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Abstract

The abelian sandpile model on a connected graph yields a finite abelian group Q of recurrent 

configurations which is closely related to the combinatorial Laplacian. We consider the identity 

configuration of the sandpile group on graphs with large edge multiplicities, called “thick” 

graphs. We explicitly compute the identity configuration for all thick paths using a recursion 

formula. We then analyze the thick cycle and explicitly compute the identity configuration for 

the three-cycle, the four-cycle, and certain types of symmetric cycles. The latter is a special 

case of a more general symmetry theorem we prove that applies to an arbitrary graph.



1 Introduction

The sandpile model was introduced by Bak, Tang, and Wiesenfeld [1] as an example of self-organized 

criticality and has been extensively studied in the context of statistical mechanics. It is the simplest 

and best-understood model of the phenomenon of self-organized criticality, which has been used

to describe natural systems including earthquakes, forest fires, turbulent fluids, and punctutated 

equilibrium [2]. It also has applications for modeling fault tolerance and routing in internet com- ؛ ,
____—

puting [3]. The sandpile model is a variant of the chip-firing game, introduced(independently^By ؟ " 

Björner, Lovász, and Shor [4]. Other similar models include the dollar game [5, 6], the oil game

[6], and the Dirichlet game [3].

The structure of the sandpile model yields a finite abelian group, first studied by Dhar [7]. 

The identity configuration of this group is particularly interesting. For example, Creutz’s paper [8] 

displays the complicated fractal patterns of the identity configuration on a square grid. This grid 

identity was further studied in [10, 11].

This paper presents several results on the identity configurations of graphs with arbitrary edge 

multiplicities, called “thick” graphs. In Section 2, we introduce the sandpile model and review 

preliminary results. In Section 3, we consider the problem of the identity configuration of the thick 

path on n vertices. In Section 4, we consider the related problem of the thick cycle.

2 The sandpile group

In this section we formally introduce the basic theory of the sandpile model and review important 

definitions and notation.

2.1 The toppling rule

We define the sandpile model on an finite connected graph A = (V, E) with |V| = n. The graph A is 

called the ambient space. For this paper, we restrict ambient spaces to be undirected, but sandpiles 

may also be considered on directed graphs [12]. The ambient space may have multiple edges, but 

no loops. Recall that the edge multiplicity %j denotes the number of edges with endpoints i and 
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j. A distinguished vertex numbered n is designated as the sink and usually denoted by s; all other 

vertices are called ordinary and form a set % = V\s. Every vertex M % is assigned a certain 

nonnegative number of grains of sand, called the height. This mapping of Vo ־־־* N”“1 is called 

a configuration and denoted by a vector u — (u!,U2, ■ ■ ■, un-i)■ If u¿ < deg(i) for i e Vo, where 

deg(i) is the degree of i, then the vertex i is said to be stable. We also call a configuration stable if 

all of its vertices are stable.

If for any vertex i the inequality u¿ > deg(¿) holds, then i is unstable and topples. When vertex i 

topples, it passes one grain along every edge {i,j} to j. That is, vertex i loses grains and

its adjacent vertices j gain grains each. In a reverse toppling of i, vertex i gains grains

and each adjacent vertex j loses grains. The sink cannot topple (unless noted otherwise) and 

we ignore the number of grains it holds. Since the sink collects grains, any sequence of topplings is 

of finite length.

Given a configuration u, we now define ،r(u) as the stable configuration reached from u by a 

sequence of topplings and call it the stabilization ofu. The function a is well defined by a confluence 

property, namely that the number of times each vertex is toppled is independent of the sequence 

in which the topplings are performed in u [3]. We can define a binary operation ® on the set of
C.0 **■  l *

stable configurations Al by u © v = o־(i، + v), where addition is taken pointwisèj. This gives M. a 

monoid structure, which we will henceforth call the “sandpile monoid.” The identity of M. is the 

empty configuration 0.

We define a matrix corresponding to the toppling of vertices. The combinatorial Laplacian 

L = (Lij)ijev is the n x n matrix defined as

{
deg(¿) if i = j,

(1) 
-Cij if i + ƒ

The toppling matrix △ = (Ay) is the (n — 1) x (n — 1) matrix obtained from the Laplacian by 

deleting row n and column n, those corresponding to the sink. We let denote the row vectors of 

A. A toppling of vertex i can be represented by —and a reverse toppling by For example, 

the configuration obtained upon toppling the vertex i in configuration u is u — 3i,The vectors
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span a lattice,
n—1

a = £w). (2)
i=l

The score vector of u is written as tu = (m)2, · · · > (Ti،)n-i), where (t-u)¿ denotes the

number of times vertex i topples in the stabilization of u. We define a map 7 : Zn-1 —» Zn-1 that 

takes a score vector t as input, given by:

I ti 72 =(r׳)7 ־2 ؛ (-A2j), ..., rn_x 2؛(-An_ij) I . (3)

\ J=i 3=1 j=i /

Thus for a configuration u, we have ،t(u) = u + ־׳y(Ti،).

2.2 Recurrent configurations and^buming algorithm

Certain recurrent configurations appear with nonzero probability as grains are randomly added to 

an ambient space A. We state this concept more formally.

Definition 2.1. A stable configuration w is called recurrent if for every stable configuration u 

there exists a configuration v such that w = u ® v.

The set of these recurrent configurations is the minimal nonempty ideal of the sandpile monoid 

M. This ideal is a finite abelian group Q = Zn-1/A of order det(A) called the sandpile group. This 

group is closely related to the combinatorial Laplacian; the torsion coefficients of the canonical 

cyclic group decomposition of Q are equal to the diagonal entries of the Smith normal form of the 

Laplacian [9]. The following lemma illustrates the ubiquitous structure of G:

Lemma 2.2. Let Mr denote the monoid reduction<_M\{0}). If Aq = (%*)  is connected, there 

exists some k such that(j(kù) € G for every u G M.

Proof. Let ti be the standard basis vector (0,...,0,1,0,... ,0) G Z"-1 corresponding to i.

We show that there exists H e N such that every vertex j G K)has height at least 1 after some 

sequence of topplings of fc't¿, using induction on the diameter DÇA) of A. If ■0(4) = 1, choose 

k' = deg(i) + 1. Upon toppling i, each vertex will have height at least 1. If D{A) > 1, there exists 
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k" G N such that every vertex of distance less than D{A) — 1 has height at least 1 after some 

sequence of topplings of k"ti by the induction hypothesis. Then set k' = £"(maxj€Vb deg(j) + 1). 

Every vertex of distance Z?(A) — 1 from i can topple once and the inductive step is complete.

Set k = /¡;'(maxjevb deg(j) + 1). Then cr(fci¿) E G because there is a sequence of topplings of ktj 

yielding a configuration C in which every vertex is unstable. Configuration C can thus be obtained 

from any stable configuration by adding some positive number of chips at every vertex. Therefore 

<r(C) = is recurrent. Since t!, ،2, · · · generate M~, for any stable configuration u 

there exists some constant k € N such that o(ku) G Q. 

There are a number of other characterizations of recurrence. In fact, Dhar [7] showed that a 

configuration u is recurrent if and only if there does not exist 5 C Vo for which all vertices i E S 

have the property u¿ < degs(?), where degs(i) denotes ejj, the degree of i in the subgraph 

of A induced by vertex set S.

From this characterization, Majumdar and Dhar [13] gave a polynomial-time algorithm to recog

nize recurrence in an undirected graph, called the burning algorithm. Given a stable configuration 

it, “burn” any vertex i for which > degs(i), where S is the subset of all unburnt ordinary ver

tices in Vo- The configuration u is recurrent if and only if S = {0} eventually (all sites are burnt). 

Equivalently, add u to the configuration

/3 = ، ؟1 + ¿2 + · · · + ؟< n-l (4)

corresponding to toppling the sink vertex (imagine an infinite supply of grains at the sink). Every 

ordinary vertex will topple at most once. The configuration u is recurrent if and only if every 

vertex topples exactly once. In fact, the final state after adding 0 will be identical to the original 

by (4). A formal statement of both versions of the burning algorithm follows:

Algorithm 2.3 (Burning algorithm version 1). Given a configuration u,

1. Set S := Vo.

2. If there exists a vertex i & Vq where Ui > degs(i), set S := S\i.

3. Repeat 2. until there are no vertices i & Vq where > degs(z). Then u is recurrent if and 

4



only if S' = {0}.

Algorithm 2.4 (Burning algorithm version 2). Given a configuration u,

1. Take u®0. We often refer to this step as “toppling the sink,” since addition of 0 corresponds 

to toppling the sink vertex.

2. Then u is recurrent if and only ii u ® /3 — u.

We now define an equivalence relation on the set of configurations that offers a method to find 

recurrent configurations.

Definition 2.5. Let a generalized configuration be an element of Zn-1 which we interpret as a 

configuration allowing negative heights. For two generalized configurations u,v E Zn-1, u = v iî 

u — v E A., i.e., u can be reached by v through a series of topplings or reverse topplings and vice 

versa.

Then we show that there exists exactly one stable recurrent configuration in each equivalence 

class. We will use the configuration 0, since = 0 by (4).

Corollary 2.6 (of Lemma 2.2). For any configuration u E M there exists £ € N such that 

u® k/3 E Q.

Proof. Lemma 2.2 establishes the existence of a fc G N such that k(3 G Q. Then by Definition 2.1, 

u ® is recurrent. 

Proposition 2.7. For any generalized configuration u 6 Zn-1, there exists a unique stable recurrent 

configuration v E G such that u = v.

Proof. Existence is established by Corollary 2.6, since there exists fc € N such that u ® k/3 is 

recurrent and u ® k/3 = u. Now assume there exist recurrent configurations u and v such that 

u-v E A.. But then it = ■u, so there is a unique stable configuration in every equivalence class. 

Let © : M t § denote the natural homomorphism mapping each element of M to its equivalent 

recurrent configuration. Then by Corollary 2.6 there exists a fc G N such that ® u is recurrent. 

Since fc/3 ® it = u, iterating additions of /3 will determine the image </>(«) by Algorithm 2.4. This 

gives the following algorithm for computing the identity configuration:
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Algorithm 2.8 (Extended burning algorithm). Given a configuration u, the image ©(u) can be 

determined by the following algorithm:

1. Set k := 1.

2. If <t(u + fc/3) o־(u + (/0(1 — :؛), set k ■.= k + 1. As in Algorithm 2.4, this corresponds to

toppling the sink vertex.

3. Repeat 2. until a(u + k/3) = a(u + (£ + l)/3). Then ،t(u + k/3) =

Moreover, note that the identity of Q on the ambient space A (hereafter referred to as the 

identity configuration and denoted by IA) is the image of the empty configuration 0 under 

Therefore Algorithm 2.8 provides a useful way to compute the identity configuration IA.

Another method to demonstrate that a given configuration u is the identity configuration is 

to check u for idempotence. Clearly if u is recurrent and u ® u — u, then u is the identity 

configuration. We show that in fact the only nonzero idempotent of the sandpile monoid M is the 

identity configuration if the subgraph of A induced by % is connected, which eliminates the need 

to test for recurrence in most cases.

Lemma 2.9. Let Aq = (%, E) be the subgraph of A obtained after deletion of the sink. If Aq is 

connected, then there is exactly one idempotent in , namely the identity of the sandpile group 

Q.

Proof. The quotient group M~/G is nilpotent by Lemma 2.2. Since C)<M, a stable configuration 

it W G cannot be idempotent. The only idempotent in Ç is the identity configuration, and the result 

follows. 

3 Identity configuration of the thick path

We are interested in the identity configuration of the general thick path. Let Pn>e denote the thick 

path on n vertices with a sink on one end and edge multiplicities e = {e!^, 62,3,..., en_!؛s}. For 

simplicity we will usually denote Pn<e as simply Pn; the set of edge multiplicities used should be 

clear from the context.
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Figure 1: The thick path P3.

Figure 2: The thick path P4.

First, we consider the undirected thick path R (Figure 1) on three vertices with sink s and 

vertices labeled 1 and 2.

Claim 3.1. The identity configuration IP3 of P3 is uP3 = (tif3, u^3), where uPi = 0 and uPi =

ei,2+e2,s~1־

62,s
62,s, i.e., the largest multiple of e2,s less than ei,2 + 62,«·

Proof. We show that uP3 is idempotent. Considering

Po , Po (inn el,2 + ^2,3 1 ־־ \\
u 3 + u 3 = a 0,2 —::------  62 3 ,

\ \ L 62,3 J ’ J J
(5)

we observe that grains transferred to vertex 1 can be transferred back to vertex 2. Clearly, the 

value of uf3 will remain 0. The value of uP3 decreases by e!,2 + 62,3 every time vertex 2 is toppled, 

but grains sent to vertex 1 are restored. This means we can say that the value of uP3 decreases by 

a net amount of 62,3 every time vertex 2 is toppled. Eventually, we have

uP3 + uPì — ei,2 + e2,s — 1

62,3
P3 (6)

Since uPi + 0, Lemma 2.9 completes the proof. □
Next, we consider the thick path P4 on four vertices, as shown in Figure 2. Notice the similarities 

in the formula of IPi to that of IP3.

Claim 3.2. The identity configuration Ip^ of P4 is uPi = (<uPi,uP4,uPi), where uP4 = 0, uP4 =

e2,3, and uP4 = A63.3 - UP4 

A- %3+e£ +K4 i ״6.¿ ,62,3+63,3
C3,S

where A is the largest integer such that Ae3,s — uP4 <
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Proof. We show idempotence by considering

uPi + uPi — 2u^4,2uf4)). (7)

Vertex 1 will transfer any grains it receives in the stabilization process back to vertex 2 as in the 

proof of 3.1. Additionally, the number of grains on vertex 2 will decrease by 62,3 every time it is 

toppled. While vertex 2 is stabilizing, vertex 3 receives a net total of grains. The grains on 

vertex 3 are lost eatS at a time, which accounts for our choice of u^4. Then Lemma 2.9 completes 

the proof. 

Now referring back to the two previous graphs P3 and P4, we construct a generalization for 

identity configuration IPn of the thick path on n vertices (including the sink). Inductively, we have 

the following recursion lemma:

Lemma 3.3. Given two thick paths Pn and Pn+i, where in Pn is equal to in Pn+\：

= /fn+1I I (8)

for i ranging from 1 to n — 1.

Proof. We can think of the vertex n in the thick path on n + 1 vertices as the sink in the thick 

path on n vertices, collecting grains. As in the implementation of the Algorithm 2.4, any toppling 

of vertex n will leave the vertices to the left unchanged after toppling. 

Now we find the identity configuration of the general thick path on n vertices.

Theorem 3.4. The identity configuration IPn of the thick path on n vertices is uPn, where

^kek,k+l ~ ui n

if k = 1,

if k > 1,

where A¿ is the largest integer such that Xk^k,k+1 ~ ■uf” < £k-i,k + ^k k+i ■

(9)
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Figure 4: This graph decomposed into P4 and P3.

Figure 3: Another thick path on six vertices.

Proof. Upon stabilizing uPn + uPn, vertex n — 1 eventually collects a total of u^n grains as 

the configuration stabilizes. Then, since vertex n — 1 loses en-i,s grains every time it topples, 

must equal the largest An_ien_i,s — less than en_2,n-i + en_!jS. Using Claim 3.1 for the

initial case k = 1 and Lemma 3.3 to establish the recursion, we have the desired generalization. 

Now we address the question of the thick path on n vertices where the sink is not an end vertex. 

An example is shown in Figure 3. Note that such a path can be formed by taking the disjoint 

union of two paths where the sink is an end vertex and identifying their sinks, as in Figure 4. 

Idempotence is clearly not affected.

Remark 3.5. Using the same principle, we can also find the identity configuration of the “spider” 

graph formed by the disjoint union of several paths where the sinks are identified. More generally, 

for any arbitrary graph, the identity configuration can be computed separately on each connected 

component of Aq = (%,E).

By investigating the thick path, we characterized its identity configuration in Theorem 3.4. 

This result also extends to the identity configurations of several families of graphs with arbitrary 

edge multiplicities, including the spider graph.

4 Identity configuration of the thick cycle

We now consider the identity configuration of the thick cycle. Unless noted otherwise, we num

ber the vertices in order, starting from a vertex distance 1 from the sink, such that the sink 

vertex is numbered n. Let Cn,e denote the thick cycle on n vertices with edge multiplicities 
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e — {ei,2,62,3, · · ■, en-i,n, en,i}· As with the thick path we will usually write Pn<e as simply Pn; 

the set e of edge multiplicities used should be clear from the context.

4.1 Symmetric cycles

We study the identity configuration of the symmetric cycle using Theorem 3.4. First, we prove a 

general result on joining several identical graphs.

Definition 4.1. Let G = (V, E) be an ambient space with Gi, G2,..., as identical copies. Given 

a set So Ç Vq, let S = Sq U {sink}. Then G*(S)  denotes the graph formed by taking the disjoint 

union |_|%i Gi and, for each vertex j G S, identifying all k copies of j as a single vertex (thereby 

joining edges). In particular, we are interested in G2(S), the double of G.

Theorem 4.2. The identity configuration IGk^ of G&(S) is uGk^s\ where

kl^ if i E S,
(10) 

IG otherwise .

Proof. Let r denote the score vector of IG + IG. We take

(11) .(، V1 + tV2 +-----F،)؟·(#״)+ 7 +

The height of each vertex i is then

+ - n deg(i) + E TieiJ = a?*).  (12)
jev0

The resulting configuration is uGk^ and thus 11#($) = 0. We then show uG*(S)  ¡s recurrent using 

Algorithm 2.3. Since IG is recurrent, there is a burning sequence of distinct vertices v!,V2, ■ ■ ·,vn 

for which all vertices are eventually burned. During each time step i we can burn all copies of 

vertex Vi in G*(S).  Thus uGk^ is recurrent and hence !،#($) = jGk(s\ □

/)=
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Figure 5: The symmetric hexagon Cq.

Corollary 4.3. The identity configuration IG2^ of the double graph G2(،؟) is uG2^s\ where

2Ip ifieS, 

otherwise .
(13)

Proof. This corollary is a special case of Theorem 4.2 where k = 2. 

Remark 4.4. Note that we can extend Theorem 4.2 to the disjoint union of graphs G!,G2,... ,Gk 

where the score vector of IGi + IGi is the same for all i, with some identification of the sets of 

vertices in each (also one can identify only some of the corresponding vertices, not only all of them 

or none).

We formally state a relationship between the identities of cycle and path graphs, namely that 

several paths can be joined together to form a cycle. From this relationship we derive a formula 

for the identity configuration of certain cycles.

Definition 4.5. A cycle Cn is symmetric if the edge multiplicities are equal between each pair of 

vertices of distance i and i + 1 from the sink for all i from 0 to \n/2\.

Remark 4.6. A symmetric thick cycle Cn is the double of a thick path Pn/2 if n is even. The 

symmetric Cq is given as an example in Figure 5.

Theorem 4.7. Let Cn be a symmetric thick cycle. If n is even, the identity configuration uGn is
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Figure 6: The thick three-cycle C3.

given by

0 if k — n/2, 

if k > n/2, 

if k < n/2,

where A¿ is the largest integer such that Xk^k,k+1 — < ^k—l,k + ^fc,fc+l ·

If n is odd, the identity configuration uCn is uCn

ucn 
k

^k,k—l + ^k,k+l ~ 1
^k,k—l

Xkek,k-1 ~ H,i=\n/2\ 3?'

if k — |_n/2j or f71/21,

if k>「n/2],

if k< |_Ti/2j,

(14)

(15)

where Xk is the largest integer such that Xk£k,k+i — < ^k-i,k + efc,fc+i·

Proof. We first prove the result for even n. Since Cn is symmetric, it can be expressed as the double 

of a thick path Pn/2■ The result follows from Lemma 4.3 and Theorem 3.4.

Now if n is odd, we insert a vertex v between vertices |_n/2j and \n/2\. By symmetry, if vertex 

[7i/2j topples, vertex『n/2] also topples and vice versa. This means that vertex v does not affect 

the transfer of grains between vertices \n/2\ and [’n/2] and uv = 0 for any stable configuration it. 

Now our graph becomes an even cycle and the result follows from the proof for even n.  

4.2 The general thick three-cycle and four-cycle

We begin with the general thick three-cycle C3 (Figure 6). Without loss of generality, eljS < e2,s.
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Claim 4.8. The identity configuration ICi of the thick three-cycle C3 is uC3 where

ei,2 + e2,s — 1

62,s
62,s>

ei,2 + ei,s — 1

62,s
(16)

Proof. We show recurrence by the Algorithm 2.4. “Toppling the sink” allows vertex 1 to immedi

ately topple. Then vertex 2 can topple, since it received e!^ + 62,« grains. Now we demonstrate 

idempotence by considering

ei,2 + e2,s  1

62,S

ei,2 + e2,s  ]

C2,s
(17)<7 2 62,3! 2 ^l,s

Toppling the vertices in succession decreases the number of grains on vertex 1 by e!؛s and on vertex 

2 by 62,3, so uC3 + uCi = uC3 after j topplings of each vertex. Lemma 2.9 completes

the proof.

Alternatively, we can find this result using Algorithm 2.8. The configuration uC3 is in the 

class of the identity since uC3 = ^ei1 ׳2־^^  j /3. Since uC3 is recurrent, it must be the identity 

configuration. □

Remark 4.9. The thick path R is a special case of C3, where e!tS = 0. This is reflected in the 

identity configuration of P3, where

61,2 + 62,s - 1 61,2 + 62,s — 1

62,3
(18)62,3

62,s .

ei,2 + e2,s — 1
(19)62,s

62,3

as in Claim 3.1. In general, IPn is a special case of ICn.

We now find a general formula for the identity of the thick four-cycle C4 shown in Figure 7. We 

will make use of the score vector r of ICi + ICi. Notice that since IG + IG + ؟(r) = IG, we have

IG = -7■)־؟( (20)
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Figure 7: The thick four-cycle C4.

For the square in particular, this means

(21) (.3<3 + 63jS) - T26273 (,3؛(e2؛T!(ei)s + ei,2)- 7261,2, T2(eii2 + 62,3) - T!(6ii2) - T2(e2)= №

Lemma 4.10. Let r denote the score vector of IC4 + ICi. Then

.!Or T2=T3> 7 ־T] 2 73 = ־72 (22)

Proof. Since ICi is stable, the following inequalities hold:

rie!<s + (r! - T2)ei,2 < e!؛s + e!>2, (23)

(24) ,3(2 + (r2 - T3)e2>3 < e!>2 + e27 - 2؛)!-ei7־)

.3 + 63)s(2)3 < 62؛e23 +(7־3 - 7־e3,s7־ (25)

If t! > 72, then (23) is violated since r! — r2 > 1. An analogous argument holds if r3 > r2, using 

(25). Therefore 77 < 2־! and r2 > r3. If r2 > r! and r2 > r3, then (24) is violated since r2 - r! > 1 

and 72־ — r3 > 1. We conclude that r2 = r! > r3 or r2 = r3 > r!. □

Theorem 4.11. Let r denote the score vector of ICi + ICi. Then r! = r2 = t3 if and only if

I | = | £?.3^3,,-1 I Mon
L el,s J L 3؟,s J ’

ei,2 + e】,s — 1 

ei,s

ei,2 + ei,s —] 

^l,s
(26)

Proof. We first show that t! = t2 = t3 if I I = I e2 ׳3׳^ s1־ I. Using Algorithm 2.8, we
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set k — ei,2.±¥77.i = e2,3+e3,s-i . We claim that k/3 is the identity configuration. Clearly k/3 is 
el,s J |_ e3,s J

stable, since our choice of k guarantees that ke!tS < ei,s + ei,2 and that ke^,s < 62,3 + 63,3. Adding /3 

to k/3 allows vertices 1 and 3 to topple. Then vertex 2 receives e!,2 + 62,3 and subsequently topples. 

Therefore k/3 is the identity configuration with t = (k, k, k), proving (26).

Conversely, assume 7! = 73 ־2 = 7־  = k. Applying (21), we have

(27)

(fcei,s,0,fce3)s) (28)

Then ICi — k/3. In order for ICi to be both stable and recurrent,

k =
ei,2 + ei,s  1

Cl,s

@2,3 + e3,s — 1

63,s
(29)

which completes the proof.

Lemma 4.12. The inequality 73 < 2 !؟ = ׳7־  holds if and only if

Similarly, r3 = r2 > r! if and only if ^1'2^,51־j < ·

ei,2+ei,s —1 >C2,3+e3,s —1

e!,s J L 63(s

Proof. Consider the case where r! = T2 > T3. We compute the identity configuration using Al

gorithm 2.8 starting from the empty configuration 0. There exists /c G Z such that k/3 is the

identity configuration. Let ^1־k/^2'(Tfc/3)3) denote the score vector of k/3. Then

Tj = fc—(rfc^)j for any vertex S € In order for t\ > 73 to hold, 7! = k—(rk^)i > 73 = A:—(7^)3 or 

(7fc،3)! <(7fe^)3. This means that since we want vertex 3 to topple first 

in the implementation of Algorithm 2.8. The proof is analogous for the case where 77 < 72 = 3־!. 

At this point we work only in the case where 7! = 72 > 73, noting by symmetry that the case 

where 73 = 72 > 7i is essentially the same. We also divide this case into two subcases: either vertex 

2 can be toppled second (after vertex 3) or vertex 2 cannot be toppled second in the implementation 

of Algorithm 2.8 starting from the empty configuration 0.

Lemma 4.13. /ƒ 7! = 72 > 73, then the following statements are equivalent:
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(i) Vertex 2 can be toppled second (after vertex 3).

(ii) The inequality
,،1— e3־TT 「 el,s

62,3+63,3
ei2׳+e2’31־ I holds.

£2,3 」

(Hi) Both e!,2 < (r2 - T3)e2,3 and e2>3 < r3e3iS + (r3 - r2)e2>3 hold.

Proof. The left-hand side of statement (ii) can be interpreted as the the number of times of vertex 

3 can be toppled after “toppling the sink” ^^g־־~~i·1־־ j times in the implementation of Algorithm 

2.8 starting from 0. The right-hand side can be interpreted as the maximum number of times 

vertex 3 can topple while keeping vertex 2 stable. After “toppling the sink” £L2+e、s-i times 
L 6i,s j

using Algorithm 2.8, vertex 1 is still stable, but any further topplings of the sink would make vertex

1 unstable. Equivalence between statements (i) and (ii) follows.

We show that statement (iii) is equivalent to statement (i). Statement (i) is equivalent to the 

condition that “toppling the sink” (or adding a copy of /3) makes vertex 3 unstable, and upon 

toppling it, vertex 2 becomes unstable. We show this is equivalent to the two inequalities listed 

being satisfied.

The values (r2 - r3)e2,3 and r3e3;s + (r3 - r2)e2>3 are if4 and /f4, respectively. Since № jg 

recurrent and vertex 3 can be toppled upon one toppling of the sink in Algorithm 2.4, we have

s62,3؛ + e3,s < + e3 (30)

62,3 < Zf4. (31)

Similarly, we require vertex 2 to topple upon the toppling of vertex 3. We have

ei,2 + e23؛ < if4 + e2,3 (32)

ei,2 < zf4 (33)

Then by (21), the inequalities e!i2 < (r2 - E)e2,3 and e2j3 < r3e3؛s + (r3 - r2)e23؛ hold. □
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Theorem 4.14. If the statements of Lemma J^.13 are satisfied, then

TÌ = T2־ = (34)

and

־؟3 = (35)

Proof. In the computation of the identity from Algorithm 2.8, vertex 3 must topple +1

times for vertex 2 to become unstable. Then vertex 2 topples exactly once and subsequently vertex 

1 topples exactly once. From this we deduce that r! - T3 = . In order for the identity 

configuration to be stable and recurrent,

62,3 < ig1* < ^2,3 + 63,s. (36)

Using (21), we have

(37)

62,3

(38)

+ 1 I 62,3 + 63,5+ 1 I 62,3 < 7363,5 —

62,3 < 62,3 + 63,s

ei,2 + e2,3 - 1

62,3

ei,2 + C2,3 — 1

62,3

— 363,s62,3 < ؟

7־3 =

The formula for r! follows from the equation r! — 73 =

We now deal with the other subcase if n = 73 ־2 > 1־ , namely where vertex 2 cannot topple before 

vertex 1 in the implementation of Algorithm 2.8 starting from 0.

Theorem 4.15. If the statements of Lemma 4-13 are not satisfied, then

7־1 = 7־2 =
ei,s + ei,2 — 1

^l,s
(40)
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and

־؟3 =
62,3 + e3,s

(41)

2 since؛!s + e؛!Proof. If the statements of Lemma 4.13 are not satisfied, then ei? < I^4 < e 

 vertex 1 must topple first upon “toppling the sink” using Algorithm 2.8. By (21), we have e!؛2 <

s, it follows2!؛ = < e!jS + e!t2- Dividing all sides of the inequality by e؛!s + ei,2)— T26؛!ri(e

We also have the inequality 0 < ƒƒ،، < 62,3 + £3,$. Using (21), we have

ei,2 + ei,s — 1 

e!,s
0 < ،3(62,3 + e3,s)— (42)62,3 < 62,3 + 63)s

ei,2 + ei,s — 1

^1,8

e!,2 + ei,s — 1 

^l,s
62,3 < ،3(62,3 + 63,3) 62,3 +(62,3 + 63)s). (43)

e!,2+ei,s-l I 2,3'「״
7־3 =(44)

62,3 + 63,s

and the proof is complete.

An explicit formula for the identity configuration ICi follows immediately from (21) by the 

results of Theorem 4.11, Theorem 4.14, and Theorem 4.15.

5 Conclusion

This work presents results on the identity configuration of the sandpile model and gives insight into 

its structure. The graphs considered are the path Pn and cycle Cn with arbitrary edge multiplicities. 

The results obtained in this work open numerous questions into the identity configuration. For 

example, we may be able to generalize the methods used in finding the identity configuration of C4 

to Cn for arbitrary n > 4. There is also room for further study using different ambient spaces.

The identity configuration of the rectangular grid mentioned in Section 1 has generated much 

interest, but relatively little is known about it. Dhar [9] observed two fascinating properties of this 

configuration. First, there is a square in the central area of the identity configuration on a 2n x 2n 
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grid where all vertices have height 2. Second, the identity configuration of the (2n + 1) x (2n + 1) 

grid is identical to that of the 2n x 2n grid except for a central “cross.” These conjectures remain 

unproven, but important steps have been taken towards proofs. Le Borgne and Rossin [10] prove the 

existence of a central rectangular region of height 2 in grids of certain dimensions, and Dartois and 

Magnien [11] analyze the computation of the grid identity using Algorithm 2.8 and offer direction 

for a proof of Dhar’s cross observation.

Another interesting problem is the computation of the identity configuration of the sandpile 

group of the thick complete graph Kn with arbitrary edge multiplicities, since every graph on n 

vertices is a special case of Kn. Similarly, the directed ambient space A considered in [12] is more 

general than the undirected case.
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