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Abstract - The German Tank Problem dates back to World War II when the Allies used
a statistical approach to estimate the number of enemy tanks produced or on the field from
observed serial numbers after battles. Assuming that the tanks are labeled consecutively
starting from 1, if we observe k tanks from a total of N tanks with the maximum observed
tank being m, then the best estimate for N is m(1 + 1/k) − 1. We refer to an estimate
as ’best’ when the estimate is closest to the actual number of tanks. We explore many
generalizations; first, we looked at the discrete and continuous one-dimensional case. We
attempted to improve the original formula by using different estimators such as the second
largest and Lth largest tank, and applied motivation from portfolio theory by seeing if a
weighted average of different estimators would produce less variance; however, the original
formula, using the largest tank proved to be the best; the continuous case was similar.
Then, we looked at the discrete and continuous square and circle variants where we pick
pairs instead of points, which were more complex as we dealt with problems in geometry and
number theory, such as dealing with curvature issues in the circle, and the problem that not
every number is representable as a sum of two squares. In some cases, when we could not
derive precise formulas, we derived approximate formulas. For the discrete and continuous
square, we tested various statistics, but found that the largest observed component of our
pairs is the best statistic to look at; the scaling factor for both cases is (2k + 1)/2k. For the
circle we used motivation from the equation of a circle; for the continuous case, we looked
at
√
X2 + Y 2 and for the discrete case, we looked at X2 +Y 2 and took a square root at the

end to estimate for r. Interestingly, the scaling factors, a number, generally a little greater
than 1, that we multiplied to scale up to get our estimation, were different for the cases.
Lastly, we generalized the problem into L dimensional squares and circles. The discrete and
continuous square proved to be similar to the two-dimensional square problem. However,
for the Lth dimensional circle, we had to use formulas for the volume of the L-ball, and
had to approximate the number of lattice points inside it. The discrete circle formula was
particularly interesting, as there was no L dependence in the formula.

Keywords : German Tank Problem; uniform distribution; discrete setting; continuous
setting
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1 Introduction

We study a problem where we are given some information about observations, and we
have to estimate the number of objects. The motivation comes from the German Tank
problem, a classic problem in probability. During World War II, Germans used powerful
tanks to their advantage. To develop appropriate military strategies against the Germans,
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the Allies had to estimate the number of tanks on various battlefields. Initially, spies were
used. However, using statistical estimates proved to be more accurate; see [7] for a history
of the problem, and [12] for additional details and a solution through a Bayesian approach.
During battles, the Allies realized that the destroyed or captured tanks had serial numbers
and that they could reverse engineer and use these to their advantage. Assuming that
the serial numbers are consecutive1 and started from 1, the statisticians came up with a
formula using the largest observed tank mk and the number of tanks observed k to make
a estimate for N , which we denote N̂ :

N̂ = mk

(
1 +

1

k

)
− 1. (1)

This formula proved to be effective. A comparison between the actual and estimated
production rate of tanks from [1] shows how accurate this formula was: while the intelli-
gence estimated that Germans were producing 1,400 tanks per month, using the formula,
the statisticians estimated that Germans were producing 256 tanks per month, and in-
deed, 255 tanks were made! The chart below compares the estimation from the statistical
method and intelligence to the actual number of German Tanks [10].

Figure 1: Statistics vs Intelligence estimates.

We see that the statistical estimate is reasonably similar to the German records.
However, the intelligence estimate is far off from the actual number of tanks. Had the
Allies used the intelligence estimate, their strategy would have misled them as they would
have overly prepared defense to minimize damage from tanks or assigned too many tanks.

The German Tank problem is an excellent example of how statistical inference can be
applied to real world problems. We attempt to generalize the well known German Tank
Problem. Previously, Clark, Gonye, and Miller [2] derived a more general formula where
the smallest serial number is not 1, but the tanks are still numbered consecutively. If the
spread between the smallest and largest observed serial number is s, then their formula
to estimate the number of tanks is

N̂ = s

(
1 +

2

k − 1

)
− 1. (2)

We start by recalling the derivation of the original German tank problem, as we will be
extending those calculations. We then attempt to improve the one-dimensional formula

1It is convenient to have the numbers in order; by looking at the serial number one can often tell
when it was made and thus when it may need certain types of repairs. However, as the previous work
shows, this opens one up to disclosing more information than one would like, and in many applications
now companies use formulas to determine the serial numbers, masking information.
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by looking at different estimators and using motivation from portfolio theory in financial
mathematics: we look at the weighted sums of estimators to see if we can find a new
statistic that has the same mean of its predictions but smaller variance; see Appendix A
for a review of portfolio theory and the construction of such statistics. However, we find
that the original formula does better than formulas from these two approaches.

Generalizing further, we looked at what would happen if we modified some of the
assumptions of the problem. First, we modified the condition that all serial numbers
are consecutive integers and we looked at the standard German Tank Problem in the
continuous setting. The problem changed slightly as we sample k tanks from the range
of 0 to N , but the tanks can be non-integer real numbers. To find the answer of the
question of finding the best estimator for N , we tried various statistics, starting with
some obvious choices such as the largest observed tank, the second largest observed tank,
and the weighted sum. Interestingly, the continuous case turned out to be similar to
the discrete case, as the best statistic to look at in the continuous case was the largest
observed tank, as it produced a formula with the least variance. Furthermore, the scaling
factor, a number, generally a little greater than 1, that we multiplied to scale up to get
our estimation, for the discrete and continuous case were both (k+ 1)/k, which shows the
similarity between the two. Even in the continuous case, the largest observed tank is the
best statistic to study.

Moving on from the one-dimensional case, we generalized the German Tank problem
further into two dimensions, selecting k pairs without replacement. Specifically, we looked
at the square and circle, as we have explicit closed form and asymptotic expressions for
the area and number of lattice points inside. The main strategy of deriving formulas was
using the CDF method for the discrete and continuous case. (See Lemma 2.9 for details.)
Starting from the two-dimensional case, we see geometry involved in the calculations.
For the discrete square, we looked at the square with bottom left vertex at (1, 1) and
upper right vertex at (N,N) and looked at the number of lattice points inside the square.
From inspiration from the one-dimensional problem, we looked at the largest observed
component. Unfortunately, because we get complex closed form expressions that are
difficult to invert, especially in the discrete cases, we approximate by using the main term
and sometimes the second order, which gives us a accurate approximation. The continuous
square problem was easier as calculating integrals was easier than calculating sums. We
set the bottom left vertex as (0, 0) and the upper right vertex as (N,N). We also looked
at the largest observed component for this case too. However, instead of looking at the
number of lattice points as we did in the discrete case, we looked at the area, which was
easier. Interestingly, the scaling factor for both the discrete and continuous square was
the same, and we state both formulas.

Discrete Square : N̂ =
2k + 1

2k
(m− 1). (3)

Continuous Square : N̂ =
2k + 1

2k
·m. (4)
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After looking at the square problem in the discrete and continuous case, we looked at
the circle problem. For both the discrete and continuous cases, we start with a circle
with center at (0,0) and radius r. The statistics we looked at the for the discrete and
continuous cases were different. For the continuous case, we looked at the largest observed
value of m2 =

√
X2 + Y 2. The motivation comes from the standard form equation of the

circle, which is (x− x1)2 + (y − y1)2 = r2 where (x, y) is the point on the circumference,
r is the radius, and (x1, y1) are the coordinates of the center. We used the CDF method
with areas to calculate the formula.

Before we look at the discrete case, we see that we need to know the number of lattice
points inside a circle with center (0, 0) and radius r. We visit the classic Gauss Circle
problem and use the approximations and denote the error term using Big-O notation to
denote the number of lattice points inside the circle. To solve the discrete case, we looked
at various statistics. First, we looked at the largest observed component, as we were
able to obtain nice formulas in the square problem using the largest observed component.
However, this statistic was too complex as when we used a circle, we had to split the
ranges of the side of the square to see if the square fit in a circle or not. Thus, we decided
that this is not the best statistic to look at. We wanted to look at a statistic similar
to
√
X2 + Y 2, the formula for the radius of the circle, but we had to make sure that the

statistic that we were studying gave only discrete values as outcomes. Therefore, we chose
to look at m = X2 + Y 2 as all values of m are integers. At the end, we have to take the
square root of m because now, we are essentially estimating for m2. Another complication
that arises in this problem is that X2 + Y 2 ≡ 0, 1, 2 (mod 4). We explain more about
the number theory complication when we derive the formula. Also, because we used an
asymptotic formula for the number of lattice points inside the circle, we weren’t able to
produce an exact formula but one that still gives accurate estimations. We see that the
discrete and continuous formulas are different; see Remark 6.4.

Discrete Circle : r̂ =

√
k + 1

k
(m− 1). (5)

Continuous Circle : r̂ =
2k + 1

2k
·m. (6)

Finally, we generalized the problem into L dimensions. We looked at the Lth dimen-
sional square and the Lth dimensional sphere, also known as the L-ball, in the continuous
and discrete setting. The problem changes slightly as we are selecting k tuples of length
L without replacement. For the discrete and continuous Lth dimensional square cases, we
looked at the largest observed component value from the tuples and derived the formulas.
For the continuous Lth dimensional square, we obtained an exact formula, but for the
discrete Lth dimensional square, we approximated the result using the main term. We see
that the scaling factors for the discrete and continuous setting are the the same.

Discrete L-dim Square : N̂ =
Lk + 1

Lk
(m− 1). (7)
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Continuous L-dim Square : N̂ =
Lk + 1

Lk
·m. (8)

The difficulty is calculating the number of lattice points inside the L-ball. We use the
known formula about the volume of the L-ball, and use this formula to estimate how
many lattice points are contained inside using Big-O notation. For our statistic in the
discrete case, we looked at m = X2

1 +X2
2 + · · ·+X2

L, as this statistic guarantees that all
m values are integer-valued. Then after estimating, we took the square root of m to find
the estimate for r. For the continuous case, we looked at m =

√
X2

1 +X2
2 + · · ·+X2

L

as we are allowed to get real numbers for m values. The continuous L-ball problem was
easier, as we could plug in the equation for the L-ball to get the volume instead of having
to estimate the number of lattice points. We state the formulas we derived:

Discrete L-ball : r̂ =

√
k + 1

k
· (m− 1). (9)

Continuous L-ball : r̂ =
Lk + 1

Lk
·m. (10)

2 Preliminaries

We review some needed results from probability, combinatorics, and integration.

2.1 Probability Review

We list a few standard results from probability; for proofs see for example [9, 11].

Definition 2.1 (Pascal’s Identity) We have(
n+ 1

r

)
=

(
n

r

)
+

(
n

r − 1

)
. (11)

Definition 2.2 (Hockey Stick Identity) We have

n∑
i=r

(
i

r

)
=

(
n+ 1

r + 1

)
. (12)

Definition 2.3 The variance for a random variable X is the average of the squared dif-
ference from the mean, E[X]:

Var(X) := E[(X − E[X])2]. (13)

Lemma 2.4 The variance can be computed by

Var(X) = E[X2] − E[X]2. (14)
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Definition 2.5 For two jointly distributed real valued random variables X and Y , the
covariance is defined as the expected value of the product of their deviations from their
individual expected values:

Cov(X, Y ) := E [(X − E[X]) · (Y − E[Y ])] . (15)

Lemma 2.6 The covariance can be computed by

Cov(X, Y ) = E[XY ]− E[X]E[Y ]. (16)

Theorem 2.7 (Linearity of expectation) Let X1, . . . , Xn be random variables, and let
g1, . . . , gn be functions such that E[|gi(Xi)|] exists and is finite, and let a1, . . . , an be any
real numbers; note the random variables do not have to be independent. Then

E [a1g1(X1) + · · ·+ angn(Xn)] = a1E[g1(X1)] + · · ·+ anE[gn(Xn)]. (17)

Theorem 2.8 (Joint Probability Density Function) Let X1, X2, . . . , Xn be continuous
random variables with densities fX1 , fX2 , . . . , fXn defined on R. The joint density function
of the tuple (X1, . . . , Xn) is a non-negative integrable function fX1,X2,...,Xn such that for
every set S ⊂ Rn we have

Prob((X1, . . . , Xn) ∈ S) =

∫
· · ·
∫
S

fX1,X2,...,Xn(x1, . . . , xn) dx1 · · · dxn, (18)

and

fXi(xi) =

∫ ∞
x1,...,xi−1,xi+1,...,xn=−∞

fX1,X2,...,Xn(x1, . . . , xn)dx1 · · · dxi−1dxi+1 · · · dxn. (19)

For discrete random variables, we can replace integrals with sums.

Definition 2.9 The cumulative distribution function (CDF) of a random variable X with
density f , denoted F , is given by

F (x) := Prob(X ≤ x) =

∫ x

−∞
f(t) dt, for any x ∈ R. (20)

In many situations it is easy to compute the CDF, and thus by using the Fundamental
Theorem of Calculus we can determine the probability density function. In the continuous
case it is the derivative of the CDF, in the discrete case when the values of our random
variable are non-negative integers, then the probability of m is F (m)− F (m− 1).

2.2 Analysis Review

Because many of the terms we encounter are complex and un-invertible, we estimate using
the main term and sometimes the second order term. The following Theorem frequently
provides a good, easily computed bound; see for example [13].
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Theorem 2.10 (Euler-Maclaurin formula) For p a positive integer and a function f(x)
that is p times continuously differentiable on the interval [a, b], we have

b∑
i=a

f(i) =

∫ b

a

f(x) dx+
f(a) + f(b)

2
+

b p
2
c∑

q=1

B2q

(2q)!
(f 2q−1(b)− f 2q−1(a)) +Rp,(21)

and

|Rp| ≤
2ζ(p)

(2π)p

∫ n

m

|f (p)(x)| dx. (22)

The estimation below is needed in computing upper and lower bounds in applications
of the Euler-Maclaurin formula later.

Lemma 2.11 For m,L ≥ 0 and k ≥ 1,(
mLk −mLk−L

(
k(k − 1)

2

))
≤ mL(mL − 1) · · · (mL − (k − 1)) ≤ mLk. (23)

Proof.
The upper bound follow trivially as

mL(mL − 1) · · · (mL − (k − 1)) ≤ (mL)(mL) · · · (mL). (24)

To justify the lower bound, we want to prove the inequality

mL(mL − 1) · · · (mL − (r − 1)) ≥ mLr − r(r − 1)

2
mLr−L. (25)

The base case is satisfied when r = 1 as m2 ≥ m2. We assume that the case when r = k
is true:

mL(mL − 1) · · · (mL − (k − 1)) ≥ mLk − k(k − 1)

2
mLk−L. (26)

We must show it holds when r = k + 1; namely we must show

mL(mL − 1) · · · (mL − k) ≥ mLk+L − (k + 1)k

2
mLk. (27)

This follows immediately by substitution and expansion:

mL(mL − 1) · · · (mL − k) ≥
(
mLk − k(k − 1)

2
mLk−L

)
(mL − k)

≥ mLk+L − k(k + 1)

2
mLk +

k2(k − 2)

2
mLk−L

≥ mLk+L − k(k + 1)

2
mLk. (28)
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�
Finally, in many of our generalizations it is impossible to obtain simple closed form

expressions such as those in the original problem. We thus investigate the large N limit,
and Big-O notation is useful in isolating the main term from lower order terms which
have negligible effect.

Definition 2.12 (Big-O Notation) Suppose f(x) and g(x) are two functions defined on
the real numbers. We write f(x) = O(g(x)) (read “f is Big-O of g”) if there exists a
positive constant C such that |f(x)| ≤ Cg(x) is satisfied for all sufficiently large x.

2.3 Combinatorial Results

We list four useful identities that are needed in later calculations. These are generaliza-
tions of the famous hockey stick identity from Pascal’s triangle; that identity is responsible
for the closed form expression in the original problem, and these identities play a similar
role in our generalizations. The identities can be proved using the hockey stick numerous
times; to see the full proofs, refer to Appendix B.

Identity I: For all k ≥ 0,

k∑
i=0

(
a+ i

a

)(
b+ k − i

b

)
=

(
a+ b+ k + 1

a+ b+ 1

)
. (29)

Identity II: For all N ≥ k,

N∑
m=k

(
m− b
k − c

)
=

(
N − b+ 1

k − c+ 1

)
−
(

k − b
k − c+ 1

)
. (30)

Identity III: For all N ≥ k,

N−a+1∑
m=k−a+1

m

(
m−1
k−a

)(
N−m
a−1

)(
N
k

) =
(N + 1)(k − a+ 1)

k + 1
. (31)

Identity IV: For all N ≥ k,

N−a+1∑
m=k−a+1

m2

(
m−1
k−a

)(
N−m
a−1

)(
N
k

) =
(k − a+ 1)(k − a+ 2)(N + 2)(N + 1)

(k + 2)(k + 1)

− (N + 1)(k − a+ 1)

k + 1
. (32)

the pump journal of undergraduate research 6 (2023), 59–95 66



3 Derivation of Original German Tank Problem

We derive the formula for the original problem where mk represents the largest tank
observed, k the number of tanks observed, and N the number of tanks (numbered consec-

utively from 1 to N). We use N̂ to represent our estimate for the total number of tanks,
N . It is useful to run through this argument before we generalize the inference problem,
and we follow the exposition in [2]. We prove

N̂ = mk

(
1 +

1

k

)
− 1. (33)

We check some extreme cases to see if this formula is reasonable. When we observe just
one tank, the estimation formula is 2m− 1. We expect the mk to be N/2, so multiplying
by 2 is reasonable. When we observe all N tanks (so k = N), the estimation m = N ,
which is also reasonable because we know the number all the tanks. We use Pascal’s
identity and the hockey stick identity frequently in calculations.

3.1 The PDF of the Largest Observed Tank

Let Mk be the random variable for the largest tank observed, and let mk be its observed
value. Thus mk is the largest tank serial number that we observe. Our goal is to find a
formula to estimate N from mk and k. We first compute the PDF for Mk.

Lemma 3.1 For k ≤ mk ≤ n,

Prob(Mk = mk) =

(
mk−1
k−1

)(
N
k

) . (34)

Proof. We know that the total number of ways to select k tanks from N possible tanks
is
(
N
k

)
. If the largest tank we observe is m, then we have to choose k − 1 tanks from

mk − 1 possibilities. Therefore, the probability that the largest tank we observe is mk is(
mk−1
k−1

)
/
(
N
k

)
, thus proving the claim. �

Remark 3.2 It is worth remarking that the process of deriving the formula is different
from the application. In the application, we use tanks we observe, m1,m2, . . . ,mk and
estimate for N by applying the formula. However, when we are deriving the formula, we
use N and k to compute the expected value of Mk, and then we invert the equation to
find the formula for N .

3.2 Derivation

Now we calculate the expected value of MK in order to find an equation with N and k.
To calculate the expected value, we multiply each value of the random variable by its
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probability and add the products. We expand the binomials, and regroup so that we can
use identity III. We find

E[Mk] =
N∑

mk=k

mkProb(Mk = mk) =
N∑

mk=k

mk

(
mk−1
k−1

)(
N
k

) =
k(N + 1)

k + 1
. (35)

Using our formula for Mk as a function of N and k, we invert:

N = E[Mk]

(
k + 1

k

)
− 1. (36)

To obtain our estimate N̂ we substitute the observed mk for E[Mk]:

N̂ = mk

(
k + 1

k

)
− 1. (37)

We see how well the formula does with simulations that gives mean and variance when
we input N and k. We see difference in variance in the two runs; this is because on the
left run, we saw 15 percent of total tanks whereas on the right run, we saw 10 percent of
total tanks, which caused the difference in variance.

Figure 2: Results for formula using largest tank.

4 Estimating With More Tanks

There are two natural approaches to try to improve our prediction for the original problem.
One is to find another estimator; perhaps the mean or median might do better. We pursue
this and investigate statistics derived from the Lth largest tank.

Another approach is to use motivation from portfolio theory; see for example [5].
Imagine we have two independent stocks with the same expected return. By looking at a
linear combination, the combined portfolio will still have the same expected return, but
if the weights are chosen properly a smaller variance; we provide details in Appendix A.
The idea of weighing two random variables to create a combined one with less variance
is a common method, and we apply that to our problem to see if we can improve the
quality of the estimator for the German tank problem by looking at a combination of two
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tanks. The computation is a bit more involved than the two stock example, as the values
of the two tanks are not independent; if we know the largest tank value is mk then clearly
mk−1 < mk. We found that the quality of the estimator is not improved by incorporating
both values.

4.1 Estimation From Various Tanks

Let Mk−1 be the random variable for the value of the second largest tank observed and
let mk−1 be the value we observe. We find the probability that the second largest tank is
mk−1. We claim that for k − 1 ≤ mk−1 ≤ n− 1, the probability that Mk−1 = mk−1 is

Prob(Mk−1 = mk−1) =

(
mk−1−1
k−2

)(
N−mk−1

1

)(
N
k

) . (38)

Clearly the probability is zero for tanks outside this range. There are
(
N
k

)
ways to choose

k tanks from N . We need k − 2 tanks to be smaller than mk−1 − 1; there are
(
mk−1−1
k−2

)
ways for that to happen. We then have to choose tank mk, which has to be larger than
tank mk−1. Thus, the range from mk goes from mk−1 + 1 to N , and there are

(
N−mk−1

1

)
ways to do this. �

We can now calculate the expected value of Mk−1 using Identity III:

E[Mk−1] =
N−1∑

mk−1=k−1

mk−1Prob(Mk−1 = mk−1)

=
N−1∑

mk−1=k−1

mk−1

(
mk−1−1
k−2

)
(N −mk−1)(
N
k

) =
(N + 1)(k − 1)

k + 1
. (39)

We attach results of simulations to see the mean and variances of the formula using
mk−1.

Figure 3: Results for formula using second largest tank.

Remark 4.1 Comparing this result to the variance of the formula using the largest tank,
we see that the formula using the second largest tank has higher variance, which we prove
later.

Calculating similarly, we obtain the formula for the Lth largest tank:

N̂ = mk−L+1
k + 1

k − L+ 1
− 1. (40)

the pump journal of undergraduate research 6 (2023), 59–95 69



We calculate the variances for statistics arising from the different tank (from largest
observed to smallest); we multiply each by a multiplicative factor so that the mean is N ,
and see which has the least variance. We let Xk be the estimation from using the largest
tank, Xk−1 from using the second largest tank, and so on. To calculate the variances
of these formulas, we calculate the variances of Mk, the largest tank, Mk−1, the second
largest tank, and so on; we then multiply by a multiplicative factor to get the variances
we want.

4.1.1 Variance of Mk

We use Lemma 2.4, to compute the variance. To calculate the E[M2
k ] term, we use Identity

IV. We find

Var(Mk) = E[M2
k ] − E[Mk]

2

=
N∑

mk=k

m2
kProb(Mk = mk) −

[ N∑
mk=k

mkProb(Mk = mk)

]2

=
N∑

mk=k

m2
k

(
mk−1
k−1

)(
N
k

) −
[
k(N + 1)

k + 1

]2

=
(k)(N − k)(N + 1)

(k + 1)2(k + 2)
. (41)

Now that we have the variance for Mk, we easily scale the formula and obtain the
variance of Xk = mk(k+ 1)/k, as the variance of a times X is a2 times the variance of X:

Var(Xk) = Var(Mk) ·
(k + 1)2

k2
=

(N − k)(N + 1)

(k)(k + 2)
. (42)

Through similar calculations, we obtain the variance of Xk−1:

Var(Xk−1) =
2(N − k)(N + 1)

(k + 2)(k − 1)
. (43)

We see that the estimator using mk−1, and more generally using mk−L+1, is worse than
using mk, as the variance is larger. We can plug in some values of N and k and compare
the variances. Also, we see that the variance for Xk−1 is roughly two times the variance
of Xk, which shows that Xk is a better statistic. We can also compare variances easily
by writing some code and numerically exploring. We made a simulation where we sample
the k tanks from 1 to N when all tanks are equally likely to be seen. Thus, we conclude
that if we are only going to use one observed value, it is best to use the largest. This
leads to our second question: can we do better if we create a statistic combining two or
more observed values?

4.2 Weighted Statistic

Previously, we have only considered using one tank to estimate N . We create a statistic
using the largest and second largest tank values and show that this weighted statistic is
not better. Before we state the weighted formula, we set our notation.
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• Xk = Statistic to estimate N using Mk: Mk(
k+1
k

) - 1.

• Xk−1 = Statistics to estimate N using Mk−1: Mk−1(k+1
k−1

) - 1.

Let α ∈ [0, 1] and define the weighted statistic Xα by

Xα := αXk + (1− α)Xk−1. (44)

From the formula, we see that when α is 1, this collapses to the formula for N using mk,
and similarly, when α is 0, we get the mk−1 formula. In order to see if there is a better
estimation, we find the optimal α value, the value that minimizes the variance of Xα. If
the optimal α value is 1, then we can conclude that the mk formula is the best we can do
to estimate for N . We compute the variance of X:

Var Xα = α2Var Xk + (1− α)2Var Xk−1 + 2 α(1− α)Cov(Xk, Xk−1). (45)

As we have already calculated the variances of Xk and Xk−1, we have to calculate the
covariance term.

4.2.1 Covariance Term

We calculate the term, Cov[Xk, Xk−1], separately first. By Lemma 2.6, we have

Cov[Xk, Xk−1] = E[Xk ·Xk−1] − E[Xk] · E[Xk−1]. (46)

Recall that

Xk = mk

(
k + 1

k

)
− 1 , Xk−1 = mk−1

(
k + 1

k − 1

)
− 1. (47)

We know that the second term of the covariance, E[Xk] ·E[Xk−1], is N2 because they are
both estimation formulas. Thus, we only have to calculate the first term.

We use linearity of expectation to expand. By Theorem 2.7, we have

E[Xk ·Xk−1] = E
[(
Mk

(
k + 1

k

)
− 1

)
·
(
Mk−1

(
k + 1

k − 1

)
− 1

)]
=

(k + 1)2

k(k − 1)
E[Mk ·Mk−1] − k + 1

k
E[Mk] −

k + 1

k − 1
E[Mk−1] + E[1].(48)

We calculate term by term. We use the joint PDF, recall Theorem 2.8, to calculate
E[Mk ·Mk−1].

E[Mk ·Mk−1] =
N∑

mk=k

mk−1∑
mk−1=k−1

mkmk−1Prob(Mk−1 = mk−1,Mk = mk)

=
N∑

mk=k

mk−1∑
mk−1=k−1

mkmk−1

(
mk−1−1
k−2

)(
N
k

) . (49)
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The probability is the following because, after selecting mk and mk−1, we have to select
(k − 2) more tanks from the possible (mk−1 − 1) tanks. The range of mk−1 is dependent
on the value of mk because mk−1 ≤ mk is always satisfied. We use Identity III two times
to calculate the following term.

E[Mk ·Mk−1] =
N∑

mk=k

mk

mk−1∑
mk−1=k−1

mk−1

(
mk−1−1
k−2

)(
N
k

) =
(Nk +N + k)(N + 1)(k − 1)

(k + 2)(k + 1)
. (50)

Now that we have calculated the joint PDF, we know all the terms and find

E[Xk ·Xk−1] =
(k + 1)2

k(k − 1)

[
(Nk +N + k)(N + 1)(k − 1)

(k + 2)(k + 1)

]
− k + 1

k

(N + 1)k

k + 1
− k + 1

k − 1

(N + 1)(k − 1)

k + 1
+ 1, (51)

and from our values after scaling, we have

E[Xk ·Xk−1]− E[Xk] · E[Xk−1]

=
(k + 1)2

k

(N + 2)(N + 1)

(k + 2)
− (k + 1)

k
(N + 1) − (N + 1)2

=
(N + 1)(N − k)

k(k + 2)
. (52)

4.2.2 Finding Optimal Alpha

Now that we’ve calculated Var(Xk), Var(Xk−1), and Cov(Xk, Xk−1), we find the optimal
α value (that minimizes the variance of Xα) by taking the derivative. Let αk,k−1 denote
the specific value of α that minimizes the variance. We have

Var(Xα) = α2Var(Xk) + (1− α)2Var(Xk−1) + 2α(1− α)Cov(Xk, Xk−1)

= α2(Var(Xk) + Var(Xk−1)− 2 Cov(Xk, Xk−1))

+ 2α(Cov(Xk, Xk−1) − Var(Xk−1)) + Var(Xk−1). (53)

Taking the derivative with respect to α yields

Var(Xα)′ = 2α(Var(Xk) + Var(Xk−1)− 2 Cov(Xk, Xk−1)

+ 2 (Cov(Xk, Xk−1) − Var(Xk−1)). (54)

Because we want to find the optimal α value, we solve for Var(X)′ = 0 (and of course
also check the endpoints of α = 0 or 1). After substituting in the formulas and doing some
algebra, we see that the optimal alpha value is 1, which is in fact one of our endpoints and
corresponds to only using the largest tank. Thus if we use both the largest and second
largest values observed we do worse than just using the largest:

αk,k−1 =
Var(Xk−1) − Cov(Xk, Xk−1)

Var(Xk) + Var(Xk−1)− 2 Cov(Xk, Xk−1)
= 1. (55)
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Equation 4.18 is obtained by reorganizing the terms so that we get an expression for ak,k−1

and substituting the expressions for Var(Xk−1),Var(Xk),Cov(Xk, Xk−1). Thus, after sim-
plifying, we see that when α is 1, the variance of Xα is minimized. Similar calculations
hold for other weighted combinations. Therefore, in the discrete one-dimensional German
Tank problem where we sample without replacement, the formula using the largest tank
is best.

5 Continuous One-dimensional Problem

We now explore our first generalization and consider a continuous one-dimensional ana-
logue. In the original formulation, the serial numbers were integers drawn from 1 to N .
We now consider a continuous version, where we select k tanks from the interval [0, N ]
with N unknown. Our goal is to find a statistic to estimate N . We discuss the effective-
ness of various statistics and compare the continuous formulas to the discrete ones; the
scaling factor is the same in the continuous and discrete one-dimensional problems.

5.1 Formulas Using Largest and Second Largest Observations

We begin by estimating using the largest and second largest tanks by using the CDF
method to find the PDF. In the continuous case, to find the PDF, we take the derivative
of the CDF.

5.1.1 Formula from Largest

We first find the CDF by computing the probability that all are at most mk:

Prob(Mk ≤ mk) =

(
mk

N

)k
; (56)

this is because in the continuous case we can view all k observations as independent, and
the probability any is at most mk is just mk/N . Taking the derivative gives the PDF:

f(mk) = PDFMk
(mk) = CDFMk

(mk)
′ =

kmk−1
k

Nk
. (57)

Now that we have the PDF, we calculate the expected value of mk:

E[Mk] =

∫ N

0

mkf(mk) dmk =

∫ N

0

mk
kmk−1

k

Nk
dmk =

k

k + 1
·N. (58)

Thus we obtain

N̂ = mk ·
(

1 +
1

k

)
. (59)

Remark 5.1 Comparing the continuous formula to the discrete formula in equation 3.1,
the only difference is that there is a (−1) in the discrete formula. This difference occurs
because in the discrete case we sampled from tanks numbered from 1 to N while in the
continuous case we sampled from the interval [0, N ].
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5.1.2 Formula Using Second Largest

We first find the CDF by computing the probability that the second largest tank is at
most mk−1. There are two possibilities: all the tanks are less than mk−1, or one tank (and
there is

(
k
1

)
ways to choose which of the k tanks that is) is larger than mk−1 and the rest

are mk−1 or smaller. Thus

CDFM(mk−1) = Prob(Mk−1 ≤ x)

=

(
x

N

)k
+

(
k

1

)(
x

N

)k−1
N − x
N

. (60)

We take the derivative of the CDF in order to find the PDF. After standard integration,
we find

N̂ = mk−1 ·
k + 1

k − 1
. (61)

Remark 5.2 As we saw in the discrete case, because the continuous and discrete formula
are essentially the same formulas, the formula using the largest tank has the least variance.

5.2 Continuous Weighted Formula

As we did in the discrete one-dimensional case, we see if constructing a statistic that is a
linear combination of mk and mk−1 does a better job estimating N . Similar to before, the
best value is again when α = 1, meaning that the formula using only mk gives the least
variance and there is no benefit to including mk−1. The calculation is omitted as it is
quite similar to the discrete weighted formula, except the continuous cases uses integrals
instead of sums.

6 Two-dimensional Discrete Generalizations

We now generalize to two dimensions, after which it will be easy to extend to higher
dimensions. We look at the discrete and continuous cases in the square and the circle.
We find for each problem which statistic gives the best estimate for N , and compare the
formulas of the discrete two-dimensional and discrete one-dimensional square. If we use
all the terms in the calculation, we would not get a closed form so we approximate using
the main term and get formulas for fixed k and N tending to infinity.

6.1 Square Problem

We consider the case of the square from (1, 1) to (N,N) as the natural generalization
of the one-dimensional set {1, . . . , N}. There are N2 pairs, we select k of them without
replacement. We call the two components the X and the Y list and use the pairs to find
the best estimate for N . We look at two statistics: the largest number from the two lists,
and a recursive method where we start with an estimate of N and use the largest L to
estimate for N again until the value of our estimate for N stabilizes.
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6.1.1 Maximum From Lists

The motivation of looking at the largest observed component in the two-dimensional
square comes from the one-dimensional problem, where looking at the largest tank gave
the most accurate estimation. To calculate the formula, we use the CDF method. The
CDF method in the discrete case is slightly different from the one in the continuous case.
The statistic we look at is the largest observed component of the X list and Y list, which
we denote by m. To calculate the probability that the largest observed component is
exactly m, we calculate

Prob(M ≤ m) − Prob(M ≤ m− 1) (62)

to get the Prob(Max = m). The PDF is computed similarly as in previous arguments,
giving

PDFM(m) = Prob(M ≤ m) − Prob(M ≤ m− 1)

=

(
m2

k

)(
N2

k

) − (
(m−1)2

k

)(
N2

k

) . (63)

Equation 6.2 is true because there are m2 numbers of pairs in a m by m square and out
of the m2 choices, we are choosing k of them. Same applies to choosing (m− 1)2 numbers
of pairs from a m− 1 by m− 1 square. Thus the expected value of M is

E[M ] =
N∑

m=d
√
ke

m · PDFM(M = m) =
N∑

m=d
√
ke

m
(
m2

k

)
− m

(
(m−1)2

k

)(
N2

k

)
=

N∑
m=d

√
ke

m
(
m2

k

)
− (m− 1)

(
(m−1)2

k

)(
N2

k

) −
N∑

m=d
√
ke

(
(m−1)2

k

)(
N2

k

)
=

N
(
N2

k

)
− (d

√
ke − 1)

(
(d
√
ke−1)2

k

)(
N2

k

) −
N∑

m=d
√
ke

(
(m−1)2

k

)(
N2

k

) . (64)

In Equation 6.3, we simplified the summation in the first term by telescoping. The
value of m ranges from d

√
ke to N because the minumum number of points we can have

in the square is k. Thus, m has to be at least greater than d
√
ke to have k points inside

the square. We now determine the second term above; it is

N∑
m=d

√
ke

(
(m−1)2

k

)(
N2

k

) =
1(
N2

k

) N−1∑
m=d

√
ke

(
m2

k

)

=
1

k!
(
N2

k

) N−1∑
m=d

√
ke

m2(m2 − 1) · · · (m2 − (k − 1)) (65)
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Note that the range for m starts at d
√
ke because if m is d

√
ke − 1, we get 0. We use

Lemma 2.11 to provide upper and lower bounds for the sum:

N−1∑
m=d

√
ke

(
m2k −m2k−2

(
k(k − 1)

2

))
≤

N−1∑
m=d

√
ke

m2(m2 − 1) · · · (m2 − (k − 1)

≤
N−1∑

m=d
√
ke

m2k, (66)

and we now use the Euler-Maclaurin formula, Lemma 2.10, to approximate the sums
with integrals, and bound the error of the approximation in terms of the derivative of the
function at the boundary points. We take p = 2, as this gives an excellent bound and an
expression that is easy to work with.

Remark 6.1 When we calculate the upper and lower bounds, we see that main term of
the upper and lower are the same, which is why we can set these bounds.

Now that we have applied Euler-Maclaurin on both the upper and lower bounds, we
use the main term (which as N →∞ dominates the lower order terms) to find an equation
of m in terms of N and k:

N−1∑
m=d

√
ke

m2k ≈ (N − 1)2k+1 − (d
√
ke)2k+1

2k + 1

≈ (N − 1)2k+1

2k + 1
. (67)

Because we assumed that k is fixed, if N is very large the other terms are negligible. We
plug this estimation back into the formula for E[M ]:

E[M ] =
N
(
N2

k

)
− (d

√
ke − 1)

(
(d
√
ke−1)2

k

)(
N2

k

) −
N∑

m=d
√
ke

(
(m−1)2

k

)(
N2

k

)
≈ N −

(N−1)2k+1

2k+1(
N2

k

)
· k!

≈ N

[
1 − 1

2k + 1

(
1− 1

N

)2k+1]
≈ N

[
2k

2k + 1

]
+ 1. (68)

We use the same argument as above to say that the term with k is negligible. We plug
in our estimation for the second term and expand out the first two terms to estimate for
(1−1/N)2k+1. If we use more terms, the accuracy slightly increases, but the equation will
not be invertible. Thus, we only write the first two terms. We obtain a good estimate of
(1− 1/N)2k+1 by using two terms. Inverting the equation, we get

N̂ =
2k + 1

2k
(m− 1). (69)
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Now that we have a estimation formula for N̂ , we run some simulations to see how accurate
it is. We see that the two-dimensional formula does well as the variance is small. In the
next subsubsection, we compare the one-dimensional to the two-dimensional formula and
see which one does better.

6.1.2 Comparing Formulas

We compare the one-dimensional formula and the discrete square formula to see which
one does better. We have to make sure that we are making correct comparisons (apples
to apples), because a pair gives two data points whereas a point gives one. Also, we want
to make sure that both formulas estimate for N . For the N by N square, we pick k
pairs, which gives us 2k components of N2 pairs. For the one-dimensional case, we pick
2k tanks from N2 possible tanks. This will give us a estimate for N2, and we take the
square root to find the estimate for N . By comparing these two quantities, we make sure
that we observe 2k data points. In Figure 4, for the left trial, we set k = 20 and for the
right trial, we set k = 2.

Figure 4: Comparing results from square formula to one-dimensional formula

Remark 6.2 From the simulation, we see that the 1-dimensional case does a better job
than the two-dimensional case, as the one-dimensional case has lower variance. The
difference is clearly visible when k is a very small value such as 2. We have seen from
Figure 4 that the 1-dimensional formula does better, and we confirm this by theory.

6.1.3 Recursive Argument

For another approach, we start with an initial estimate for N , which we call N0. We
construct a formula to recursively generate new estimates of N from previous; thus let N1

be our next guess. We investigate if the values of N converge, and if they converges to a
more accurate estimate. We first transform the N2 pairs into a list of numbers from 1 to
N2. For each pair (X,Y ), we write the tanks as (X − 1) + N(Y − 1) + 1. This way, we
can represent all tanks from 1 to N2, as this maps the N2 pairs uniquely to the integers
from 1 to N2. Unfortunately, when we use observed tank values to estimate, we do not
know the value of N so we cannot immediately use this formula. Instead we replace N

the pump journal of undergraduate research 6 (2023), 59–95 77



with our estimate. With that estimate, we express a new N with the largest observed
component. As before, let M denote the maximum of the two lists. Then

Prob(M = L) =

(
L−1
k−1

)(
N2

k

) . (70)

Thus

E[L] =
N2∑
L=k

L ·
(
L−1
k−1

)(
N2

k

)
We calculate and get

= k · N
2 + 1

k + 1
. (71)

Thus

N̂ =

√
E[L] · k + 1

k
− 1. (72)

In order to create a iterative process, we plug in

E[L] = MaxX + (current estimation for N)(MaxY − 1).

We rewrite our estimation for N̂

N̂ =

√[
MaxX + (current estimation for N)(MaxY − 1)

]
· k + 1

k
− 1. (73)

Now, we’ve got a recursive function of N . We can use the preliminary estimation of N
to get another estimate for N . Therefore, by starting with a value of N , we can continue
to produce estimates of N . The hope is that by producing more values of N , the values
converge to the actual number N . To see how well this process does, we attached the code
for simulation in the Appendix C. Using the simulation, we plugged in different values of
Max(X) and Max(Y ). However, though the results converge, they do not do a better job
as often the value it converges to is off from the actual N .

6.1.4 Continuous Square Problem

Unlike the discrete square problem where we could pick points from a discrete setting
from (1, 1) to (N,N), in the continuous square problem, we can pick points from a con-
tinuous setting from (0, 0) to (N,N). To calculate the PDF, we use the CDF method
by calculating the CDF and taking the derivative. Let m denote the largest component
observed:

CDFM(m) = Prob(M ≤ m) =

(
m2

N2

)k
=

m2k

N2k
, (74)

the pump journal of undergraduate research 6 (2023), 59–95 78



and thus

PDFM(m) = CDFM
′(m) =

2k ·m2k−1

N2m
. (75)

Therefore, E[M ] =

∫ N

0

m · 2k ·m2k−1

N2k
dm =

2k

2k + 1
·N. (76)

Solving yields N̂ = m · 2k + 1

2k
. (77)

Remark 6.3 We see that the scaling factor for the continuous case is the same as in
the discrete case. The scaling factor of (2k + 1)/2k is reasonable, and we see this by
comparing this formula to the one-dimensional formula. In the one-dimensional case,
the scaling factor was (k + 1)/k, which is larger than (2k + 1)/2k. Because in the two-
dimensional case we are looking at the largest of both components, we have more data
points and therefore we will likely get a larger M value. Thus, in the two-dimensional
case, we would have to scale by a value smaller than (k+1)/k, and scaling by (2k+1)/2k
makes sense.

6.2 Circle Problem

6.2.1 Discrete Circle Problem

The goal of the discrete circle problem is to find a formula that estimates the radius. We
assume the circle is centered at (0, 0) with radius r and we select k different lattice points
contained in the circle without replacement. We look at X2 +Y 2 as our statistic, because
the resulting values are integers, and we can then take a square-root at the end.

We let m1 = X2 + Y 2. However, some elementary number theory enters in two
dimensions and not all values of m1 are attainable. Notice that X2 and Y 2 are each 0 or
1 modulo 4, so any attainable m1 is either 0, 1 or 2 modulo 4.

The number of lattice points inside a circle with radius r and center (0, 0) is the well
studied Gauss Circle problem [3]. Let P (r) be the number of lattice points inside such a
circle, i.e.,

P (r) := Number of ((q, n) ∈ Z2|q2 + n2 ≤ r2). (78)

The number of lattice points inside the circle is well estimated by the area of the circle,
πr2; the challenge is determining the size of the error. We have

P (r) = πr2 + E(r). (79)

We do not need the best known results, so we write E(r) as O(rδ) where (0 ≤ δ ≤ 1),
using Big-O notation (see Definition 2.12); the sharpest known bounds has .5 < δ < .63
(see [3]). Note P (m) = CDFM1(M ≤ m1), where M is the random variable that is the
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value of X2 + Y 2. We see that PDFM(m) is P (m1) − P (m1 − 1). Therefore, if we have
m1 ≡ 3 (mod 4) , then PDFM(m1) = 0, and thus we do not have to worry about this
case, though for completeness we do include it below.

We calculate the expected value of M :

E[M ] =
r2∑

m1=0

m1 · Prob(M = m1)

= [P (1)− P (0)] + [2P (2)− 2P (1)] + · · ·+ r2[P (r2)− r2P (r2 − 1)]

= r2P (r2)− [P (1) + P (2) + · · ·+ P (r2 − 1)

= r2 − 1(
πr2+O(rδ)

k

) r2∑
m1=0

(
π(m− 1) +O((m− 1)δ)

k

)
. (80)

We estimate the second term of the equation above by using Lemma 2.11 and the main
term. After applying Euler-Maclaurin on both sides, and using the main term to calculate
the second term, we get:

E[M ] ≈ r2 · k

k + 1
+ 1, and thus r̂ =

√
k + 1

k
(m1 − 1). (81)

Remark 6.4 We analyze the formula from the discrete circle problem. The formula is
quite interesting, because we have a square root involved, and unlike other cases, the
continuous and discrete setting have different scaling factors. First, we have the square
root of E[M ] which is a value similar to

√
X2 + Y 2, and is similar to r. Also, the scaling

factor for the discrete case is
√

(k + 1)/k, which is similar to (2k + 1)/2k as we take the
square root because taking the square root decreases the value by a little bit. Though the
formula doesn’t completely align with the continuous circle, this formula makes a lot of
sense, and the difference likely results from the different statistics that we looked at for
the discrete and continuous circle.

6.2.2 Continuous Circle Problem

The continuous circle problem has similar conditions as the discrete circle problem, but
we can select any points contained in the circle; the points don’t necessarily have to be
lattice points. We approach the continuous circle problem similarly as the continuous
square problem. We look at m2 =

√
X2 + Y 2 because that is the formula for the radius.

Let m2 be the largest observed statistic, and M the corresponding random variable. Then

Prob(
√

X2 + Y2 ≤ m2) =
(m2

2π)k

(r2π)k
=

m2k
2

r2k
. (82)

Thus, PDFM(m2) = CDF′M(m2) =
2k ·m2k−1

2

r2k
. (83)
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The calculation for the expected value is the same as the continuous square, so we omit
it, and we find

r̂ = m2 ·
2k + 1

2k
. (84)

Remark 6.5 We compare the continuous circle formula to the discrete circle formula.
They don’t look similar, as the discrete formula has a square root. Note that m1 = m2

2,
by the values of statistics we look at. If we Taylor expand

√
1 + 1/k, we get 1+1/2k+· · · .

In the discrete circle, as the value of k gets very large,
√

1 + 1/k looks like 1+1/2k, which
is the formula for the continuous circle. Thus, though the formulas look different, if we
take the limit as k gets large, we see how similar these are.

We run some code to check the formula and see how well it does.

Figure 5: Code for discrete circle.

7 Higher Dimension Version

7.1 Generalized Square Problem

7.1.1 Discrete Square Problem

To calculate the formula for the discrete L-dimensional square, we use similar strategies
as the two-dimensional square. We let M be the the largest observed coordinate. Thus

Prob(M = m) = F (m)− F (m− 1) =

(
mL

k

)(
NL

k

) − (
(m−1)L

k

)(
NL

k

) . (85)

The expected value is thus

E[M ] =
N∑

n=d L
√
ke

m · PDFM(m) =
N∑

n=d L
√
ke

m
(
mL

k

)
−m

(
(m−1)L

k

)(
NL

k

)
=

N∑
n=d L

√
ke

m
(
mL

k

)
− (m− 1)

(
(m−1)L

k

)(
NL

k

) −
N∑

n=d L
√
ke

(
(m−1)L

k

)(
NL

k

)
=

1(
NL

k

)[N(NL

k

)
− (d L
√
ke)
(
d L
√
ke)L

k

)]
−

N∑
n=d L

√
ke

(
(m−1)L

k

)(
NL

k

) . (86)
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To calculate the second term, we apply Lemma 2.11 to bound the sums, apply Euler-
Maclaurin, and find the main terms to estimate. Though we are in higher dimensions,
because this process is similar to the discrete two-dimensional square calculation, we only
state the results.

E[M ] = N

[
Lk

Lk + 1

]
+ 1. Inverting, we get, N̂ =

Lk + 1

Lk
(m− 1). (87)

7.1.2 Continuous Square Problem

The continuous problem is easily generalized to L dimensions. We select k tuples of length
L and let M be the largest observed component:

Prob(M ≤ m) =

(
mL

NL

)k
=

mLk

NLk
. (88)

PDFM(m) = CDF′M(m) =
Lk ·mLk−1

NLk
. (89)

Thus

E[M ] =

∫ N

0

m · Lk ·m
Lk−1

NLk
dm. Solving, we get N̂ = m · Lk + 1

Lk
. (90)

Remark 7.1 We see that the scaling factors for the discrete L dimensional square con-
tinuous L dimensional square are the same. This scaling factor makes sense because if we
have L dimensions, we have many more components to choose from. Thus by scaling by
(Lk + 1)/Lk, which is a value smaller than (2k + 1)/2k, and is close to 1, we get a good
estimate for N .

7.2 Generalized Circle Problem

7.2.1 Discrete L-dimensional Circle Problem

We look at the generalized L dimensional circle problem. We study a statistic similar to
the two-dimensional circle:

X2
1 +X2

2 + · · ·+X2
L = m1. (91)

We see that all values of m1 are integers. Using this statistic, we estimate for r2; after
getting the formula, we take the square root of m1 to estimate for r. Let P (r) be the
number of lattice points inside an L-ball, a L-dimensional sphere with radius r. We use
the volume of the L-ball to find an approximate value for the number of lattice points
inside the L-ball (see [4]).

V (n) =
π
L
2

Γ(L
2

+ 1)
rL. (92)
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We use this formula to find P (r). We denote the bounds with Big-O notation:

P (r) =
π
L
2

Γ(L
2

+ 1)
rL + O(rδ). (93)

We now calculate the density using the CDF method. We calculate the expected value

E[M ] =
r2∑

m1=0

m1 · Prob(M = m1)

=
1( π

L
2

Γ(L2 +1)
rL + O(rδ)

k

)
r2∑

m1=0

[
m1

( π
L
2

Γ(L
2

+1)
m1 + O(mδ

1)

k

)

− (m1 − 1)

( π
L
2

Γ(L
2

+1)
(m1 − 1) + O((m1 − 1)δ)

k

)]

− 1( π
L
2

Γ(L2 +1)
rL + O(rδ)

k

)
r2∑

m1=0

( π
L
2

Γ(L
2

+1)
(m1 − 1) + O((m1 − 1)δ)

k

)
We telescope and get

= r2 − 1( π
L
2

Γ(L2 +1)
rL + O(rδ)

k

)
r2∑

m1=0

( π
L
2

Γ(L
2

+1)
(m1 − 1) + O((m1 − 1)δ)

k

)
. (94)

We calculate the summation part, using the bounds lemma and the main term to estimate.
We have

E[M ] ≈ r2 · k

k + 1
+ 1. Inverting, we get r̂ =

√
(m1 − 1) · k + 1

k
. (95)

Remark 7.2 Notice that the formula for discrete L-dimensional circle problem is not
dependent on N .

7.2.2 Continuous L-dimensional Circle Problem

We select k tuples of length L where each component is contained in the L-dimensional cir-
cle. Let m be the largest observed component. We look at m2 =

√
X2

1 + X2
2 + · · ·+X2

L

as our statistic. We use the volume of the L dimensional circle to calculate the PDF. Recall
the formula of the L-ball. We see that

V (n) =
π
L
2

Γ(L
2

+ 1)
rL. (96)
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We calculate the CDF:

Prob

(√
X2

1 + X2
2 + · · ·+X2

L ≤ m2

)
=

( π
L
2

Γ(L
2

+1)
mL

2 )k

( π
L
2

Γ(L
2

+1)
rL)k

=
mLk

2

rLk
. (97)

The rest of the calculation is identical as the L-dimensional square problem, yielding

r̂ = m2 ·
Lk + 1

Lk
. (98)

Remark 7.3 Notice that the L dependence in the formula is small as the formula is
1 + 1/Lk and if L and k are reasonably large, then the scaling factor is close to 1.

8 Conclusion and Further Direction

Through this research, we generalized the German Tank Problem into different extensions
of the problem. First, we attempted to improve the original one−dimensional discrete
problem, and concluded that the original formula using the largest tank produces the
most accurate estimations with least variance. Then, we generalized the one-dimensional
problem into the continuous case where we found that using the largest observed tank
produces the most accurate formula. We then generalized into the two dimensional case
where we looked at the discrete and continuous square and circle, and derived formulas
for each case. Lastly, we generalized into the L−dimensional discrete and continuous
square and circle and derived formulas. A possible further step in this research is to look
at different shapes such as a hemisphere or an ellipse and select points inside different
shapes.

A Portfolio Theory

Consider two stocks X1, X2 with the same mean return and standard deviations σ1 and
σ2; the variances are not necessarily equal. For simplicity we assume the two stocks’
performances are independent, though in general we need to consider covariances. We
construct a weighted portfolio Xα := αX1 + (1 − α)X2, with α ∈ [0, 1]. It is easy to
see that the expected value of Xα is that of the two stocks; our goal is to find α that
minimizes the variance of Xα and thus gives us the most certainty in knowing our future
performance. Of course, such a strategy decreases the possibility of getting a larger than
expected return, but it also minimizing the possibility of having a significantly smaller
return.

Let’s say we have two options. The first is we are guaranteed $500,000. The second
is we have a 50% chance of getting $1,000,000, and a 50% chance of getting $0 dollars.
The expected value for both is $500,000 dollars. Though it may depend on each person’s
financial situation, we see that taking the $500,000 dollars has no risk. For some, this
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may be life changing (and the marginal utility of the second $500,000 is almost surely less
than the first).

The hypothetical situation above is a simple example of modern portfolio theory. This
theory was pioneered by Markowitz; see [6]. A key idea of this theory is diversification.
Because most investments are either high risk and high return or low risk and low return,
Markowitz argued that perhaps investors could achieve best profit with acceptable risk
by choosing an optimal mix of the investments.

We return to the simple case of two stocks both with mean µ, standard deviations σi
(we may assume 0 ≤ σ2 ≤ σ1) and we assume the two stocks are independent. Then if
Xα = αX1 + (1− α)X2 we have

Var(Xα) = α2σ2
1 + (1− α)2σ2

2. (99)

To find the minimum variance we check the endpoints (α = 0 or 1) and the critical points
from the derivative of the variance is zero: that happens when

2ασ2
1 − 2(1− α)σ2

2 = 0, which gives a critical value of α∗ =
σ2

2

σ2
1 + σ2

2

. (100)

We now see which value of alpha gives the minimum variance.

• When α = 0 , Var(Xα) = σ2
2.

• When α = 1 , Var(Xα) = σ2
1.

• When α =
σ2

2

σ2
1+σ2

2
,

Var(Xα) =

(
σ2

2

σ2
1 + σ2

2

)2

σ2
1 +

(
1− σ2

2

σ2
1 + σ2

2

)2

σ2
2 =

σ2
1σ

2
2

σ2
1 + σ2

2

. (101)

• When α =
σ2

2

σ2
1+σ2

2
,

Var(Xα) =

(
σ2

2

σ2
1 + σ2

2

)2

σ2
1 +

(
1− σ2

2

σ2
1 + σ2

2

)2

σ2
2

=

(
σ2

2

σ2
1 + σ2

2

)2

σ2
1 +

(
σ2

1

σ2
1 + σ2

2

)2

σ2
2

=
σ2

1σ
2
2(σ2

1 + σ2
2)

(σ2
1 + σ2

2)2

=
σ2

1σ
2
2

σ2
1 + σ2

2

(102)

From our assumption that 0 < σ2 ≤ σ1, we see that σ2
2 ≤ σ2

1. Now, we compare
σ2

1σ
2
2

σ2
1+σ2

2

and σ2
2. Straightforward algebra shows

σ2
1σ

2
2

σ2
1 + σ2

2

< σ2
2; (103)
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to see this multiply both sides by σ2
1 + σ2

2, and subtract σ2
1σ

2
2 and obtain 0 < σ4

2. Thus
the variance of the weighted quantity is always less than the variance of the smaller one!
If the two variances are equal, the new variance is half of that.

B Proof of Identities

Proof. Identity I.

N∑
mk=k

(
m− b
k − c

)
=

(
k − b
k − b

)
+

(
k − b+ 1

k − b

)
+ · · · +

(
N − b
k − c

)
=

(
k − c
k − c

)
+

(
k − c+ 1

k − c

)
+ · · · +

(
N − b
k − c

)
−
[(
k − c
k − c

)
+

(
k − c+ 1

k − c

)
+ · · · +

(
k − b− 1

k − c

)]
=

(
N − b+ 1

k − c+ 1

)
−
(

k − b
k − c+ 1

)
. (104)

�

Proof. Identity II.

N−a+1∑
m=k−a+1

m

(
m−1
k−a

)(
N−m
a−1

)(
N
k

)
=

1(
N
k

) N−a+1∑
m=k−a+1

m ·
(
m− 1

k − a

)(
N −m
a− 1

)

=
1(
N
k

) N−a+1∑
m=k−a+1

m!

(k − a)!(m− k + a− 1)!
· (N −m)!

(a− 1)!(N −m− a+ 1)!

=
k − a+ 1(

N
k

) ·
N−a+1∑

m=k−a+1

(
m

k − a+ 1

)
·
(
N −m
a− 1

)
We use Identity IV

=
(N + 1)(k − a+ 1)

k + 1
(105)

�
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Proof. Identity III.

N−a+1∑
m=k−a+1

m2

(
m−1
k−a

)(
N−m
a−1

)(
N
k

) =
1(
N
k

) N−a+1∑
m=k−a+1

(m+ 1)m

(
m− 1

k − a

)(
N −m
a− 1

)

− 1(
N
k

) N−a+1∑
m=k−a+1

m

(
m− 1

k − a

)(
N −m
a− 1

)

=
1(
N
k

) N−a+1∑
m=k−a+1

(m+ 1)!

(k − a)!(m− k + a− 1)!

(
N −m
a− 1

)
− (N + 1)(k − a+ 1)

k + 1

=
(k − a+ 1)(k − a+ 2)(N + 2)(N + 1)

(k + 2)(k + 1)

− (N + 1)(k − a+ 1)

k + 1
(106)

�

Proof. Identity IV.(
a+ b+ k + 1

a+ b+ 1

)
=

k∑
i=0

(
a+ i

a

)(
b+ k − i

b

)
. (107)

We use proof by strong induction to prove the identity. Case where k = 0:(
a+ b+ 1

a+ b+ 1

)
=

(
a

a

)(
b

b

)
= 1 (108)

Case where k=1:(
a+ b+ 2

a+ b+ 1

)
=

(
a

a

)(
b+ 1

b

)
+

(
a+ 1

a

)(
b

b

)
= a+ b+ 2. (109)

We continue through all k until k = k and we assume that the case where k = k is true.
We use this assumption to prove that the case works for (k+1). We add all the equations
when k = k to when k = 1. We write the sum of equations as the following.(

a

a

)(
b+ k

b

)
+

(
a+ 1

a

)(
b+ k − 1

b

)
+ · · ·+

(
a+ k

a

)(
b

b

)
=

(
a+ b+ k + 1

a+ b+ 1

)
. (110)
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(
a

a

)(
b+ k − 1

b

)
+

(
a+ 1

a

)(
b+ k − 2

b

)
+ · · ·+

(
a+ k − 1

a

)(
b

b

)
=

(
a+ b+ k

a+ b+ 1

)
. (111)

(
a

a

)(
b+ k − 2

b

)
+

(
a+ 1

a

)(
b+ k − 3

b

)
+ · · ·+

(
a+ k − 2

a

)(
b

b

)
=

(
a+ b+ k − 1

a+ b+ 1

)
. (112)

(
a

a

)(
b+ 1

b

)
+

(
a+ 1

a

)(
b

b

)
=

(
a+ b+ 2

a+ b+ 1

)
. (113)

(
a

a

)(
b

b

)
=

(
a+ b+ 1

a+ b+ 1

)
. (114)

We add all the columns. (
a

a

)(
b+ k

b

)
+

(
a+ 1

a

)(
b+ k − 1

b

)
+ · · · +

(
a+ k

a

)(
b

b

)
=

(
a+ b+ k + 2

a+ b+ 2

)
. (115)

The resulting equation is the equation in the (k + 1) case. Since we assumed by strong
induction that cases when k = 1 to k = k is all true, we are able to prove that the (k+ 1)
case is true. Therefore, the identity is proved. �
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C Mathematica Code

One Dimensional German Tank Problem code

Figure 6: Simulation for one dimensional discrete case.
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Two Dimensional Circle Code

Figure 7: Simulation for two dimensional discrete circle.
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Two Dimensional Discrete Square Simulation

Figure 8: Simulation for Two Dimensional Discrete Square.
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Recursive Method

Figure 9: Simulation for recursion method for square.

Figure 10: Simulation for two dimensional discrete circle.

the pump journal of undergraduate research 6 (2023), 59–95 92



Code for Comparing Formulas for one and two dimensions

Figure 11: Code for Comparing Formulas for one and two dimensions.
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Results of comparison

Figure 12: Results of comparison.
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