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Abstract 
 

The utilization of satellite image data and image data processing techniques has become an efficient alternative to obtain 

bathymetric data in a broad and complicated area. This study aimed to determine the algorithm's performance in the waters 

of Lambasina Island. Atmospheric and radiometric correction using the Dark Object Subtraction (DOS) method for initial 

processing of Sentinel-2 images. The multispectral channel used, namely the blue, green, and red bands, was tested by 

regression using field observation data. The algorithms used to estimate bathymetry include Lyzenga, Stumpf, and Support 

Vector Machine (SVM). The test results of the three algorithms showed that the support vector machine algorithm was the 

best algorithm for estimating bathymetry after the Stumpf and Lyzenga algorithms. The correlation results of the SVM algorithm 

in the waters of the small Lambasina island got a correlation coefficient of determination R2 = 0.81 and the large Lambasina 

waters area R2 = 0.82. The second-best algorithm was Stumpf, with a correlation coefficient of determination of R2 = 0.79 in the 

waters of the small Lambasina island and R2 = 0.80 in the waters of the large Lambasina island. Lyzenga's algorithm got the 

correlation coefficient of determination R2 = 0.78 on small Lambasina Islands and large Lambasina Islands with a determination 

correlation coefficient value of R2 = 0.79. 
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INTRODUCTION 

 

Bathymetric data is an essential source of information in understanding marine environmental 

conditions. Bathymetry data is also a starting point for coastal area management based on seabed 

surface conditions. Remote sensing has an essential role in obtaining information about the condition 

of the marine environment, and the ability to obtain bathymetric data using wavelengths is an 

exciting topic in coastal observation and research (Mynett and Vojinovic, 2009; Vojinovic, 2015). The 

utilization of remote sensing technology applications in coastal and marine areas is one of the key 

elements used for research and resource and environmental management purposes (Kuffner et al., 

2007). The ability of sunlight to penetrate the air column to a certain depth is the advantage of 

remote sensing for conducting studies on the column to the bottom of shallow water. 

 

The potential use of remote sensing satellite data has been used for mapping and monitoring 

coastal areas (Moradi and Kabiri, 2015; Kay et al., 2009). In this regard, multispectral satellite imagery 

has been widely used to estimate depth in shallow waters (Doxani et al., 2012; Deng et al., 2008; 

Siregar and Selamat, 2010). Lyzenga (1978) was the first to develop a linear transformation method 

for estimating depth values using multispectral satellite imagery. This method can affect the variation 

of the base type at the specified depth value. Then Stumpf et al. (2003) proposed a new 

transformation ratio method, which has a greater ability to estimate depth values in deeper areas. 

Several studies have estimated shallow water depths using multispectral satellite imagery, including 

Landsat 8 (Vinayaraj et al., 2016) and Sentinel-2 (Hedley et al., 2018). By using Landsat-OLI data, 

bathymetry extraction has been carried out by several researchers (Pacheco et al. (2015); 

Jagalingam et al. (2015); Vinayaraj et al. (2016); Pushparaj and Hegde (2017). According to Manessa 

et al. (2016), the bathymetry estimation method using SPOT 6/7 data has also been carried out by 

several researchers Arya et al. (2016) and Manessa et al. (2016).In Indonesia, the use of the method 

of estimating water depth through satellite imagery by applying the method Lyzenga is Arya et al. 
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(2016) in Teluk Belang Mamuju using SPOT 7 imagery and Subarno et al. (2015) using Stumpf et al. 

(2003) in Kelapa-Harapan Island using Worldview-2 imagery. Several algorithms to estimate the depth 

of water have been studied and developed (Misra et al., 2018; Vojinovic et al., 2013) have 

developed a machine learning algorithm, namely a support vector machine (SVM) for estimating 

water depth, and used to improve the performance of ratio transformation models. 

 

The Sentinel-2 satellite is equipped with a multispectral channel with 13 spectral channels. 

Differences in wavelength and spectral resolution cause the difference in spectral response in each 

satellite imagery channel. Lower albedo variations in the water column will also respond differently 

to reflected electromagnetic waves. Generally, shallow water depth estimation uses the single band 

method (Lyzenga), and channel ratio (Stumpf). In this study, it is hoped that testing can improve the 

results of good depth estimation. 

 

Lambasina Island is located in the waters of Bone Bay, Kolaka Regency, Southeast Sulawesi 

Province with different characteristics of air depth. However, no research has been conducted on 

aquatic ecology or bathymetry in this area. Therefore, it is essential to do research in this area. This 

study is conducted to compare the ability to measure the depth of bathymetry using satellite 

imagery in the waters of the small and large Lambasina Islands. 

 

MATERIALS AND METHODS 

 

The research was conducted on two islands: large and small Lambasina Islands, Kolaka 

Regency, Southeast Sulawesi (Figure 1). Lambasina Island is located at coordinates 121°25'4.69"E and 

04°7'34.99"LS. The field survey was conducted from 21 to 25 November 2020. Bathymetry data were 

obtained by taking direct measurements in the field using a motorboat and a depth-measuring 

device in the form of a map sounder by following the prepared track to get depth data (Z) and 

geographic position data (X, Y). Bathymetry data were collected in the coastal areas of small 

Lambasina Island and large Lambasina Island. Depth measurement data using a map sounder is 

corrected for tides and transducer poles. Tidal data used for correction was obtained from the 

Geospatial Information Agency in November 2020 for 30 days. Bathymetric observation data from 

field noise correction were corrected with the lowest mean sea level (LLWL, Lowest Low Water Level). 

 

  
 

Figure 1. The Research Location and Sampling Station are on Lambasina Island, Bone Bay, Southeast Sulawesi 
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Table 1. Characteristics of a visible band of the Sentinel-2 image 

 

Band 
Sentinel-2 

Wavelength (nm) Spatial Resolution (m) 

Blue 398–594  10 

Green 515–605  10 

Red 626–702  10 

NIR 790–980  10 

 

Image Pre-Processing 

The image pre-processing process consists of atmospheric correction, radiometric correction, 

image cropping, and geometric correction. Atmospheric correction and radiometric correction of 

Sentinel-2A imagery were carried out using the Sen2Cor plugin in the SNAP 5 software. This plugin is 

useful for converting Sentinel-2A image data from Level-1C Top Of Atmosphere Reflectance to Level-

2A Bottom of Atmosphere Reflectance. Atmospheric correction is carried out to produce more 

accurate surface reflectance values and potentially improve the extraction of surface parameters 

from satellite imagery. The atmospheric correction method used in this research is the Dark Object 

Subtraction (DOS) method. The DOS method assumes that an object absorbs solar energy perfectly 

so that the thing is zero (Ardiansyah, 2015). Geometric correction is done to correct the difference 

between the location coordinates of the image data and the actual location coordinates so that 

geometric distortions can be eliminated (Dave et al., 2015). A total of 30 Ground Control Point (GCP) 

points on each side of the island are used to make geometric corrections. Satellite imagery-2A uses 

the Universal Transverse Mercator (51S UTM) projection system. 

 

Linear Transform Algorithm (Lyzenga) 

 

The reflectance transformation of the bottom of the water using natural logarithms will linearize 

the effect of depth. In theory, each type of bottom water is represented by a parallel line, where the 

gradient is the ratio between the attenuation coefficients in each band (ki/kj). The single band 

algorithm used to calculate the water depth according to Lyzenga (1978, 1985) is:  

 

𝑍 = 𝑎0 + 𝑎1𝑋1 + 𝑎𝑖𝑋𝑖  …………………………...…(1) 

 

Note: Z = the depth value, 𝑎0, 𝑎1,𝑎𝑖 is the coefficient determined through regression analysis, and X1, 

Xi is the reflectance value of each band/channel. 

 

Ratio Transform Algorithm (Stumpf) 

 

Stumpf (2003) has designed a ratio transformation method for shallow water bathymetry 

estimation. This model is principally based on the concept that light weakens exponentially at water 

depths and shows an albedo effect on the substrate, and will be minimized using two bands to obtain 

water depth. Thus, according to this model, different spectral bands will weaken at different depth 

levels. Therefore, the ratio between the two spectral bands will vary in obtaining water depth data. 

 

𝑍 = 𝑚1
𝑙𝑛 (𝑛𝑅𝑤(𝜆𝑖))

𝑛 (𝑛𝑅𝑤(𝜆𝑗))
 𝑚0………………………...……(2) 

 

Note: Z = bathymetry depth; 𝑚1, 𝑚0 = regression coefficient value; 𝑅𝑤(𝜆𝑖)= reflectance value of band 

i; and 𝑅𝑤(𝜆𝑗) = reflectance value of band j. 

 

Support Vector Machine (SVM) 

Estimating water depth in the relationship between the ratio's value and the water depth's 

importance may not always depend linearly. Therefore, this study tries applying a nonlinear function 

(f) using machine learning to map bathymetry by refining the equation (Vojinovic et al., 2013).  
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𝑍 = 𝑓
𝑙𝑛 (𝑛𝑅𝑤(𝜆𝑖))

𝑛 (𝑛𝑅𝑤(𝜆𝑗))
………………...(3) 

 

The regression model used in the machine learning algorithm can be seen as follows: 

 

𝐸 = ∑ 𝐿𝑠𝑖
𝑝
𝑖=1 + 𝜆 ∥ 𝑃𝑓 ∥2=  ∑ 𝐿𝑠𝑖

𝑝
𝑖=1 + Ω(ℎ, 𝐼) …………(4) 

 

In equation 4, there are two terms, the first is to minimize empirical risk, and the second is to smooth 

the function (Vapnik, 1998). 

 

Where E generally refers in the literature as a function of cost or generalization error to measure 

the performance of a model, goodness of fit; Lsi indicates the proximity of the data, namely the 

number of differences in measurements and model outputs calculated in the training phase, which 

refers to the size of the measurement or training data; Pf indicates the capacity of the SVM, which 

controls the parameter to minimize E; Ω the VC function (Vapnik and Chevron) is called the 

confidence interval and corresponds to the smoothness of the estimate; λ represents the regulatory 

parameter; h dimension VC I indicates the number of support vectors. 

 

The vector training data is mapped to a higher dimensional space using a nonlinear kernel 

function. The function of the kernel is to take data as input and convert it into the required format. 

Several kernel functions that can be applied to the SVM model include linear functions, polynomial 

functions, radial basis functions (RBFs), or sigmoid functions. This study uses the RBF kernel because 

this kernel has a good generalization system from other kernels (Girosi & Poggio, 1990). 

 

𝐾(𝑥𝑖 , 𝑥𝑖) = exp(− ∥ 𝑥𝑖−𝑥𝑖 ∥2) , > 0……...……(5) 

 

Where is a gaussian function and 𝑥𝑖 , 𝑥𝑖  as feature vectors. 

 

After deciding which kernel function to use, the next step is using the R-studio software 

(Package "e1071") to determine the best C and parameters to use in the SVM model. Parameter C 

affects the penalty value assigned to the prepared data. A low value of C indicates a low tolerance 

value in estimation error and vice versa. This parameter γ affects setting the speed of the learning 

process. The higher the value γ, the faster the learning process. For parameter e, the results of the 

support vector will decrease reducing the data. Increasing the value e can smooth data that is 

considered incorrect and can reduce the level of accuracy (Vojinovic et al., 2013; Misra et al., 2018; 

Mateo-Pérez et al., 2021). 

 

Statistical Analysis  

 

The data from the depth modeling of satellite imagery were tested statistically using the RMSE 

(Root mean squared error) method, and MAE (Mean absolute error) on each depth data to obtain 

the accuracy level of each algorithm (Mateo-Pérez et al., 2021). 

 

𝑅𝑀𝑆𝐸 = √∑
(𝑍𝑠𝑎𝑡−𝑍𝑜𝑏𝑠)2

𝑁
 …….………….…(6) 

 

𝑀𝐴𝐸 =  
1

𝑁
∑ ∥ 𝑍𝑠𝑎𝑡 − 𝑍𝑜𝑏𝑠 ∥𝑁

𝑖=1 ……………(7) 

 

The RMSE compares the predicted value with the observed value to measure how much error 

there is between the two data sets. The smaller the RMSE value, the closer to the predicted and 

observed values. MAE measures how far the predicted value is from a known observation. Bias to get 

the difference in the range of values between predictive data and observational data. 
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RESULTS AND DISCUSSION 

 

The data obtained from field observations are adjusted to each pixel of the red, green, and 

blue bands in the Sentinel-2A satellite image, with each pixel resolution measuring 10x10 meters in 

the determination of training data and test data applied to each algorithm. Data from field 

observations by first doing data filtering to eliminate noise data by adjusting the depth point to the 

pixel resolution of the image data. The data obtained can be seen in the following Table 2. 

 

Application of Water Depth Estimation Algorithm 

There are many kinds of band treatment combinations for each depth estimation procedure 

that can be used. Several combinations of band treatments in the depth estimation procedure used 

have varied outputs in this study. In this study, three depth estimation methods are applied to Sentinel-

2A images, namely linear transform algorithm, ratio transform, and support vector machine on Small 

Lambasina Islands and Large Lambasina Islands. 

 

Linear Transform Algorithm 

The linear transform algorithm developed by Lyzenga (1978, 1981, 1985) uses visible light, 

namely the red, green, and blue bands that have been corrected and regressed to field noise data. 

The optimal wavelength can be determined by measuring the spectrum at different depths and 

selecting the most sensitive band to bathymetry. 

 

After testing the regression model on each visible band, the combined results of the red, green, 

and blue bands showed the best regression values on the two islands. Small Lambasina Island shows 

a correlation value of r = 0.87 and a determinant correlation value of R2 = 0.78, and on a large 

Lambasina Island, it shows a correlation value of r = 0.85 and a determinant correlation value of R2 = 

0.73 (Table 3). According to Green et al. (2000), the red band can penetrate water to a depth of 5 

m, while the blue and green bands can penetrate water to a depth of 30 m for the blue band and 

15 m for the green band. Based on the value of the correlation coefficient (r) obtained, combining 

red, green, and blue bands is better for obtaining coefficient values for use in estimating bathymetry. 

 

The coefficient values of the regression results are transformed into the Lyzenga model 

equation and applied to the Sentinel-2 image to obtain pixel-based bathymetry data. The estimation 

results on the small Lambasina island show a depth range of 0 to 21.5 meters; on the large Lambasina 

island, the value ranges from 0 to 20.4 meters (Figure 2). 

 

The combination model of the three visible bands of Sentinel-2 imagery applied to the two 

islands obtained a good depth estimation value. The regression test results between the field noise 

depth data and the image depth data obtained the value of R2 determination on each island, 

namely 0.78 on the small Lambasina Island and 0.79 on the large Lambasina Island (Figure 3). 

Penetration of light through the water column supported by excellent water brightness conditions 

allows depth estimation results using satellite imagery to get better information. The ability of visible 

light bands with radiation from 0.48 μm (B2) to 0.60 μm (B3) can penetrate clear and calm waters 

around 15-20 m (Gao, 2009) with the best detection at a depth of about 10 m (Bagheri et al., 1998). 

 

Table 2. Amount of data used for depth estimation 

 

Islands 

Data Training Data Test 

Amount of 

Data 

Maximum 

Depth (m) 

Minimum 

Depth (m) 

Amount 

of Data 

Maximum 

Depth (m) 

Minimum 

Depth (m) 

Small 

Lambasina  
420 19.7 0.4 282 18.0 1.5 

Large 

Lambasina  
912 19.23 0.8 607 15.33 0.78 

The Depths (Z) are tidally corrected and reduced to mean sea level (MSL) (Pacheco et al. 2015). 
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Table 3. Regression test values on each image band of Sentinel-2A 

 

 
 

Figure 2. Lyzenga algorithm model: (a) Small Lambasina Island, (b) Large Lambasina Island 

 

Ratio Transform Algorithm (Stumpf) 

This methodology is in the form of a ratio transform algorithm or Stumpf (Figure 4) using a simple 

linear relationship between reflectance ratios and examines any combination of band ratios with 

depth data. The model test is carried out to get the best combination ratio value to get a depth 

value closer to the actual depth. The regression test results for each combination of ratios get a value 

close to 1 so that the results from a value close to 1 are used to transform data into depth data in the 

image. The band ratio value is the best in the combination of blue and green bands on both islands, 

with a correlation of r = 0.9 and a determinant correlation of R2 = 0.8 on a small Lambasina island and 

Small Lambasina Island 

Single r R2 Intercept Slope Red Slope Green Slope Blue 

Red 0.77 0.68 13.5703 -157.0798 - - 

Green 0.84 0.75 13.9129 - -109.5861 - 

Blue 0.81 0.71 16.8532 - - -166.094 

Green, Red 0.83 0.73 13.5974 -151.122 -4.5274 - 

Blue, Red 0.82 0.72 12.4546 -191.664 - 45.7735 

Blue, Green 0.85 0.76 7.2119 - -303.3398 328.8555 

Red, Green, Blue 0.87 0.78 8.4025 -90.5413 -200.5074 261.1526 

Large Lambasina Island 

Single r R2 Intercept Slope Red Slope Green Slope Blue 

Red 0.69 0.48 13.563723 -0.0203603 - - 

Green 0.83 0.68 15.411624 - -0.01440284 
 

Blue 0.76 0.58 18.638746 - - -0.02032344 

Green, Red 0.83 0.69 15.444439 0.0056164 -0.01735347 - 

Blue, Red 0.77 0.6 17.882296 -0.006136 - -0.01577816 

Blue, Green 0.84 0.71 12.299083 - -0.02453915 0.01602235 

Red, Green, Blue 0.85 0.73 11.16832 0.010334 -0.0338473 0.022154 
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a large Lambasina island with a correlation value of r = 0.87 and a determinant correlation R2 = 0.76. 

Several other model test results can be seen in Table 4 and Figure 5. 

 

The results of the correlation test between each combination of band ratios can be seen in 

the large Lambasina Island test that there are some significant differences in the values, especially 

the combination of blue/red and green/red bands only gets a correlation value (r) of 0.38 and 

0.31. Penetration of the blue and green bands can penetrate clean waters at a longer distance 

than the red bands. Wicaksono (2010) and Nurkhayati and Khakhim (2013) and Chénier et al, 

(2018) get the results of the correlation coefficient test of the ratio of the blue band to the green 

band better than the combination of other band ratios. 

 

Support Vector Machine (SVM) 

 

The results of the ratio model regression are applied to the support vector machine (SVM) 

algorithm using training and test data. The SVM model is used using the R software (package 'e1071') 

with input data ratio B2/B3 with training data. The kernel used is the RBF kernel and is applied to SVM 

applications, then the best C and ε parameter values are determined, while for γ, the values are 

 

  

a b 

 

Figure 3. Regression test of field noise depth data and image estimation results of the lyzenga 

algorithm: (a) Regression graph of Small Lambasina, (b) Regression graph of Large Lambasina 

 

 

Table 4. Test Results of the correlation coefficient 

 

Small Lambasina Island 

Band Ratio r R2 Intercept Slope 

Blue/Green 0.9 0.8 19.806 -12.418 

Blue/Red 0.89 0.79 17.443 -14.936 

Green/Red 0.83 0.75 15.519 -9.092 

Large Lambasina Island 

Band Ratio r R2 Intercept Slope 

Blue/Green 0.87 0.76 -7.392 13.583 

Blue/Red 0.38 0.14 2.341 2.717 

Green/Red 0.31 0.1 13.891 -2.57 
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Figure 4. Model of stumpf algorithm: (a) Small Lambasina Island, (b) Large Lambasina Island 

 

 

  
a b 

 

Figure 5. Regression test of field noise depth data and the estimation results of the Stumpf algorithm 

image: (a) Regression graph of Small Lambasina, (b) Regression graph of Large Lambasina 

 

 

created automatically. The Rstudio software tuning results obtained the best values of the 

parameters C and ε, namely 1 and 0.1, which were then used in the SVM application. According to 

Vojinovic et al, (2013) and Mateo-Pérez et al, (2021), the lower value of parameter C indicates a 

lower prediction error tolerance. The support vector in SVM is training data that lies on and outside 

the boundary of the decision function. The model and results of the SVM algorithm regression analysis 

can be seen in Figures 6 and 7. 

 

Depth Profile Comparison of Each Model 

Based on the cross-section of each model, the Lyzenga, Stumpf, Support vector machine 

algorithm shows that the profile of the seabed conditions is not much different, and the distance 

from the shoreline to the reef slope area is ±500 m. Small Lambasina Island shows a uniform 

appearance in the form of a reef with a depth of generally less than 5 m, with benthic habitats found 

in the form of coral and sand. The cross-section of the depth profile of the algorithm model on Small 

Lambasina Island can be seen in Figure 8. 
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Based on the cross-section of each algorithm model on Large Lambasina Island, Figure 9 shows 

that the profile of the seabed conditions is not much different, and the distance from the shoreline 

to the reef slope area is ±430 m on the west side of the island. Large Lambasina Island shows a 

reasonably diverse appearance due to the presence of gobah areas at a distance of 100 m with a 

depth of 5 m and a distance of 200 m with a depth of 9 m in each model. Along the transect line 

from point 0 to the slope area with a distance of ±430 m or marine areas in benthic habitats found 

are sand, coral, and coral fractures. 
 

Bathymetric data generated by satellite image estimation has a weakness in the limited ability 

of wave penetration in the water column. The area of water in the electromagnetic wavelength 

cannot reach the bottom of the water more than 22 meters. Penetration of light that enters through 

the water column, its intensity will decrease exponentially with increasing depth (attenuation) 

(Effendi, 2003). The process of absorption and scattering by organic and inorganic particles can 

reduce the intensity of light penetrating the water column (Guntur et al., 2012). 
 
 
 

 
 

Figure 6. Model of SVM Algorithm: (a) Small Lambasina Island, (b) Large Lambasina Island 

 
 

  
a b 

 

Figure 7. Regression Test of field noise depth data and the estimation results of SVM algorithm image: 

(a) Regression graph of Small Lambasina, (b) Regression graph of Large Lambasina 
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Figure 8. Cross-section of the depth profile of the algorithm model on Small Lambasina Island 

 

                    
 

Figure 9. Cross-section of the depth profile of the algorithm model on Large Lambasina Island 

 

Result Validation Test of Depth Estimation  

Statistically, there is a sizeable improvement in the depth estimates for SVM compared to the 

linear and ratio models, especially regarding RMSE and MAE values. The use of the SVM model gets 

a pretty good value in estimating shallow water bathymetry. That is shown by getting the results of 

the regression test and MAE and RMSE error tests on each algorithm model. It was observed that the 

value of R2 (Table 5) obtained was very strongly related to the SVM model compared to the ratio 

and single model. The value obtained from each island is close to 1, namely small Lambasina with R2 

= 0.81 and large Lambasina with R2 = 0.82. The value of the coefficient of determination is between 

values of 0 and 1, meaning that if the value of the coefficient of determination is close to the value 

of 1, then the relationship between the noise depth data and the image estimation data (the 

dependent variable and the independent variable) has a solid relationship (Ghozali, 2016). The error 

test is divided into two depth data, namely the depth of 0-5, 5-10, 10-15, and 15-20 meters, so the 

differences in the error test are based on depth (Table 6). The results of the SVM model on the two 

islands get a smaller error value compared to the ratio and single model. Statistically, there is a 

significant improvement in the depth estimation for the SVM model compared to the single model  

Lyzenga Stumpf 

SVM 

Lyzenga Stumpf 

SVM 
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Table 5. Results of comparison of accuracy calculations of each model based on depth division 

 

Small Lambasina Island 

Model R2 
0 - 5 meter 5 - 10 meter 10 - 15 meter 15 - 20 meter 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Single (Lyzenga) 0.78 0.02 8.81 2.19 22.25 2.51 38.84 2.03 22.85 

Rasio (Stumpf) 0.79 0.01 9.47 1.34 15.12 1.63 27.86 1.95 22.38 

SVM 0.81 0.03 7.93 1.18 14.03 1.51 25.85 1.76 20.69 

Large Lambasina Island 

Model R2 
0 - 5 meter 5 - 10 meter 10 - 15 meter 15 - 20 meter 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

Single (Lyzenga) 0.79 2.32 40.15 2.31 43.62 1.75 35.75 2.03 22.85 

Rasio (Stumpf) 0.8 1.46 28.48 2.01 41.86 1.55 33.42 1.95 22.38 

SVM 0.82 1.02 20.92 1.74 38.41 1.52 32.09 1.76 20.69 

 

 

and the ratio model, especially in the RMSE and MAE values. Small Lambasina Island and large 

Lambasina Island along the coastline did not find any turbidity from the river, which means that the 

light penetration process is not disturbed in penetrating the bottom of the waters. 

 

In Table 5, the single model algorithm has a lower coefficient of determination compared to 

the ratio and SVM models. That is also in line with the lower MAE and RMSE error test results compared 

to the ratio and SVM models, both at depths of 0-5, 5-10, 10-15, and 15-20 meters. Bathymetric 

mapping using satellite imagery for research purposes from a depth of 0 to 15 meters was carried 

out by Vojinovic et al. (2013) using the linear model, ratio model, and SVM getting different values. 

The SVM model got the lowest error test value compared to the other two models (Table 9). The 

advantage of the SVM model over ratio and linear models is that it can predict depth by utilizing 

non-linear data that shows the ability to estimate shallow water bathymetry (Mateo-Pérez et al., 

2021). 

 

CONCLUSION 

 

Statistical and visual assessments obtained for two shallow water areas, namely small and large 

Lambasina Islands, show the ability of the SVM method to estimate the depth of clear shallow waters 

with image conditions free from atmospheric disturbances. The RMSE and MAE values get a 

reasonably low error value obtained on the small and large Lambasina islands by focusing on the 

level of accuracy of the lowered depth measurement. Satellite-derived bathymetry generated by 

this method has great potential to complement survey data more efficiently and cost-effectively 

because it is not limited by ships or other survey systems. In addition, the availability of high- and 

medium-resolution satellite data has been made available for free with a five-day recording time 

interval on sentinel-2 imagery, making it a very useful tool from the perspective of continuous 

bathymetric data monitoring. Therefore, the method can obtain fast and up-to-date depth 

measurement information, which can then be used as input data for numerical modeling studies to 

understand coastal dynamics and management better. 
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