduced words in F j. Let d j+1, j :

F j + 1 → F j be the homomorphism that deletes the letter β j+1. Consider the inverse limit
π̌1(X) = lim

←−− j
(F j, d j+1, j). Now, the map X→ X j collapses all but the first j− circles of E1 and

this induces a homomorphism d j : π1(X) → F j. There exists a canonical homomorphism
ϕ : π1(X)→ π̌1(X) = lim

←−− j
(F j, d j+1, j) given by ϕ(β) = (d1(β), d2(β), . . . ), which is known to be

an injection [16] but not a surjection. As an example, if xk =
∏k

j=1[β1, β j], then (x1, x2, x3, . . . )
is an element of π̌(X) not in the image of ϕ.

The bonding map b j+1, j : πn(X j+1) → πn(X j) sends a sum
∑

w∈F j+1
mw to

∑
v∈F j

pv where
pv =

∑
d j+1, j(w)=v mw. In a similar manner, the projection b j : πn(X) → πn(X j) will send the

sum
∑
β∈π1(X) nβ to

∑
v∈F j

mv where we have mv =
∑

d j(β)=v mβ. Next, let y j ∈ πn(X) be the sum
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Figure 4.1: The space X = E1 ∨ S2

whose only non-zero coefficient is the x j-coefficient, which is 1. Now, since d j+1, j(x j+1) = x j,
it’s clear that (y1, y2, y3, · · · ) ∈ π̌n(X). Suppose that Ψn(

∑
βmβ) = (y1, y2, y3, . . . ). We can

write
∑
βmβ as a finite sum

∑r
i=1 mβi for non-zero mβi , then we need have

∑
d j(βi)=x j

mβi = 1
for all j ∈N. Since there are only finitely many βi involved, there must exist at least one i
for which d j(βi) = x j for infinitely many j. For such i, we have that ϕ(βi) = (x1, x2, x3, . . . ),
which as previously mentioned is impossible. This shows thatΨ is not a surjection.

Example 4.20. Let n ≥ 2 and ℓ j : Sn
→ En be the inclusion of the j-th n-sphere in En. Let X

be the space obtained by attaching (n + 1)-cells to En using the attaching maps ℓ j. Recall
that En is UVn−1 and so it follows easily that X is UVn−1. Note; however, that X is not
semilocally πn-trivial at the wedgepoint x0 of En. Observe that the infinite concatenation
of maps

∏
j≥k ℓ j = ℓk · ℓk+1 · · · are not null-homotopic (utilizing the standard argument

for the harmonic archipelago) but are all homotopic to each other. So then we have that
πn(X, x0) , 0; however, for sufficiently fine open covers U ∈ O(X), |N(U)| is homotopy
equivalent to a wedge of (n + 1)-spheres and is thus n-connected. Then we have that
π̌n(X, x0) = 0: so then despite X being UVn−1 it need not be that Ψ is an isomorphism. In
fact, πn(X, x0) = πSp

n (X, x0) = ker(Ψn).
Additionally, notice that since En−1 is (n − 1)-connected and πn(En) � Hn(En) � ZN, X

will itelf will be (n − 1)-connected. A Meyer-Vietoris Sequence arguement similar to that
in [13] can be used to show that πn(X, x0) � Hn(X) � ZN/

⊕
N
Z.

31



Bibliography

[1] A. Akbar Bahredar, N. Kouhestani, H. Passandideh, The n-dimensional Spanier group,
Filomat 35 (2021), no. 9, 3169-3182.

[2] J. Brazas, P. Fabel, Thick Spanier groups and the first shape group, Rocky Mountain J.
Math. 44 (2014) 1415-1444.

[3] J. Brazas, Sequential n-connectedness and infinite factorization in higher homotopy
groups, Preprint. (2021) arXiv:2103.13456.

[4] J.W Canon, G.R Conner On the fundamental groups of one-dimensional spaces, Topology
Appl. 153 (2006) 2648-2672.

[5] J.W. Cannon, G.R. Conner, A. Zastrow, One-dimensional sets and planar sets are aspherical,
Topology Appl. 120 (2002) 23-45.

[6] M.L Curtis, M.K Fort, Jr., Homotopy groups of one-dimensional spaces, Proc. Amer. Math.
Soc. 8 (1957), no. 3, 577,579.

[7] K. Eda, Free σ-products and noncommutatively slender groups, J. of Algebra 148 (1992)
243-263.

[8] Katsuya Eda and Kazuhiro Kawamura, Homotopy and homology groups of the n-
dimensional Hawaiian earring, Fundamenta Mathematicae. 165 (2000)

[9] K. Eda, K. Kawamura, The fundamental groups of one-dimensional spaces, Topology Appl.
87 (1998), no. 3, 163–172.

[10] Fischer, D. Repovs, Z. Virk, and A. Zastrow, On semilocally simply connected spaces,
Topology Appl. 158 (2011) no. 3, 397–408.

[11] Anatoly Fomenko and Dmitry Fuchs, Homotopical Topology, Moscow University Press,
1969.

[12] A. Hatcher, Algebraic Topology, Cambridge Univ. Press., Cambridge 2002.

[13] U.H. Karimov, D. Repovš, On the homology of the harmonic archipelago, Central Eu-
ropena J. Math. 10 (2012), no. 3, 863-872.

[14] G. Kozlowski, G. Segal, Local behavior and the Vietoris and Whitehead theorems in
shape theory, Fund. Math. 99 (1978) 213-225.

[15] K. Kuperberg, Two Vietori-is-type isomorphism theorems in Borsuk’s theory of
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