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The Four Hard Theorems
The following theorems are indispensable in calculus, but are almost
never proved in calculus textbooks. These are

Intermediate Value Theorem: A continuous function f on a
closed interval [a, b] takes all values between f(a) and f(b).
Boundedness Theorem: A continuous function on a closed
interval is bounded.
Extreme Value Theorem: A continuous function on a closed
interval has an absolute maximum and an absolute minimum.
Integrability Theorem: A continuous function on a closed
interval is integrable.

What makes proving these theorems hard is that they all assume
continuity not just at a single point, but on a whole interval. Proofs of
such “global” properties are generally left to a course in Real Analysis,
since they require introducing “topological” ideas.
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The Four Hard Theorems
To see why these are left out of most Calculus texts, consider the
proofs given in Walter Rudin’s Principles of Mathematical Analysis.

To prove the Intermediate Value Theorem (Theorem 4.23), Rudin
first proves that [a, b] is connected, and then uses continuity of f to
show that f([a, b]) is also connected, from which the IVT follows.
To prove the Boundedness Theorem (Theorem 4.15), Rudin first
proves the Heine-Borel Theorem, uses it to show [a, b] is compact,
and then uses continuity of f to show that f([a, b]) is compact,
and therefore bounded by Heine-Borel again.
The Extreme Value Theorem (Theorem 4.16) follows from the
Boundedness Theorem.
The Integrability Theorem follows from Theorem 4.19, whose
rather technical proof uses compactness of [a, b] to show that a
continuous function f on [a, b] is uniformly continuous.

Michael Spivak’s Calculus gives less abstract proofs of these theorems
(without introducing the topological notions of connectedness and
compactness), but they are quite technical and rather long.
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Why prove the IVT in first-year calculus?
Here is a point of view about teaching calculus, which I largely agree with:

“Every aspect of this book was influenced by the desire to present calculus not
merely as a prelude to but as the first real encounter with mathematics.
Since the foundations of analysis provided the arena in which modern modes of

mathematical thinking developed, calculus ought to be the place in which to
expect, rather than avoid, the strengthening of insight with logic. In
addition to developing the students’ intuition about the beautiful concepts of

analysis, it is surely equally important to persuade them that precision and rigor
are neither deterrents to intuition, nor ends in themselves, but the

natural medium in which to formulate and think about mathematical
questions.” Michael Spivak, Calculus (emphasis mine)

While I wouldn’t dare teach BC Calculus from Spivak’s book, one important theme
I try to get across to students is the need for precise definitions and for making
careful arguments. My students, for instance, are expected to at least be able to
follow and even produce (with guidance) the proofs that are given in appendices of
most calculus books.

However, when I get to the IVT, I find I am more or less forced to revert back to
drawing pictures and reasoning from the informal definition of continuity, which I
had previously argued was unreliable!
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Why prove the IVT in first-year calculus?
Searching the web for at least a decent sketch of a proof that high school students
would find accessible, I found that my frustration was articulated quite well in an
article in The College Mathematics Journal by Steven M. Walk (Vol. 42, No.4,
September 2011, https://www.jstor.org/stable/10.4169/college.math.j.42.4.254).

“In a bizarre one-two punch, we tell students that the IVT is obvious (e.g., you
can’t get from one side of a river to the other without getting wet!), but then,

paradoxically, insist that its proof is far above their heads.”

“I have heard it said that the proof of the IVT can be skipped because students
have an intuition about the real line that they can “transfer” to the graphs of

continuous functions. That would be fine - if only intuition were a reliable source!
Intuition, after all, is what tells students that (x+ y)2 = x2 + y2,

(fg)′(x) = f ′(x)g′(x), and that ln x
x

reduces to a mysterious object called ‘ln’.”

“Rather than proving the IVT property, we look at (maybe) three cases where it
seems to be true, and then we encourage students to leap to the conclusion that it is
true in all cases. This is the kind of behavior that will make us cringe when students

do it in later courses... and we wonder where they learn it!”
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A method of proof appropriate for Calculus I
Walk then points out that there is a simple proof of the Intermediate Value
Theorem which is appropriate for first year calculus students, which is based on
repeatedly bisecting the interval [a, b]. I call this technique the Bisection Method.

Moreover, the same technique can be used to give proofs of the other theorems
mentioned above, which are just as simple. The Bisection Method then becomes a
common proof technique throughout the course that students can add to their
toolbox, giving them additional opportunities to exercise their reasoning abilities.

6 / 28 IMSA Institue Day 2023 The Bisection Method



The Bisection Method
The Bisection Method is already familiar to Calculus students as a method of
approximating roots of continuous functions. For example, consider the polynomial
f(x) = x3 − x− 2. Since f(1) = −2 < 0 and f(2) = 4 > 0, by the Intermediate
Value Theorem f must have a zero on the interval (1, 2). To get a better estimate of
the root, apply what Computer Scientists call the Binary Search Algorithm: Begin
by checking the midpoint of [1, 2]. If f is zero there, we are done. Otherwise, the
function must change sign on either [1, 1.5] or [1.5, 2]. By the IVT again, f must be
zero somewhere in the subinterval on which the sign changes, so we repeat for this
subinterval, and so on. Since the length of the interval is halved at after each
iteration, the process converges to the root.
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The Bisection Method
What seems to be less well-known is that one can use the Bisection Method to prove
the Intermediate Value Theorem.

The proof presented in Walk’s article is not original. He cites a couple of textbooks
from the 1960s. A similar version of the proof outlined in Exercise 15 in Chapter 8
of Spivak’s Calculus. However, Walk does give an interesting discussion on how he
teaches the proof, including how he works his way up to it.

Walk and I part ways quite a bit when it comes to how to teach these. I personally
prefer the versions of these proofs sketched in the exercises in Spivak’s book, so in
the following I will describe the lessons I have created based around these.

I have taught these lessons a couple of times now, and they have been well-received
by virtually all of my students. (Maybe I should add here that I use a Mastery
Grading system in calculus, which allows students to fail forward without grade
penalty, so my students are not afraid to take academic risks on things like this.)
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Background Material
I spend the first few days of class on some background material, which is revisited
from time to time until we finally get to continuity and the IVT.

Each bisection proof is a proof by contradiction, so students need to be familiar with
this technique. In class I go through the standard proof that

√
2 is irrational, and

then have the students repeat the proof with 2 replaced by some other prime, and
maybe give some other practice for homework. This is easily absorbed by all
students after one day.

The hard theorems all depend on completeness of the real numbers, which I give as
an axiom, stated as the least upper bound property:

Completeness Axiom: Every nonempty subset A of R which is bounded above has
a least upper bound.

We work out supA and inf A for sets like A = { 1
n
}, and prove things like c ≥ 0

implies c supA = sup(cA), and have students work out variations. We also prove
that N is unbounded and that there is a rational between any two reals as
consequences of the completeness axiom. Most students have this digested by the
end of the first week. I try to keep the exercises easy to build confidence (e.g., I
prove something about supA and then have students give the dual proof for inf A).
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The Nested Intervals Theorem
Here is the technical part (Chapter 8, Exercise 14 in Spivak). After proving this
(students can do it in one class period, with help), the rest is simple.
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The Nested Intervals Theorem
Proof: Since the intervals are nested, am ≤ bn for all m,n. This shows that every
bn is an upper bound for the set {am} and every am is a lower bound for the set
{bn}. Let a = sup{an} and b = inf{bn}. By definition, an ≤ a for all n, and since bn
is an upper bound for {an}, a ≤ bn, so we have an ≤ a ≤ bn for all n, which says
that a ∈ In for every n and therefore a ∈

!∞
n=1 In, so

!∞
n=1 In ∕= ∅. Similarly,

b ∈
!∞

n=1 In. Now, if b < a, then b < a+b
2

< a. Since a+b
2

< a, a+b
2

is not an upper
bound for {an} so there exists some ak > a+b

2
. Similarly, since b < a+b

2
, a+b

2
is not a

lower bound for {bn}, so there exists some bℓ <
a+b
2

, but then bℓ < ak, which is a
contradiction since am ≤ bn for all m,n. Thus, a ≤ b. Assume now that
inf{bn − an} = 0. Note that an ≤ a ≤ b ≤ bn implies 0 ≤ b− a ≤ bn − an for all n,
which says that b− a is a lower bound for {bn − an} and therefore
0 ≤ b− a ≤ inf{bn − an} = 0, which implies a = b. Finally, let y ∈

!∞
n=1. Then

an ≤ y ≤ bn for every n ∈ N. The first inequality says that y is an upper bound for
{an}, hence a ≤ y. The second inequality says that y is a lower bound for {bn},
hence y ≤ b = a. Since a ≤ y ≤ a, this implies y = a. Hence,

!∞
n=1 In ⊆ {a}. Since

we also have {a} ⊆
!∞

n=1 In, this implies
!∞

n=1 In = {a}, where
a = sup{an} = inf{bn}.
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Exercise: R is uncountable
After proving the Nested Intervals Theorem, in the same class period I have
students use it to give a quick proof that R is uncountable.

Theorem. There is no surjection f : N → R.

Proof. For each n ∈ N, write f(n) = xn. Let I1 = [a1, b1] be any interval not
containing x1. Let I2 = [a2, b2] be any closed subinterval of I1 not containing x2,
I3 = [a3, b3] any closed subinterval of I2 not containing x3, and so on. By the Nested
Intervals Theorem,

!∞
n=1 In ∕= ∅. But no xk can be in the intersection (since

xk /∈ Ik), so there exists some real number y ∈
!∞

n=1 In ⊆ R such that y ∕= f(n) for
any n ∈ N. Hence, f is not a surjection.
(Note that we did not need hypothesis (ii) of the Nested Intervals Theorem.)
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The Bisection Method
Finally, we need to show that the Bisection Method produces a sequence of intervals
satisfying both hypotheses of the Nested Intervals Theorem, which is easy at this
point.

Consider the following procedure:

Begin with a closed interval I1 = [a1, b1].

Bisect I1 to obtain two closed subintervals [a1,
a1+b1

2
] and [a1+b1

2
, b1].

Select one of the two subintervals above, and call it I2 = [a2, b2].

Keep repeating this process to obtain a sequence of intervals
I1, I2, I3, I4, I5, . . . .

Show that the sequence of intervals I1, I2, I3, I4, I5, . . . obtained above satisfies both
hypotheses of the Nested Intervals Theorem. That is, show that

an ≤ an+1 for all n ∈ N and bn+1 ≤ bn for all n ∈ N, so that
I1 ⊇ I2 ⊇ I3 ⊇ · · · , and
inf{bn − an} = 0.

(i): Since for each n we have an < an+bn
2

< bn, so either an+1 = an or moves to the
right, and similarly either bn+1 = bn or moves to the left.

(ii): Note that bn − an = b1−a1
2n−1 , so inf{bn − an} = (b1 − a1) inf{ 1

2n−1 } = 0, by a
previous exercise.
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Rationals between reals, revisited
As their first bisection proof, I have the students give an alternative proof that there
is a rational between any two reals, which I restate as follows.

Theorem. Given any x ∈ R and ε > 0, show that (x− ε, x+ ε) contains a rational
number.

We will need the following Lemma. (The name is due to Walk.)

Lemma. (The Capture Theorem) Let A be a nonempty subset of R. If A is
bounded above, then any open interval containing supA contains an element of A.
Similarly, if A is bounded below, then then any open interval containing inf A
contains an element of A.

Proof. Let (x, y) be an open interval such that x < supA < y. If (x, y) didn’t
contain an element of A, then x would be an upper bound for A, which is a
contradiction since x < supA.
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Rationals between reals, revisited
Theorem. Given any x ∈ R and ε > 0, show that (x− ε, x+ ε) contains a rational
number.

Proof. If x is rational we are done, so assume x is irrational. Let b1 be the smallest
integer greater than x, and let a1 = b1 − 1. Then I1 = [a1, b1] contains x and has
rational endpoints. It follows that x is contained in either (a1,

a1+b1
2

) or (a1+b1
2

, b1).
Let I2 be the (closed) subinterval containing x. Continuing in this way, we obtain a
sequence of closed intervals I1 ⊇ I2 ⊇ · · · satisfying the hypotheses of the Nested
Intervals Theorem, where each In contains x and has rational endpoints. By the
Nested Intervals Theorem

!∞
n=1 In = {y}, where y = sup{an} = inf{bn}. Since

x ∈ In for all n, x ∈
!∞

n=1 In, and therefore y = x. Since x = sup{an}, by the
Capture Theorem the open interval (x− ε, x+ ε) contains am for some m ∈ N. Since
am is rational, this completes the proof.
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Intermediate Value Theorem
Time passes, and we eventually come to the IVT. I state the theorem, give the
intuition and examples, and students apply it in various ways. Now we are ready to
prove it.

We will need the following Lemma. (The name is again due to Walk.)

Lemma. (Aura Theorem) Let f be continuous at a.

If f(a) > 0, then f(x) > 0 for all x in some open interval containing a.

If f(a) < 0, then f(x) < 0 for all x in some open interval containing a.

Proof. (I prove part (a) and leave part (b) as an exercise.) Assume f(a) > 0. Then

corresponding to f(a)
2

> 0 there exists a corresponding δ > 0 such that |x− a| < δ
implies

|f(x)− (a)| < f(a)

2
⇐⇒ −f(a)

2
< f(x)− f(a) <

f(a)

2

⇐⇒ 0 <
f(a)

2
< f(x) <

3f(a)

2
,

hence f(x) > 0 for all x ∈ (a− δ, a+ δ).
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Intermediate Value Theorem
We first prove a special case, from which the general case follows easily.

Theorem. (Bolzano’s Theorem) Let f be a continuous function defined on [a, b].
If f(a) < 0 and f(b) > 0, then there exists x ∈ [a, b] such that f(x) = 0.

Proof. Let I1 = [a1, b1] = [a, b]. If f(a1+b1
2

) = 0, we are done. Otherwise, f changes

sign on either [a1,
a1+b1

2
] or [a1+b1

2
, b1]. Let I2 = [a2, b2] be the subinterval on which

f changes sign and repeat. By the Nested Intervals Theorem,
!∞

n=1 In = {x}.
Suppose f(x) > 0. By the Aura Theorem, f must be positive on an open interval
containing x. Since x = sup{an}, by the Capture Theorem this open interval must
contain some am. But f(am) < 0, which is a contradiction. Similarly, f(x) can’t be
negative, since if it were then it must be negative on an open interval containing
x = inf{bn}, which must contain some bk, but f(bk) > 0. Hence, f(x) = 0.

If f(a) > 0 and f(b) < 0, then g := −f satisfies the hypotheses of Bolzano’s
Theorem, and therefore g(x) = −f(x) = 0 for some x ∈ (a, b), and therefore
f(x) = 0.

General case: If f(a) < c < f(b), then g(x) := f(x)− c is continuous and satisfies
the hypotheses of Bolzano’s Theorem, so there exists some x ∈ (a, b) such that
g(x) = f(x)− c = 0 and therefore f(x) = c.
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Boundedness Theorem
The Extreme Value Theorem follows from the Boundedness Theorem.

Theorem. (Boundedness Theorem) If f is continuous on [a, b], then f is
bounded on [a, b].

We will need the following lemma.

Lemma. If f is continuous at a, then f is bounded on some open interval
containing a.

Proof. Since f is continuous at a, corresponding to 1 > 0, say, there exists δ > 0
such that |x− a| < δ implies |f(x)− f(a)| < 1. That is, x ∈ (a− δ, a+ δ) implies
f(a)− 1 < f(x) < f(a) + 1, which shows that f is bounded on the open interval
(a− δ, a+ δ).
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Boundedness Theorem
Also, we have seen previously that when the intervals In = [an, bn] arise from
bisection, any open interval containing x (where

!∞
n=1 In = {x}) necessarily contains

an ak and a bℓ. Since the intervals In are nested, this implies something stronger:
namely, that such an open interval contains one of the intervals IN .

To see this, note that there are three possibilities:

if k = ℓ, then the open interval contains Ik.

if k < ℓ, then the open interval contains ak ≤ ak+1 ≤ · · · ≤ aℓ ≤ bℓ, so the open
interval contains Iℓ.

if k > ℓ, then the open interval contains ak ≤ bk ≤ · · · ≤ bℓ+1 ≤ bℓ, so the open
interval contains Ik.
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Boundedness Theorem
Theorem. (Boundedness Theorem) If f is continuous on [a, b], then f is
bounded on [a, b].

Proof. Let I1 = [a1, b1] = [a, b]. Suppose f is continuous on [a, b] but not bounded.
Then f is either unbounded on [a1,

a1+b1
2

] or [a1+b1
2

, b1] (since, otherwise, f would
be bounded on their union and hence on all of I1). Let I2 be the subinterval on
which f is unbounded and repeat. By the Nested Intervals Theorem,!∞

n=1 In = {x}, where x = sup{an} = inf{bn}. Since f is continuous at x, f is
bounded on some open interval containing x. However, as we have seen, such an
open interval contains one of the intervals IN , which is a contradiction since f is
unbounded on each IN . Hence, f is bounded on [a, b].
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Extreme Value Theorem
Theorem. (Extreme Value Theorem) A continuous function on [a, b] attains
both an absolute maximum and an absolute minimum on [a, b].

The proof is more or less the standard one.

Proof. We first prove f has a maximum on [a, b]. Since f is continuous on [a, b], by
the Boundedness Theorem f is bounded on [a, b]. Since f is bounded, its image set
is a nonempty subset of R which is bounded above, so by the Completeness Axiom
it has a least upper bound. Let M = sup f([a, b]). By definition of M , f(x) ≤ M for
all x ∈ [a, b]. Suppose, by way of contradiction, that f(x) < M for all x ∈ [a, b].
Then g(x) := 1

M−f(x)
is continuous on [a, b] and hence bounded on [a, b] by the

Boundedness Theorem again, so there exists K > 0 such that 1
M−f(x)

≤ K for all

x ∈ [a, b]. It follows that f(x) ≤ M − 1
K

for all x ∈ [a, b], which says that M − 1
K

is
an upper bound for f([a, b]). Since K > 0, M − 1

K
< M , so this contradicts the fact

that M = sup f([a, b]). Hence, there must exist c ∈ [a, b] such that f(c) = M .

To see that f has a minimum on [a, b], just note that g := −f is continuous on [a, b]
and therefore has a maximum on [a, b] by the first part. This means there exists
c ∈ [a, b] such that, for all x ∈ [a, b],
g(x) ≤ g(c) ⇐⇒ −f(x) ≤ −g(c) ⇐⇒ f(x) ≥ f(c), which says that f(c) is a
minimum.
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Uniform Continuity Theorem
The Integrability Theorem follows from the Uniform Continuity Theorem.

Recall that a function is uniformly continuous on an interval I if for every ε > 0
there exists a δ > 0 such that, for all x, y ∈ I, |x− y| < δ implies |f(x)− f(y)| < ε.

Theorem. If f is continuous on [a, b] then f is uniformly continuous on [a, b].

We will need the following lemma.

Lemma. Suppose a ≤ c ≤ b. Then, if f is continuous on [a, b] and uniformly
continuous on [a, c] and [c, b], then f is uniformly continuous on [a, b].
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Uniform Continuity Theorem
Lemma. Suppose a ≤ c ≤ b. Then, if f is continuous on [a, b] and uniformly
continuous on [a, c] and [c, b], then f is uniformly continuous on [a, b].

Proof. Let ε > 0. Since f is uniformly continuous on [a, c] there exists δ1 > 0 such
that x, y ∈ [a, c] and |x− y| < δ1 implies |f(x)− f(y)| < ε. Since f is uniformly
continuous on [c, b] there exists δ2 > 0 such that x, y ∈ [b, c] and |x− y| < δ2 implies
|f(x)− f(y)| < ε. What if x < c < y or y < c < x? To take care of this case, we use
continuity of f . Since f is continuous at c, there exists δ3 > 0 such that |x− c| < δ3
implies |f(x)− f(c)| < ε

2
. It follows that if |x− c| < δ3 and |y − c| < δ3, then

|f(x)− f(y)| = |f(x)− f(c)+ f(c)− f(y)| ≤ |f(x)− f(c)|+ |f(c)− f(y)| < ε
2
+ ε

2
= ε.

Let δ = min{δ1, δ2, δ3} and suppose |x− y| < δ. If x and y are both in [a, c] or [c, b],
then we have seen that |f(x)− f(y)| < ε. Otherwise, either x < c < y or y < c < x.
In the first case, subtracting x gives 0 < c− x < y − x < |y − x| < δ. In each case
|x− y| < δ implies |x− c| < δ and |y − c| < δ, which implies |f(x)− f(y)| < ε.
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Uniform Continuity Theorem
We can now use the Bisection Method to prove the Uniform Continuity Theorem.

Theorem. If f is continuous on [a, b] then f is uniformly continuous on [a, b].

Proof. Suppose f is continuous on [a, b] but not uniformly continuous. Since f is
not uniformly continuous on [a, b], there exists ε > 0 such that |f(x)− f(y)| ≥ ε for
all x, y ∈ [a, b]. Let I1 = [a1, b1] = [a, b]. By the lemma, it follows that f is either not
uniformly continuous on [a1,

a1+b1
2

] or not uniformly continuous on [a1+b1
2

, b1]. Let
I2 be the subinterval on which f is not uniformly continuous. Then |f(x)− f(y)| ≥ ε
for all x, y ∈ I2. Continuing in this way, we obtain a sequence of intervals
I1 ⊇ I2 ⊇ · · · satisfying the hypotheses of the Nested Intervals Theorem and such
that, for each n ∈ N, |f(x)− f(y)| ≥ ε for all x, y ∈ In. By the Nested Intervals
Theorem,

!∞
n=1 In = {x0}, where x = sup{an} = inf{bn}. Since f is continuous at

x0, corresponding to the ε above there exists δ > 0 such that |x− x0| < δ implies
|f(x)− f(x0)| < ε

2
. Then, for any x, y ∈ (x0 − δ, x0 + δ), we have |x− x0| < δ and

|y − y0| < δ, so
|f(x)−f(y)| = |f(x)−f(x0)+f(x0)−f(y)| ≤ |f(x)−f(x0)|+|f(x0)−f(y)| < ε

2
+ ε

2
= ε.

But, as we have seen, (x0 − δ, x0 + δ) contains some IN and |f(x)− f(y)| ≥ ε for all
x, y ∈ IN , so we reach a contradiction. Hence, f is uniformly continuous on [a, b].
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Integration
I introduce the integral axiomatically, following the notes of Pete Clark
(http://alpha.math.uga.edu/∼pete/2400full.pdf):

(I0) Continuous functions are integrable.

(I1) If f = c is constant, then c is integrable and
" b

a
c = c(b− a).

(I2) If f1 and f2 are integrable with f1(x) ≤ f2(x) for all x ∈ [a, b], then" b

a
f1 ≤

" b

a
f2.

(I3) If f is integrable and c ∈ (a, b), then
" b

a
f =

" c

a
f +

" b

c
f .

The proof of Theorem 8.1 in Clark’s notes shows that the Fundamental Theorem of
Calculus follows from these axioms.

It remains then to construct the function f .→
" b

a
f and to describe the domain.

To prove that a continuous function is integrable, it is easier to use the Darboux
integral than the Riemann integral. This is the route taken in Spivak’s text.
Equivalence of the two integrals is proved in Theorem 8.26 of Clark’s notes.
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The Darboux Integral
The Darboux integral is defined in terms of upper and lower sums, rather than
Riemann sums. Let P = {a = x0 < x1 < x2 < · · · < xn = b} be a partition of [a, b].
For a bounded function on [a, b], let

Mi = sup{f(x) : xi−1 ≤ x ≤ xi},
mi = inf{f(x) : xi−1 ≤ x ≤ xi},

and define the upper sum and lower sums for f on [a, b] relative to P by

U(f, P ) =

n#

i=1

Mi(xi − xi−1)

L(f, P ) =
n#

i=1

mi(xi − xi−1).

The upper and lower integrals of f on [a, b] are then defined by
$ b

a

f : = inf{U(f, P ) : P a partion of [a, b]}
$ b

a

f : = sup{L(f, P ) : P a partion of [a, b]}.

A function is integrable if
" b

a
f =

" b

a
f , and we denote the common value by

" b

a
f .
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The Darboux Integral
Clark proves in Theorem 8.8 that the Darboux Integral

" b

a
f satisfies axioms

(I1)-(I3), and therefore that the Fundamental Theorem of Calculus holds for the
Darboux Integral.

Rather than working with sups and infs, an equivalent condition for integrability is
given by Theorem 8.7 of Clark’s notes:

Darboux’s Integrability condition: A function is Darboux integrable if and only
if for every ε > 0 there exists a partition Pε of [a, b] such that
U(f, Pε)− L(f, Pε) < ε.
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The Integrability Theorem
We are finally ready to prove the Integrability Theorem (Ch 13, Theorem 3, Spivak).

Theorem. (The Integrability Theorem) If f is continuous on [a, b], then f is
integrable on [a, b].

Proof. First note that, since f is continuous on [a, b], it is bounded on [a, b], which
we have required to be integrable. Let ε > 0. Since f is continuous on [a, b], it is
uniformly continuous on [a, b], so corresponding to ε

b−a
> 0 there exists δ > 0 such

that for all x and y in [a, b], |x− y| < δ implies |f(x)− f(y)| < ε
b−a

. If we choose a
partition P such that |xi − xi−1| < δ for each i, then for each i we have
|f(x)− f(y)| < ε

b−a
for all x, y ∈ [xi−1, xi]. By the Extreme Value Theorem,

Mi = f(x) and mi = f(y) for some x, y ∈ [xi−1, xi], so in particular we have
Mi −mi <

ε
b−a

for each i, and therefore

U(f, P )− L(f, P ) =

n#

i=1

(Mi −mi)(xi − xi−1)

<
ε

b− a

n#

i=1

(xi − xi−1)

=
ε

b− a
(b− a) = ε.
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