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Introduction	
Dengue	Hemorrhagic	Fever	(DHF)	is	an	infection	caused	by	the	Dengue	Virus	(Windawati	et	al.,	
2020).	There	are	two	living	populations	that	play	a	role	in	the	spread	of	DHF,	namely	humans	and	
mosquitoes	 that	 carry	 the	 dengue	 virus	 (Sabran	 &	 Jannah,	 2020).	 Dengue	 is	 a	 viral	 disease	
transmitted	by	Aedes	mosquitoes,	namely	mosquitoes	which	annually	cause	infection	of	nearly	390	
million	humans	(Iin	et	al.,	2020).	There	are	several	types	that	transmit	the	dengue	virus,	including	
Aedes	aegypti	and	Aedes	albopictus	(Dania,	2016).	DHF	has	symptoms	similar	to	dengue	fever,	but	
DHF	has	additional	symptoms	such	as	pain	in	the	pit	of	the	stomach,	bleeding	in	the	nose,	mouth,	
and	gums,	or	bruising	on	the	skin	(Ministry	of	Health,	2017).	

The	spread	of	DHF	can	be	studied	 through	mathematical	modeling.	Various	mathematical	
models	of	DHF	have	been	studied	by	several	researchers,	as	 in	(Onyejekwe	et	al.,	2019,	Khan	&	
Fatmawati,	2021)	Onyejekwe	et	al	by	applying	optimal	control	theory.	In	this	study,	prevention	of	
DHF	was	carried	out	by	educating	the	public	and	treating	it.	In	this	study	it	is	also	assumed	that	
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	 Dengue	 hemorrhagic	 fever	 (DHF)	 is	 an	 infection	 caused	 by	 the	
dengue	virus	which	is	transmitted	by	the	Aedes	aegypti	mosquito.	In	
this	 paper,	 a	model	 of	 the	 spread	 of	 dengue	 disease	 is	 developed	
using	 optimal	 control	 theory	 by	 dividing	 the	 population	 into	
Susceptible,	 Exposed,	 Infected,	 and	 Recovered	 (SEIR)	 sub-
populations.	The	Pontryagin	minimum	principle	of	the	fourth-order	
Runge-Kutta	method	 is	used	 in	 the	model	of	 the	spread	of	dengue	
disease	by	incorporating	control	factors	in	the	form	of	education	and	
vaccination	of	susceptible	human	populations,	as	well	as	treatment	
of	 infected	human	populations.	Optimum	control	aims	to	minimize	
the	infected	human	population	in	order	to	reduce	the	spread	of	DHF.	
Simulations	were	carried	out	for	two	cases,	namely	when	the	basic	
reproduction	number	R!		is	less	than	one	for	disease-free	conditions	
and	R!	greater	than	one	for	endemic	conditions.	Based	on	numerical	
simulations	of	the	SEIR	epidemic	model	with	controls,	it	results	that	
the	optimal	strategy	is	achieved	if	education	controls,	vaccinations,	
and	medication	are	used.		
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someone	who	is	 infected	with	DHF	can	transmit	the	disease	 if	he	comes	into	contact	with	other	
individuals.	Every	individual	in	the	population	has	the	same	chance	of	being	infected	(Onyejekwe	
et	al.,	2019).	However,	this	study	did	not	involve	a	vaccination	control.	One	method	to	prevent	the	
spread	of	DHF	is	by	vaccination	(Chamnan	et	al.,	2021).	Currently,	there	is	no	antiviral	treatment	
for	dengue,	so	future	hope	for	dengue	control	rests	with	the	development	of	an	effective	dengue	
vaccine.	One	of	the	DHF	vaccine	candidates	is	the	CYD-TDV	vaccine	which	is	a	recombinant	vaccine,	
namely	a	vaccine	that	only	uses	a	portion	of	the	viral	DNA	and	was	developed	by	combining	the	
DNA	of	other	organisms,	containing	live	attenuated	tetravalent	dengue	virus	(Dorigatti	et	al.,	2015).	
Then	another	study	was	conducted	by	Khan	et	al.	In	this	study,	an	analysis	of	the	stability	of	the	
model	 for	 the	 spread	 of	 DHF	was	 carried	 out	 in	 endemic	 and	 disease-free	 conditions	 (Khan	&	
Fatmawati,	2021).	

Optimal	control	theory	was	developed	to	find	the	optimal	way	to	control	dynamic	systems	
(Sethi,	2019).	 In	 this	 study,	we	will	 analyze	 the	SEIR	(Susceptible-Exposed-Infected-Recovered)	
epidemic	 model	 on	 the	 spread	 of	 DHF	 by	 providing	 educational	 controls,	 vaccinations,	 and	
medication	to	minimize	individuals	infected	with	the	disease	using	optimal	control	theory.	

Method		
We	analyze	the	optimal	control	problem	in	the	SEIR-type	DFH	epidemic	model	in	the	following	step:	
first,	we	determine	the	SEIR	epidemic	model	on	the	spread	of	DHF.	Then	the	equilibrium	point	will	
be	determined	and	 the	model	will	 be	 linearized	using	 the	 Jacobian	matrix	 and	 its	 stability.	The	
model	 that	 has	 been	 formed,	 is	 developed	 by	 adding	 three	 control	 factors,	 namely	 education,	
vaccination,	 and	medication.	 After	 that,	 the	 objective	 function	will	 be	 determined	 based	 on	 the	
Pontryagin	minimum	principle.	 After	 that,	 the	 state	 and	 costate	 equations	 and	 their	 stationary	
conditions	are	formed.	Furthermore,	the	model	will	be	simulated	with	Matlab	software	with	the	
appropriate	parameters	to	see	a	comparison	of	the	system	without	control	and	with	control.	

Results	and	discussion	

The	model	

To	 construct	 the	 DHF	 model,	 the	 population	 is	 divided	 into	 four	 sub-populations,	 namely	
Susceptible	^𝑆(𝑡)a,		Exposed	^𝐸(𝑡)a,	Infected	^𝐼(𝑡)a	,	and	Recovered	^𝑅(𝑡)a.	The	total	population	is	
𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡).	The	compartment	diagram	is	presented	in	Figure	1.	

	
Figure	1.	schematic	compartment	diagram	

	
	
Based	on	Figure	1,	we	have	 a	mathematical	model	 in	 the	 form	of	 a	 system	of	differential	

equations	as	follows.	
𝑑𝑆(𝑡)
𝑑𝑡

= ΛN(t) − 𝛽
𝐼(𝑡)
𝑁(𝑡)

𝑆(𝑡) − 𝜇!𝑆(𝑡)	

																								 	 "#(%)
"%

= 𝛽 '(%)
((%)

𝑆(𝑡) − 𝜇!𝐸(𝑡) − 𝛿𝐸(𝑡)	 				 	 														(1)	
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𝑑𝐼(𝑡)
𝑑𝑡

= 𝛿𝐸(𝑡) − (𝜇! + 𝜇" + 𝛾)𝐼(𝑡)				

𝑑𝑅(𝑡)
𝑑𝑡

= 𝛾𝐼(𝑡) − 𝜇!𝑅(𝑡).																									

To	simplify	the	model,	we	normalize	the	model	in	Equation	(1).	In	conditions	where	the	total	
population	𝑁(𝑡)	 is	not	constant,	 consider	 the	proportion	of	each	 individual	compartment	 in	 the	
population,		

𝑠 =
𝑆
𝑁
, 𝑒 =

𝐸
𝑁
, 𝑖 =

𝐼
𝑁
, 𝑟 =

𝑅
𝑁
,	

	
where	N	denotes	the	total	human	population.	This	variable	represents	the	proportion	of	the	total	
population	of	each	compartment	in	population	N.	If	these	variables	are	substituted	into	the	model	
of	Equation	(1),	we	get	the	following	equation	(See	Table	1	for	the	parameters).	

𝑑𝑠(𝑡)
𝑑𝑡

= Λ − 𝛽𝑖𝑠 − 𝜇!𝑠	
")(%)
"%

= 𝛽𝑖𝑠 − 𝜇!𝑒 − 𝛿𝑒		 	 	 	 (2)	
𝑑𝑖(𝑡)
𝑑𝑡

= 𝛿𝑒 − (𝜇! + 𝜇" + 𝛾)𝑖	

𝑑𝑟(𝑡)
𝑑𝑡

= 𝛾𝑖 − 𝜇!𝑟	

	
Table	1.	Parameter	of	the	model	

Parameter	 Meaning	
Λ	 Recruitmen	rate	
𝜇!	 Natural	death	rate	
𝜇" 	 Desease	death	rate	
𝛽	 Transmission	contact	rate	
𝛿	 Exposure	rate	
𝛾	 Recovery	rate	

	

The	existence	of	equilibria	

The	system	expressed	in	Equation	(2)	have	two	equilibrium	points,	i.e.	the	disease-free	equilibrium	
point	 𝑇* = u +

,!
, 0,0,0v.	 By	 applying	 next	 generation	 matrix	 proccedure	 we	 find	 the	 basic	

reproduction	number			

𝑅- =
βΛ𝛿

(𝜇!)(𝜇! + 𝛿)(𝜇! + 𝜇" + 𝛾)
.	

	

We	also	have	the	disease	equilibrium	point	𝑇. = (𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗),	with			𝑠∗ = +
,!0"

,	𝑒∗ = +(0"1*)
(23,!)0"

,	

𝑖∗ = +4(0"1*)
(23,!)(,!3,#35)0"

,	and	𝑟∗ = 6+4(0"1*)
,!(23,!)(,!3,#35)0"

.	

	
The	equilibrium	point	𝑇*	exist	if		R- < 1,	while	the	disease	equilibrium	𝑇.	will	exist	if		𝑅- > 1.	

For	stability	of	equilibrium	point.	We	have	the	following	theorem.	
	
Theorem	1.	 The	 disease-free	 equilibrium	point	 𝑇*	 is	 locally	 asymptotically	 stable	 if	 𝑅- < 1	 and	
unstable	if	𝑅- > 1.	
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Proof.	
The	Jacobian	matrix	of	system	(1)	at	𝑇* u

+
,!
, 0,0,0v	is	

𝐽* =

⎣
⎢
⎢
⎢
⎢
⎢
⎡−𝜇! 0 −𝛽 ~

Λ
𝜇!
� 0

0 −𝜇! − 𝛿 𝛽 ~
Λ
𝜇!
� 0

0 𝛿 −𝜇! − 𝜇" − 𝛾 0
0 0 𝛾 −𝜇!⎦

⎥
⎥
⎥
⎥
⎥
⎤

	

which	have	characteristic	polyomial	
𝑝(𝜆) = (𝜆 + 𝜇!)(𝜆 + 𝜇!)[𝜆. + (2𝜇! + 𝜇" + 𝛾 + 𝛿)𝜆 + (𝜇! + 𝛿)(𝜇! + 𝜇" + 𝛾)(1 − 𝑅-)] = 0										(3)	

	
The	roots	of	Equation	(3)	are	𝜆* = 𝜆. = −𝜇!	and	the	other	two	roots	will	have	a	negative	real	

part	 if	 𝑅- < 1.	 Hence,	 𝑇*	 is	 locally	 aymptotically	 stable	 if	 𝑅- < 1	 and	 unstable	 if	 𝑅- > 1.	 These	
completes	the	proof.	

		
Theorem	 2.	 The	 disease	 equilibrium	 point	 𝑇. = (𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗)	 is	 locally	 asymptotically	 stable	 if	
𝑚*, 𝑚., 𝑚7 > 0	and	𝑚*𝑚. −𝑚7 > 0,	where	𝑚*, 𝑚., 𝑚7	explained	in	the	proof.	
Proof.	
The	Jacobian	matrix	system	(2)	at		𝑇.(𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗)	is	

𝐽(𝑇.) =
�

�
𝜆 +

βΛδ
(𝛿 + 𝜇!)(𝜇! + 𝜇" + 𝛾)

0
(𝛿 + 𝜇!)(𝜇! + 𝜇" + 𝛾)

𝛿 0

−βΛδ
(𝛿 + 𝜇!)(𝜇! + 𝜇" + 𝛾)

+ 𝜇! 𝜆 + (𝜇! + 𝛿) −
(𝛿 + 𝜇!)(𝜇! + 𝜇" + 𝛾)

𝛿 0

0 −𝛿 𝜆 + (𝜇! + 𝜇" + 𝛾) 0
0 0 −𝛾 𝜆 + 𝜇!

�

�
	

which	have	characteristic	equation	
	

(𝜆* + 𝜇!)(𝜆7 +𝑚*𝜆. +𝑚.𝜆 +𝑚7) = 0						 	 	 	 	 	 	 (4)	
	
where	

𝑚* = (𝜇! + 𝜇" + 𝛾) + (𝜇! + 𝛿) +
βΛδ

(𝛿 + 𝜇!)(𝜇! + 𝜇" + 𝛾)
	

𝑚. =
βΛδ

(𝜇! + 𝜇" + 𝛾)
+

βΛδ
(𝛿 + 𝜇!)

	

𝑚7 = βΛδ − 𝜇!(𝛿 + 𝜇!)(𝜇! + 𝜇" + 𝛾)	
	
Acording	to	Routh-Hurwitz	criteria,	all	roots	of	(4)	have	a	negative	real	part	if	𝑚*, 𝑚., 𝑚7 >

0,		and	𝑚*𝑚. −𝑚7 > 0.	Hence,	𝑇.(𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗)	is	locally	asymptotically	stable	if	𝑚*, 𝑚., 𝑚7 > 0	and	
𝑚*𝑚. −𝑚7 > 0.	

Formulation	of	optimal	control	problem	
In	 this	 section	we	reformulates	an	optimal	control	problems	of	 system	(2).	We	use	 two	control	
functions	𝑢*(𝑡),	𝑢.(𝑡),	and	𝑢7(𝑡)	which	represents	the	number	of	susceptible	individuals	who	are	
given	education,	vaccination	and	the	number	of	infected	individuals	receiving	treatment	at	time	𝑡,	
respectively.	The	correponding	system	is		
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𝑑𝑠
𝑑𝑡
= Λ − 𝛽𝑖𝑠 − 𝜇!𝑠 − 𝑢*𝑠 − 𝑢.𝑠	

																					 	 	 				")
"%
= 𝛽𝑖𝑠 − 𝜇!𝑒 − 𝛿𝑒	 	 	 	 	 (5)	

𝑑𝑖
𝑑𝑡
= 𝛿𝑒 − (𝜇! + 𝜇" + 𝑢7 + 𝛾)𝑖	

𝑑𝑟
𝑑𝑡
= 𝛾𝑖 − 𝜇!𝑟 + 𝑢*𝑠 + 𝑢.𝑠 + 𝑢7𝑖.	

	
The	use	of	optimal	control	theory	aims	to	minimize	the	number	of	populations	infected	with	

the	disease	so	that	it	is	minimum	at	the	end	of	time	𝑡	with	the	following	objective	function	

		 	 	 	𝐽(𝑢*, 𝑢., 𝑢7) = ∫ ~𝐴 + *
.
(𝐵*𝑢*. + 𝐵.𝑢.. + 𝐵7𝑢7.)� 𝑑𝑡

%$
%"

,	 	 	 (6)	

where	A	is	a	balancing	factor	for	costs	due	to	infection	and	𝐵*, 𝐵.,	and	𝐵7,	each	of	which	is	the	cost	
of	education,	vaccination,	and	treatment	with	𝑡 ∈ [0, 𝑡8].	

Then,	 we	 apply	 the	 optimal	 control	 theory	 to	 determine	 the	 optimal	 strategies	 𝑢	 and	
maximizing	the	objective	functional	(6)	subject	to	system	(5)	such	that	

𝐽(�̇�*, �̇�., �̇�7) = min 𝐽 (𝑢*, 𝑢., 𝑢7)|𝑢*, 𝑢., 𝑢7 ∈ 𝑢	
where	
𝑢 = {^𝑢*(𝑡), 𝑢.(𝑡), 𝑢7(𝑡)a: 𝑎9 ≤ ^𝑢*(𝑡), 𝑢.(𝑡), 𝑢7(𝑡)a ≤ 𝑏9, 𝑝 = 1,2,3	, 𝑡 ∈ �0, 𝑡8�}	

	 	
The	 optimal	 control	 problem	 is	 solved	 by	 satisfying	 the	 conditions	 on	 the	 Pontryagin	

minimum	principle.	We	get		

𝐻(𝑥, 𝑢, 𝜆) = 𝐴𝑖 +
1
2
(𝐵*𝑢*. + 𝐵.𝑢.. + 𝐵7𝑢7.) + 𝜆*(Λ − 𝛽𝑖𝑠 − 𝜇!𝑠 − 𝑢*𝑠 − 𝑢.𝑠) + 𝜆.(𝛽𝑖𝑠 − 𝜇!𝑒 − 𝛿𝑒)

+ 𝜆7(𝛿𝑒 − (𝜇! + 𝜇" + 𝑢7 + 𝛾)𝑖) + 𝜆:(𝛾𝑖 − 𝜇!𝑟 + 𝑢*𝑠 + 𝑢.𝑠 + 𝑢7𝑖)	
	

where	(𝜆*, 𝜆., 𝜆7, 𝜆:)	are	costate	variables	associated	with	the	state	variables		(𝑠, 𝑒, 𝑖, 𝑟).		
	
Next,	 according	 to	 Pontryagin's	minimum	 principle,	 the	 Hamiltonian	 function	 reaches	 an	

optimal	solution	if	it	satisfies	the	following	conditions.	
1. Stationer	condition	for	control	𝑢(𝑡):	

	
𝜕𝐻
𝜕𝑢*

= 0	 ⇔	 𝐵*𝑢* − 𝜆*𝑠 + 𝜆:𝑠	 = 0	

	 ⇔	 𝑢*	 =
(𝜆* − 𝜆:)𝑠

𝐵*
	

𝜕𝐻
𝜕𝑢.

= 0	 ⇔	 𝐵.𝑢. − 𝜆*𝑠 + 𝜆:𝑠	 = 0	

	 ⇔	 𝑢.	 =
(𝜆* − 𝜆:)𝑠

𝐵.
	

𝜕𝐻
𝜕𝑢7

= 0	 ⇔	 𝐵7𝑢7 − 𝜆7𝑖 + 𝜆:𝑖	 = 0	

	 ⇔	 𝑢7	 =
(𝜆7 − 𝜆:)𝑖

𝐵7
	

Hence,	we	have		
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𝑢* =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0																															, if	

(𝜆* − 𝜆:)𝑠
𝐵*

< 0

(𝜆* − 𝜆:)𝑠
𝐵*

													 , if		
(𝜆* − 𝜆:)𝑠

𝐵*
= 0

𝑢*;<=																												, if		
(𝜆* − 𝜆:)𝑠

𝐵*
> 0

	

𝑢. =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0																																, if		

(𝜆* − 𝜆:)𝑠
𝐵.

< 0

(𝜆* − 𝜆:)𝑠
𝐵.

													 , if		
(𝜆* − 𝜆:)𝑠

𝐵.
= 0

𝑢.;<=																												, if		
(𝜆* − 𝜆:)𝑠

𝐵.
> 0

	

𝑢7 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0																																, if		

(𝜆7 − 𝜆:)𝑖
𝐵7

< 0

(𝜆7 − 𝜆:)𝑖
𝐵7

													 , if		
(𝜆7 − 𝜆:)𝑖

𝐵7
= 0

𝑢7;<=																												, if		
(𝜆7 − 𝜆:)𝑖

𝐵7
> 0,

	

So	the	optimal	control	𝑢∗	can	also	characterize	by		

𝑢* = min ~max ~0;
(𝜆* − 𝜆:)𝑠

𝐵*
� ; 𝑢*;<=�	

𝑢. = min ~max ~0;
(𝜆* − 𝜆:)𝑠

𝐵.
� ; 𝑢.;<=�	

𝑢7 = min ~max ~0;
(𝜆7 − 𝜆:)𝑖

𝐵7
� ; 𝑢7;<=�.	

	
2. State	equations	

𝜕𝐻
𝜕𝜆*

= Λ − 𝛽𝑖𝑠 − 𝜇!𝑠 − 𝑢*𝑠 − 𝑢.𝑠	

𝜕𝐻
𝜕𝜆.

= 𝛽𝑖𝑠 − 𝜇!𝑒 − 𝛿𝑒	

𝜕𝐻
𝜕𝜆7

= 𝛿𝑒 − (𝜇! + 𝜇" + 𝑢7 + 𝛾)𝑖	

𝜕𝐻
𝜕𝜆:

= 𝛾𝑖 − 𝜇!𝑟 + 𝑢*𝑠 + 𝑢.𝑠 + 𝑢7𝑖	

(7)	

3. Costate	equation	
𝜕𝐻
𝜕𝑠

= 𝜆*(𝛽𝑖 + 𝜇! + 𝑢* + 𝑢.) − 𝜆.𝛽𝑖 − 𝜆:(𝑢* + 𝑢.)					

𝜕𝐻
𝜕𝑒

= 𝜆.(𝜇! + 𝛿) − 𝜆7𝛿	
𝜕𝐻
𝜕𝑖 = −𝐴 + 𝜆%𝛽𝑠 − 𝜆&𝛽𝑠 + 𝜆'(𝜇( + 𝜇) + 𝑢' + 𝛾) − 𝜆*(𝑢' + 𝛾)	
>?
>@
= 𝜆:𝜇!.		

(8)	

Numerical	simulations	
In	 this	 section	 we	 gives	 some	 numerical	 simulation	 to	 observe	 the	 optimal	 trajectories	 of	 the	
optimal	system.	We	simulate	several	strategies	as	follows.	
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Strategy	I	
Only	education	as	a	control	strategy,	so	only	𝑢*	as	the	control	variable.	Figure	2	shows	the	impact	
of	education	on	the	populatin	size.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	2.	Proportion	of	 the	number	of	 susceptible,	exposed,	 infected,	and	recovered	with	and	
without	education.	

	

	
Figure	3.		Control	profile	for	Strategy	I.	

	
In	Figure	2,	it	can	be	seen	that	when	there	is	no	control,	the	susceptible,	exposed,	infected,	

and	recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	
given	 educational	 controls,	 the	 susceptible,	 exposed,	 infected,	 and	 recovered	 populations	were	
69.40%;	1.48%;	1.13%;	and	25.39%.	Furthermore,	the	graph	of	the	educational	control	function	
can	be	seen	in	Figure	3.	In	Figure	3,	from	the	first	day	education	was	given,	then	on	the	250th	day	
the	 intensity	of	 the	education	given	began	to	decrease	sharply	 in	order	 to	save	costs.	When	the	
300th	day,	education	is	no	longer	given.	This	is	possible	because	when	people	are	given	education,	
people	start	to	become	aware	of	the	dangers	of	DHF.	

	



	BAMME	Vol.	2	No.	2,	October	2022,	pp.	65-78									 	

72																																																																																																																	 																							10.12928/bamme.v2i2.7617	
	

Strategy	II			
The	 control	 strategy	 in	 strategy	 II	 is	 a	 strategy	 that	 considers	 education	 and	 vaccination.	 The	
simulation	is	shown	in	Figure	4.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	 4.	 Proportion	 of	 the	 number	 of	 susceptible,	 exposed,	 infected,	 and	 recovered	 with	
education	&	vaccination	and	without	education	&	vaccination	
	

	
Figure	5.	Control	profile	for	Strategy	II	

	
In	Figure	4,	it	can	be	seen	that	when	there	is	no	control,	the	susceptible,	exposed,	infected,	

and	recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	
given	 educational	 controls	 and	 vaccinations,	 the	 susceptible,	 exposed,	 infected,	 and	 recovered	
populations	were	72.65%;	0.71%;	0.56%;	and	28.72%.	Furthermore,	control	profile	for	Strategy	II,	
the	use	of	 education	and	vaccination	control	 functions	 can	be	 seen	 in	Figure	5.	 In	Figure	5,	 the	
community	is	given	education	and	vaccination	simultaneously.	It	can	be	seen	that	on	the	200th	day,	
the	provision	of	education	and	vaccination	began	to	decrease	sharply	so	as	to	save	costs.	This	is	
possible	because	people	are	starting	to	become	aware	of	the	dangers	of	DHF	and	have	strong	body	
immunity.	
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Strategy	III	
The	 control	 strategy	 in	 strategy	 III	 is	 a	 strategy	 that	 considers	 education	 and	 treatment.	 The	
numerical	simulation	is	shown	in	Figure	6.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	6.	The	proportion	of	 the	number	of	susceptible,	exposed,	 infected,	and	recovered	with	
education	&	treatment	and	without	education	&	treatment.	
	

	
Figure	7.	Control	profiles	for	Strategy	III.	

	
In	Figure	6	it	can	be	seen	that	when	there	is	no	control,	the	susceptible,	exposed,	infected,	and	

recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	given	
educational	control	and	vaccination,	the	susceptible,	exposed,	infected,	and	recovered	populations	
were	 70.73%;	 1.21%;	 0.92%;	 and	 26.56%.	 The	 graphs	 of	 the	 education	 and	 treatment	 control	
functions	 can	be	 seen	 in	Figure	6.	 In	Figure	7	 the	 community	 is	 given	education	and	 treatment	
simultaneously.	 It	 can	 be	 seen	 that	 the	 intensity	 of	 providing	 education	 and	 treatment	 has	
decreased	so	as	to	save	costs.	This	is	possible	because	people	are	starting	to	become	aware	of	the	
dangers	of	DHF	and	those	infected	have	recovered.		
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Strategi	IV	
The	 control	 strategy	 for	 strategy	 IV	 is	 a	 strategy	 that	 only	 considers	 vaccination.	 Strategy	 IV	
simulation	is	shown	in	Figure	8.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	8.	 	Proportion	of	the	number	of	susceptible,	exposed,	 infected,	and	recovered	with	and	
without	vaccination.	
	

	
Figure	9.	Control	profile	for	Strategy	IV.	

	
From	Figure	8,	we	can	see	that	when	there	is	no	control,	the	susceptible,	exposed,	infected,	

and	recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	
given	 educational	 controls	 and	 vaccinations,	 the	 susceptible,	 exposed,	 infected,	 and	 recovered	
populations	 were	 69.40%;	 1.48%;	 1.13%;	 and	 25.39%.	 The	 graph	 of	 the	 vaccination	 control	
function	can	be	seen	in	Figure	9.	In	Figure	9	since	the	first	day	of	vaccination,	then	on	the	250th	day	
the	intensity	of	the	vaccination	given	begins	to	decrease	sharply	in	order	to	save	costs.	On	day	300,	
vaccination	is	not	given.	This	is	possible	because	when	people	are	vaccinated,	people	have	strong	
body	immunity.	
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Strategi	V	
Strategy	V	is	a	strategy	that	only	considers	treatment.	The	numerical	simulation	is	shown	in	Figure	
10.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	10.	Proportion	of	the	number	of	susceptible,	exposed,	infected,	and	recovered	with	and	
without	treatment.	
	

	
Figure	11	Control	profiles	for	Strategy	V.	

	
In	Figure	10,	it	can	be	seen	that	when	there	is	no	control,	the	susceptible,	exposed,	infected,	

and	recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	
given	 educational	 controls	 and	 vaccinations,	 the	 susceptible,	 exposed,	 infected,	 and	 recovered	
populations	were	69.09%;	2.55%;	1.88%;	and	19.91%.	Furthermore,	the	graph	of	the	treatment	
control	function	can	be	seen	in	Figure	11.	In	Figure	11,	we	can	see	that	on	day	280	the	intensity	of	
the	 treatment	given	began	 to	decrease	 sharply	 in	order	 to	 save	 costs.	When	 the	300th	day,	 the	
treatment	 is	 no	 longer	 given.	 This	 is	 possible	 because	 when	 the	 infected	 community	 is	 given	
treatment,	the	community	recovers	from	DHF.	
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Strategy	VI	
The	control	 strategy	 in	 strategy	VI	 is	 a	 strategy	 that	 considers	vaccination	and	medication.	The	
numerical	simulation	is	shown	in	Figure	12.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	 12.	 Proportion	 of	 the	 number	 of	 susceptible,	 exposed,	 infected,	 and	 recovered	 with	
vaccination	&	treatment	and	without	vaccination	&	treatment.	
	

	
Figure	13.	Control	profiles	for	Strategy	VI	

	
In	Figure	12,	it	can	be	seen	that	when	there	is	no	control,	the	susceptible,	exposed,	infected,	

and	recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	
given	 educational	 controls	 and	 vaccinations,	 the	 susceptible,	 exposed,	 infected,	 and	 recovered	
populations	were	70.22%;	1.41%;	1.07%;	and	25%.	Then,	the	graph	of	the	function	of	vaccination	
and	treatment	control	can	be	seen	in	Figure	13.	In	Figure	13	the	community	is	given	vaccination	
and	treatment	simultaneously.	It	can	be	seen	that	the	intensity	of	vaccination	and	treatment	has	
decreased	so	as	to	save	costs.	This	is	possible	because	the	community	has	strong	body	immunity	
against	DHF	and	the	infected	people	have	recovered.	
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Strategy	VII	
The	 control	 strategy	 in	 strategy	 VII	 is	 a	 strategy	 that	 considers	 education,	 vaccination,	 and	
medication.	The	numerical	simulation	is	shown	in	Figure	14.	
	

	
(a)	

	
(b)	

	
(c)	

	
(d)	

Figure	14.		The	proportion	of	the	number	of	susceptible,	exposed,	infected,	and	recovered	with	
education,	vaccination	&	treatment	and	without	education,	vaccination	&	treatment.	
	

Figure	 14	 shows	 that	 when	 there	 is	 no	 control,	 the	 susceptible,	 exposed,	 infected,	 and	
recovered	populations	are	53.69%	respectively;	9.23%;	6.89%;	and	18.91%.	Then	after	being	given	
educational	 controls	 and	 vaccinations,	 the	 susceptible,	 exposed,	 infected,	 and	 recovered	
populations	were	73.35%;	0.67%;	0.52%;	and	28.20%.	Then,	the	graphs	of	education,	vaccination,	
and	treatment	control	functions	can	be	seen	in	Figure	15.	

	

	
Figure15.	Control	profile	for	Strategy	VII	

	
Figure	 15	 shows	 that	 the	 community	 is	 given	 education,	 vaccination	 and	 treatment	

simultaneously.	 It	 can	 be	 seen	 that	 the	 provision	 of	 education,	 vaccination,	 and	 treatment	 is	
decreasing,	so	it	can	save	costs.	This	is	possible	because	people	are	starting	to	become	aware	of	the	
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dangers	of	DHF,	have	strong	body	immunity,	and	people	who	are	infected	recover	from	the	disease.	

Conclusion	
The	mathematical	model	for	the	spread	of	DHF	used	in	this	paper	is	the	SEIR	(Susceptible-Exposed-
Infected-Recovered)	model.	Based	on	this	model,	two	equilibrium	points	are	obtained,	namely	𝑇*	
and	𝑇..	Stability	analysis	was	carried	out	at	both	of	these	equilibrium	points	and	it	was	concluded	
that	the	equilibrium	points	𝑇*	and	𝑇.	were	locally	asymptotically	stable.	The	control	that	has	the	
most	influence	on	the	spread	of	DHF	obtained	in	this	paper	is	educational	control.	Then,	the	infected	
population	will	decrease	more	rapidly	when	educational	controls,	vaccinations,	and	medication	are	
used.	For	the	future	research,	global	stability	analysis	can	be	carried	out	on	the	model.	Then,	for	
optimal	control	of	the	spread	of	DHF	can	be	developed	using	other	methods.	

References	
Chamnan,	A.,	Pongsumpun,	P.,	Tang,	I.,	&	Wongvanich,	N.	(2021).	Local	and	Global	Stability	Analysis	

of	Dengue	Disease	with	Vaccination	and	Optimal	Control.	13,	1–24.	
Dania,	I.	A.	(2016).	Gambaran	Penyakit	dan	Vektor	Demam	Berdarah	Dengue	(DBD).	Majalah	Ilmiah		

Warta	Dharmawangsa,	Edisi	48,	1–14.	
Dorigatti,	I.,	Aguas,	R.,	Donnelly,	C.	A.,	Guy,	B.,	Coudeville,	L.,	Jackson,	N.,	Saville,	M.,	&	Ferguson,	N.	

M.	 (2015).	 Modelling	 the	 immunological	 response	 to	 a	 tetravalent	 dengue	 vaccine	 from	
multiple	phase-2	trials	in	Latin	America	and	South	East	Asia.	Vaccine,	33(31),	3746–3751.	
https://doi.org/10.1016/j.vaccine.2015.05.059	

Iin,	N.	K.,	Yulianti,	D.	L.,	Luron,	N.	G.,	Pomalingo,	S.	F.,	Noviana,	W.,	&	Hidaya,	N.	(2020).	Keterkaitan	
Antara	Kondisi	Lingkungan	Dan	Perilaku	Masyarakat	Terhadap	Keberadaan	Vektor	Demam	
Berdarah	 Dengue	 (DBD).	 Journal	 of	 Borneo	 Holistic	 Health,	 3(2),	 75–85.	
https://doi.org/10.35334/borticalth.v3i2.1506	

Ministry	of	Health.	(2017).	Situasi	Penyakit	Demam	Berdarah	di	Indonesia	Tahun	2017	(pp.	1–7).	
Khan,	M.	A.,	&	Fatmawati.	(2021).	Dengue	infection	modeling	and	its	optimal	control	analysis	in		

East	Java,	Indonesia.	Heliyon,	7,	e06023.	https://doi.org/10.1016/j.heliyon.2021.e06023	
Onyejekwe,	O.	O.,	Tigabie,	A.,	Ambachew,	B.,	&	Alemu,	A.	(2019).	Application	of	Optimal	Control	to	

the	 Epidemiology	 of	 Dengue	 Fever	 Transmission.	 7,	 148–165.	
https://doi.org/10.4236/jamp.2019.71013	

Sabran,	L.	O.,	&	Jannah,	M.	(2020).	Model	Matematika	SEIRS-SEI	pada	Penyebaran	Penyakit	Demam		
Berdarah	Dengue	dengan	Pengaruh	Suhu.	MAP,	66–78.	

Sethi,	S.	P.	(2019).	What	Is	Optimal	Control	Theory?	Optimal	Control	Theory,	1–26.		
https://doi.org/10.1007/978-3-319-98237-3_1	

Windawati,	S.,	Shodiqin,	A.,	&	Aini,	A.	N.	(2020).	Analisis	Kestabilan	Model	Matematika	Penyebaran		
Penyakit	Demam	Berdarah	dengan	Pengaruh	Fogging.	2(1),	1–16.	
	

	
	
 


