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Abstract: Tobit Quantile Regression with Adaptive Lasso 
Penalty is a quantile regression model on censored data that adds 
Lasso's adaptive penalty to its parameter estimation. The 
estimation of the regression parameters is solved by Bayesian 
analysis. Parameters are assumed to follow a certain distribution 
called the prior distribution. Using the sample information along 
with the prior distribution, the conditional posterior distribution 
is searched using the Box-Tiao rule. Computational solutions 
are solved by the MCMC Gibbs Sampling algorithm. Gibbs 
Sampling can generate samples based on the conditional 
posterior distribution of each parameter in order to obtain a 
posterior joint distribution. Tobit Quantile Regression with 
Adaptive Lasso Penalty was applied to data on Household 
Expenditure for Cigarette Consumption in 2011. As a 
comparison for data analysis, Tobit Quantile Regression was 
used. The results of data analysis show that the Tobit Quantile 
Regression model with  Adaptive Lasso Penalty is better than 
the Tobit Quantile Regression. 

  

1. INTRODUCTION  
Research, especially surveys in various fields, produces outputs with various data 

characteristics. One of them is data that is censored at a certain value. This is what inspired 
Tobin [1] introducing the Tobit method in the regression model. Tobit regression is able to 
illustrate the relationship between a censored respon variable and its predictor variables. 
Unfortunately, Tobit regression is not helpful enough for data analysis that does not meet the 
normality assumption. Furthermore, Powell [2] introduces Tobit Quantile Regression, where 
the conditional mean function on parameter estimation is replaced by a function of quantiles. 
Tobit Quantile Regression model is able to provide a more complete explanation of the 
relationship between response variables and predictor variables than simple Tobit Regression. 
In Tobit Quantile Regression, the estimation of the regression coefficients for each quantile 
can be obtained.. 

The selection of variables in the regression model is an important thing. The selection of 
the right variables causes the accuracy of the prediction to increase. Tibshirani [3] introduced 
the LASSO (Least Absolute Shrinkage and Selection Operator) method, which is an estimation 
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method to minimize errors that depend on the sum of the absolute values of the coefficients. 
Lasso regression is able to eliminate the variables in the regression model by reducing the 
coefficient to zero. However, Zou [4] states that Lasso Regression for optimal l results in 
variable selection that is not always consistent.. To solve this problem, Zou [4] introduces the 
Adaptive Lasso method in which an adaptive weight is applied on the l1 penalty. 

This paper will discuss about Tobit Quantile Regression with Adaptive Lasso Penalty. 
Adaptive weights are added to the estimation of the Tobit Quantile Regression parameter, so 
that the parameter estimate is the solution of minimizing the Loss Function plus the absolute 
sum of the adaptive weights. The form of such an optimization function cannot be solved 
explicitly, so the parameter estimation of this study is determined using Bayesian approach.  

Bayesian analysis uses knowledge of prior distributions to find a complete conditional 
posterior distribution. Furthermore the joint posterior distribution can be found. This 
characteristic relates the Bayesian approach to the Markov Chain Monte Carlo (MCMC) 
method using the Gibbs Sampling algorithm. MCMC comes from a combination of two things, 
namely: Markov Chain and Monte-Carlo. Sampling of this method uses the Markov Chain 
principle, which generates a new sample based on only one previous sample. The algorithm 
used is the Gibbs Sampling algorithm. 

Cigarette consumers in Indonesia are spread across all economic levels. Based on data 
from the 2011 Indonesian Household Socio-Economic Survey (SUSETI) by the World Bank 
in Cintiani [5], household spending on cigarette consumption is quite varied. For households 
with no active smokers, the cigarette consumption expenditure is 0. Thus this data has censored 
data criteria with a lower limit of 0. Furthermore, in this paper, Tobit Quantile Regression with 
Adaptive Lasso Penalty will be applied in the case of Household Expenditure for Cigarette 
Consumption. Quantile regression was applied to determine the regression analysis for each 
selected quantile. 

2. LITERATURE REVIEW 
2.1. Loss Function 

Parameter estimation in quantile regression was obtained by developing the LAD (Least 
Absolute Deviation) method, which is given different weights for different quantiles. In the τ -
th quantile, for the underprediction case where the error is greater than or equal to zero, the 
weight used is τ. As for the overprediction case where the error is less than zero, the weight 
used is 1- τ. 

According to Koenker [6], the loss function in Quantile Regression is defined: 

𝜌!(𝜀)	&
τ𝜀, 𝜀 ≥ 0

−(1 − τ)𝜀, 𝜀 < 0 (1) 

The form of the Loss Function in Alhamzawi and Yu [7] can also be expressed: 

𝜌!(𝜀) =
|𝜀| + (2τ − 1)𝜀

2  (2) 
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Fig 1. Loss Function 

 

2.2. Tobit Regression 
The censored data in Tobit regression according to Greene [8] is when the response 

variable values in a certain range are all changed to one value. The structure of the censored 
data is a discrete-scale response variable for the censored data, and a continuous scale for those 
that are not. 

The Tobit Regression Equation is: 

𝑦"∗ 	= 	 𝑥"$𝛽 + 𝜀" 	 (3) 
𝑦" 	= 	𝐶(𝑦"∗), 𝑖	 = 	1, . . . , 𝑛	 (4) 

with: 
𝐶(𝑦"∗) = 	𝑚𝑎𝑥		{	𝑦%, 𝑥"$𝛽 +	𝜀"} (5) 

where: 
𝑦" = i-th sample response variable, 
𝑦"∗ = unobserved latent variable of i-th sample, 
xi = vector k x 1 of the predictor variables for the i-th sample, 
𝛽 = regression coefficient vector, 
𝜀" = error on i-th observation, 

C(.) = link function, 
𝑦% = censored point. 

2.3. Adaptive Lasso 
LASSO stands for Least Absolute Shrinkage and Selection Operator, which is an 

estimation method that minimizes the sum of the squares of errors that depend on the sum of 
the absolute values of the coefficients. In other words, the lasso regression coefficient 
minimizes: 

∑ >𝑦" − ∑ 𝑥"&𝛽&'
&() ?*

"()
++l∑ |𝛽&'

&() |. (6) 

James, et al [9] stated that Lasso Regression has the same formula as Ridge Regression, 
the only difference is that Ridge Regression uses the ∑ 𝛽&

+
& 	 constraint whereas Lasso 

Regression uses the ∑ |𝛽&| ≤ 𝑡&  constraint. Ridge Regression is able to reduce the coefficient 
to near zero, while Lasso Regression is able to reduce the regression coefficient to zero. As a 
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result, Lasso Regression can be used for variable selection, so that the model obtained using 
Lasso Regression will be easier to interpret than using Ridge Regression. To produce consistent 
variable selection, Zou [4] introduced the Adaptive Lasso. The adaptive weight is added to the 
l1  penalty so that the equation becomes:  

∑ >𝑦" − ∑ 𝑥"&𝛽&'
&() ?*

"()
++l∑ 𝑤,C|𝛽&'

&() | (7) 

by defining lj=l𝑤,C, we get: 

∑ >𝑦" −∑ 𝑥"&𝛽&'
&() ?*

"()
++∑ l&|𝛽&'

&() |. (8) 

2.4. Tobit Quantile Regression with Adaptive Lasso Penalty 
Mosteller and Tukey [10] stated that in order to get a more complete explanation of the 

data, several different regression curves can be calculated according to various percentage 
points of the data distribution. Quantile regression was first introduced by Koenker and Basset 
[11]. In this model, various quantile functions are estimated from a distribution of Y as a 
function in X. One of the developments of quantile regression is tobit quantile regression. 
Based on Powell [2], the Tobit Quantile Regression coefficient estimator can be estimated by 
finding a solution that minimizes 𝛽-	from: 

D𝜌!(𝑦" − 𝐶(𝑥"𝛽-))
*

"()

 (9) 

where 𝜌!(. ) is the Loss Function. 

Alhamzawi [12] added the adaptive lasso penalty to the tobit quantile regression in equation 
(9) so that the τ -th quantile regression is the solution to minimize β from: 

∑ 𝜌!(𝑦" − 𝐶(𝑥"𝛽-))*
"() +∑ l&|𝛽&-'

&() | (10) 

This equation contains a Loss Function which is not differentiable at point 0. Therefore, this 
minimization problem cannot be solved explicitly. The method used in this paper is the 
Bayesian approach. 

2.5. Bayesian Analysis of Tobit Quantile Regression with Adaptive Lasso Penalty 
Kozumi and Kobayashi [13] stated that minimizing the Loss Function is equivalent to 

finding the posterior maximum of the estimator with an error following the Asymmetric 
Laplace distribution. Furthermore 𝜀", i=1,2,...,n are assumed to have ALD distribution where 

𝑓(𝜀"|𝜏	) = 	
-()	0	-	)

2
𝑒𝑥𝑝	{		− 3!(4")

2
}. (11) 

The form of the Laplace asymmetric distribution in (11) can be expressed as a mixture of the 
normal and exponential distribution families. We use the equations of Andrews and Mallows 
[14], that is, for a, b > 0, applies: 

𝑒𝑥𝑝		{	−	|𝑎𝑏|} = ∫ 5
√+78

9
% 		𝑒𝑥𝑝	 K− )

+
(𝑎+𝑣	 +	𝑏+𝑣0)M 𝑑𝑣. (12) 

As a result, the likelihood of the data is stated as: 



 Rahmawati, F. ET AL 

29 | https://jurnal.unimus.ac.id/index.php/statistik 
   [ DOI: 10.26714/jsunimus.10.2.2022.25-33]  
 

𝐿(𝑦|𝛽-, 𝜎, 𝑥) = ∏ ∫ -()	0	-	)
2:;278"

𝑒𝑥𝑝 K− <="0><?#"@$A0()0+-A8")%

;28"
− -()	0	-	)8"

2
M9

%
*
"() 𝑑𝑣"  (13) 

with	𝑦"∗|𝛽-, 𝑣"~𝑁(𝑥$"𝛽- + (1 − 2𝜏)𝑣" , 2𝜎𝑣") and  𝑣"~𝐸𝑘𝑠𝑝𝑜𝑛𝑒𝑛𝑠𝑖𝑎𝑙 Y
-()	0	-	)

2
Z. 

The prior distribution for other parameters follows Alhamzawi [12], is: 

𝛽&-|𝑠&~𝑁(0, 𝑠&), 

𝑠&~𝐸𝑘𝑠𝑝𝑜𝑛𝑒𝑛𝑠𝑖𝑎𝑙 [
l&
%

+
\, 

l&
+~𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏0)), 

𝜎~𝐼𝑛𝑣𝑒𝑟𝑠	𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑0)), 

where 𝑦" = max	(𝑦%, 𝑥"𝛽-). 

The complete conditional posterior distribution of each parameter is then searched using the 
Box-Tiao method. The results obtained are: 

a. The conditional posterior distribution of 𝑦"∗ 

𝑦"∗|𝑦" , 𝛽-, 𝑣" , 𝜎~ &
𝛿(𝑦"), if	𝑦" > 𝑦%

𝑁(𝑥$"𝛽- + (1 − 2𝜏)𝑣" , 2𝜎𝑣")𝐼(𝑦"∗ ≤ 𝑦%)	other
	. 

b. The conditional posterior distribution of 𝛽- is normal multivariat distribution with 
𝑚𝑒𝑎𝑛	𝜇@- =			 Σ@-𝑋′𝑉(𝑦 − (1 − 2𝜏)𝑣), 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒	Σ@- = (𝑋$𝑉𝑋 + 𝑆)0)  
where: 
𝑉 = 𝑑𝑖𝑎𝑔((2𝜎𝑣))0), (2𝜎𝑣+)0), … , (2𝜎𝑣*)0)), 
𝑆 = 𝑑𝑖𝑎𝑔(𝑠)0), 𝑠+0), … , 𝑠'0)). 

c. The conditional posterior distribution of 𝑣"0) is Wald distribution with                       
𝑚𝑒𝑎𝑛	𝜇 = 			 |𝑦"∗ − 𝑥$"𝛽-|0) and shape parameter	𝑣 = (2𝜎)0) 

d. The conditional posterior distribution of 𝑠&0) is invers Gaussian distribution with 

𝑚𝑒𝑎𝑛	𝜇 = 			 l&
%

@&
% and shape parameter	𝑣 = l&

+. 

e. The conditional posterior distribution of l&+ is Gamma distribution with parameters            
a+1 and (B&

+
+ 𝑏)0). 

f. The conditional posterior distribution of 𝜎 is invers gamma distribution with parameters 
C*
+
+ 𝑐 and [∑ [<="

∗0?#"@$0()0+-)8"A
%

;8"
+ 𝜏(1	 − 	𝜏	)𝑣"\*

"() + 𝑑\
0)

. 

Based on the complete conditional posterior distribution obtained, then the Gibbs Sampling 
process is carried out to estimate the parameter. 

2.6. MCMC Gibbs Sampling 
MCMC comes from a combination of two things, namely: Markov Chain and Monte-

Carlo. Ravenswaiij, et al. [15] stated that Monte-Carlo is a method of estimating the parameters 
of the distribution by taking a random sample from the distribution. Markov Chain in MCMC 
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is the idea that random samples are generated from sequential processes with certain rules. 
Each random sample is used as a stepping stone to generate the next random sample (forming 
a chain). The rule of Markov Chain is that each new sample only depends on one previous 
sample. Walsh [16] states that Gibbs Sampling aims to build a Markov Chain that converges 
to the targeted distribution. The key of Gibbs Sampling is to use a univariate complete 
conditional distribution, where the random variables have a fixed value except for one variable. 

The steps of the Gibbs Sampling process carried out in this study are as follows: 

a. Determine the τ -th quantile to be estimated. 
b. Take the initial value for each parameter 𝑦∗, 𝛽-, 𝑣" , l&+, 𝑠& , 𝜎 suppose 𝑦∗(%), 𝛽-

(%), 𝑣(%), 

l+
(%)

, 𝑠&(%),	𝜎(%). 

c. Generated sample 𝑦"
∗()), 𝑦"

∗())~	𝜋(𝑦"∗|𝛽-
(%), 𝑣"

(%)
, l&+

(%)
, 𝑠&(%),	𝜎(%),y) 

d. Generated sample 𝛽-
()), 𝛽-

())~	𝜋(𝛽-|𝑦"
∗()), 𝑣"

(%)
, l&+

(%)
, 𝑠&(%),	𝜎(%),y) 

e. Generated sample 𝑣"()), 𝑣"())~	𝜋(𝑣"|𝑦"
∗()), 𝛽-

())
, l&+

(%)
, 𝑠&(%),	𝜎(%),y) 

f. Generated sample l&+
())

, l&+
())
~	𝜋(l&+|𝑦"

∗()), 𝛽-
())

, 𝑣"()), 𝑠&(%),	𝜎(%),y) 

g. Generated sample 𝑠&()),	𝑠&())~	𝜋(𝑠&|𝑦"
∗()), 𝛽-

())
, 𝑣"()), l&+

())
,	𝜎(%),y) 

h. Generated sample 𝜎()), 𝜎())~ 𝜋(𝜎|𝑦"
∗()), 𝛽-

())
, 𝑣"()), l&+

())
,	𝑠&()),y) 

i. Step c until h repeated as many iterations used. 
j. Obtained a sample with joint posterior distribution 𝜋(𝑦∗, 𝛽-, 𝑣" , l&+, 𝑠& , 𝜎|y) 

The estimation of the Tobit Quantile Regression parameter with the Adaptive Lasso Penalty 
sought is the mean of the posterior distribution in the j-th step obtained by the Gibbs Sampling 
process. 

3. METHODOLOGY 
3.1. Research Data 

This study uses secondary data, namely data published by the World Bank through the 
results of the Indonesian Household Socio-Economic Survey (SUSETI) in 2011 which had 
previously been used in Cintiani (2017). The sample used in the study was 1009 households 
with one response variable and four predictor variables. The response variable used is Cigarette 
Consumption (y), while the predictor variables are: Income (x1), Number of Family Members 
(x2), Expenditure per Capita (x3), and Age (x4).  

3.2. Data Analysis Methods 

In an effort to build a sample into the targeted distribution, in this study a large iteration 
was used. Burn (number of Gibbs Sampling iterations before the results are used) is selected 
as 1000. As for run (number of Gibbs Sampling iterations performed) is 11000. As stated in 
Walsh [16], the first 1000 - 5000 iterations of Gibbs Sampling are usually selected as burn . In 
Gibbs Sampling there is no rejection criteria for samples, all samples obtained in the iteration 
process can be used. 
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This study analyzed the regression model on three quantiles, τ = 0.25, τ = 0.5, and τ = 
0.75. Each quantile will be modeled using Tobit Quantile Regression and Tobit Quantile 
Regression with Adaptive Lasso Penalty. Tobit Quantile Regression and Tobit Quantile 
Regression with Adaptive Lasso Penalty were analyzed using the Brq package in R software. 

4. RESULT AND DISCUSSION 
4.1. Estimation of Regression Coefficient Parameter 

Tobit Quantile Regression (BTQR) and Tobit Quantile Regression with Adaptive Lasso 
Penalty (BALTQR) will be analyzed using Bayesian approach. After the complete conditional 
prior and posterior distributions are determined, then the solution is carried out using the 
MCMC Gibbs Sampling method. The following is a summary of the regression coefficient 
parameter values in both models. 

Table 1. Parameters of Regression Coefficient 
Quantile Model 𝛽% 𝛽) 𝛽+ 𝛽C 𝛽; 
0,25 BTQR -7,2057 0,000196 5,01602 0,000675 -0,137506 

BALTQR -2,5024 0,000452 4,5765 0,0000942 -0,183185 
0,5 BTQR 10,78099 0,0051228 3,99758 0,00788 0,09874 

BALTQR 7,20972 0,0052409 4,19531 0,00807 0,1532913 
0,75 BTQR 12,549104 0,0108402 6,3792894 0,0148299 0,2289465 

BALTQR 7,7889775 0,010823 6,68544 0,015354 0,2963156 
 

4.2. Comparison of Tobit Quantile Regression and Tobit Quantile Regression with 
Adaptive Lasso Penalty  

Comparison of the goodness of the model in this study will be carried out by finding the 
Mean Absolute Deviation (MAD) in each quantile, which is formulated: 

∑ |𝑦" − 𝑦Dv|*
"()

𝑛  (14) 

The smaller the MAD value, the more accurate the model will be. MAD was calculated using 
R software. Summary of MAD for each quantile in both models is shown in Table 2 below. 

Table 2. Mean Absolute Deviation (MAD) 

Quantile Model MAD 
0,25 BTQR 45,23 

BALTQR 44,95 
0,5 BTQR 35,59 

BALTQR 35,59 
0,75 BTQR 43,85 

BALTQR 43,81 
 



 Rahmawati, F. ET AL 

32 | https://jurnal.unimus.ac.id/index.php/statistik 
   [ DOI: 10.26714/jsunimus.10.2.2022.25-33]  
 

Obtained at the 0.25th and 0.75th quantiles, the Tobit Quantile Regression with Adaptive Lasso 
Penalty model has a smaller MAD than the Tobit Quantile Regression without using a penalty. 
As for the 0.50th quantile, both MAD values are the same. 

5. CONCLUSION 
Based on the value of Mean Absolute Deviation, in the case of Household Expenditure 

for Cigarette Consumption, Tobit Quantile Regression with Adaptive Lasso Penalty produces 
better parameter estimates than Tobit Quantile Regression at quantiles 0.25 and 0.75. Further 
research can develop the model by replacing the Adaptive Lasso penalty with another penalty 
such as Ridge or Elastic Net and using a larger data set. 
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