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Modelling the Evaporation of a Binary Droplet in

a Well

Seth Richard Price

Abstract

While the drying behaviour of sessile droplets has been extensively studied over
the last 25 years, the evaporation of droplets from wells (DiWs) has largely been
neglected, especially from a mathematical modelling standpoint. Understanding a
drying DiW is both important for industrial processes (such as inkjet printing and,
increasingly, the manufacture of organic displays) and an interesting problem in its
own right as a natural progression from sessile droplets, and we still do not have a
thorough theoretical description of their evaporation.
The main aim of this project was to build an understanding of pure and binary DiWs
under the lubrication approximation by constructing a simple mathematical model
for the evolution of their shape. We solved the resulting partial differential equations
for droplet height and composition profile numerically using the Method of Lines. In
the case of a pure droplet, we found that we could control the interface shape using a
single parameter (C) based on the capillary number; the more complex binary system
required two new parameters governing evaporation and surface tension differences.
Comparison to experimental data was improved with the inclusion of a dynamic
evaporative flux for each component that depended on the their volume fraction
distribution.
These simulations offer insight into the deposit that evaporating DiWs leave behind.
We have shown that the smaller C, the more likely the DiW will cause an undesirable
ring stain, but this is suppressed in binary droplets in which the more volatile
component has the lower surface tension.
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List of Symbols

In this thesis, we sometimes work with dimensional variables and sometimes with
dimensionless variables. While we clearly denote dimensional variables with a cir-
cumflex (e.g., r̂ for dimensional radial coordinate) in the main body of the thesis, in
the List of Symbols we shall forgo this practice for the sake of brevity. Each symbol
is therefore given in its nondimensional representation (i.e., hatless). The symbols
are arranged according to order of appearance.

ε Well aspect ratio
h0 Well height
R Cylindrical well radius
Re Reynolds number
ρ Pure liquid density
U Typical vertical speed
µ Pure liquid viscosity
Ca Capillary number
σ Pure liquid surface tension
C C-parameter
r Radial coordinate
Eö Eötvös number
∆ρ Density difference between liquid and gas
g Acceleration due to gravity
Ar Archimedes number
c Vapour concentration field
c0 Saturation concentration of vapour in air
H Relative humidity
∇ Del operator
J Evaporative flux
t Time
D Diffusion coefficient of vapour in air
n Unit normal to the droplet-air interface
ugas Gas velocity
z Vertical coordinate
µmix Viscosity of a mixture
χ Volume fraction of less volatile component
ξ Volume fraction of more volatile component
cp Specific heat of the liquid

T̃ Temperature field
kT Thermal conductivity of the liquid
u Liquid velocity vector
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u Horizontal/radial component of velocity
w Vertical component of velocity
p Pressure in the liquid
T Stress tensor
κ Interface curvature
h Droplet height
t Unit tangent to the droplet-air interface
Vn Normal velocity of the interface
q Liquid flux
h∗ Initial height profile of the droplet
M c

m Molar mass of the liquid
c∞ Vapour concentration at infinity
x Horizontal coordinate (2D square well)
N Number of discretisation points in simulation
∆r Width of discrete regions in simulation
hi The ith height ODE
αer Parameter that describes the decrease in error as

N increases
rtd Radius at which droplet first touches down
dtd First fitting parameter for touchdown relationship
ktd Second fitting parameter for touchdown relation-

ship
Atd Third fitting parameter for touchdown relationship
ttd Time at which droplet first touches down
E Total evaporative flux from droplet
Ji Evaporative flux of component i in the droplet
α Evaporation difference parameter
Dχξ Diffusivity of components χ and ξ in air
σi Surface tension of component i in the droplet
β Surface tension difference parameter
Dl Mutual diffusion coefficient of each component in

the liquid
Pe Péclet number
M Marangoni number
χ∗ Initial composition profile
χi The ith composition ODE
kχ0 Critical parameter for large C height profile
γ Viscosity difference parameter
Di Diffusivity of component i in air
Z Nondimensionalised vertical coordinate in vapour

phase
R∞ Radius at which we impose the far-field boundary

condition
T Triangulation of space for the finite element dis-

cretisation
△ A triangle in the triangulation
ηj Basis function for the jth vertex of a triangle
δjk Kronecker delta for indices j and k
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Nouter The number of points in the mesh outside the inner
unit quarter circle

Nin The number of points in the mesh inside the inner
unit quarter circle

hb The base height solution used to analyse linear sta-
bility

χb The base composition solution used to analyse lin-
ear stability

k The wavenumber of an applied perturbation
ω The growth parameter of an applied perturbation
t∗ The frozen time at which we conduct the linear

stability analysis
δh The amplitude of the applied height perturbation
δχ The amplitude of the applied composition pertur-

bation
θ The azimuthal coordinate in a fully 3D model
v̄ The height-averaged azimuthal velocity in a fully

3D model
v The azimuthal velocity in a fully 3D model
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Chapter 1

Introduction

During the course of this PhD I have often been asked to describe my research
to the well-meaning lay-person, who may let slip that they dropped physics and
chemistry “as soon as possible at school”. I proceed to tell them that my aim is to
model and simulate the evaporation of a droplet in a well (DiW) mathematically, to
probe the processes and patterns involved in the formation of somewhat unexpected
droplet shapes, and to build an understanding to the point at which I can make
predictions of such droplets in the real world. The wittiest and boldest of them
have, on occasion, retorted that “it’s like watching paint dry then?”.
Far from it! But the onus is on the PhD student to prove the value of his own
work to the lay-listener. So I might challenge my conversation partner to, next time
she has a coffee, intentionally spill a drop on the table and let it dry; we should
be surprised at the dense, brown outline it leaves on her table. We physicists and
chemists know this phenomenon as Deegan’s coffee ring [4]. This specific example is
well understood today, but to what extent can we use to it to understand droplets
of various liquids evaporating from wells? And what if they’re very thin and several
orders of magnitude smaller than even an espresso?
I may ask whether she has a modern smartphone with an organic light emitting diode
(OLED) display – there has been interest in recent years in printing active materials
onto OLED displays to avoid some of the problems associated with vacuum-coating
[3, 5]. If I simply reconceptualise my wells as pixels of a screen I can begin to ask
whether there’s any way of controlling the behaviour of the droplet as it dries in a
pixel – can I isolate the variables that make it evaporate more uniformly or more
quickly?
Having been cornered with these conversations at a number of weddings, another
illustration I choose to deploy is that of wine – giving me an excuse to partially fill
my glass once more. Wine (in fact any alcoholic drink) in a glass will exhibit the
Marangoni effect manifesting in ‘tears of wine’ [6]; an imbalance in surface tension
due to the alcohol-water mixture provokes liquid at the edge to climb the inside of
the glass and visibly drop back down under gravity. The Marangoni effect emerges
in droplets composed of two or more liquids – what about the evaporation of binary
droplets from wells? What impact do surface tension gradients have on the droplet
as it dries?
In summary, this research project is a mathematical and computational investigation
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into the evaporation of picolitre-sized droplets1 from thin cavities. I am primarily
interested in the shape of the droplet–air interface as it evaporates, specifically the
complex and mutually dependent roles that a number of fluid mechanics variables
play in the droplet’s behaviour. This study departs from extensive existing research
on sessile droplets – much has already been said about Deegan’s coffee-ring effect and
other observable drying patterns [7, 8], pinned and moving contact lines [9, 10, 11],
the evaporative flux of sessile droplets [12, 13, 14], computational simulations of
evaporating thin films [15, 16], and the impact of Marangoni effects [7, 17, 18] – to
look at the comparatively less researched area of printed droplets evaporating from
wells.
This is not to say that no research has been performed in this area. This study sits
upon previous work on experimental techniques for investigating droplets in wells
[19, 20], the consequences of contact line pinning [21, 22] and Marangoni forces [23],
as well as some theoretical studies on droplets in different shaped wells [1, 24], with
a variety of evaporation models [25], and a few instances of joint experimental and
theoretical work [3] that intend to create a complete mathematical model to compare
with real-world results.
The first aim of this project is to build a simple model for the evolution of a tiny,
pure droplet evaporating in a well and to investigate its behaviour under variations
in certain key parameters. It will be important to demonstrate the impact of surface
tension, viscosity, evaporative flux, and well geometry on the shape of the droplet-air
interface, its touchdown, and the fluid velocity profile inside the droplet. Critically,
I will also have the opportunity to compare the mathematical model to experimen-
tal data and qualify the predictive power of the model. We shall see that the pure
model is able to produce three types of droplet shape, two of which have not yet
been observed in numerical works. These two new shapes are known to appear ex-
perimentally and in industrial applications, but have not been studied theoretically
yet.
Although useful for certain industrial applications, I will not explicitly attempt to
model the sedimentation of solid or colloidal material suspended in a pure droplet as
it dries. However it will be interesting to explore droplets composed of two liquids,
so-called binary droplets. Binary droplets open the door to Marangoni forces, due
to the surface tension gradients inherent to fluid mixtures. We will see that simply
adding a second liquid component will complexify the system considerably, changing
the drying shape, droplet curvature, and velocity profile evolution. I will demon-
strate that the binary model has the capacity to both suppress and enhance dimple
shapes via Marangoni forces, which has not been shown before from a theoretical or
numerical point of view.
I will write in more detail about evaporation rate in chapter 2, but have already
alluded to the uncertainty about the evaporative flux from a droplet inscribed in a
well compared to one sessile on a substrate. This project will permit some explo-
ration into models for and assumptions about the evaporation rate and its variation
across the surface of a droplet. It is well understood by now that diffusion-limited
evaporation is a solution to Fick’s law for the vapour concentration (itself dependent
on a mixed boundary condition expression of Poisson’s equation) at the surface of

1Although we work in non-dimensional space, we shall later apply the lubrication approxima-
tion and neglect gravity, both of which impose upper limits on the size of the droplet. Moreover,
we will make comparisons with experimental data taken from picolitre-sized droplets.
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the droplet; I will attempt to compare some of the analytical approximations for
evaporation with simulated solutions.
Finally, having been interested in a colleague’s unexpected discoveries while perform-
ing an evaporation experiment, I will begin to investigate the stability of the droplet
under a small asymmetric perturbation, analysing the conditions under which it
grows and shrinks in order to determine whether certain systems will become unsta-
ble. This will be relatively easy for a two-dimensional droplet in a square well, but
will prove much harder for a full three-dimensional droplet in a cylindrical well, the
model for which includes proper treatment in all three cylindrical coordinates and
whose simulation is beyond the scope of this project. Despite this, we will see some
interesting results in the 2D cartesian case that may give us some useful qualitative
information.
The main practical application of this field of research is inkjet printing. Consider
a scenario in which we want to deposit a layer of material into a small cavity with a
desired distribution: an efficient method is to spray a liquid containing a solution of
the deposit into the cavities such that the liquid evaporates from them and leaves
behind a desired thin layer. While vacuum-coating methods can sometimes also
be used to achieve this, they do not work well for many materials (particularly
larger molecules) [26] and can also encounter technical problems [27] that inhibit
the ability to scale the process up (usually to do with the mask that vacuum coating
requires). Inkjet printing, by contrast, can be used to print with polymers and
other organic molecules, has no need of a mask, and can be scaled up much more
efficiently [26, 28, 29, 30]. One of the fastest accelerating industrial applications of
inkjet printing in recent years is in the manufacture of the aforementioned OLED
display [5, 29]; the device architectures of all types of OLED displays comprise
several different layers of active materials, some of which (depending on the OLED
type) can now be inkjet printed into pixels in the substrate.
From an industrial point of view, it is very important to understand the behaviour
of the droplets evaporating from the pixels. It is valuable to be able to predict and
control the deposit distribution in the well – often a uniform deposit is desirable; that
is, it is necessary to be able to suppress Deegan’s coffee-ring effect in a well [31, 32].
Despite the significance of this understanding, there are no complete mathematical
models describing this problem in the literature, except for the study by D’Ambrosio
et al [3], in which they treat the capillary number as small. In this thesis, therefore,
one of my aims is to build a predictive model for the behaviour of pure droplets as
they evaporate from pixels of different shapes and to investigate the conditions –
specifically variation of the capillary number and well geometry – under which the
coffee-ring effect can be suppressed, enhanced, or otherwise altered. I will extend
this analysis to binary droplets, exploring the role of the solutal Marangoni effect in
the pixel deposit; crucially, we will ask whether the Marangoni effect has the ability
to eliminate industrially undesirable deposit features in a pixel.
Beyond industrial and practical applications, there remain more fundamental ques-
tions about the predictive capabilities of lubrication models applied specifically to
DiWs. To what extent are we able to represent an experimental droplet accurately?
Using a simple mathematical model, is our analysis restricted to generic, qualitative
features, or can we have success in reproducing droplet shapes? Can we go one step
further and design a quantitatively predictive model for DiWs?
The main result of this work has been the construction of a basic model that qualita-
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tively describes what we observe of droplets evaporating from wells: it can, through
the control of a single parameter (quantifying the surface tension, viscosity, evap-
oration rate, and well geometry), adjust the shape of a droplet from printing to
touchdown and can accurately reproduce both the W- and U-shaped droplets we
see in experiments. Extending it to include the consequences of binary solvents leads
to more exotic and complex behaviour under the control of two more parameters
(quantifying the evaporation rate and surface tension differences respectively).
In chapter 2, we offer a review of the literature on the evaporation of droplets: an
overview of our understanding of sessile droplets with pinned or unpinned contact
lines; a more comprehensive analysis of droplets in cavities and the state of both
the experimental and theoretical work on their evaporation; the Marangoni effect in
droplets (due to both temperature variations and mixed composition); the discussion
in the literature about the evaporative flux; and numerical methods for solving thin
fluid film type problems.
Chapter 3 concerns the behaviour of the pure droplet in my simulation. We set up
the problem mathematically and derive the equations for the cylindrical well before
presenting the solution and exploring its behaviour. We will inspect the model over
a few orders of magnitude of the key parameter, C, and finally compare it to some
experimental data.
In chapter 4, we begin to add complexity to the model in terms of binary droplets,
again setting up the mathematical problem and deriving the relevant equations.
We will investigate some important regions of the now three-dimensional parameter
space, extracting useful information about the behaviour of the droplet, and then
compare to experimental data again.
In chapter 5, the static evaporative flux will be replaced by a dynamic one – we
will solve a two-sided model in order to better reflect the real evaporation of two
components.
Chapter 6 will comprise a linear stability analysis of a 2D droplet in a square well
and a short investigation into the corresponding stability analysis of a full 3D model.
In all these chapters, we will see that we are able to control the shape of a DiW
and influence its deposit through just a few important parameters, including a total
elimination of dimples with the Marangoni effect.
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Chapter 2

Literature Review

2.1 Introduction

In this chapter we will get to grips with the literature in the field of droplet drying.
Starting with general thin films (of which small droplets are an example) and sessile
droplets, we will briefly take a dip into the wealth of research on basic drying princi-
ples and Deegan’s pioneering work on the coffee-ring effect. After this, we will focus
on the topics more specifically related to the work in this thesis, that is literature
on the Marangoni effect, evaporative flux models, and droplets printed in wells. Fi-
nally, we will take a look at the most widely-used numerical methods for modelling
problems of fluid dynamics, comparing their advantages and disadvantages in order
to select the most appropriate for our purposes.

2.2 Sessile Droplets and Thin Films

The word ‘sessile’ is used to describe droplets that lie on a planar surface (literally a
‘seated’ droplet). Although in this work we will be studying the evolution of droplets
printed in wells, the wealth of literature on sessile droplets can shed some light on
how to proceed with DiWs, given they are somewhat more niche and less studied.
In this section we shall take a look at the areas of similarity and key differences
between sessile droplets and DiWs.
Oron et al.’s 1997 review on thin liquid films [33] discusses a number of topics that
pertain to the evaporation of droplets. They describe lubrication theory (also called
long-wave theory, but this specifically refers to the wavelengths of perturbations in a
generic thin film; the word ‘lubrication’ is perhaps more relevant to our application),
a theory of thin films pioneered by Osborne Reynolds in 1886 [34] in which the ratio
of the vertical to horizontal length scales is taken to be very small,

ε =
h0

R
<< 1 (2.1)

where h0 is a characteristic height and R is a characteristic horizontal length (often
a radius). Clearly, this approximation restricts a model to very thin films, in which
the height is much smaller than the width of the system. In our derivation in the
next chapter, we shall apply the lubrication approximation by neglecting terms in
the parameter ε.
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They describe two other important dimensionless quantities, the Reynolds number
and the capillary number,

Re =
ρUh0

µ
, (2.2)

Ca =
Uµ

σ
, (2.3)

where ρ is the liquid density, U is a characteristic velocity, µ is the liquid viscosity,
and σ is the liquid surface tension.
They detail two possible lubrication approximations, but the latter is the important
one; they take Re = O(ε) and Ca ε−3 = O(1) in order to preserve surface tension
effects. This leads to a system in which the inertial terms in the Navier-Stokes
equations are neglected and the thin film can be described instead by the Stokes
equation; this limits the model to situations in which viscous forces dominate inertial
forces.
This second approximation uses the reduced capillary number; in this work we will
concern ourselves with its inverse

C =
σε3

µU
. (2.4)

Applying the lubrication limit of small aspect ratio, ε, brings some aspects of sessile
droplets and DiWs into similarity – on the scale of the horizontal length they now
have the same vapour field and, therefore, evaporative flux [3] (see section 2.6).
At about the same time as Oron et al. published this review, Deegan et al. published
a study into the so-called ‘coffee-ring effect’ (CRE) [4]. The work provoked an explo-
sion of research into thin droplets, their evaporation, and their deposition patterns.
The CRE comprises the concentration of deposited material from an evaporating
sessile droplet along its perimeter, like the stain we get if we let a drop of coffee
dry on a table (hence the name). Their proposed mechanism is that evaporating
droplets feature a capillary flow born of an evaporative flux that diverges to infinity
near the contact line; this capillary flow replenishes material lost from areas with
a higher evaporation rate. Additionally, they argue that the droplet’s contact line
must be pinned for this to happen – otherwise the higher evaporation at the edge
would just lead to a retraction of the contact line and outward capillary flows would
be much weaker. Another group [35] studied the behaviour after the detachment
of the contact line, finding that the CRE effectively stops when the contact line re-
cedes. However, Deegan writing alone later [36] claims that sessile droplets cannot
remain pinned by themselves; solid deposit at the contact line is actually a prereq-
uisite for it to pin. He refers to this bootstrapping paradox as ‘self-pinning’ and
promptly solves it by acknowledging preexisting imperfections on the substrate that
allow pinning to take hold. This phenomenon differs from the pinning we observe in
the DiW case, which mostly happens at the corner of the well. We will investigate
more about well pinning and the conditions under which it occurs in section 2.3.
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2.3 Droplets Evaporating from Wells

While sessile droplets have enjoyed, and continue to enjoy, a large amount of scientific
attention over the last few decades, much less research has been done on droplets
evaporating from wells. On the experimental side, early techniques for investigating
droplets evaporating from small wells were developed by van den Doel and van
Vliet in a cuboidal well [19] and by Rieger and the same authors in a cylindrical
well [20]. They used interference-contrast microscopy to measure the depth of the
liquid droplet dynamically and observed the evolution of the droplets from printing
as a convex meniscus (noting that the fringes propagate towards the droplet centre)
until it broke at the bottom of the well (noting that the fringe contrast increased as
droplet height decreased).
In the second paper, they argue that, due to the impermeability of the substrate
vertically and horizontally, the initial droplet behaves identically to an identical
sessile droplet, provided that the droplet starts out life taller than the well. This
leads to them accepting the Deegan/Popov evaporation model (see section 2.6) for
droplets in a well; they proceed to show experimentally that, because of the linear
relationship between evaporation rate and well radius, the evaporation process in
a well is diffusion limited and Popov’s evaporation rate is valid and independent
of elapsed time over the duration of the evaporation. Moreover, they observed
consistent contact line (well rim) pinning; these are two of the conditions stated by
Deegan et al. [4, 12, 36] as being responsible for the formation of the ring stain.
Additionally, they show that in their experiment (using a large piece of silicon as
the substrate) evaporative cooling is negligible.
Chen et al. [37] performed experiments on nanolitre droplets in cylindrical wells,
also observing strong pinning at the well edge as well as the evaporation rate’s
linear relationship with well radius. In a later paper [21] they demonstrate that
the wettability of the substrate has a significant impact on the evolution of the
droplet; wells made of hydrophilic material maintain the pin at the well lip, while
droplets in hydrophobic wells run down the edge of the well. They show that the
degree of this slip depends on the wettability contact angle of the material; the
higher the contact angle, the more flat the droplet as it evaporated from the well
(until touchdown, which is also delayed in more hydrophobic wells). Jung et al.
[22] studied polymer solution droplets (more on droplets of binary composition in
section 2.7) evaporating from cylindrical wells in order to remove some complications
related to sessile droplets, namely the motion of the contact line. They studied the
solid deposit left by the solution and found that solidification starts at the edge
and propagates towards the centre. The conclusions of all these pieces of work are
unanimous – the late-stage shape of the free surface determines the pattern of the
deposit, with the initial touchdown point, critically, being the eventual location of
highest density solid material [21, 22, 23, 37, 38].
Theoretical work on droplets evaporating from wells has also been done. Okuzono
et al. [24] applied the lubrication approximation for a polymer solution droplet
evaporating uniformly from a square well. They modelled the liquid alongside non-
evaporative gel at the edges of the well and investigated the final deposit. They iden-
tified three different final shapes and categorised droplets into them as a phase space
of the initial central height of the droplet and initial polymer concentration. The
basin and crater shapes appeared in all cases, while large diffusion of the polymer
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was required to produce a mound shape – they note that this makes sense because
diffusion tends to homogenise the polymer concentration field, whereas capillary
flow causes an inhomogeneous distribution.
The shape of the well is another factor that has been shown to have an impact
on the evolution of the droplet and its deposit. Eales et al. [1] simulated droplet
evaporation from wells with soft bottom edges; they designed a substrate function
with control over the trough depth and bank extent with variables X1 and X2

respectively,

hsub =

{
X1(arctanh(r tanh(1)))

X2 for 0 ≤ r < 1 ,

X1 for r ≥ 1 .
(2.5)

Figure 2.1 shows some variations of these shapes. They discovered that increasing
either of these variables contributes towards the formation of a coffee ring, using
a variable they call CR = hp

hc
, the ratio of the depth at the droplet centre to the

maximal liquid depth, as a proxy for magnitude of the CRE (also used in similar
work on sessile droplets [39, 40]).

(a) Increasing parameter X1 increases
the trough depth.

(b) Decreasing parameter X2 decreases
the bank extent.

Figure 2.1: Examples of the substrates used in theoretical work by Eales et al. [1].

Their work goes some way to demonstrating the significant impact well geometry
can have on the CRE, however it also highlights one of the principal challenges for
a theorist investigating the CRE – that is, to move from a purely fluid dynamical
model and understanding of a problem to a precise prediction of the solid deposit left
behind by an evaporating droplet. This specific area of study is somewhat lacking
in the literature; how can we use fluid dynamics to better quantify the magnitude of
ring deposits? In section 2.7 we will learn more about the suppression of the CRE
and its mechanisms and how we can use them to predict and study solid deposits.
Most recently, D’Ambrosio et al. investigated DiW evaporation in the limit of
small capillary number [3]. In our work, we instead vary the capillary number over
several orders of magnitude, finding the C-shaped droplet as in their paper, but also
discovering two new shapes for DiWs: namely W- and U-shaped interfaces.
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2.4 Droplet Size

The size of an evaporating droplet can have a large impact on its behaviour. One
of the more intuitively obvious effects is that larger droplets are more influenced by
gravity – the Eötvös (Bond) number quantifies this relationship,

Eö =
∆ρgR2

σ
, (2.6)

where ∆ρ is the difference in density of the liquid and the gas, g is acceleration
due to gravity, R is a characteristic length scale (in our case the radius of the well),
and σ is the surface tension. However, some studies have recently challenged the
exclusion of gravity from droplet models; Li et al. published a paper investigat-
ing the effect of gravity and evaporation in micro-litre binary droplets (sessile and
pendant), concluding that gravitationally-induced “natural convection can readily
dominate the flow” [41]. They argue that most studies disregard this effect because
they assume a small Eötvös number automatically kills off all gravitational impact.
Other papers come to similar conclusions [18, 42]; in all of them the mechanism for
gravity-driven flow is the convection of components in a mixture due to their den-
sity differences. Therefore, while the Eötvös number is still relevant to describe the
competition between gravity and surface tension (for example, the interface shape in
all the above citations remains a spherical cap because Eö << 1), buoyancy forces
can be described with a so-called Archimedes number,

Ar =
gh3

0ρ0∆ρm
µ

, (2.7)

where h0 is the characteristic height of the droplet, ρ0 is a reference density, ∆ρm is
the difference in density between the two components, and µ is the mixture viscosity.
For very thin binary droplets, then, this is unlikely to be large enough that gravity
play a significant role in the flow.

2.5 Flow Velocity

We have already seen (section 2.2) that Deegan et al. explained the CRE by invoking
outward capillary flows; the flow field inside an evaporating droplet is critical to the
drying process and, if we are able to acquire it, can be used as a predictive tool for
dry deposits. Maŕın et al. showed that there is a sharp transition in the ordering of
crystal deposits that occurs after a spike in flow velocity [43], which often takes place
in the final moments of the process (they also coin the term ‘rush-hour’ to describe
this effect in droplet drying). They explained this behaviour by recognising that the
evaporation rate doesn’t decrease even as the droplet gets very thin [13], meaning
the outward radial capillary flow remains constant through a fast diminishing area
[44].
Li et al. suggested that the final deposit is in part governed by the flow field [45]
– they associated dramatic increases in flow speed with emergence of coffee-ring
(or coffee-eye, depending on the direction of flow) deposits, with the particles often
being drawn along the streamlines of high velocity to settle.
Ooi et al. described the typical flow conditions for the CRE: radially outward
flow, speed is higher near the edge, and rush-hour occurs in the final stages of the
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evaporation [17]. They attempted to suppress the CRE by controlling their velocity
fields; by including cellulose nanofibres (CNFs) they forced the fluid velocity to be
higher in the centre of the droplet than at the edge and also managed to inhibit
rush-hour. Although their study focuses on the large anisotropy of the CNFs, they
frustratingly do not offer a robust mechanism for the change in flow due to the CNFs
– they end by suggesting that the CNF concentration increased near the end of the
drying, which formed a hydrophilic assembly and mechanically hindered the flow of
liquid.

2.6 Evaporative Flux

It is common practice [9, 46, 47, 48, 49] in the study of lubrication-limited evapo-
ration to invoke the argument that the vapour-phase relaxation timescale is much
smaller than that for changes in droplet size, shape, or composition
In fact, Hu and Larson [9] argued that this ratio can be approximately expressed by
c0(1−H)/ρ, where c0 is the saturation concentration of vapour in the gas andH is the
relative humidity of ambient air. Since they were using water, they took c0 = 2.32×
10−5 g/cm3, H = 0.4, and ρ = 1 g/cm3, and showed that the diffusion timescale
is on the order of 105 times smaller than the evaporation timescale. Therefore the
vapour concentration field, ĉ, is considered a solution of the Laplace equation,

∇̂2ĉ = 0 , (2.8)

rather than the time-dependent diffusion equation, with appropriate boundary con-
ditions that linearise the droplet surface onto z = 0, send the concentration to zero
in the far field, and do not permit vapour flux across the substrate. The evaporative
flux is, by Fick’s law, given as

Ĵ(r̂, t̂) = −D∇̂ĉ · n̂ , (2.9)

where D is the diffusion coefficient of ĉ in the gas and n̂ is the unit normal to the
interface (circumflex denotes dimensional variables).
However, the approximation of a rapidly changing vapour field is not without con-
troversy; it is not necessarily true that Hu and Larson’s calculations hold in all
scenarios. For example, although they show that the relaxation of the vapour phase
is very fast in comparison to the evaporation of the droplet, it may not be so fast
in comparison to the rate of change of spatial composition of binary droplets. Fur-
thermore, Shahidzadeh-Bonn et al. hypothesised that buoyancy creates convection
above an evaporating droplet whose vapour is less dense than air (e.g. water) [50].
As Dunn et al. point out [51], this model requires that one exchange the simple
diffusion equation (equation 2.8) for a quasi-steady convection-diffusion equation

D∇̂2ĉ = ûgas · ∇̂ĉ (2.10)

and the evaporative flux (equation 2.9) for an equation that accounts for gas/vapour
velocity (ûgas)

Ĵ = −D∇̂ĉ · n̂+ (n̂ · ûgas)ĉ . (2.11)
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Back with non-convective vapour transport, the analytical solution of equation 2.8
is highly non-trivial, requiring an analogy to the electrostatic potential of a charged
conductor [4, 13] in the shape of the droplet plus its reflection in the substrate
(to eliminate the substrate boundary conditions) and a transformation to toroidal
coordinates in fully infinite space. This method results in a vapour field described
(now nondimensionalised) by the equation [3]

c(r, z) =
2

π
sin−1

(
2√

(1 + r)2 + z2 +
√

(1− r)2 + z2

)
, (2.12)

which leads to the evaporative flux as used in Deegan’s and Popov’s works [4, 13],
among others, for flat droplets,

Ĵ =
2

π

D(c0 − c∞)√
R2 − r̂2

. (2.13)

This form diverges at the contact line (in this work, the location of the well pin,
r = 1), which is to be expected from an analogy to electrostatic potential at a sharp
point; this is somewhat problematic when considering a sessile droplet with movable
contact line, but we should recognise that the singularity is integrable and does not
result in an infinite flux over the surface of the droplet. As Saxton et al. [49] note,
however, it does engender an unphysical singularity in the height-averaged velocity
at the contact line. Fischer [14] attempts to deal with this problem by introducing a
new function and assuming exponential decay of evaporation near the contact line,

J =
1

h+K
(1− e−A(1−r)2) , (2.14)

with the dependence on h and dimensionless constant K coming from work by
Anderson [52]. A comparison between Deegan/Popov’s (nondimensionalised) and
Fischer’s models is depicted in figure 2.2, with the parameters adjusted so their
integrated flux over the surface of the droplet is the same.

Figure 2.2: Evaporative flux models from Popov (blue) and Fischer (orange, dashed).
Here K = 0.044, A = 250, and h(r) = 1− r2.

30 Chapter 2 Seth Richard Price



Modelling the Evaporation of a Binary Droplet in a Well

Saxton et al. [49] propose to address the issue with a ‘kinetics-based evaporation
model’; they assume that the vapour just above the droplet is not in equilibrium and
mass flux through the interface can be described by the Hertz-Knudsen equation,

Ĵ = M c
mvk(ce − c0) , (2.15)

where M c
m is the molar mass of the vapour, vk is some velocity scale, ce is the

equilibrium vapour concentration, and c0 is the vapour concentration at the droplet
surface. They solve the Laplace equation while imposing a Neumann condition along
the droplet surface instead of a Dirichlet condition, which leads to an evaporative
flux that looks qualitatively similar to the Popov form, but with a finite value at
r = 1, and the total mass flux depending on a dimensionless parameter they call the
‘kinetic Péclet number’, Pek.
They make sure to note that, given that the singularity is integrable, ‘physically rea-
sonable predictions for the evolution of the drop volume are obtained even without
regularization of the mass-flux singularity’; that is, we should be more careful when
performing calculations with the fluid velocity near the contact line, but problems
concerning the height in general may be reasonable even with the Popov form and
its singularity.
Other people have worked on problems with non-constant vapour concentration
along the surface of the droplet too, particularly in the case of a spatially varying
temperature. Work by Dunn et al. [46], Sefiane et al. [53], and Schofield et al.
[54] are examples of this area of research, in which the constant Dirichlet boundary
condition on z = 0 becomes a function of T or, in the latter case, a Robin boundary
condition1 dependent on T .
There are also a few works that investigate this same effect, but originating from
multiple components [18, 55]. Pahlavan et al. [56] report theoretical and experimen-
tal results using binary sessile droplets with saturation concentration a function of
χ, the species volume fraction in the droplet. This is used to explain the formation
of flat pancake shapes and relaxation to spherical cap shapes that they observe in
small multicomponent droplets.

2.7 Binary Mixtures and the Marangoni Effect

The Marangoni effect was first documented and explained by James Thompson in
the 1850s as a ‘curious’ phenomenon observed on the surface of wine [57, 58] – in
wine (other alcoholic drinks are available) the evaporation of alcohol leads to non-
uniform surface tension and enables the liquid to crawl up the inside of the glass
and it eventually drips back down after growing to a certain size. Italian physicist
Carlo Marangoni studied the effects of surface tension gradients in general for his
doctorate thesis [59], whence the phenomenon derives its name.
Until the mid 2000s a lot of research on Marangoni flows was concerned with thin
films and pools (particularly spreading enhancement and inhibition [33, 60], Bénard
convection [61, 62, 63] and special types of instability [64, 65]), though Marangoni
effects in droplets had been studied somewhat (particularly due to non-isothermal
phenomena occuring in evaporation or imposed from the environment [52, 66, 67]
and experimental work mixing solvents [30]).

1a Robin condition is a linear combination of a Dirichlet and a Neumann condition
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Hu and Larson were the first to derive and solve a model for the velocity field
with thermal Marangoni stress in a sessile droplet [68]; they used finite element
analysis (FEA) to determine the temperature gradient along the surface of a droplet
and proceeded to find the coupled thermal and velocity fields, and also provided
an analytical solution under the lubrication approximation. In their next paper
published a year later [7], they conclude that Marangoni flows act to suppress the
aforementioned droplet coffee-ring phenomenon in favour of a more uniform deposit,
a desirable outcome for a wide variety of scientific and industrial applications [31,
69, 70]. The mechanism by which it does this, they argue, is that the surface
tension gradients drive a ‘recirculating flow’ radially inward along the interface that
‘plunges’ surface particles down near the centre of the droplet, affording them a
greater probability of adsorbing onto the substrate inside the contact line. This
confirmed earlier research that suggested that Marangoni flows can influence the
pattern of the dry deposit [71], and the suppression effect has been corroborated by
many others since [23, 31, 69, 72].
CRE suppression is not the only feat the Marangoni effect is capable of, however –
Hu and Larson also proposed the existence of reverse flows (that is, when Marangoni
forces act to produce a flow radially outward along the interface) [68]. These were
observed by Ristenpart et al. [8], who also established that the flow direction is
determined by the ratio between droplet and substrate thermal conductivities, as
well as the contact angle.
Van Gaalen et al. have published a number of papers in recent years on mathematical
models of the Marangoni effect in macroscopic sessile droplets. They argue for a
slip model (over a precursor film model) when Marangoni effects are present in
a droplet with moving contact line [73], provide numerical results that show that
strong evaporation and bulk diffusion (among other factors) counteract Marangoni
flows [74], and compare solutal to thermal Marangoni effects, concluding that when
both are included together Marangoni effects can be suppressed [75]. Diddens et
al. [55] built a sophisticated numerical model for binary sessile droplets specifically,
validating the use of the quasi-steady limit for vapour diffusion of a droplet mixture
(see section 2.6 for more on evaporative flux) and reporting Marangoni induced shape
deformation and the recirculating currents observed by experimentalists intending
to suppress the CRE.
However, Marangoni-induced CRE suppression is not yet completely understood
[31]. Despite a wealth of evidence that the Marangoni effect increases deposit uni-
formity, some authors report varying degrees of effectiveness. Kim et al. stud-
ied ethanol/water droplets from which the deposit was nonuniform, in spite of
Marangoni forces [76]. They needed to enhance the Marangoni effect by adding
surfactants and polymers in order to achieve a uniform deposit, though they also
observed single malt whisky forming unprompted uniform circular deposits. Tal-
bot et al. found ring stains from binary droplets due to capillary forces outlasting
temporary Marangoni forces [77, 78] and also cases in which the Marangoni effect
resulted in a central blob stain instead of a contact line ring [79].
Some work on binary droplets in wells has been done, notably by Jung et al. [22]
and Kajiya et al. [23], see section 2.3 for details about how Jung et al.’s work
relates to wells specifically. The former studied straightforward polymer solution,
the latter surfactant-enriched polymer solution; both report Marangoni effects that
act to flatten the droplet profile, the latter stronger effects that depended on the
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concentration and type of surfactant used (though the droplet surface is affected by
even a small amount of surfactant). Their work shows that coffee-ring suppression
by Marangoni flows is not limited to sessile droplets.
We are able to offer new theoretical and numerical evidence that support these
conclusions; we shall demonstrate later that Marangoni forces can indeed act to
reduce the conditions associated with the CRE. We will also show, however, that
the Marangoni effect does not solely function to flatten interfaces, but can be used
to have finer control over their shapes in both directions.
In this section we have seen that much research has already been undertaken into
the nature of the Marangoni effect and its application in reducing the impact of the
CRE (particularly for sessile droplets). However, nobody has attempted to provide
a universal predictive mechanism for the suppression of the CRE. Instead, exper-
iments often identify relevant and successful, yet isolated, incidences of ring stain
suppression due to Marangoni forces, while theorists are hindered from developing
a complete mathematical model for it by the CRE proxy problem we encountered
in section 2.3. We can be certain that the Marangoni effect leads to a more uni-
form deposit under specific conditions and that it has something to do with the
recirculating flows that it produces; beyond that more investigation is required.
Dealing with binary mixtures raises problems unrelated to the Marangoni effect.
Although the viscosities of liquids are readily available (within reason), it is not
entirely clear how to determine the viscosity of a general mixture of two (or more)
liquids.
The majority of researchers studying binary alcohol droplets take the total viscosity
to be a linear function of the volume fraction [40, 56],

µmix = µχχ+ µξξ , (2.16)

where χ and ξ represent the volume fractions of the two liquids and µi their re-
spective viscosities. Another common model for mixture viscosity is the Arrhenius
relation [80] (or Grunberg-Nissan model [81], if you include their small correction
factor) using logarithms:

lnµmix = χlnµχ + ξlnµξ ; (2.17)

both these models work well if the two components have similar molar masses. Katti
et al. proposed a slightly more sophisticated model using the partial molar volume
of each component, Vl,

ln(µmixVl mix) = χln(µχVl χ) + ξln(µξVl ξ) . (2.18)

This mathematical uncertainty has not deterred experimental researchers from in-
vestigating the effect of variable viscosity on drying droplets. Both Shi et al. [31]
and Talbot et al. [32] assert that viscosity changes in aqueous polymer solution
droplets are too small to suppress the CRE. The elastic properties of complex flu-
ids are apparently more significant, however: ‘sol-gel’ transitions, in which a stable
colloidal suspensions start exhibiting elastic behaviour, have been shown to at least
reduce radial convection [82, 83] and, in some well controlled cases, completely get
rid of the ring stain [32, 79]. In these latter examples, the authors ensured that the
droplet’s gelation, which starts at the contact line and moves inwards, be perfectly
timed in order to suppress the CRE and also prevent a central dome deposit.
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2.8 Thermal Effects

For any theoretical study intending to model droplet evaporation the theoretician
must decide whether to include thermal effect or not. A large body of work opts not
to [3, 4, 12, 36, 84, 85, 86]; Eggers and Pismen articulate this decision with reference
to local thermodynamic equilibrium: they argue that in the case of diffusion-limited
evaporation and fast thermal relaxation, the droplet-substrate system has a constant
and uniform temperature [15].
Other researchers choose to include an analysis of heat transfer between the sub-
strate and the droplet. Most notably, Hu and Larson state that many experiments
exhibit strong evidence of thermal-affected flow, thereby justifying the inclusion of
an equation for the conservation of energy [68],

ρcp

(∂T̃
∂t

+ û · ∇̂T̃
)
+ kT ∇̂2T̃ = 0 , (2.19)

where cp is the specific heat, kT the thermal conductivity, and T̃ is the temperature
field (with tilde to prevent confusion with time scale factor later). In fact, in their
particular case, they showed that their Stanton number was sufficiently large that
they could approximate this equation with a simple Laplace equation for tempera-
ture,

∇̂2T̃ = 0 . (2.20)

They fix the temperature as a constant on the substrate as a bottom boundary
condition and no conductive or convective heat loss across the droplet-air interface.
Many of these works concern themselves with phenomena such as thermal Marangoni
effects (as in Hu and Larson’s paper, see section 2.7 for more) [8, 87, 88] or thermally-
driven evaporation [52, 89, 90].
A central intention of this work is to replicate numerically a simple experiment in
which there is no indication of large temperature gradients between substrate and
droplet. Although thermal effects will, no doubt, be present, we will follow the
former assumption (constant temperature) throughout.

2.9 Theoretical and Numerical Methods

There are many methods that theorists use to attack problems of thin-film fluid
dynamics.

2.9.1 Method of Lines (MoL)

Partial differential equations (PDEs), like lubrication equations derived from the
Navier-Stokes equations can be very difficult to solve. In the method of lines, the
intention is to discretise all the dimensions (usually the spatial ones) but one (usually
time) of an equation, leaving a number of ordinary differential equations (ODEs).
The derivatives in the PDE are often discretised by a finite difference approximation.
The ODEs can then be solved numerically, each solution corresponding to the evolu-
tion of the desired variable at a spatial location in the system. This is an attractive
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feature of the method because of the wealth of existing numerical methods for solv-
ing ODEs. It is also flexible and versatile – it is easy to deal with complicated and
nonlinear boundary/initial conditions in MoL [91] – and, thanks to its separation of
space and time, it can be applied with numerical stability to many kinds of prob-
lems [92]. Furthermore, it is computationally efficient (provided the programmer
picks the right ODE solver) – it requires significantly less computational effort than,
for example, techniques that keep track of the location and momentum of many
particles.
Droplet evaporation problems have been solved in the past using MoL. Fischer
(also mentioned in section 2.6) investigated sessile droplets under the lubrication
approximation, modelling their evolution with a PDE for height and solving it with
MoL, using second-order centred difference approximations to the derivatives. He
set the capillary number at a relatively low Ca = 0.01 and measured the resulting
flow fields he acquired, noting their tendency to point towards the contact line (see
section 2.2 for Deegan’s explanation of this phenomenon). Another work is that
of Maki et al., who also numerically solved the lubrication equation for a sessile
droplet [93]. Their droplets carried a colloidal suspension; while the droplet profile
was indeed solved with MoL, the particle transport required a more sophisticated
approach due to a moving domain – for this they employed the method of moving
overset grids.

2.9.2 Lattice Boltzmann Method (LBM)

The Lattice Boltzmann Method imagines fluid ‘particles’ to lie on a regular lattice
and evolves the system timestep by timestep, applying acceleration to particles based
on the forces (collisions, streaming) present. It is used widely in fluid dynamics
problems, including the simulation of droplets. This is partly due to its ability
to bridge the gap between micro- and macroscopic physics through retention of
molecular-scale probability distributions while including body forces and ensuring
mass and momentum are conserved over large systems (certainly better and faster
than molecular dynamics simulations [94]). It is also because the LBM has been
shown to be able to cope with complex systems – immiscible binary fluids [95], flow
in porous media [96], and multiphase simulation [97] are just some of the proven
applications of the LBM that are relevant to droplets. Some pieces of LBM work on
droplets specifically include sessile/patterned substrate evaporation [98, 99], contact-
line hysteresis [100], gas-propelled spreading [101], and collision with a scratch by
Al-Ghaithi et al. [102].
One of the downsides to LBMs is the computational power required - it can be
expensive to keep track of the large number of particles that the simulation requires;
this is especially true when dealing with some kinds of thin-film multiphase systems
because of the over-resolution thanks to the uniform mesh.

2.9.3 Finite Element Method (FEM)

The FEM is another method often used in problems to do with fluid dynamics.
The solution space is subdivided into small shapes (finite elements), often triangles
or quadrilaterals, that vary in their exact size and shape in order to represent ge-
ometries of complex objects accurately. PDEs can be solved by determining weak

Chapter 2 Seth Richard Price 35



Modelling the Evaporation of a Binary Droplet in a Well

formulations of the governing equations: the simulator may define a set of test func-
tions for which the equations weakly hold, meaning they do not necessarily hold
universally. The solution is then a finite linear sum of these functions. One of the
draws of FEM in droplet simulations is that it can be employed with invoking the
lubrication equation; Diddens explains that this enables him to extend his model
to droplets with large contact angles [103]. It is a versatile and powerful technique
and can keep track of many different quantities simultaneously while evaporating
the droplet, such as heat and mass transfer [104], deformation and elasticity of the
substrate [105], and humidity in the gas phase [106].
Another of its applications, which we will find particularly helpful, is in solving
elliptic boundary value problems with mixed boundary conditions. Alberty et al.
offer a useful FEM implementation for solving the heat (and of course Poisson’s,
and Laplace’s, etc.) equation, among other, more complicated PDEs [107]. They
prove it to be flexible and fast to use FEM for these kinds of systems – it can easily
be adapted for different geometries and a variety of (Dirichlet, Neumann, Robin,
mixed) boundary conditions.
COMSOL is a popular finite element software; it is often been used to solve the
vapour part of the two-sided droplet-gas problem [51, 108, 109, 110].

2.9.4 Molecular Dynamics (MD)

Despite its computational cost and almost reductive simplicity, MD has remained
an option for simulating certain fluid dynamical processes since the 1990s. This is
probably, in fact, because the concept is so fundamental – the simulator takes a cer-
tain number of particles (representing molecules or even atoms) in a certain shape,
applies an appropriate potential, and allows them to interact. It is clear that MD
simulations become increasingly expensive with more particles; as computational
power has increased over the last few decades so too has MD system complexity.
A few examples of droplet evaporation demonstrate this clearly: in 1996, Long et
al. reported a MD simulation comprising 2,048 atoms [111]; just seven years later
in 2003, Consolini et al. performed one with 5,662 atoms [112]; and in 2019, Xiao
et al. managed to model a system with 106,143 atoms. All of these three exam-
ples, and most other droplet MD processes, are evaporations of spherical droplets
suspended in a gas phase; that is they do not involve a substrate or any kind of
mixed boundary conditions. This kind of simulation can be challenging, especially
in three-dimensions, because surface tension can be difficult to include [113] – a sim-
ulator would normally choose a force field to describe behaviour in the bulk rather
than at the surface. A notable example, however, is work by Zhang et al. [114], who
built a three-phase MD simulation of a droplet in vapour (27,000 atoms combined)
evaporating from a substrate (8 × 5,000 atoms). They wanted to investigate the
effect of substrate heating on the evaporation and found that they could control the
evaporative mass flux by changing the hydrophilicity of the substrate.
All of the above works concern very small droplets – the largest, with ∼ 105 atoms,
could only model a droplet with a diameter of 43 nm. This is a common feature of
MD simulations, because in each case the simulator must keep track of the properties
of individual atoms/molecules and therefore the computational cost is prohibitive
to large systems. LBMs are preferred in general when dealing with mesoscopic fluid
physics (see section 2.9.2).
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2.9.5 Direct Numerical Simulations (DNS) and Volume of
Fluid (VoF)

DNS and VoF are often discussed together because they are often implemented
together too; VoF is not so much a standalone algorithm, rather it is an interface
advection scheme, tracking the features of interfaces in the simulation, while DNS
is a method for finding a numerical solution to the Navier-Stokes equations. It is
often used to produce complete, exact simulations of flows, even with a high degree
of turbulence; for this reason DNS is very costly and is not used for general purpose
[115].
VoF tracks an interface by measuring the amount of substance in a mesh cell – when
the fraction function is zero the cell is empty (or full of gas phase, depending on
how you look at it), when it is one the cell is full. Any value in-between indicates
that the cell contains a part of the interface; these cells can be refined to increase
accuracy in determining the properties of the interface. This is illustrated in figure
2.3.

Figure 2.3: Illustration of VoF interface tracking from work by Schlottke and Wie-
gand [2].

Research that uses DNS to simulate evaporating droplets used to focus on turbulent
(or otherwise highly complex) flow; to use it on a small droplet with low Reynolds
number would be a bit like using the James Webb to spy on your neighbours.
Relevant pieces of older work include research by Schlottke and Wiegand, who use
DNS and VoF to model an evaporating droplet of one phase in a region of high flow
of another phase (air) [2]. They successfully modelled droplets with low and high
evaporation rates, including the Stefan flow related to the moving interface, and
identified complex flows in three dimensions in the wake of the droplet.
However, in recent years DNS has been applied to a larger variety of droplet prob-
lems, including in a paper by Sáenz et al. on sessile evaporation in three dimensions,
which picks up on internal flow vortices [116], one by Reutzsch et al., which applies
DNS to evaporating droplets in a large number of ambient conditions to simulate
many aspects of the droplet’s evaporation to a high degree of accuracy, including
high evaporation rates, supercooling, and oscillating droplets [117], and work by
Shang et al. with a droplet-vapour solver that reveals “minute details of the com-
plex characteristics associated with droplet evaporation”.
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2.10 Conclusion

This first chapter has provided an overview of the currently available literature
related to the evaporation, Marangoni effect, and well behaviour of droplets. It
has also detailed some of the theoretical and numerical methods that have been
employed to attempt to solve problems of droplet and thin film evolution.
Most significantly, we note that there is a large body of work on the CRE in sessile
droplets; Deegan’s important study and publication paved the way for researchers
to investigate the world of droplets and the multitude of patterns they create when
drying. The factors and conditions affecting the deposit distribution from pure
sessile droplets have been studied to within an inch of their lives over the last 25
years to the point that we are confident that we understand why the CRE and
other deposit effects occur in so many scenarios. The mechanisms of radial flow,
evaporation rush-hour, and contact-line (self) pinning are well understood.
It is a different story, however, when reading contributions towards more specific
situations of droplet drying; the dynamics of multi-component droplets and DiWs
are much less thoroughly researched and, although the basic principles of pure sessile
drying apply in general to these more complicated arrangements, it is clear that we
do not fully understand all their details, especially not in the intersection of the two.
For example, it is easy to find contradictory claims about the efficacy of Marangoni
flows in suppressing the CRE. Some, such as Kim et al., even report that they were
unable to achieve it at all using the Marangoni effect alone and required additional
additives to enhance its strength. As for droplets printed in wells, we have begun to
understand how well geometry influences the evaporation, but still lack a theoretical
link between the interface shape in the well and its deposit. This says nothing of
the cross-effects of droplets both situated in a well and being composed of two
components.
Another important, but largely neglected, problem in mixed composition droplets is
the evaporative flux. While we seem to have a solid grasp on a theoretical functional
form for the flux through the surface of a pure droplet, a binary droplet’s evaporative
flux depends on the composition of the droplet, which itself evolves in time and space
– this factor makes the binary problem more challenging, indeed difficult enough that
there are not many attempts to treat binary flux fully in the literature.
In this work, we shall begin to contribute to a theoretical link between pure and
binary droplets drying in wells and the impact of these factors on the shape of
the droplet and its deposit. We shall use some of the numerical methods we have
outlined above, namely MoL and FEM, and the well-understood features present in
sessile droplets, such as the recirculating flow profiles and evaporative flux, to build
a picture of the mechanisms involved in a binary droplet evaporating from a well
and how they influence its overall shape.
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Pure Droplet

We begin the construction of our model by considering the simplest possible non-
trivial situation. In our case, that is a pure droplet evaporating in a 2D square or 3D
cylindrical well; in this chapter we will set up the problem and derive the governing
equations for a 3D axisymmetric droplet, will state the corresponding equation in
the 2D case, and analyse and compare simulated results from both of them.
This model will allow us to investigate some fundamental features of an evaporating
DiW: its shape near the end of the drying, which plays a large role in influencing the
deposit distribution of droplets containing particles; the behaviour of the touchdown
point as we change the well geometry and physical properties; and the velocity
field during the drying process. For the first time we will be able to reproduce
and investigate W- and U-shaped droplets in a numerical simulation, these shapes
having been previously observed experimentally.
We will finish by assessing the cylindrical model’s accuracy to experimental data
and show that the model is good at predicting overall shape behaviour; indeed even
quantitative agreement can be found using a best fit over the C parameter. This
does, however, mean there is some discrepancy between experimental and theoretical
expectations of C.
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3.1 Problem Description

Figure 3.1: A droplet in a cylindrical well.

Consider a droplet in coordinate system (r̂, ẑ)1 evaporating from a cylindrical well
with vertical walls of height h0 and radius R (see figure 3.1). The droplet’s free
surface is located at ẑ = ĥ(r̂, t̂) and is pinned to the edge of the well at the point
(R, h0).
The droplet is composed of a single, incompressible liquid of surface tension σ,
viscosity µ, and density ρ; we assume it is Newtonian, the Reynolds number is
small, and gravity can be neglected in favour of viscous, capillary, and evaporative
forces. We also assume that heat transfer can be neglected and the temperature is
constant everywhere and always. (See chapter 2, sections 2.4 and 2.8 for discussions
on the importance of droplet size and thermal effects respectively.)

3.2 Fluid Dynamics

In this section we will derive the equation of motion for the evaporating droplet-air
interface, starting with the fundamental equations for fluid dynamics and applying
the appropriate assumptions and boundary conditions for a thin DiW.
We assume that the liquid obeys both mass continuity and the Navier-Stokes equa-
tions for an incompressible fluid, namely

∇̂ · û = 0, (3.1)

and

ρ
Dû

Dt̂
= −∇̂p̂+ µ∇̂2û, (3.2)

1Circumflex denotes a dimensional variable.
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respectively, where û = (û, ŵ) is the liquid velocity (radial, vertical) and p̂ is the
pressure in the liquid2. We take the limit of low Reynolds number, under which the
Navier-Stokes equations reduce to the Stokes equations,

∇̂p̂ = µ∇̂2û. (3.3)

The free surface is subject to stress balance conditions in the normal and tangential
directions;

n̂ · T̂ · n̂ = σκ at ẑ = ĥ (3.4)

where n̂ is the unit normal to the interface, T̂ is the stress tensor, and κ(r) is the
mean surface curvature,

κ = ∇̂ · ∇̂ĥ√
1 + |∇̂ĥ|2

, (3.5)

and

t̂ · T̂ · n̂ = t̂ · ∇̂σ at ẑ = ĥ (3.6)

where t is the unit tangent to the interface. In this chapter we ignore the possibility
of surface tension gradients because we assume the droplet to comprise a single
liquid in a constant and stable temperature field.
Material transfer occurs across the interface, described by the kinematic condition,

(û · n̂− V̂n) =
1

ρ
Ĵ(r̂, t̂) at ẑ = ĥ (3.7)

where V̂n =
ĥt̂√
1+ĥ2

r̂

is the normal velocity of the interface and Ĵ(r̂, t̂) is the evapo-

rative flux across the free surface. The kinematic condition relates the normal com-
ponent of the droplet interface’s velocity and the normal component of the fluid’s
velocity to the rate of mass transfer due to evaporation.
There are other boundary conditions: we impose no-slip and impermeability con-
ditions at the base of the well and at the wall and we assume that the droplet is
symmetrical about the line r̂ = 0,

û = 0 at ẑ = 0 , (3.8)

ŵ = 0 at ẑ = 0 , (3.9)

q̂ = 0 at r̂ = 0, R , (3.10)

where q̂ = 1

ĥ

∫ ĥ

0
û dẑ is the liquid flux. The reader may notice that we have not

included no-slip and impermeability at r̂ = R; these conditions are not useful for
us once we have non-dimensionalised and applied the lubrication approximation
(section 3.3). In fact, we will see a small outworking of this decision when considering
the liquid velocity vector plots in section 3.8.5.

2 D
Dt̂

is the material derivative
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Finally, we assume that the initial profile is prescribed, so that

ĥ = ĥ∗(r̂). (3.11)

3.3 Non-Dimensionalisation

We non-dimensionalise the model through the following scaling relations, where
dimensionless variables are denoted by the absence of circumflex:

r̂ = Rr , ẑ = h0z , ĥ = h0h ,

t̂ = Tt , (û, ŵ) = U(u,
h0

R
w) , p̂ =

µUR

h2
0

p ,

Ĵ = ρUεJ , q̂ = h0Uq ,

where T = R
U
and U is an intrinsic velocity scale pertaining to the evaporative flux.

We will see in section 3.4 that U can be expressed as

U =
2DM c

m(c0 − c∞)

πRρ
, (3.12)

where D is the diffusion coefficient of the liquid in air, c0 is the concentration of
liquid vapour in the air immediately above the interface, c∞ is the concentration
infinitely far from the droplet, and M c

m is the molar mass of the liquid.
Under these scalings the model can be expressed in terms of two dimensionless
quantities: the aspect ratio,

ε =
h0

R
, (3.13)

and the reduced inverse capillary number, given by

C =
σε3

µU
. (3.14)

We expand the variables u, w, and p as perturbation series in ε (as in [33]),

u = u0 + u1ε+ u2ε
2 + ..., (3.15)

w = w0 + w1ε+ w2ε
2 + ..., (3.16)

p = p0 + p1ε+ p2ε
2 + ..., (3.17)

and apply the lubrication approximation ε −→ 0, while maintaining C = O(1) (the
former is justified by requirement to imitate experimental procedure; for example in
work by D’Ambrosio et. al. the average aspect ratio was about 0.04 [3]. The latter
is vital for preserving surface tension terms in the resulting equations [33]). This
means neglecting terms of O(ε) and smaller, which leaves the model
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1

r

∂

∂r
[ru0] +

∂w0

∂z
= 0, (3.18)

∂2u0

∂z2
=

∂p0
∂r

, (3.19)

∂p0
∂z

= 0, (3.20)

with boundary conditions

p0 = −C
r

∂

∂r

[
r
∂h

∂r

]
at z = h , (3.21)

∂u0

∂z
= 0 at z = h , (3.22)

w0 =
∂h

∂t
+ u0

∂h

∂r
+ J(r) at z = h , (3.23)

u0 = w0 = 0 at z = 0 , (3.24)

q = 0 at r = 0 , 1 , (3.25)

h = 1 at r = 1 , (3.26)

h = h∗(r) at t = 0 . (3.27)

We now drop the subscripts for brevity. As we mentioned in chapter 2 section
2.2 applying the lubrication approximation in this way restricts our analysis to only
those droplets that are very shallow and have small contact angles. Therefore we are
very likely to be dealing with long, thin pools of liquid in a well made of particular
material for which the liquid wets the solid perfectly.

3.4 Evaporative Flux

It is not immediately clear what form the evaporative flux should take; a number of
different evaporation models have been proposed for diffusion-limited evaporation
of sessile droplets in the literature [13, 14, 84].
The choice of form of evaporative flux in this work will depend on the geometry of
the system being modelled. It is important to note that a droplet in a well does not
necessarily have evaporative flux identical to that of a sessile droplet; an ideal form
would be to find the vapour concentration field (ĉ) due to the droplet and use Fick’s
law to find the evaporation rate,

Ĵ(r̂, t̂) = −DM c
m∇̂ĉ(r̂, t̂) · n̂, (3.28)

where D is the vapour diffusion coefficient. We will discuss this approach in greater
detail in chapter 5; initially it is pragmatic simply to choose an appropriate func-
tional form for the evaporative flux. As detailed in section 2.6, it is common practice
to assume that the vapour concentration in the gas above a pure droplet may be
described by Laplace’s equation,
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∇̂2ĉ = 0, (3.29)

with mixed boundary conditions

ĉ −→ 0 as r̂2 + ẑ2 −→ ∞ (3.30)

ĉ = c0 on ẑ = 0 for 0 < r̂ < R (3.31)

∂ĉ

∂ẑ
= 0 on ẑ = 0 for r̂ > R. (3.32)

The evaporative flux for a thin (lubrication approximated) sessile droplet with small
contact angle is found to be (see [13] for full derivation)

Ĵ(r̂) =
2

π

DM c
m(c0 − c∞)√
R2 − r̂2

, (3.33)

and it is this form that we shall use, at least initially and in the cylindrical geometry.
While such a method is useful for determining the evaporative flux of a stationary
system with a thin, flat droplet, it is less useful when considering a more dynamic
system, such as a droplet with binary composition that evolves over the lifetime
of the droplet. It also neglects to account for the droplet-vapour coupling in more
exotic scenarios, for example, in which negative concentration gradients in the gas
emerge along certain regions of the interface. In these cases it is desirable to have a
full vapour phase simulation and to use equation 3.28 to calculate the evaporation
profile.
After nondimensionalisation, the evaporative flux in the dimensionless model be-
comes

J(r) =
1√

1− r2
. (3.34)

3.5 Deriving a Lubrication Equation

We can derive an expression for the velocity in the liquid phase by integrating
equation 3.19 twice, using equations 3.21 and 3.24a as boundary conditions:

u(r, z) = −C ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]] (1
2
z2 − zh

)
. (3.35)

We then integrate equation 3.18 over the height of the droplet and use the imper-
meability of the substrate to find the vertical velocity at the interface

w(h) = −
∫ h

0

1

r

∂

∂r
[ru] dz, (3.36)

and insert this into the mass transfer condition, equation 3.23,

∂h

∂t
+ u(z = h)

∂h

∂r
+ J +

∫ h

0

1

r

∂

∂r
[ru] dz = 0. (3.37)
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Using the Leibniz integral rule and the no-slip boundary condition, the final term
in equation 3.37 can be expressed∫ h

0

1

r

∂

∂r
[ru] dz =

1

r

∂

∂r

∫ h(r,t)

0

u dz − u(z = h)
∂h

∂r
, (3.38)

which simplifies equation 3.37 to

∂h

∂t
+

1

r

∂

∂r

∫ h(r,t)

0

ru dz + J = 0 . (3.39)

Equations 3.35 and 3.39 combine to give a lubrication equation for height evolution,

∂h

∂t
= − C

3r

∂

∂r

[
rh3 ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]]
− 1√

1− r2
. (3.40)

The droplet’s cylindrical symmetry means that

∂h

∂r
=

∂3h

∂r3
= 0 at r = 0 (3.41)

and it is pinned at (1, 1), so

h = 1 at r = 1 . (3.42)

The no-flux wall condition means that the height averaged velocity at the wall
vanishes,

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
= 0 at r = 1 , (3.43)

and we choose a simple initial condition that adheres to the boundary conditions,

h∗(r) = a+ (1− a)r2 , (3.44)

which is the equilibrium shape for an interface with small aspect ratio in the absence
of gravity. Unless otherwise stated, we will take a = 1.5.

3.6 Two-Dimensional Version

The preceding derivation was performed for a three-dimensional axisymmetric droplet
in a cylindrical well; it is worth also stating the results for a strictly two-dimensional
droplet in a square well (width 2L) also, as we will discuss both models in later chap-
ters. However, the reader should assume we are referring to the three-dimensional
axisymmetric model unless otherwise stated.
The main difference for the 2D model is that the pressure has a slightly different
form,

p = C ∂
2h

∂x2
, (3.45)

then following the analogous logic for a two-dimensional droplet in a square well (in
cartesian coordinates (x, z)) leads to a similar system:
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∂h

∂t
= −C

3

∂

∂x

[
h3∂

3h

∂x3

]
− J(x) , (3.46)

∂h

∂x
=

∂3h

∂x3
= 0 at x = 0 , (3.47)

h = 1 at x = 1 , (3.48)

ū =
C
3
h2∂

3h

∂x3
= 0 at x = 1 , (3.49)

h∗(x) = a+ (1− a)x2 . (3.50)

For the evaporation we use the same functional form as equation 3.34,

J(x) =
1√

1− x2
. (3.51)

We note that this is not the correct functional form for a 2D droplet with diffusion-
limited evaporation in a 2D half-space. Schofield et al. [118] discovered that the
closed-form solution to that problem is non-trivial, requiring the far-field ambient
condition be imposed on the edge of a large ellipse of semi-minor axis Ψ:

Ĵ =
1

arcsin(Ψ/L)

1√
L2 − x̂2

. (3.52)

There is no closed form of the 2D steady state vapour solution with an infinite
boundary. Because we are concerned more with comparisons to the cylindrical case
in this work, we will retain the simpler version, equation 3.51.

3.7 Numerical Methods

We solved the PDE using the method of lines with Mathematica’s NDSolve function.
We discretised the spatial component of each equation and applied the relevant
boundary conditions at each end of the simulation domain to obtain height evolution
ODEs for each point along the droplet.

3.7.1 Cylindrical Well

The domain in the cylindrical well is defined between r = 0 and r = 1, split into
N regions of width ∆r. We discretise the spatial component of equation 3.40 in
two parts, first approximating the first level of the derivative halfway between grid
points (at i + 1

2
) with a finite difference expression, then writing the full equation

as a second order finite difference scheme for first derivatives. It is important to be
especially careful with the point at i = 0, given that equation 3.40 has an apparent
singularity at the origin – of course, this is purely an artefact of the cylindrical
coordinates, and so the singularity does not actually exist. We differentiate out the
brackets

g(r) = rh3 ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
= rh3

(∂3h

∂r3
+

1

r

∂2h

∂r2
− 1

r2
∂h

∂r

)
(3.53)
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and only then discretise,

gi+ 1
2
=

(i+ 1
2
)(hi+1 + hi)

3

8∆r2

(
(hi+2 − 3hi+1 + 3hi − hi−1)

+
1

2i
(hi+2 − hi+1 − hi + hi−1)−

1

i2
(hi+1 − hi)

)
. (3.54)

The full ODE for height evolution in cylindrical geometry is, then,

∂hi

∂t
= − C

3i∆r2
(gr,i+ 1

2
− gr,i− 1

2
)− 1√

1− (i∆r)2
. (3.55)

We need to deal with the special cases at grid points i = 0, i = 1, and i = N − 1
(the droplet pin again prevents evolution at point i = N). Particular care at i = 0
is needed to avoid the singularity; we start by fully expanding the triple derivative
expression,

1

r

∂

∂r

[
rh3 ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]]
=

h3

r

∂3h

∂r3
+ 3h2∂h

∂r

∂3h

∂r3

+ h3∂
4h

∂r4
+

3h2

r

∂h

∂r

∂2h

∂r2

+
h3

r

∂3h

∂r3
− 3h2

r2

(∂h
∂r

)2
+

h3

r3
∂h

∂r
− h3

r2
∂2h

∂r2
. (3.56)

For h(r, t) to be bounded at r = 0, all terms multiplying a 1
r
must vanish; that is

∂h

∂r
=

∂2h

∂r2
=

∂3h

∂r3
= 0 at r = 0. (3.57)

We can now use l’Hôpital’s rule on each term repeatedly until the 1
r
terms are

eliminated; however, given equation 3.57, the only terms that will survive necessarily
have the form

1

rλ
∂4−νh

∂r4−ν
, with λ ≥ ν, (3.58)

meaning terms 2, 4, and 6 on the right hand side of equation 3.56 drop out imme-
diately. After applying l’Hôpital’s rule, the triple derivative finally becomes

1

r

∂

∂r

[
rh3 ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]]∣∣∣
r=0

=
8

3
h3∂

4h

∂r4
. (3.59)

The partial difference approximation of a fourth-order derivative at i = 0 refers to
ghost points at i = −1 and i = −2; these are given by symmetry arguments across
the centre so the discretisation at i = 0 is

∂h0

∂t
= − 16

9∆r2
Ch3

0(h2 − 4h1 + 3h0)− 1. (3.60)

At i = 1 the first order symmetry removes dependence on a ghost point,
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∂h1

∂t
= − C

24∆r4

(1
2
(h2 + h1)

3
(
4h3 −

34

3
h2 +

28

3
h1 − 2h0

)
− (h1 + h0)

3
(
h2 − 4h1 +

3

2
h0

))
− 1√

1− (∆r)2
. (3.61)

For the equation at i = N − 1, we will need an expression for the ghost point hN+1,
which can be derived from the vanishing fluid flux at r = 1; writing equation 3.43
as a finite difference expression evaluated at i = N gives

hN+2 + hN+1(−2 + 2∆r −∆r2) + 4∆r + hN−1(2 + 2∆r +∆r2)− hN−2 = 0, (3.62)

and we use the lubrication equation, equation 3.40, at r = 1 to eliminate hN+2

(remembering that at the pin we have h = 1, ū = 0, and ht = 0). Finally, after
neglecting terms in ∆r2 and smaller,

hN+1 = (−3
(
1 +

2

3
∆r
)
+ hN−1(3 + ∆r)− hN−2)(1 + ∆r)−1. (3.63)

We now have a height ODE in time for each point along the droplet and can proceed
with NDSolve to simulate its evolution. The two-dimensional system, equations 3.46
- 3.50, can be discretised analogously.

3.8 Results

We are left with N ODEs for height evolution in time, one for each gridpoint along
the droplet. We plot the solution of the equation as a cross section of the droplet,
with evolution over time represented by a series of lines. The simulation stops
when the droplet touches down, that is, when the fastest decreasing of the height
values reaches a predetermined minimum value. The reason we decided to arrest
the simulation at touchdown is that the physics of the droplet changes as soon as
touchdown is reached; the touchdown point becomes a receding contact line [3] and
a liquid ring shoulder emerges (if the DiW forms a W-shape, a sessile droplet in the
centre of the well also appears; see section 3.8.3 for more details). While we could
change the boundary conditions at that point and continue to simulate the evolution
of an annulus (+ inner sessile droplet), we deemed it more important to thoroughly
understand the physics that drives the initial drying until touchdown. The annulus
has already been studied analytically in the limit of large C [3].

3.8.1 Simulation Convergence

Before diving into analysis of the results it is important to confirm that the sim-
ulation converges as the number of grid points becomes large. In order to verify
numerical convergence we simulated the droplet evolution for increasing spatial res-
olution (log2(N) = (3, 4, 5, 6, 7, 8, 9)) and determined the residual from the previous
iteration for each point at 10 equally spaced time intervals. We then took the mean
of all these points in order to acquire a measure for the average difference per point
as N increases.
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We have also addressed the problem of mass conservation, quantifying the natu-
ral mass loss of the simulation and comparing it to the spatial discretisation and
resolution.
The convergence data in the following paragraphs are from the axisymmetric droplet
in a cylindrical well simulation, but they apply equivalently to the square well case.
Figure 3.2 shows that the simulation converges for C = 0.2 – the black dots represent
the residual error associated with multiplying the number of points by 2; that is, for
each n, we have taken the mean height difference per point between a simulation
with 2n grid points and one with 2n−1 grid points.
The orange line is an exponential that fits the data,

Error(n) = E0e
−αern, (3.64)

where αer is positive.
The total error from the ‘true’ solution, then, can be thought of as the integral

Errortot(n) =

∫ ∞

n

Error(n′)dn′, (3.65)

given that we might expect to find the ‘true’ solution at n = ∞. Written in terms
of the number of points, this has the form

Errortot(N) =
1

αer

N−αer
ln2 , (3.66)

hence the simulation converges sensibly for large N .

Figure 3.2: A log plot of the mean residual per point, black dots, as a function of
number of grid points, N , for C = 0.2. An exponential function (orange line) fits
the points.

We present in figure 3.3 the same data for values of C of different orders of magnitude,
showing that this kind of simulation convergence is independent of the C parameter.
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(a) C = 0.02 (b) C = 2

Figure 3.3: The mean residual per point as a function of the number of grid points.

The other factor to consider is the mass conservation of the simulation; we should
expect that mass is conserved to within a certain precision that depends on the
resolution of discretisation. Mass inside the droplet at time t is given by

Mr(t) = 2π

∫ 1

0

rh(r, t)dr. (3.67)

Figure 3.4 is a diagram of the droplet mass (per equation 3.67), evaporated mass,

Mevap(t) = 2πt, (3.68)

and total mass,

Mtot(t) = Mr(t) +Mevap(t) (3.69)

The figure shows that, in the eyeball norm and on the scale of the whole droplet,
any loss in mass is small; nonetheless, it is useful to quantify the conservation of
mass over the lifetime of the droplet.

Figure 3.4: Mass conservation over time for a droplet with N = 29 points and
C = 0.2.

Figure 3.5 shows the variation in total mass loss, δM =
Mtot(tf )

Mtot(0)
, as a function of the

resolution of the simulation. The fitted (purple) function is of the form
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δM ∼ dr0.65. (3.70)

Figure 3.5: Mass loss fraction plotted against the number of points. C = 0.2.

3.8.2 Droplet Profiles

Cross section solutions of the lubrication equation for a droplet evaporating from
a 2D square well are presented in figure 3.6 and from a cylindrical well in figure
3.7, both in order of increasing C. Time increases in equal steps as each droplet
evaporates down and is also indicated by the colour of the line: orange to yellow to
green. Only the positive half is shown in each figure, symmetry about the vertical
axis is implied.
These figures demonstrate the extent of control one can exert over a droplet’s shape
through the C parameter; each of them (except figure 3.6c, the square well with the
largest C) features a half lens type shape towards the end of the evaporation, whose
exact size, shape, and formation time are determined by C. Until touchdown, the
lens is connected to the wall liquid by a thinner section, which ‘pinches’ upon touch-
down. The simulation ends at this point, because a new set of boundary conditions
would be required to describe the two newly formed contact lines. Additionally,
one of the main aims of this project is to compare the model to experimental data,
which becomes harder to acquire after touchdown – there is uncertainty about the
permanence of the pin and the interferometry data analysis is hindered by finely
spaced fringes [3].
The differences between cartesian and cylindrical simulations are not immediately
obvious. However, there are small differences between touchdown locations and
times, and the curves are qualitatively slightly different too. Nevertheless, the qual-
itative similarity between the two models will be useful for analysis of asymmetry
in a later chapter, where full 3D simulations are prohibited by large computational
cost.
Regardless of well geometry, increasing C over several orders of magnitude flattens
out the lens observed at small values of C; the larger it is, the less prominent the
lens until, at some critical value, it disappears altogether. This phenomenon will be
quantitatively explored in section 3.8.3.
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(a) C = 0.02, touchdown occurs at
(x, t) = (0.91, 0.46)

(b) C = 0.2, touchdown occurs at (x, t) =
(0.83, 0.71)

(c) C = 2, touchdown occurs at (x, t) =
(0.62, 0.80)

Figure 3.6: Cartesian simulation results of droplets evaporating. The colours rep-
resent time as it increases – the curves are orange at t = 0 and become yellow and
finally green at late times.

The touchdown time and location also depend on C; the location of touchdown is
another feature we will explore quantitatively in this chapter.
The eagle-eyed reader will notice that, although the solutions are sampled at equal
time intervals, the curves in figure 3.7a appear compressed between the first three
time points and near r = 0. This effect is unexpected. Recognising that it occurs
at a low value of C, we can express h as a series expansion in powers of C,

h = h̃0 + Ch1 + C2h2 + ... , (3.71)

and find the lubrication equation at leading order:

∂h̃0

∂t
= − 1√

1− r2
. (3.72)

We would therefore expect the droplet to decrease at a constant rate, h̃0 = h∗(r = 0)− t,
at its centre (with an error on the order of C); figure 3.8 confirms that there is a
small kink near the beginning of the evaporation (after the kink, however, the height
at the centre does indeed decrease at rate t). This compression of curves is a nu-
merical artefact that appears at the beginning of simulations with very low C; we
shall address it more thoroughly in section 3.8.5 of this chapter.

52 Chapter 3 Seth Richard Price



Modelling the Evaporation of a Binary Droplet in a Well

(a) C = 0.02, touchdown occurs at
(r, t) = (0.91, 0.42)

(b) C = 0.2, touchdown occurs at (r, t) =
(0.82, 0.55)

(c) C = 2, touchdown occurs at (r, t) =
(0.61, 0.56)

Figure 3.7: Cylindrical simulation results of droplets evaporating. The colours rep-
resent time as it increases – the curves are orange at t = 0 and become yellow and
finally green at late times. These are all examples of W-shaped droplets, having
dimples at late times that mean the touchdown point is not at r = 0.

Figure 3.8: The evolution of the height at the centre of the droplet for C = 0.02.
Note the presence of a kink at the beginning, which is caused by the numerical
artefact we explain in section 3.8.5.
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3.8.3 Curvature at Origin

Intuitively, it makes sense that the dimple should shrink as C increases due to the
roles of surface tension, viscosity, evaporative flux, and well geometry (described in
equation 3.14).
Surface tension acts to minimise surface area; it resists the pulling-apart of local
points on the surface and changes in surface curvature and makes it harder for the
droplet to form a dimple shape.
Viscosity acts against surface tension in the sense that it resists fluid motion and
slows the flow. Crudely described, capillary forces in the droplet tend to suck fluid
towards the more quickly depleting region near the edge [4, 12]; the slower flow
associated with higher viscosity impedes this effect and encourages a more prominent
lens.
C is highly sensitive to variations in well geometry, C ∼ ε3. The wider the droplet
compared to its height, the further liquid has to flow under capillary forces to re-
plenish the depletion at the edge and the more prominent the dimple shape.
Finally, greater evaporative flux naturally means shorter evaporation time. There-
fore the fluid in the droplet, while having the same horizontal component of velocity,
will have less time to correct for the formation of the dimple.
Because of the symmetry condition imposed across the origin, the height h(0, t) will
always necessarily be an extremum, meaning we can establish information about the
droplet’s evolution to a lens shape by examining the curvature at r = 0. In the 3D
cylindrical case:

κ(r = 0) =
∂2h

∂r2

∣∣∣
r=0

. (3.73)

We show the 3D curvature evolution in figure 3.9, which contains data for values of
C between 0.4 and 16. There are three clear regimes, indicated by the colours blue,
red, and black: 1. the curvature does not change sign; 2. the curvature changes sign
twice; and 3. the curvature changes sign just once. The dashed lines represent the
C values (C1 = 0.76 and C2 = 14.3) on the border between two regimes.
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Figure 3.9: The evolution of the curvature of the droplet at r = 0. From bottom to
top, C = 0.5, 0.6, 0.76, 0.9, 1, 4, 7, 10, 14.3, 16, 100, 500. Colours denote the three lens-
formation regimes described below and dashed lines denote the transition between
two regimes (at C = 0.76 and C = 14.3 respectively).

The three regimes are given by

1. C < C1 and the lens forms straightforwardly (blue);

2. C1 < C < C2 and the lens does not form initially (rather the droplet tends to
be flatter), but subsequently does form (red);

3. C > C2 and the lens does not form at all (black).

It is helpful to ascribe shapes to the three regimes: droplets in regimes 1 and 2 all
strictly form a W-shape (while those in regime 1 consistently have a W-shape when
h(r = 0) < 1, those in regime 2 spend some time as a spherical bowl), as can be seen
in all three subfigures in figure 3.7; droplets in regime 3 all strictly form a C-shape,
visible in figure 3.10b; droplets close to the border between regimes 2 and 3 form
what could be described as a U-shape, i.e. a nearly flat-bottomed C-shape, as shown
in figure 3.10a.

Chapter 3 Seth Richard Price 55



Modelling the Evaporation of a Binary Droplet in a Well

(a) C = 16, touchdown occurs at (r, t) =
(0, 0.49). U-shape.

(b) C = 500, touchdown occurs at
(r, t) = (0, 0.41). C-shape.

Figure 3.10: The evolution of U-shaped and C-shaped droplets in cylindrical coor-
dinates. Time increases from orange to yellow, with colour consistent across both
figures. U-shaped interfaces are characterised by a flatter bottom than C-shaped
ones, which are approximately quadratic.

The curvature evolution across the whole droplet is shown in figure 3.11 for two
values of C, both in regime 1 (blue). The curvature is negative near the centre
and, after a short amount of time, sharply becomes positive towards the edge. The
equation for curvature is

κ =
1

r

∂

∂r

[
r
∂h

∂r

]
. (3.74)

(a) C = 0.01 (b) C = 0.5

Figure 3.11: Curvature evolution across the whole droplet. Time increases from
orange to yellow, with colour consistent across both figures.

We stated earlier that surface tension acts to pull local height points together and to
maintain a constant curvature; this effect can be seen more clearly in figures 3.11 and
3.12, which contain data for droplets in regime 1. Figure 3.12 shows the evolution of
the height difference between the highest point of the lens (that is, we have excluded
the shoulder on the outside because the constant pin at r = 1 would interfere with
the late-time results) and the lowest points of the droplet (excluding the shoulder
is not important for the lowest point) for a range of values of C. As C (and so too
σ) increases, the height difference decreases, indicating that surface tension does
indeed play a role in controlling the height extrema. However, at low values of C the
final height range does not actually decrease as C increases – instead, although the
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range rates decrease, the fact that they have longer before touchdown means their
height range has more time to reach the same value. Figure 3.11 demonstrates the
same effect. It is clear that the curvature has a smaller range for the larger value of
C; the larger surface tension acts to reduce the maximum curvature (always located
at the pinned contact line) and flattens the curvature out near the edge.

Figure 3.12: Height span of the droplet lens as it evaporates. Those droplets with
smaller values of C consistently exhibit a lens with much larger range in height,
because of the lower surface tension and larger viscosity. The colours refer to the
corresponding value of C given in the legend. The case with C = 0.5 has a height
range of approximately 0 for some time, which indicates that the interface is briefly
completely horizontal.

3.8.4 Touchdown

C also influences the location and time of touchdown, that is when the droplet surface
first comes into contact with the substrate. In our simulations, the droplet never
strictly touches down, because we end the simulation before any of the heights
reaches zero (the exact condition is to break the simulation when the minimum
height reaches 10−3). For the purpose of concision, we shall consistently use the term
‘touchdown’ in this work to refer to a simulated droplet tending towards touchdown.
Because we are much more interested in the behaviour of the droplet interface before
touchdown, we have not included in this thesis a discussion of the Hamaker con-
stant and the intermolecular forces between the droplet’s surface and the substrate.
In order to determine the exact behaviour at and immediately after touchdown,
we would need to consider the stability of the droplet interface as it reaches the
substrate.
Figure 3.13a is a log-log graph of the radius of touchdown, rtd (here displaced by
some constant dtd), as a function of C with a model fit imposed on top.
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(a) Log plot (b) Linear plot

Figure 3.13: A log plot and a linear plot of touchdown radius against C (black points)
and the power law fit (orange line). The log plot reveals the power law fit for the
range of C values between 0.02 and 8.

The log-log plot reveals a straightforward power law of the form

rtd = AtdCktd + dtd, (3.75)

and in this case Atd = −0.265± 0.006, ktd = 0.419± 0.008, and dtd = 0.954± 0.005.
Increasing C beyond a certain point, however, reveals that the touchdown point does
not continue to follow this power law indefinitely, as can be seen in figure 3.13b.
Instead, there is a transition between touchdown described by a power law and
touchdown occurring exclusively at r = 0. The transition is complete at C ≈ 13.5,
which is consistent with the boundary between origin curvature regimes 2 and 3 in
figure 3.9.
We note that figures 3.13a and 3.13b do not give any information about the boundary
between regimes 1 and 2.
As we discussed in chapter 2 and section 3.4 of this chapter, it is not entirely clear
what mathematical form a droplet’s evaporative flux should take for the specific case
of a DiW, despite the popularity of the Popov/divergent form that we have been
using (which is derived for sessile droplets). One of the benefits of performing simu-
lation analysis of the problem is that we can try out other forms of the evaporative
flux, for example a spatially uniform function, J(r) = 1.
Performing the same computation for a uniform evaporation on a cylindrical droplet
returns figures 3.14a and 3.14b, which also reveal a power law relationship, now with
Atd = −0.940± 0.008, ktd = 0.52± 0.02, and dtd = 0.88± 0.01.
Touchdown occurs closer to the origin for the same C compared to the Popov form,
but the qualitative behaviour of the touchdown point is the same: rtd follows a
power law until a certain value of C, then drops quickly as the W-U-C shape phase
change occurs.
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(a) Log plot (b) Linear plot

Figure 3.14: A log plot and a linear plot of touchdown radius against C (black points)
and the power law fit (orange line) for uniform evaporation.

We observe similar behaviour in the 2D square well; here the power law parameters
are Atd = −0.248 ± 0.006, ktd = 0.43 ± 0.01, and dtd = 0.952 ± 0.005 and the
touchdown plot is figure 3.15.

(a) Log plot (b) Linear plot

Figure 3.15: The touchdown radius as a function of C (black points) with a model
fit (orange line) superimposed. This is for a 2D square well with Popov’s divergent
evaporation.

Finally we show the touchdown relationship for a 2D droplet evaporating uniformly
in figure 3.16. This one has parameters Atd = −0.92± 0.01, ktd = 0.59± 0.03, and
dtd = 0.86± 0.01.

(a) Log plot (b) Linear plot

Figure 3.16: The touchdown radius as a function of C (black points) with a model fit
(orange line) superimposed. This is for a 2D square well with uniform evaporation.
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A comparison between different droplets can be seen in figure 3.17; in orange are
the droplets with divergent evaporation, in blue are those with uniform evaporation.
This plot reinforces our previous analysis of the similarities between the models –
switching between 2D cartesian and 3D cylindrical does not have a large quantitative
effect on the simulation, however changing the evaporative flux model does have a
significant effect.
The physical interpretation of parameter dtd is obvious: it represents the touchdown
point in the hypothetical limit of C −→ 0. For this reason, we might be surprised to
see that it is not 1 in any of our four cases, which would be the natural prediction for
a droplet with no capillary flow (the physical meaning of C = 0) evaporating from
a well. However, we can temper our surprise by realising that this situation would
raise an inconsistency – a DiW with a pinned contact line must have flow that acts
to maintain the pin. Since we always assume the DiW to be pinned to the edge of
the well, our model must have a finite value for C.
The other interesting parameter is ktd. In each case it is suspiciously close to 0.5,
although usually does not equal 0.5 within statistical error (the exception being
for uniform evaporation in a cylindrical well). This indicates that there may be a
square-root relationship between touchdown radius and C; the obvious question is:
what does this relationship tell us about the physics? Simply rearranging equation
3.75 (with ktd = 0.5) reveals that C would be proportional to the area of the circle
defined by the touchdown radius, but it is unclear why this ought to be the case.
Another suggestion is that ktd = 3

7
, which would fall within the estimated error

for the 3D, Popov flux case. There is some precedent for this power: it has been
reported before, notably in a droplet injection (rather than evaporation) paper as
the relationship between the droplet height and time (which, in the authors’ model,
has the capillary number nondimensionalised into it) [119].

Figure 3.17: A touchdown point comparison of the four different models of DiW
evaporation – cylindrical (solid lines) vs square (dotted lines) wells, and divergent
(orange) vs uniform (blue) evaporative flux models.

The touchdown time, i.e. the value of t when the interface first touches the surface,
is another variable that depends on parameter C. We show the touchdown time
behaviour in figure 3.18; the overall trend is that ttd increases with C sharply, then
starts to decrease again slowly.
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(a) Uniform evaporation (b) Popov evaporation

Figure 3.18: The relationship between touchdown time and C for droplets in the 2D
simulation and 3D simulation and for uniform and divergent evaporation.

3.8.5 Velocity Field

The velocity field inside the droplet offers a different perspective and some new
information for analysing the evolution of the droplet; for more information see
chapter 2 section 2.5.
The velocity field of the droplet is given in equation 3.35, from which the height-
averaged velocity can be derived,

ū(r, t) =
Ch2

3

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
. (3.76)

We plot the average velocity as a function of r as lines evolving in time, using the
time points from the corresponding height evolution plots (e.g. figures 3.19a and
3.19b use time points from figure 3.7a). We split each plot into two to emphasise
the two different modes of the average velocity: it grows initially, then the fluid
closer to the centre stagnates while the fluid near the edge continues to flow.
For very small values of C, the fluid near to the centre actually flows radially inwards
at the beginning of the evaporation, as can be seen in figure 3.19a. This reverse flow
is an unexpected result, but is related to the compression of curves we noticed at the
end of section 3.8.2, which we stated was due to a numerical artefact. Indeed, our
use of a non-continuous evaporative flux (i.e. forcing the droplet to remain pinned
at r = 1) introduces an error that propagates back through the droplet.

Because we start with a height profile that satisfies ∂
∂r

[
1
r

∂
∂r

[
r ∂h
∂r

]]
= 0, the initial

evolution function is just ∂h
∂t

= −J(r), which is discontinuous at r = 1. However,
as soon as the evaporation begins, the profile leaves its equilibrium state and the
evolution function ‘corrects’ itself such that it becomes continuous.
Crucially, this correction propagates inwards along the droplet like a shockwave,
temporarily hindering the evaporation as it does so, figure 3.20. Comparing across
two orders of magnitude in C reveals that the shockwave dies out much more quickly
(compared to the touchdown time of the droplet) when C is larger, figure 3.21; we
recall that C ∼ µ−1 and recognise that information travels faster in a less viscous
droplet, allowing it to ‘correct’ for the discontinuity at a faster rate. We tried to fix
this problem by imposing a smoothing function to equation 3.34 (e.g. see Fischer’s
evaporative flux functions in chapter 2, section 2.6); although this succeeded in
reducing the size of the shockwave, it was impossible to find a functional form that
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retained the integrated flux and maintained J(r = 0) = 1. Effectively, this would
be a completely different DiW model.
While this shockwave does indeed represents a numerical error, we will see in section
3.8.6 that we never need to use C < 0.1 to match the simulation to experimental data
and so should not expect it to be too detrimental to our real-world comparisons.
However, it is a timely reminder that simulations can sometimes sneak convincing-
looking phenomena through the proverbial back door of a mathematical model.

(a) t < 0.5ttd (b) t ≥ 0.5ttd

Figure 3.19: The height-averaged fluid velocity for C = 0.02 at early and late times.
Note the numerical artefact in figure (a) manifesting itself as a negative velocity at
very early times.

(a) C = 0.02 (b) C = 0.2

Figure 3.20: Early in the evaporation we observe a ‘correction shockwave’ in the
height evolution equation that propagates from r = 1 to r = 0.
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(a) C = 0.02 (b) C = 0.2

Figure 3.21: Later in the evaporation the shockwave disappears, but more slowly
when C is smaller.

(a) t < 0.5ttd (b) t ≥ 0.5ttd

Figure 3.22: The height-averaged fluid velocity for C = 0.2 at early and late times.

For C = 2 the average velocity starts to decrease at about t = 0.7ttd, figure 3.23,
and at about t = 0.8ttd for C = 16, figure 3.24.

(a) t < 0.7ttd (b) t ≥ 0.7ttd

Figure 3.23: The height-averaged fluid velocity for C = 2 at early and late times.

Chapter 3 Seth Richard Price 63



Modelling the Evaporation of a Binary Droplet in a Well

(a) t < 0.8ttd (b) t ≥ 0.8ttd

Figure 3.24: The height-averaged fluid velocity for C = 16 at early and late times.

These graphs reveal that total fluid velocity increases slowly with C – from 0.02
to 16 the maximum height-averaged fluid velocity only increases by a factor of
about 2.5. However, increasing C is associated with a more uniform velocity profile
throughout the evaporation; this is evident comparing the late stage evaporation
velocities, figures 3.19b with 3.24b. Central stagnation is also delayed by increasing
C; in figure 3.24 the droplet is 80% of the way to touchdown before the fluid in
the centre slows down, compared to figure 3.19, where stagnation begins before the
halfway point. This stagnation delay makes sense when we consider that larger C is
associated with smaller viscosity and a lower resistance to flow.
Figures 3.25 to 3.28 are vector plots of the full velocity field for a range of droplets.
The arrow direction shows the direction of the flow, while the arrow colour represents
the magnitude of the horizontal component3. The vertical velocity can be calculated
directly from the continuity equation, equation 3.18,

w(r, z) =
C
2
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. (3.77)

It is, of course, impossible to determine that a flow is nondivergent by visual in-
spection; however there are some suspicious looking points on some of these vector
plots that should receive some additional attention. At the centre (r = 0) and edge
(r = 1), we might expect the radial velocity to vanish and may be surprised to see
that the figures below do not seem to reflect this. In fact, instead of imposing a zero
velocity boundary condition everywhere, we have set the average velocity to zero at
r = 0 and r = 1 (equation 3.43). This means that the model does indeed allow liquid
to pass through the wall, as long as ū vanishes; this is why some of the arrows in the
vector plot point through r = 1. We must choose this kind of boundary condition
in the lubrication model – choosing u = 0 would undesirably force the interface
curvature at the boundaries. We have, however, chosen to set both components of
velocity to zero at the floor. A second caveat is that the 1:1 aspect ratio in the
nondimensional model visually hides information about the true aspect ratio of the

3u is the important and interesting variable here, rather than w. Additionally, w is a factor of
ε smaller than u in the dimensional system and this would not be well reflected if the vector plots
were coloured by velocity magnitude.
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real droplet – for example, the following vector plots make it look like the vertical ve-
locity is much steeper than it is in the long thin experimental droplets. The general
trend revealed by the vector plots is that the velocity is consistently maximal near
the touchdown point (this is expected due to the highly convex shape), continues
to be large in the shoulder, and fluid flows in the outward radial direction nearly
everywhere (the exception being for the case mentioned above, near the centre of
droplets for which C is very small). This fits with Deegan’s explanation [4] of fluid
flow in a droplet with a pinned contact line, indicating that the DiW also exhibits
a capillary flow that replenishes the fastest depleting material – in the case, at the
contact line pin. The following figures do not each have the same colour scale for
the velocity in order to maximise the range of speeds displayed by each plot.

(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 3.25: A vector plot of the fluid velocity in a cylindrical droplet with C = 0.02
at various times. The flow is concentrated around the dimple point, where the speed
increases at later times. This is a small example of the rush hour effect.

As shown in figure 3.25, at very low values of C the liquid mostly moves quite slowly
overall, speeding up slightly at the end of the drying and near the touchdown point
and pin. This is an example of the rush-hour effect (admittedly a small example)
that is described and held responsible for the CRE in a number of experimental
works [17, 43, 44, 45]. While experimental questions remain as to how to quantify
the rush-hour effect and its impact on the deposit (e.g. is the most important factor
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the absolute speed increase? Or the spatial extent of the speed increase? Or the
time at which it begins to occur?), the authors report that the presence of rush-hour
is key.

(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 3.26: A vector plot of the fluid velocity in a cylindrical droplet with C = 0.2
at various times. The increase in speed near the end of drying is smaller than in
figure 3.25.

Figure 3.26 is similar: the droplet exhibits a small rush-hour effect near the end,
localised at the edge of the well. The story is different, however, beyond C = 0.2;
in figures 3.27-3.28 rush-hour mostly disappears and the velocity at late times is
instead spread out over the droplet. Its magnitude also barely increases. The loss
of late-stage outer flow coincides with the transformation of the W-shaped profile
to a U-shape, which fits with our understanding of the CRE.
In figures 3.27a and 3.27b, we also observe that the flow loops down and back
up near the droplet surface (also visible in figure 3.28), which is a phenomenon
consistent with Hu and Larson’s calculations on sessile droplets with small contact
angles [84]. This effect likely emerges in simulations with larger C because the flow
is less inhibited across the droplet and liquid must flow to the pinned contact line
in order to replenish material lost due to the enhanced evaporation there.
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(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 3.27: A vector plot of the fluid velocity in a cylindrical droplet with C = 2
at various times.

These plots potentially offer us more insight into the CRE in pure DiWs. It is evident
that the smaller C droplets have flow that is localised to the edge of the droplet,
particularly near the end of the drying process (see figure 3.25c); the regions of
highest velocity move towards the centre as we increase C and the distribution of
flow is spread out more evenly (compare figures 3.19-3.24). All this indicates that
the CRE is likely to decrease as C gets bigger because it is associated with high
velocity at the edge (see section 2.5), which is in agreement with what we already
know about W-, U-, and C- shape profiles.
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(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 3.28: A vector plot of the fluid velocity in a cylindrical droplet with C = 16
at various times. The flow is no longer concentrated at a single point near the end
of drying, but is instead spread out across the whole droplet. There is also nearly
no increase in flow speed.

3.8.6 Comparison to Experimental Data

Experimental analogues of this simulation were performed by Zhida Huang and
Teresa Colosimo – while it is beyond the scope of this project to go into detail
about the experiments, it is worth briefly outlining the process they took to acquire
the data.
The experimentalists deposited picolitre size droplets (of pure or mixed composition)
into shallow cylindrical wells. The droplets were allowed to evaporate under am-
bient conditions (normal atmospheric pressure, normal air composition, controlled
room temperature between 10◦C and 25◦C) and illuminated from below by a cold,
monochrome light source. They used thin-film interferometry to measure the height
profile of the droplet during its evaporation. A schematic diagram of the experi-
mental set-up is found in figure 3.29, taken from [3].
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Figure 3.29: Experimental set-up used in Bain group lab, which used interferometry
techniques to measure the height profile of DiWs [3].

The assumptions of the model are consistent with the method used in the experi-
ments, so it is possible to compare the two. In this section we will present a few
experiment-theory comparisons for pure droplets and discuss their significance. In
each case, the experiment starts at a time t = 0 when the fringes first become clearly
visible (importantly, this is in general not immediately after being printed) and we
determine the time-offset with the model by fitting the curves to the data at r = 0.
First, figure 3.30 shows experimental data for the evaporation of anisole at 10◦C
(crosses) plotted against a simulation (solid lines). At this temperature the anisole-
air interface has surface tension σ = 36.9 mN · m−1, anisole has viscosity µ = 1.31
mPa · s, and the overall evaporative flux was E = 1.02µm · s−1. The well used for
this experiment had dimensions R = 75µm and h0 = 1.12µm, meaning the aspect
ratio was ε = 0.01493 and C = 1.38.
A simulation with a fitted value of C = 0.55 (figure 3.30) shows good agreement with
the experimental data. The discrepancy between the fitted and experimental values
of C could be a result of a number of a factors, but perhaps the most important
is the shape of the well. We can see that our model is strongly dependent on the
aspect ratio; ε is raised to the third power in C. Therefore, any small error in the
manufacture or measurement of the well will propagate to the third power. The
interferometry depth measurements also become increasingly difficult towards the
edge of the well (and impossible at the very edge), meaning it is hard to determine
the precision of the pin – does contact line depinning ever occur? If so, the aspect
ratio of the well will not exactly match that of the droplet, another possible source
of C-parameter discrepancy. D’Ambrosio et al. point out in their similar model
that their good experimental-theoretical agreement points to minimal de-pinning of
the contact line [3]; it may be that our numerical discrepancy indicates some de-
pinning in the experiments. De-pinning and problematic edge measurements might
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also explain the small disagreement between experiment and theory that we see in
the shoulder of the droplet towards to end of the drying.
It is clear that, despite these discrepancies, the simulation is largely accurate and
predicts the droplet shape well, particularly the lens shape in the centre.

Figure 3.30: Simulation (lines) superimposed on experimental data (crosses) for
anisole at 10◦C.

The discrepancy in C is apparent in other examples too; figure 3.31 is anisole again,
this time with data taken at 25◦C. In this case the parameters are σ = 35.0 mN · m−1,
µ = 1.00 mPa · s, E = 2.69µm · s−1, R = 75µm, h0 = 1.13µm, ε =0.01507, and
C =0.67. The simulation that best matches the data has C = 0.25.
Again, the shape of the central lens is well preserved by the simulation, while there
remains some slight disagreement towards the edge of the well. This time it is the
other way around: the simulated droplet appears to evaporate too quickly (most
clearly visible in the final line).

Figure 3.31: Simulation (lines) superimposed on experimental data (crosses) for
anisole at 25◦C.
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Figure 3.32 shows data for methyl anisole at 25◦C (σ = 32.9 mN · m−1, µ = 1.08
mPa · s, E = 0.98µm · s−1, R = 75µm, h0 = 1.10µm, ε =0.01467, and C =1.43) and
demonstrates that the model predicts the droplet shape even up to and including
the moment of touchdown. Once again, the lens shape is accurately predicted by
the model, but the shoulder near the edge features some slight disagreement and we
have fitted C = 0.56.
The C-parameter discrepancy in these three examples is consistently a factor of about
2.5. If we estimate that the aspect ratio of the well has a small error of 3%, the
total C-parameter error would be approximately 9% – not nearly enough to explain
the large divergence we observe between predicted and experimental values. Even
ascribing the same magnitude of error to the other parameters – due to measuring
the evaporation rate and thermal/humidity fluctuations affecting surface tension
and viscosity – we are not able to fully account for such a large gap.

Figure 3.32: Simulation (lines) superimposed on experimental data (crosses) for
methyl anisole at 25◦C.

We have already shown that the simulation can produce a droplet that never forms
a lens shape, which corresponds to a situation with larger C. Figure 3.33, with
data taken from methyl benzoate at 10◦C (σ = 37.3 mN · m−1, µ = 1.96 mPa · s,
E = 0.31µm · s−1, R = 75µm, h0 = 1.28µm, ε = 0.01707, and C =5.20), demon-
strates this; here the simulation has C = 9, the only instance of the simulated
parameter being larger than the experimental one.
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Figure 3.33: Simulation (lines) superimposed on experimental data (crosses) for
methyl benzoate at 10◦C.

As these figures show, the model is qualitatively very accurate: it predicts the
general shape trends well, particularly the suppression of the lens with increasing C.
We also find good quantitative agreement with an adjusted value of C.

3.9 Conclusion

In this first chapter we have built a simple model for a droplet evaporating from a
well, starting with the Navier-Stokes and continuity equations to construct a lubri-
cation PDE. Applying the lubrication approximation afforded us analytical progress,
but limits the model to very shallow wells, small contact angles (largely hydrophilic
surfaces), and laminar flow.
We discretised it using a finite difference scheme, and solved the resulting system
of ODEs using Mathematica. We tested its numerical stability and found its cu-
mulative error to approach zero as the number of discretisation points approached
∞.
We discovered that the pure droplet forms three types of shape as it dries, depending
on the size of the C parameter: for small C W-shapes, for larger C U-shapes, and for
larger C again, C-shapes. We discussed why this makes intuitive sense based on the
size of the well, the surface tension and viscosity of the liquid, and the evaporation
rate. We documented some important features of the DiW simulation, including the
surface curvature, touchdown point, and velocity fields across a range of values of
C.
Importantly, the velocity field plots revealed that the flows in the droplets are largely
behaving as we would expect: we have reproduced strong, outward flows that Deegan
investigated and the rush-hour phenomenon in droplets with small C-parameter,
both of which contribute to the CRE.
Finally, we compared the simulations to experimental data, showing that we can
achieve good agreement, but only if we modify the C parameter. The most probable
explanations for this discrepancy are the imperfections in well geometry and unex-
pected droplet behaviour at the corners of the well. However, the experimental data
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show the same kinds of curvature that we can produce in our simulations; there is
no behaviour that we are unable to reproduce.
We would now like to extend the model to include droplets composed of two liquids,
or binary droplets, in order to investigate the effects of surface tension gradients,
variable evaporation, and changing viscosity on the evolution of a DiW. In the
next chapter we shall derive the equations we need to do this and simulate their
evaporation in a similar way to the pure droplets in this chapter.
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Chapter 4

Binary Droplet

Having investigated the evolution of pure DiWs and documented some of their prop-
erties as they dry, we can start to add complexity to the model; in this chapter we
will derive equations for an evaporating droplet of binary composition, focusing on
the important quantities of surface tension and evaporative flux for each of the two
components, and examine the simulation solutions. It will become clear that, al-
though the model may initially look similar, the inclusion of Marangoni flows and
variable composition can lead to somewhat exotic effects.
We will see that the preferential evaporation at the edge of the droplet will lead to
regions of enrichment and depletion that, in turn, give rise to complex flow patterns
and different interface shapes. We will be able to examine the effects of including
involatile components to give some insight into the deposition patterns created by
DiWs; we will find it useful also to be able to adjust the viscosity to account for a
wider variety of materials, including polymers.
Using the same velocity field plots as in chapter 3, we can investigate the conditions
under which we observe inward and, occasionally, recirculating flows, as reported in
the literature for systems with Marangoni effects. Such currents are often considered
critical in the the battle against the CRE, so it will be important to identify if our
model can reproduce them.
These new shapes, inward/recirculating flows, and Marangoni-induced rush hour
suppression and enhancement are here observed in a numerical DiW simulation for
the first time; all of these phenomena can be used to control the behaviour of the
CRE and influence the uniformity of the deposit in a pixel.
Finally, just as in the previous chapter, we can compare the binary DiW model
to experimental data in order to determine the extent of its qualitative predictive
power.

4.1 Problem Description

We consider a droplet inscribed in a cylindrical well now composed of two miscible
liquids, represented by χ and ξ, each with constant diffusivity in the mixture Dl.
The binary droplet schematic diagram is shown in figure 4.1; the variable χ(r̂, t̂)
denotes the volume fraction of one of the components.1

1although there are now two components, there is still only one more degree of freedom because
the volume fraction of the other component is given by ξ(r̂, t̂) = 1− χ(r̂, t̂)
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Figure 4.1: A binary droplet in a cylindrical well. The droplet is evaporating into
an inert atmosphere devoid of components χ and ξ.

4.2 Fluid Dynamics

The fluid dynamics for the binary droplet are largely the same as that for a pure
droplet; equations 3.1 to 3.11 still apply (so too their dimensionless analogues),
however if the evaporation rates and surface tensions of the two liquids are differ-
ent, non-uniform local concentrations and Marangoni forces may appear. This is
encoded in the interface stress conditions (equations 3.4 and 3.6), which retain their
dependence on droplet surface tension, leading to Marangoni forces acting on the
liquid. In this case, the evaporative flux is a function of the composition because
both components have different evaporation rates, Ĵχ and Ĵξ, in general.
We can quantify the difference in evaporation rate between the two species with a
parameter α, defined through

Ĵχ = (1− α)Ĵξ ; (4.1)

because we always take χ to represent the less volatile component, α is a positive
constant between 0 and 1. Assuming the liquid mixture behaves ideally and obeys
Raoult’s law [120], the total evaporation rate becomes

Ĵ(r̂, t̂, χ) =
2DinertM

c
m(c0 − c∞)

π

1− αχ(r̂, t̂)√
R2 − r̂2

, (4.2)

where Dinert is the diffusivity of components χ and ξ in the inert gas2 and c0 and c∞
are the saturation and ambient concentrations of liquid vapour at the interface and
infinitely far from the droplet respectively. It is worth noting the two approximations
at play here.
First, a droplet with a composition that varies spatially does not, in general, have
an evaporative flux that follows Popov’s pure droplet form. Instead, the evaporative
flux of each component will depend on the concentration field near to the interface,

2Assuming they both have the same diffusivity in inert gas. The chemicals that we will be
comparing with are likely to adhere to this assumption approximately.
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which itself depends on the liquid volume fraction. We will explore this more in
chapter 5.
Second, we assume that both components behave identically in the gas phase, hence
their diffusion coefficients are equal. This is a good approximation for molecules of
similar sizes and weights, but could be adjusted if not.
The surface tensions can be related similarly with a parameter β, defined through

σχ = (1− β)σξ (4.3)

giving a total surface tension of

σ(χ) = σξ(1− βχ(r̂, t̂)). (4.4)

β can be either positive (meaning the more volatile component has higher surface
tension) or negative (meaning the more volatile component has lower surface ten-
sion). In this work we assume that the only Marangoni forces present are solutal in
origin, however it is very possible that there will be thermal Marangoni effects active
in reality. We make this assumption because the experimental research to which we
compare our model reports no significant therm effects. Although our analysis is
thus concerned with a simpler, solutal Marangoni situation, we could have included
thermal effects by including a new thermal surface tension term, σth ∝ Θ, and
solved the Laplace equation in the droplet for temperature, ∇2Θ = 0, with appro-
priate boundary conditions for evaporative cooling along the interface and constant
temperature along the substrate. This type of analysis has been done many times
before in sessile droplets [84, 121, 122].
We assume that component χ can be well described by a convection-diffusion equa-
tion,

Dχ

Dt̂
= Dl∇̂2χ, (4.5)

where Dl is the mutual diffusion coefficient of each component in the liquid mixture.
Equation 3.7 can be decomposed into a mass transfer equation for each component
at the interface,

χ(û · n̂− V̂n)−Dl∇̂χ · n̂ =
1

ρ
Ĵχχ (4.6)

ξ(û · n̂− V̂n)−Dl∇̂ξ · n̂ =
1

ρ
Ĵξξ, (4.7)

and it will prove useful to have the cross-weighted difference of these equations, that
is ξ(4.6) −χ(4.7),

−Dln̂ · ∇̂χ =
χξ

ρ
(Ĵχ − Ĵξ) , (4.8)

as well as their sum,

û · n̂− V̂n =
1

ρ
Ĵ(r̂, t̂, χ) . (4.9)

There are additional boundary conditions to impose with the inclusion of another
liquid; there is no flux through the base
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ŵχ−Dl
∂χ

∂ẑ
= 0 at ẑ = 0 (4.10)

nor through the wall, nor net flux across the centre

ûχ−Dl
∂χ

∂r̂
= 0 at r̂ = 0, R . (4.11)

4.3 Non-Dimensionalisation

Using the scalings presented in section 3.3, these equations become

ε2Pe
(∂χ
∂t

+ u
∂χ

∂r
+ w

∂χ

∂z

)
= ε2

1

r

∂

∂r

[
r
∂χ

∂r

]
+

∂2χ

∂z2
, (4.12)

J(r, t, χ) =
1− αχ√
1− r2

, (4.13)

−ε2
∂h

∂r

∂χ

∂r
+

∂χ

∂z
=

ε2Pe χ(1− χ)α√
1− r2

at z = h , (4.14)

w − u
∂h

∂r
− ∂h

∂t
= J(r, t, χ) at z = h , (4.15)

ε2 Pe wχ− ∂χ

∂z
= 0 at z = 0 , (4.16)

Pe uχ− ∂χ

∂r
= 0 at r = 0, 1 , (4.17)

where Pe is the Péclet number Pe = UR
Dl

∼ Dinert

Dl

Mc
m(c0−c∞)

ρ
. We can estimate the

magnitude of the Péclet number if we assume that Dinert ∼ 10−1 cm s−1 [123],
Dl ∼ 10−6 cm s−1 [124], M c

mc0 ∼ 10−5 and c∞ = 0 [9], and using the density of
water, ρ ∼ 100; this gives Pe ∼ 1. Of course, some of these estimates may be inac-
curate: we would often like to model chemicals with density less than that of water
and with higher vapour pressure (toluene, IPA, ethanol), in which case the Péclet
number could rise as high as Pe ∼ 10. Also, it is difficult to estimate values for the
diffusion coefficient of a liquid chemical in another liquid chemical, meaning there
is uncertainty about the value of Dl. For the purpose of this thesis, we have taken
Pe = 10 unless otherwise stated, because we are more interested in studying the
flow due to capillary and Marangoni forces than diffusion. However, we will briefly
investigate the impact of diffusion in sections 4.7.1 and 4.7.2.
The mass continuity and Navier-Stokes equations are the same as for the pure droplet
case,

1

r

∂

∂r
[ru] +

∂w

∂z
= 0, (4.18)

∂2u

∂z2
=

∂p

∂r
, (4.19)

∂p

∂z
= 0 , (4.20)
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but the normal stress condition is modified by the binary mixture

p = −σξε
3

µUr
(1− βχ(r, t))

∂

∂r

[
r
∂h

∂r

]
at z = h , (4.21)

where we make the crude assumption that the viscosity, µ, is the average viscosity
of the two liquids and is independent of composition. We will explore viscosity
variation in section 4.7.4.
This reverts to equation 3.21 under βχ ≪ 1,3 meaning we use the surface tension

of the more volatile component for C =
σξε

3

µU
. For the tangential stress interface

condition, we now have

∂u

∂z
= M∂χ

∂r
at z = h . (4.22)

where M = −βC
ε2

is the Marangoni number. The no-slip and no-flux conditions
apply as previously

u = w = 0 at z = 0 (4.23)

and

h = 1, q = 0 at r = 1. (4.24)

The two initial conditions are

h = h∗(r) at t = 0 (4.25)

and

χ = χ∗(r) at t = 0. (4.26)

4.4 Deriving the Lubrication Equations

This time we have two differential equations to derive: one for the evolution of the
droplet height and one for its composition. We shall start with the height lubrication
equation, which follows a similar path to the pure droplet case.

4.4.1 Height Evolution Equation

We first derive a velocity profile by integrating equation 4.19 twice and using the
stress conditions

u(r, z) = −C ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]] (1
2
z2 − zh

)
+M∂χ

∂r
z (4.27)

and

ū(r, t) =
Ch2

3

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
+

Mh

2

∂χ

∂r
, (4.28)

3this approximation means that the model is valid only for small β.
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and the rest of the derivation is identical to the pure droplet case in chapter 3: we
integrate mass continuity, equation 4.18 over the height of the droplet, considering
the substrate impermeability (equation 4.23b), then use the Leibniz integral rule on
the mass transfer condition (equation 4.15) to acquire an equation for the height
evolution,

∂h

∂t
= − C

3r

∂

∂r

[
rh3 ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]]
− M

2r

∂

∂r

[
rh2∂χ

∂r

]
− 1− αχ√

1− r2
. (4.29)

It is helpful to refer to the three terms on the right hand side of this equation by what
they describe: the first term is Laplace-driven flow, the second is Marangoni-driven
flow, and the third is evaporation.

4.4.2 Composition Evolution Equation

At this point we might well notice that the model still contains many instances of
the parameter ε (equations 4.12, 4.14 and 4.16), which we had previously neglected
because it is very small. The way we did this previously was to express each variable
as a series expansion in ε2, that is for any variable f

f(r, z, t, ...) = f0(r, z, t, ...) + f1(r, z, t, ...)ε
2 + f2(r, z, t, ...)ε

4 + ... , (4.30)

and look at the problem at zero order. We shall indeed do this again, but also
inspect the problem at first order afterwards.

Zero Order Problem

At zero order we neglect all terms in ε2 and smaller, equation 4.12 becomes

∂2χ0

∂z2
= 0 (4.31)

with boundary conditions 4.14, 4.16 and 4.17

∂χ0

∂z
= 0 at z = h , (4.32)

∂χ0

∂z
= 0 at z = 0 , (4.33)

Pe uχ0 −
∂χ0

∂r
= 0 at r = 0, 1 . (4.34)

This system has a simple solution:

χ0 = χ0(r, t) , (4.35)

i.e. the composition is independent of z.
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First Order Problem

We now take all terms at first order in ε2; equation 4.12 is

Pe
(∂χ0

∂t
+ u

∂χ0

∂r

)
=

1

r

∂

∂r

[
r
∂χ0

∂r

]
+

∂2χ1

∂z2
, (4.36)

and, integrating over the height of the droplet, becomes

hPe
(∂χ0

∂t
+ ū

∂χ0

∂r

)
= h

1

r

∂

∂r

[
r
∂χ0

∂r

]
+
[∂χ1

∂z

]h
0
. (4.37)

At first order the boundary conditions are

∂χ1

∂z
= 0 at z = 0 (4.38)

and

∂χ1

∂z
=

∂h

∂r

∂χ0

∂r
+

Pe α χ0(1− χ0)√
1− r2

at z = h. (4.39)

We notice that we can eliminate χ1 from equation 4.37 using these boundary con-
ditions, and the equation emerges as (with subscripts dropped for clarity, but all χs
should be understood to be of zero order)

∂χ

∂t
= −

(Ch2

3

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
+

Mh

2

∂χ

∂r

)∂χ
∂r

+
1

Pe

(1
r

∂

∂r

[
r
∂χ

∂r

]
+

1

h

∂h

∂r

∂χ

∂r

)
+

1

h

αχ(1− χ)√
1− r2

. (4.40)

We can see the four flow terms again: Laplace, Marangoni, diffusion, and evapora-
tion. This system is associated with boundary conditions for symmetry,

∂χ

∂r
= 0 at r = 0, (4.41)

and no-flux at the wall,

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
+

3M
2C

∂χ

∂r
= 0. (4.42)

Recalling equation 4.17 again, this leads to:

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
=

∂χ

∂r
= 0 at r = 1. (4.43)

4.5 Two Dimensional Version

Performing the same process for a two-dimensional droplet in a square well in carte-
sian space gives a similar system of equations:
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∂h

∂t
= −C

3

∂

∂x

[
h3∂

3h

∂x3

]
− M

2

∂

∂x

[
h2∂χ

∂x

]
− 1− αχ√

1− x2
, (4.44)

∂χ0

∂t
= −

(C
3
h2∂

3h

∂x3
+

M
2
h
∂χ0

∂x

)∂χ0

∂x
+

1

h Pe

∂

∂x

[
h
∂χ0

∂x

]
+

α

h
χ0(1− χ0) , (4.45)

∂χ

∂x
= 0 at x = 0 , (4.46)

∂3h

∂x3
=

∂χ

∂x
= 0 at x = 1 . (4.47)

4.6 Numerical Methods

The numerical section for the binary droplet is very similar to section 3.7; see there
for more details. We transformed the PDEs we currently have into ODEs and solved
these using the method of lines in Mathematica’s NDSolve function.

4.6.1 Cylindrical Well

In (r, z) the domain r ∈ [0, 1] is discretised into N regions of width ∆r; we need
to take care again with the 1

r
faux singularities when dealing with the cylindrical

equations. The Marangoni term in the height equation can be written in terms of
the function

rh2∂χ

∂r
≈ gM,i+ 1

2
=
(
i+

1

2

)(hi+1 + hi)
2

4
(χi+1 − χi) (4.48)

which means

∂hi

∂t

∣∣∣
M

= − M
8i(∆r)2

(gM,i+ 1
2
− gM,i− 1

2
). (4.49)

The evaporation term depends on r through Popov’s form of the evaporative flux,

∂hi

∂t

∣∣∣
J
= − 1− αχi√

1− (i∆r)2
. (4.50)

The composition equation is discretised similarly (here we split them into their four
terms for clarity):

Laplace,

∂χi

∂t

∣∣∣
C
= − Ch2

i

12(∆r)4
((hi+2 − hi+1 − hi + hi−1) +

2

i+ 1
2

(hi+1 − hi)

− (hi+1 − hi − hi−1 + hi−2)−
2

i− 1
2

(hi − hi−1))(χi+1 − χi−1); (4.51)

Marangoni,
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∂χi

∂t

∣∣∣
M

=
Mhi

8(∆r)2
(χi+1 − χi−1)

2; (4.52)

diffusion,

∂χi

∂t

∣∣∣
D
=

1

Pe(∆r)2

(1
i

((
i+

1

2

)
(χi+1 − χi)−

(
i− 1

2

)
(χi − χi−1)

)
+

1

4hi

(hi+1 − hi−1)(χi+1 − χi−1)
)
; (4.53)

and evaporation,

∂χi

∂t

∣∣∣
J
=

α

hi

χi(1− χi)√
1− (i∆r)2

. (4.54)

We need to worry about the pseudo-singularities again because of the terms in 1
r
;

we dealt with the height Laplace term at i = 0, which can be found in chapter 3
(equation 3.59), here the height Marangoni term must also be expanded:

1

r

∂

∂r

[
rh2∂χ

∂r

]
=

1

r
h2∂χ

∂r
+ 2h

∂h

∂r

∂χ

∂r
+ h2∂

2χ

∂r2
. (4.55)

The gradient of χ vanishes at r = 0, so we can apply l’Hôpital’s rule again until all
instances of the singularity vanish,

1

r

∂

∂r

[
rh2∂χ

∂r

]∣∣∣
r=0

= 2h2∂
2χ

∂r2
. (4.56)

Symmetry arguments take care of the ghost point at i = −1 again, rendering the
height Marangoni term

∂h0

∂t
=

2Mh2
0

(∆r)2
(χ1 − χ0), (4.57)

and the evaporation term is trivial to discretise here. In the case of the composition
equation, the only part with a singularity is the first half of the diffusion term, for
which

1

r

∂

∂r

[
r
∂χ

∂r

]
=

∂2χ

∂r2
+

1

r

∂χ

∂r
. (4.58)

L’Hôpital’s rule applied at r = 0 gives

1

r

∂

∂r

[
r
∂χ

∂r

]∣∣∣
r=0

= 2
∂2χ

∂r2
, (4.59)

and the whole composition equation at r = 0 discretises to

∂χ0

∂t
=

2(χ1 − χ0)

Pe(∆r)2
+

αχ0(1− χ0)

h0

(4.60)

because of symmetry in χ. Symmetry in h deals with the ghost point in the com-
position equation at i = 1;

h−1 = h1. (4.61)
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For i = N − 1 we have to remember the fluid flux vanishing conditions. Equation
4.43a discretises to

hN+2 + hN+1(−2 + 2∆r −∆r2) + 4∆r + hN−1(2 + 2∆r +∆r2)− hN−2 = 0 (4.62)

and we can use the height lubrication equation 4.29 at r = 1 (h = 1, ht = 0, ū = 0) to
eliminate the hN+2 term, which gives an expression for hN+1 (after neglecting terms
in (∆r)2, except for the one multiplying the variable Marangoni-Laplace ratio),

hN+1 = (−3
(
1 +

2

3
∆r
)
+ hN−1(3 + ∆r)− hN−2

+
3M
2C

(∆r)2(χN − χN−1))(−1−∆r)−1 , (4.63)

and we can see that the modification is only significant if the Marangoni forces are
much stronger than the Laplace forces, M >> C.
This solves the ghost point problem in both equations at i = N−1; the composition
equation is much simpler at i = N because of equation 4.43b, reducing down to the
diffusion term:

∂χN

∂t
=

4

Pe(∆r)2
(χN−1 − χN). (4.64)

This leaves us with one height ODE and one composition ODE in time for each point
along the droplet and we can now proceed with the NDSolve simulation. Again, a
similar process is used to discretise the two-dimensional cartesian case.

4.7 Results

In this section we shall take a look at the simulation results of incorporating a second
liquid into the evaporating droplet; we will start with some practical limiting cases
and later move on to comparing binary droplets with their pure counterparts. It
will become clear that the Maranogni effect has a large influence on the droplet
shape, transforming the W-, U-, and C-shapes from the previous chapter in a few
different ways. We will also see Marangoni-induced changes to the velocity field
across the droplet; given that both the shape and the flow have been used as a
proxy for deposit distribution in previous research it will be useful to examine the
impact of surface tension gradients on droplet evolution. Finally, we will compare
the numerical solutions to experimental data again. In all that follows, we shall
use a uniform initial composition, χ(t = 0) = 0.4, unless otherwise stated. We
shall also start by examining negative values of β; this just means that the more
volatile component has lower surface tension, which leads to more interesting results
concerning the CRE.

4.7.1 Limiting Cases

There are a few limiting cases that will prove interesting to examine: the binary
droplet solution should approach that of the pure droplet as α, β −→ 0; as α −→ 1
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the component denoted by χ approaches involatility; and two different components
that evaporate at the same rate require a non-constant initial condition to display
Marangoni effects.

α, β −→ 0

In the limit of vanishing α and β the solution given by NDSolve is, as expected,
identical to the solution for the pure droplet (apart from small differences caused by
slight simulation discrepancies). This is illustrated in figure 4.2: for C = 2 the binary
droplet shape (4.2a) is the same as the pure droplet shape (4.2c), and its composition
distribution (4.2b) remains at χ(r) = 0.4 for the duration of the evaporation. We
see equivalent matching across all other values of C.

(a) Binary droplet height (b) Binary droplet composition

(c) Pure droplet height

Figure 4.2: A comparison between a binary droplet simulation with α = β = 0 and
a pure droplet, both with C = 2. Time advances as orange turns to yellow/green.

α −→ 1

The limit α −→ 1 means that component χ does not evaporate. This corresponds to
a droplet in which one component is involatile, such as an alcohol-polymer solution.4

We solve the equation across orders of magnitude of C with α = 1 and β = −0.04
(supplying medium level Marangoni effects). An example of this kind of solution
is given in figure 4.3, where C = 2; figure 4.3a depicts the droplet height evolution
from initialisation, through complete evaporation of component ξ, until the (now

4Although we should recognise that the addition of most polymers would drastically change
the viscosity, likely even rendering it a function of χ; for the moment we are rather inspecting a
toy model that may give approximate understanding of certain volatile-involatile mixtures.
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pure) droplet relaxes into its final shape, given by the black line. There are clearly
some new features, most prominently a bulge at the outer edge; we will investigate
the shape of the evaporating droplet in more detail in section 4.7.2.
In this limit we let the droplet evaporate until it becomes 100% component χ; as
we should expect, the rate of evaporation slows as component ξ evaporates. There
are now two stages to this process – the evaporation stage and the relaxation stage,
in which the involatile liquid gradually takes its lowest energy shape.

(a) Height (b) Composition

Figure 4.3: Height and composition evolution for droplets with C = 2 and one
involatile component. Here χ0 = 0.5. Time advances as orange turns to green, with
colours matching across the two figures.

We see that the final shape of the droplet is a quadratic bowl, which should come
as no surprise to us: the droplet is no longer evaporating and has no surface tension
gradients, so its shape is dominated by uniform surface tension. We can formalise
this situation by taking the limit C −→ ∞ and writing h as a series expansion in
powers of 1

C :

h = h̃0 +
1

C
h1 +

1

C2
h2 + ... . (4.65)

At leading order, equation 4.29 becomes simply

∂
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[
rh̃3

0

∂
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[1
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∂

∂r

[
r
∂ĥ0

∂r

]]]
= 0 (4.66)

with boundary conditions

h̃0 = 1 at r = 1 (4.67)

and

∂h̃0

∂r
= 0 at r = 0. (4.68)

One solution can be found by setting the curvature-like term to zero,

∂

∂r

[1
r

∂

∂r

[
r
∂h̃0

∂r

]]
= 0 , (4.69)

and we arrive at the quadratic we observe,

h̃0 = kχ0 + (1− kχ0)r
2 , (4.70)
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where, by conservation of volume, kχ0 =
2χ0V0

π
−1 and V0 is the initial volume of the

droplet. This quantity provokes a question – what happens when the initial volume
of χ is such that kχ0 falls below zero? We cannot physically have a droplet surface
that crosses the z-axis below zero, so what happens instead? The critical initial
volume fraction, at which kχ0 = 0, is given by χ∗

0 =
1

1+a
, where we recall a to be the

constant used to define the initial height profile. We usually take a = 1.5, in which
case χ∗

0 = 0.4. Figure 4.4a is a depiction of a droplet with critical initial composition
of the involatile component and figure 4.4b starts with involatile composition below
the critical value.

(a) χ0 = 0.4 (b) χ0 = 0.1

Figure 4.4: Height evolution for droplets with C = 2 and one involatile component.
Here we compare the evaporation of a droplet of initial volume fraction at critical
value with a droplet of initial volume fraction below critical value. Time advances
as orange turns to green, with colours matching across the two figures.

The corresponding composition evolution plots are shown in figure 4.5; the main
feature of interest is the dip in χ near the droplet edge. We will see later that
touchdown points are often associated with peaks in χ because of flow bottlenecks,
but here we observe the inverse of this: the droplet being deep near the edge leads to
a relative depletion of χ compared to the rest of the droplet. That is, the enhanced
evaporation at the edge (which usually results in larger χ, ubiquitous in figure 4.5a)
has been overcome by the droplet depth, thereby leading to a reversal of Marangoni
forces in this instance. It is likely that this effect influences the droplet shape at the
end of the evaporation stage – it has a dip (green curves in figure 4.4b) at r ≈ 0.8
where liquid has been dragged from the edge slightly towards the centre (again,
more on the physics of Marangoni DiWs in section 4.7.2).
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(a) χ0 = 0.4 (b) χ0 = 0.1

Figure 4.5: Composition evolution for droplets with C = 2 and one involatile com-
ponent. In figure 4.5b, the dip at the edge towards the end of the drying is caused
by the interface dimple and the depth of the shoulder at the edge. Time advances
as orange turns to green, with colours matching across the two figures.

While the final shape in figure 4.4a is evidently also a quadratic bowl, the droplet
in figure 4.4b relaxes to a W-shape – it clearly does not have enough liquid left
to form a complete bowl shape and, although the final shape of the droplet in the
evaporation stage is relatively flat, the final shape in the relaxation stage is certainly
not. We can show that this shape is split into two parts, separated by the touchdown
point rtd = 0.8225: the inner part is quadratic again, only with a negative coefficient
of r2, turning the bowl into a lid; the outer part is a quadratic with a log term and
has been described by d’Ambrosio et al. [3] in their analysis of simulated droplets
evaporating from wells of different shapes. They calculate it to be

h(r) = 1− 1− r2 + 2r2td ln(r)

1− r2td + 2r2td ln(rtd)
; (4.71)

in their work it represents the shape of the evaporating outer film after touchdown.
Both of these shapes are shown to match the final relaxed droplet in figure 4.6.
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Figure 4.6: The final relaxed state of the χ0 = 0.1 droplet and two model curves
superimposed. The green dotted line is a quadratic lid shape, while the orange
dotted line is the quadratic/log relationship proposed in work by d’Ambrosio et al.
[3].

Figure 4.7 displays the volume depletion and rate of volume loss of the partially
involatile droplet as it evaporates. Figure 4.7b makes it clear that the rate of change
of the droplet’s volume is not necessarily constant, even early in the evaporation
stage. Specifically, the droplets with small involatile component (χ0 = 0.1, 0.2, 0.3)
pass through two regimes – their evaporation rate slows gradually at the start, then
quickly comes to a complete halt. Those with initial composition above 0.4, on the
other hand, gradually and consistently slow down.

(a) Volume depletion (b) Rate of depletion of volume

Figure 4.7: Volume evolution for a range of initial compositions, with one involatile
component. The colours correspond to the constant initial condition on χ according
to the legends.

We will return to partially involatile droplets in section 4.7.4, when we shall consider
the effect of evolving viscosity.

α −→ 0 and χ0 = χ0(r)

This limit corresponds to the case of two liquids with the same rate of evaporation
but different surface tensions. The only way to induce Marangoni effects here is to
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impose a non-constant initial concentration profile, that is χ(t = 0) = χ0(r). We
therefore initialise the composition by

χ(r, t = 0) = aχr
3 + bχr

2 + cχ (4.72)

where b = −3
2
a in order to preserve the boundary conditions equations 4.41 and 4.43

and we have aχ = −0.1 and cχ = 0.4. This simulation is somewhat contrived, as
it would be rare to encounter such a system in an experiment or industrial process.
However, here it may reveal some important features. Figures 4.8 and 4.9 show
results for C = 0.02 and C = 0.2 respectively, both with β = −0.04.

(a) Height (b) Composition

Figure 4.8: Height and composition evolution for droplets with C = 0.02 and com-
ponents with equal evaporation. Time advances as orange turns to yellow, with
colours matching across the two figures.

(a) Height (b) Composition

Figure 4.9: Height and composition evolution for droplets with C = 0.2 and compo-
nents with equal evaporation. Time advances as orange turns to yellow, with colours
matching across the two figures.

Although there is clearly no change in the ratio of χ to ξ over the whole droplet, the
diffusion term we included provides a smoothing-out effect that opposes composition
gradients. This means that the composition tends towards uniformity. We can show
this smoothing effect is a result of diffusion by comparing these composition figures
at Pe= 10 with Pe= 20, figures 4.10 and 4.11.
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(a) Pe= 10 (b) Pe= 20

Figure 4.10: Comparing Péclet numbers for C = 0.02; we see that the imposed
composition perturbation smooths out more slowly when Pe is larger.

(a) Pe= 10 (b) Pe= 20

Figure 4.11: Comparing Péclet numbers for C = 0.2; we see that the imposed
composition perturbation smooths out more slowly when Pe is larger.

In both cases, doubling the Péclet number decreased the smoothing effect, showing
that diffusion plays a role in opposing composition gradients.
We include such a diffusion term in the model primarily as a numerical stabiliser,
rather than to accurately model the diffusion dynamics of the system. For example,
the composition evolution equation at r = 1 is purely diffusive, meaning very sharp
χ gradients would emerge without diffusion.

4.7.2 Comparison to Pure Droplets

It will prove useful to take a cursory glance at the broad effects that the Marangoni
effect has on droplet shape. To this end, we can compare two solutions at a time,
droplets with Marangoni turned off and with Marangoni turned on, while moving
through orders of magnitude in C and noting the general trends and relationships
between pure5 droplets and binary droplets. We choose α = 0.6 and β = −0.08 in
order to obtain a large effect (ideally visible in the eyeball norm). We start with
C = 0.02 in figure 4.12; time points for each droplet are taken at 1

10
intervals of the

interval [0, ttd], where ttd is the touchdown time of the droplet in question.

5These droplets are not strictly pure, because we have matched α to the binary droplet in
order to give both as similar an evaporation rate as possible over the course of the drying. We are
interested here in the effect of surface tension gradients (β) alone.
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(a) Height comparison (b) Composition comparison

Figure 4.12: A comparison between a droplet with β = 0 (orange–yellow) and one
with β = −0.08 (blue–green). C = 0.02 and the touchdown times are ttd = 0.67
(pure) and ttd = 0.93 (binary).

The first effect we notice is that the lens/dimple of the pure droplet is dramatically
reduced when negative-β Marangoni effects are present. A second new feature is
an inversion of surface curvature near the edge of the well – this appears almost
immediately and persists until t ≈ 0.8ttd. We can think of this inversion of curvature
as a buildup of material induced by Marangoni flows. Large, negative β means
that the component that evaporates slower (χ) has a larger surface tension; the
preferential evaporation near the contact line leads to an enrichment of χ at the
edge of the droplet (see figure 4.12b), which proceeds to draw liquid from the centre
by surface tension forces.
In the composition comparison, figure 4.12b, it appears that the inclusion of surface
tension gradients smooths the distribution of the two components. This phenomenon
is clearer if we consider the quantity hχ, which is proportional to the absolute
volume of component χ across the droplet, figure 4.13. This figure demonstrates
the composition redistribution property better because it eliminates the spike at the
touchdown point in figure figure 4.12b.

(a) No Marangoni. Time evolves from
orange to green.

(b) Marangoni present. Time evolves
from purple to teal.

Figure 4.13: The amount of component χ in a droplet with no Marangoni effect
compared with one in which Marangoni is present. C = 0.02.

Equivalent height and composition comparisons for C = 0.2 can be found in figure
4.14. Once again, the dimple characteristic of a W-shape profile is reduced; in fact
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in this case the W-shape is entirely eliminated towards the end of the drying and
we are left with a completely flat droplet.
We can see the same edge curvature inversion as in the previous example; here
it actually leads to a slight mound above the rim at the beginning of the drying
process.
An interesting phenomenon emerges in the composition evolution too. The penul-
timate curve shown with Marangoni forces activated (bright green) has a negative
gradient (from r = 0 to r ≈ 0.9), in contrast to the (mostly) positive gradients we
have seen up to this point. This indicates that Marangoni stress is here directed
towards the centre of the droplet, rather than towards the edge, and may explain the
fast disappearance of the surface curvature inversion (figure 4.14a) as the droplet
dries. The gradient of χ remains positive at the edge, likely held there by the larger
enhanced evaporation of component ξ.

(a) Height comparison (b) Composition comparison

Figure 4.14: A comparison between a droplet with β = 0 (orange–yellow) and one
with β = −0.08 (blue–green). C = 0.2 and the touchdown times are ttd = 0.86
(pure) and ttd = 0.97 (binary).

We contrast the above examples to a binary droplet in which the less volatile com-
ponent has the lower surface tension; this scenario corresponds to β > 0. In this
case we expect some opposite effects, namely that the droplet will tend to grow in
the centre due to the enrichment of the component with lower surface tension at the
edge, resulting in a Marangoni flow from the edge towards the centre. We do indeed
find that the droplet’s W-shape is enhanced; this simulation, with C = 0.2, α = 0.2,
and β = 0.03, is presented in figure 4.15.
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(a) Height comparison (b) Composition comparison, note that
the vertical axis is zoomed in.

Figure 4.15: A comparison between a droplet with β = 0 (orange–yellow) and one
with β = 0.03 (blue–green). C = 0.2 and the touchdown times are ttd = 0.61 (pure)
and ttd = 0.56 (binary).

The composition also does not exhibit the smoothing effect seen in figures above;
rather, it retains a sharp point at the touchdown location. This sharp point is a con-
sequence of the flow behaviour at touchdown and the comparative flux – component
χ builds up in this region because it is evaporating more slowly than component ξ
and its flow is inhibited through the ever narrowing bottleneck. While it seems that
negative β permits redistribution of components just before touchdown (probably
by flattening out the interface near to rtd, see figures 4.12a and 4.14a), positive β
does not.
This is a good moment to briefly return to diffusion and the Péclet number; it is
important to see what effect diffusion has on a full droplet simulation. In figure 4.16,
we compare Pe= 10 with Pe= 40, both otherwise having the same parameters as
in figure 4.15. Despite imposing such a large change in Pe, there is little difference
between the final results: the important quantities such as touchdown point and
time barely change. We can see that there is increased build-up of χ near the edge
when Pe is larger (due to higher volatility of component ξ); this is to be expected
because diffusion is reduced, slightly limiting its capacity to flow inwards.

(a) Height comparison (b) Composition comparison, note that
the vertical axis is zoomed in.

Figure 4.16: A comparison between Pe = 10 (orange–yellow) and Pe = 40 (blue–
green). C = 0.2, α = 0.2, β = 0.03. The touchdown times are ttd = 0.56 and
ttd = 0.57 respectively.
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4.7.3 Velocity Field

The majority of experimental observations of the Marangoni effect and CRE sup-
pression in droplets (usually large and sessile) are explained in the literature with
a ‘recirculation flow’ argument; many experimental researchers suggest that the liq-
uid cycles round the droplet during the drying, allowing deposited material to settle
across the substrate rather than be concentrated at the edge [7, 69, 125, 126].
The following figures (4.17-4.23) are vector plots of the liquid velocity field for a
range of binary droplets, analogous to those for pure droplets in section 3.8.5. As
previously, the vectors are coloured according to the radial component of velocity
and the colour scale is unique to each plot, in order to optimise the presentation of
the data. Refer to the bar legend on the right for absolute (dimensionless) speeds.
Also as previously, we have not imposed a zero velocity boundary condition at
the wall, rather a zero average velocity condition, meaning some of the arrows are
permitted to point across the vertical line r = 1. In this way, they lose some aspect
of quantitative reliability, as this is not a physical boundary condition. However, the
height average boundary condition corresponds to neglecting the term in ε2 in the
Navier-Stokes equations, and so we can argue that the error extends only a distance
of ε into the liquid from the wall.
New to these plots is the presence of inward flows. We denote a region of inward
flow by light red shading (in addition to the obvious flipped direction of the arrows).
These regions do not necessarily constitute full recirculating flows; they are rather
regions where the liquid flows towards the centre. It is not clear whether thin
DiWs support the full recirculating flows observed in the works cited above; Hu
and Larson report, for example, that full recirculating flows are suppressed at small
contact angles [68] in their sessile droplets.
The equation for vertical velocity is now
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(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 4.17: A vector plot of the flow field in a binary droplet with C = 0.02,
α = 0.6, and β = −0.08. An effect of Marangoni forces is to redistribute flow across
the whole droplet; compare to figure 3.25, whose flow at late times is limited to the
region around the dimple.

The flow field for the smallest value of C is presented in figure 4.17. It shows a small
region of inward flow near the beginning of the drying, which shrinks and vanishes
before t = 0.8ttd. These plots also nicely emphasise the effect of negative β in raising
the surface tension at the edge and drawing liquid in to create a mound near the
pin: we see the strongest upward flow near the top right of the droplet in figures
4.17a and 4.17b. The early inward flow is a consequence of this mound, through the
Laplace pressure gradient that arises from the negative curvature near the wall.
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(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 4.18: A vector plot of the flow field in a binary droplet with C = 0.2, α = 0.6,
and β = −0.08. Here we see the first large regions of inward flow; although they do
not span the whole radius of the droplet it is clear that the Marangoni effect also
acts to drive flow inwards throughout the drying.

Going up an order of magnitude to C = 0.2, we immediately notice that the region
of recirculation flow is larger, extending inwards along the bottom nearly to r = 0.6.
The mound effect is also visible, with large flow moving upwards and outwards in
figures 4.18a and 4.18b.
The most notable feature about the late stages of the drying in this case is that the
inward current dominates, reversing the direction of flow in the inner part of the
droplet. Interestingly, this feature disappears after increasing C by another order of
magnitude, figure 4.20c. The reason for this can be found in figure 4.19; there are
slightly more pronounced negative gradients in χ in figure 4.19a than in figure 4.19b
near the end of the evaporation, meaning the Marangoni effect will be stronger and
will encourage inward flows. The inward flow becomes suppressed near the edge of
the droplet where the flow due to interface curvature is large and outward.
We have already seen this phenomenon in the spikes of χ observed at the touchdown
point (e.g. figure 4.15b) – when the droplet becomes very thin the less volatile
component builds up. In the specific case of late-time C = 0.2, the droplet happens
to be thinnest near the centre and gradually thickens, which results in the large
region of inward Marangoni flow.
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(a) C = 0.2 (b) C = 2

Figure 4.19: Comparing the composition evolution across an order of magnitude
in C. α = 0.6 and β = −0.08. For smaller C, composition gradients are more
pronounced and Marangoni forces are stronger, leading to inward flows dominating
towards the later stages of drying.

The red region in figure 4.20c is found closer to the edge and does not extend back
to the centre of the droplet; it actually has positive χ gradients near the centre, but
its smaller curvature near the edge combines with negative χ gradients to produce
an external inward flow. Note that the droplet interface is much flatter than the
C = 0.2 – although it is also thin, its height is largely constant until r ≈ 0.7, where
a negative gradient in χ appears and we observe an inward Marangoni flow.
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(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 4.20: A vector plot of the flow field in a binary droplet with C = 2, α = 0.6,
and β = −0.08. One of the most notable features of this figure is the dramatic
decrease in flow speed near the edge as the droplet dries. This is evidence that the
rush hour phenomenon is suppressed somewhat (compare to figure 3.27).

We show the individual flow contributions from capillary and Marangoni forces for
figure 4.20a in figure 4.21, which highlights that inward flows can be driven by
capillary forces as well as by Marangoni effects (e.g. figure 4.18c). We have also
provided a cartoon to show the general flow pattern more clearly, figure 4.22.
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(a) Capillary (b) Marangoni

Figure 4.21: Figure 4.20a is a combination of inward capillary flows and outward
Marangoni flows.

Figure 4.22: A cartoon illustrating the flow field of the droplet in figure 4.21. Purple
curves are capillary flows, red curves are Marangoni flows.
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(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 4.23: A vector plot of the flow field in a binary droplet with C = 16, α = 0.2,
and β = −0.04. We have chosen smaller values of α and β because, as M is
much higher, we do not need as large evaporation and surface-tension differences in
order to see the results. Here we see the first evidence of full recirculating flows at
early/medium times.

The simulation with C = 16 exhibits a full recirculation current, figure 4.23. Its
flows are also much faster than both pure droplets (in this case about ten times
faster than the equivalent pure droplet) and binary droplets with smaller values of
C. This effect is due to the Marangoni flows encountering less viscous resistance; we
recall that C ∼ µ−1.
Overall, for droplets with large, negative Marangoni flows present, those with higher
values of C tend to exhibit larger regions of inward flow or even recirculation; above
a certain value of C the recirculation reaches the entire way back along the bottom
of the droplet. They also get faster with increasing C, however all droplet flows also
slow down towards the end of the evaporation, which contrasts to the acceleration
(‘rush hour’) we see in pure droplets in section 3.8.5.
At no point do we simulate particles in our model, but if we were to they would
have to be distributed unevenly in z for these recirculation currents to suppress
the CRE. We mentioned earlier that researchers will often invoke recirculation to
explain CRE suppression, but the requirement for uneven vertical distribution of
particles sits somewhat uncomfortably with the lubrication approximation, which
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completely flattens the droplet. We must, therefore, be very careful not to try to
explain away all our problems using recirculation arguments; the inward flows we
observe are nonetheless interesting and can contribute to an understanding of DiW
CRE suppression.
In the case of positive β, when the more volatile component also has the higher
surface tension, we observe much less recirculation over the course of the drying,
figure 4.24. At late times there is a region of inward flow (figure 4.24c), but it
is located solely in the inner part of the droplet and serves only to enhance the
W-shape characteristic of these kinds of binary combinations (see section 4.7.2) by
vacating the region where the dimple emerges.

(a) t = 0.2ttd (b) t = 0.5ttd

(c) t = 0.8ttd

Figure 4.24: A vector plot of the flow field in a binary droplet with C = 0.2, α = 0.2,
and β = 0.03. The speed in this case is consistently small compared to the previous
examples, but a slight rush-hour effect is detectable near the Marangoni-enhanced
dimple.

The inward flow at small r is a direct result of a large, positive composition gradient,
which drives material towards the region of higher surface tension (now located at
the centre). Inward flows are prevented at larger r by the strong, outward capillary
forces. We compare the two in figure 4.25.
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(a) Capillary-driven velocity (b) Marangoni-driven velocity

Figure 4.25: The horizontal capillary and Marangoni velocities in figure 4.24c at
z = 0.2.

4.7.4 Variable Viscosity

We saw in section 4.7.1 that our model can easily be adjusted for the presence
of an involatile component: in the limit α −→ 1 one component does not evaporate.
Although there exist some involatile liquids with viscosities comparable to laboratory
alcohols and aromatics, many involatile liquids will have a significantly different
viscosity to the volatile species we have been dealing with up to now. In order
to properly model an alcohol-polymer solution, for example, we should adjust the
model to account for changes in viscosity as the alcohol evaporates and the polymer
concentrates. After the discussion in section 2.7 of chapter 2, we shall consider
two simple mixture viscosity models: the linear and logarithmic combinations of
viscosity respectively. Unless otherwise stated, in this section we will use C = 2,
α = 1, β = −0.04, and χ0 = 0.1.

Linear Combination of Viscosities

The linear viscosity model for a binary droplet gives a total viscosity of

µ = χµχ + ξµξ , (4.74)

where µi is the viscosity of the i
th component. If we use γ as a third binary parameter

(after α and β) to denote the comparative magnitude of the two viscosities,

µχ = (1 + γ)µξ, (4.75)

the total viscosity can be written as

µ = (1 + γχ)µξ. (4.76)

After this change, the radial velocity field becomes

u(r, z) = − C
1 + γχ

∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]](1
2
z2 − zh

)
+

M
1 + γχ

∂χ

∂r
z , (4.77)

where C and M take µξ. Following the same procedure as in chapter 3 and in section
4.4 of this chapter, the height and composition lubrication equations are
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Figure 4.26 is an example of the evolution of a partially involatile droplet. It ex-
hibits very similar behaviour to the droplets in section 4.7.1 – the final shape (black
curves) is again a combination of a pure quadratic before the touchdown point and
a quadratic-log function (see equation 4.71) after the touchdown point. However
variable viscosity does induce some quantitative changes.

(a) Height (b) Composition

Figure 4.26: Height and composition evolution for a droplet with viscosity as a
linear function of χ. C = 2, α = 1, β = −0.04, γ = 4, χ0 = 0.1. One component is
involatile again, and we can see a similar dimpled solution to that in figure 4.6 after
the volatile component evaporates.

Higher viscosity of the involatile component appears to have an effect on the touch-
down point of the final droplet shape; figure 4.27 reveals that the touchdown point
moves further outward as the viscosity of the involatile component increases. These
are droplets that, like in section 4.7.1, have fully evaporated and then been allowed
to relax – we might expect them to all be identical eventually, because the final
liquid has the same properties in each case, except for increasing viscosity. However
this is clearly not what we see. It looks as if the altered shape during evaporation
leads to a different pre-relaxation shape, which contains a dimple for certain values
of χ0.
This kind of solution is not completely unexpected; in fact, dimpled solutions for a
thin film lubrication equation appear often in the literature. Shi et al. showed that
an oscillating dimpled solution occurs in an oil film over a bubble [127]; interestingly
their experiment was also heavily influenced by evaporation and Marangoni flows,
which draw liquid from one region to another to create the dimple. Dimpled solutions
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also appear in other works using the lubrication approximation on thin films [128,
129, 130, 131].
We have included an approximate functional form relating rtd and γ, displayed in
figure 4.27, that indicates that the touchdown point tends to a value of 0.90 as the
viscosity becomes large.

Figure 4.27: The touchdown radius as a function of the viscosity of the involatile
component. We calculate that r0 = 0.645 and r1 = 0.90. Error bars are of size ∆r.

This phenomenon becomes particularly interesting once we consider the involatile
component to comprise part of the desired (or undesired) deposit material – we
have shown that the final deposit is likely to consist of two regions, an inner region
with the shape of a quadratic bowl, and an outer region whose shape is a quadratic
with a logarithmic term in. This kind of profile has been observed experimentally
in industrial tests (Dank Walker, Merck Ltd., private communication).
A linear model for viscosity can be well applied to systems in which the viscosity
ratio between the two components is small, but we will need to move to a logarithmic
model in order to have a chance to examine systems such as polymer solutions, in
which the viscosity ratio is large.

Logarithmic Combination of Viscosities

The logarithmic model, on the other hand, gives a total viscosity of

µ = eχln(µχ)+ξln(µξ) , (4.80)

or equivalently

µ = (1 + γ)χµξ . (4.81)

We show this relationship and how it compares to the linear relationship in figure
4.28.
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Figure 4.28: A plot of the viscosity as it varies linearly (blue) and logarithmically
(red) with composition. Numbers in the legend are values of parameter γ.

This form leads to lubrication equations
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We now try mixtures with a much larger difference in viscosity – we can choose
γ ∈ {103, 106}, taking parameters C, α, β, and χ0 to be the same as in the previous
section. The final droplet is then allowed to relax until it either reaches a stable
equilibrium or touches down. Results for γ = 103 and γ = 106 are shown in figures
4.29 and 4.30 below.

(a) Height (b) Composition

Figure 4.29: Height and composition evolution for a droplet with viscosity as a
logarithmic function of χ. C = 2, α = 1, β = −0.04, γ = 103, χ0 = 0.1.
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(a) Height (b) Composition

Figure 4.30: Height and composition evolution for a droplet with viscosity as a
logarithmic function of χ. C = 2, α = 1, β = −0.04, γ = 106, χ0 = 0.1. Because the
viscosity is very large, the liquid composition does not even out and become uniform
and instead sees large growth at the edge where the volatile component evaporates
most quickly.

The latter graphs show that, as we should expect, the flow of components is hindered
by the large increase in viscosity of component χ, meaning the outer ring enrichment
caused by the evaporative flux takes longer to equilibrate across the droplet (see
figure 4.30b in comparison to figure 4.29b; while the latter certainly does not have
flat composition, it is clearly more able to redistribute both components across the
droplet than the former).
This leads to behaviour similar to decreasing C – although C = 2 in figure 4.30a, it
exhibits a W-shape more characteristic of a droplet with C = 0.2 (see section 3.8.3).
This makes sense once we realise that the system is operating with an effective C
parameter that depends on composition; a back of the envelope calculation shows
us that about halfway through the drying, estimating χ = 0.2 and using γ = 106

and C = 2, we have Ceff = C
γχ ≈ 0.13.

The black curves represent, again, the final state of the involatile component. As
γ becomes large, the time taken for this viscous liquid to relax also increases,6 and
the final curve is determined by the shape of the volatile liquid in its late stages.
Above γ = 103 the relaxation was cut short by the droplet touching down. This may
be responsible for the unexpected final shape we see in figure 4.30a – the W-shape
present in the evaporation stage resulted in a liquid layer that touches down (in this
case rtd = 0.9675) on its way to equilibrium. In order to determine the relaxed state
of this kind of system we would need a model with additional boundary conditions
that account for droplet splitting after touchdown. We have mentioned elsewhere
that this kind of simulation is outside the scope of this project, but remind the
reader that others have started to work on models that evaluate DiW profiles post-
touchdown [3]. Given that a dynamic viscosity DiW model would be useful to
understand the precise shape of a polymer deposit in a pixel, it will be important
for future studies to incorporate equations such as 4.78, 4.79, 4.82, and 4.83.

6We are able to short-cut the relaxation by taking the fully evaporated solution and, ex-
ploiting the fact that is now a single, involatile liquid, evolving it using the code for a simple,
non-evaporating droplet.
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4.7.5 Comparison to Experimental Data

Although there does not exist much readily available experimental data in the lit-
erature for evaporation of binary DiWs, Zhida Huang has performed experiments
analogous to the simulation presented in this chapter. The previous chapter alerted
us to the possibility that the C parameter may have a discrepancy between the
model and the experiment; here we have again been careful to analyse the data
across multiple values of C, α, and β to try to find the best fit.
In order to find the best fit for these three parameters, we started with their ex-
perimental values and gradually adjusted them by eye (using our experience of the
influence that they have on the droplet shape). As in chapter 3, we determined the
initial time-offset by fitting the curves to the experimental data at r = 0.
Given the complexity of the parameter space and the subtle changes that occur
when varying C, α, and β, we deemed this to be the most efficient method for
matching experimental data. For future theory–data comparisons with a larger set
of experimental results, it would be helpful to use machine learning/neural network
techniques that could be trained to find the absolute best fit. The problem for the
researcher would then become defining a response function that would avoid under-
and overfitting errors; for example, we would want to avoid a response function
that consistently finds a ‘correct’ fit that bears no visual similarity to the data, or
one that produces such a complex curve that it accounts for every datapoint but
sacrifices all physical insight.

n-Pentyl Acetate and n-Butanol

Using various sources [132, 133] and assuming surface tension varies linearly with
temperature, we calculate the surface tension of n-pentyl acetate to be σn-pent = 25.2
mN m−1 at 25◦C. n-butanol has a surface tension σn-but = 24.2 mN m−1 at 25◦C
[134, 135, 136], so β takes the value β = −0.04. If we allocate the symbol χ to
n-pentyl acetate (therefore we use ξ for n-butanol), the experiment was performed
with initial volume fraction χ0 = 0.29. The evaporation rates of the pure solvents
were measured to be 82 pl s−1 for n-butanol and 52 pl s−1 for n-pentyl acetate,
meaning we also have α = 0.37. The cylindrical well had radius R = 75µm and
height h0 = 2.09µm and the experimental C-parameter for this system was C = 1.85
(we used the initial-volume-fraction-weighted viscosity).
We compare a simulation with these parameters to the experimental data in figure
4.31.
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Figure 4.31: A comparison between simulation (solid lines) and experiment (crosses)
for n-pentyl acetate and n-butanol. C = 2.5, α = 0.37, β = −0.022. Time increases
from orange to yellow.

There are areas of both agreement and disagreement between the theoretical curves
and the experimental data. Importantly, the flatter bottom associated with Marangoni
flows at C ∼ 1 is present in both; in fact the theoretical curves towards the end of the
drying quantitatively match the experimental data well from r = 0 until r ≈ 0.65,
when the droplet departs from its relative flatness. Furthermore, there is some small
negative curvature due to the enrichment of the component with higher surface ten-
sion at the edge. Despite the slight loss of quantitative agreement near the edge,
the positive curvature is in qualitative agreement between the two.

Toluene and n-Butanol

Toluene has a surface tension of σtol = 27.7 mN m−1 at 25◦C [137], and was measured
to evaporate at 414 pl s−1. The well has dimensions R = 77µm and height h0 =
2.25µm, so for this system we have α = 0.80, β = 0.10, and C = 1.13. The
initial volume fraction of n-butanol (here denoted by χ, due to its lower volatility)
was χ0 = 0.33; this is therefore a droplet with both α and β positive. As for the
agreement of the simulation, we had to dramatically reduce β to find a set of curves
that qualitatively matched the experimental data – figure 4.32 shows a simulation
with parameters α = 0.80, β = 0.01, and C = 1.8.
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Figure 4.32: A comparison between simulation (solid lines) and experiment (crosses)
for toluene and n-butanol. This comparison sees some discrepancy with the dimple,
which is more pronounced towards the end of the evaporation in the simulation.
Time increases from orange to green.

A factor that we have not yet considered is non-ideal mixing. Due to the difference
in preferred bonding interactions between the two chemicals (e.g. hydrogen bond-
ing in the alcohol n-butanol and the van der Waals force in toluene), the vapour
pressure of the binary mixture deviates from the ideal (pure) situation described
by Raoult’s law, in which vapour pressure varies linearly with volume fraction. In
general, we may see positively curved, negatively curved, and more complex vapour
pressure-volume fraction relationships, depending on the chemicals involved. Not
only this, the surface tension relationship will no longer be a linear function of vol-
ume fraction. Although it is difficult to predict the exact functional relationship in
our experimental scenario, it is likely that both α and β ought to be lower than re-
ported experimentally, as toluene (the component with larger evaporation rate and
surface tension) bonds with the weaker intermolecular force.
Moreover, the first set of data points drops lower than the corresponding simulated
curve at large r, meaning the experimental time offset is significant enough that the
initial condition will have slightly changed. In other words, the first data curve is
certainly not a spherical cap, and it is highly likely that the corresponding compo-
sition curve is no longer uniform. In order to account for this we would have to also
take χ0(r) as a variable parameter.
Despite the evident quantitative issues in this case, the qualitative trends show some
agreement. Most prominently, the late-stage negative curvature near the centre
of the experimental data is reproduced well in the simulation, as is the general
behaviour at the beginning of the drying. We do, however, see the usual discrepancy
near the edge of the well, and the final simulated curve exhibits too sharp a dip,
despite us having reduced β.
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4.8 Conclusion

In this chapter we have extended the model for a pure DiW to include binary
droplets; we first introduced two new parameters, α and β, to describe the rela-
tionship between the evaporative fluxes and surface tensions of the two components
respectively. This introduced new terms into the lubrication equation and alters the
behaviour of the droplet as it dries.
We found that the droplet’s shape depends on the surface tension difference and
gradients in composition; areas that become depleted or enriched with one compo-
nent over the other exert forces on the surface that cause curvature not observed in
pure droplets, most notably the emergence of negative curvature at the edge. We
suggest that the mechanism for this effect is the enrichment of the component with
higher surface tension near the edge of the droplet (due to the preferential evapora-
tion there and the larger volatility of the other component), which proceeds to exert
an attractive Marangoni force on surrounding liquid. We also observed the opposite
of this – when one component has higher volatility and surface tension we see an
enhanced W-shape because of the enrichment of the other component at the edge,
which induces a repulsive Marangoni force on surrounding liquid.
The Marangoni effect doesn’t only enhance and create mounds, it also appears to
provide a flattening effect near the end of the drying. We performed analogous
simulations to those in chapter 3, observing the late-stage shape of the interface
as we varied C over several orders of magnitude, and determined that the W-shape
profiles we observed previously are suppressed and U-shaped profiles are enhanced
(in fact they actually look like the letter U now!) when β is negative. Inspecting
the velocity profiles revealed recirculation flows in these droplets, regions in which
the flow direction turned inwards. We hypothesised that the emergence of these
recirculation regions is a contributing factor to the flattening of an otherwise W-
shaped droplet, but does not have the same effect on droplets with a large enough
C – these droplets continue to be approximately C-shaped.
Our model made it easy to simulate a droplet with one component evaporating
and the other involatile. During the evaporation stage, the droplet exhibits the
same shape features as when both are evaporating: curvature inversion and flatter
bottoms. However, we also found them interesting in the relaxation stage, after
all the volatile material had evaporated: if the initial volume fraction of χ was in
a critical range (low enough that it could not form a quadratic bowl, high enough
that the droplet did not touch down from evaporation), we eventually observed a
stable, dimpled height profile with two sections, each a different solution of the pure,
involatile lubrication equation.
This led us to investigate the effect of viscosity – could we attempt to simulate an
approximate polymer-alcohol mixture whose final solution would be the polymer
deposit? We found that we could determine a deposit shape for systems in which
the viscosity of the involatile component was below a certain value, otherwise the
pre-relaxation shape of the involatile droplet would touch down before it could fully
relax.
Finally, we compared our simulation to some experimental data, noticing that it
matched data well in situations with small β, particularly near the centre of the
droplet. It could reproduce the Marangoni mound effect we see in experiments
(both at the edge for negative β and at the centre for positive β) and also the flat
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bottom desirable for many CRE suppression applications. However, we recognise
that the model departs from experiment rapidly once β becomes large and negative
– there were some qualitative features it was unable to reproduce.
Having developed and tested a model for a binary DiW, finding some success and
some areas for development, we shall now return to the evaporative flux. In the
entirety of this chapter we have been using the functional form 1√

1−r2
consistently;

however this is not necessarily true for the evaporative flux of each individual com-
ponent in a droplet whose composition is constantly changing. In the next chapter
we will take a different approach and attempt to solve a two-sided (liquid-vapour)
model to determine the evaporative flux of each component dynamically.
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Two-Sided Model

Popov’s model offers an accurate representation for the evaporative flux from a pure
droplet drying in a well. However, the extent of its validity for binary droplets with
non-uniform distribution of components is unclear.
In this chapter we shall consider explicitly the vapour field generated by a binary
droplet and compare the solution to the Popov form. The vast majority of works on
this topic assume that material transport across the interface is diffusion-dominated
and fast, and therefore the vapour concentration can be described by a Laplace
equation in two dimensions. The argument for this simplification is best expressed
in Hu and Larson’s 2002 paper [9], where they argue that the speed at which the
vapour reacts to changes in the droplet shape is 105 times faster than the rate of
evaporation, which can thus be considered a quasi-steady process.
We will incorporate a finite element solution to the Laplace equation into the binary
droplet model to simulate dynamically changing evaporative flux; this is the first
time dynamically varying flux has been implemented for a binary DiW and it appears
to go some way to rectifying numerical discrepancies in the model from the previous
chapter.

5.1 Vapour Phase Problem Formulation

According to Fick’s law, the evaporative flux of a component from a droplet mixture
is proportional to the concentration gradient of that component in the gas directly
above the droplet,

Ĵi(r̂) = −DiM
c
m

∂ĉi
∂ẑ

∣∣∣
ẑ=ĥ

, (5.1)

where ci is the vapour concentration of component i, M c
m is its molar mass, and Di is

the diffusion coefficient of component i in air. Under the assumption of fast vapour
relaxation, the concentration is described by a time-independent Laplace equation.
We once again start by not specifying a particular geometry, using r to denote the
horizontal space variable. We also change vertical notation when talking about the
vapour system, using Z for the vertical space variable. The system comprises a
Laplace equation for the concentration of each component, i = χ, ξ,

∇̂2ĉi = 0 , (5.2)
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with mixed boundary conditions that define the concentration at the interface (with
c0 the saturation concentration, and assuming Raoult’s Law again),

ĉ = c0χ(r̂) on ẑ = ĥ, 0 < r̂ < R, (5.3)

the lack of flux across the substrate,

∂ĉ

∂ẑ
= 0 on ẑ = h0, r̂ > R, (5.4)

the symmetry across the centre of the droplet,

∂ĉ

∂r̂
= 0 on r̂ = 0, (5.5)

and the far field limit,

ĉ −→ c∞ as r̂2 + ẑ2 −→ ∞. (5.6)

For pure droplets, equation 5.3 loses its dependence on χ and becomes constant.
We nondimensionalise with the following scale factors,

r̂ = Rr, ẑ = RZ, ĥ = h0h
′

ĉ = c∞ + (c0 − c∞)c, Ĵ =
DχξM

c
m

R
(c0 − c∞)J,

and the system becomes

∇2c = 0, (5.7)

c = χ(r) on Z = 0, 0 < r < 1, (5.8)

∂c

∂Z
= 0 on Z = 0, r > 1, (5.9)

∂c

∂r
= 0 on r = 0, (5.10)

c −→ 0 as r2 + Z2 −→ ∞. (5.11)

We note that the aspect ratio ε = h0

R
is small again, meaning we can linearise the

droplet into Z=0.

5.2 Analytical Solution

This system can be solved analytically in the specific case of a pure droplet with a
saturation concentration that does not depend on space, for which χ(r) = 1. The
analytical solution in cylindrical geometry is given in [3] and has the form

c(r, Z) = sin−1 2

((1 + r)2 + Z2)
1
2 + ((1− r)2 + Z2)

1
2

, (5.12)
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which leads to the familiar Popov form of the evaporative flux1,

J =
1√

1− r2
. (5.13)

In the rather more general case of a spatially varying boundary condition along the
droplet interface, the system cannot be expressed analytically and the above system
must be solved numerically.

5.3 Finite Element Method

With the vapour relaxation timescale being much smaller than that of the liquid,
and assuming the droplet is sufficiently small compared to the vapour field that we
may linearise the interface to Z = 0, we would like to solve the system comprising
equations 5.7-5.11. A popular computational technique used to numerically solve
problems such as this is the finite element method; we consider a domain comprising
the double positive quarter circle with origin at the centre of the droplet and radius
R∞ and subdivide it into an unstructured triangular mesh (using Mathematica’s
DiscretizeRegion function on part of a Disk Region). It is important that R∞ be
sufficiently large for the far-field boundary condition to be applied there. Given
that we are only interested in the concentration field very near to the droplet, we
refine the mesh in the vicinity of the droplet and coarsen it continuously as r2 +Z2

increases until it reaches Mathematica’s default coarseness sufficiently far from the
droplet.
The finite element model we use is that of Alberty et al. [107], but we alter their
cartesian-coordinate derivation in order to move the problem to cylindrical polar
coordinates and to impose our own boundary conditions. While it is not necessary
to reproduce their entire argument here, we shall explain these alterations to the
model; if the reader is interested in the rigorous approach to deriving the finite
element model, the paper can be found in the citation above (Remarks around
50 lines of Matlab: short finite element implementation; Alberty, Carstensen, and
Funken).
First, the authors derive their model in cartesian (x, y) coordinates. The choice
of coordinates is expressed mathematically via the basis functions of the triangu-
lation T , η(x, y); for a triangulation that uses only triangles (as opposed to one
with quadrilaterals), each triangular element △ has vertices at (x1, y1), (x2, y2), and
(x3, y3), and corresponding basis functions η1, η2, and η3. These basis functions
satisfy

ηj(xk, yk) = δjk . (5.14)

The entry of the stiffness matrix is a product of basis function gradients integrated
over the triangle (though it turns out that the basis function gradients are indepen-
dent of x and y for each triangle),

1D’Ambrosio et al.’s slightly different nondimensionalisation leads to a factor of 2
π that we do

not have.
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Mjk =

∫
△
∇ηj(∇ηk)

Tdxdy

=
1

(2| △ |)2
(yj+1 − yj+2, xj+2 − xj+1)

(yk+1 − yk+2

xk+2 − xk+1

)
· | △ | , (5.15)

with indices modulo 3. The integral is modified in cylindrical coordinates by the
radial location of the triangle (the Jacobian of the integral), here we use Pappus’s
second centroid theorem,

Mjk = 2π

∫
△
∇ηj(∇ηk)

TdZ r dr

=
2

π(2| △ |)2
(Zj+1 − Zj+2, rj+2 − rj+1)

(Zk+1 − Zk+2

rk+2 − rk+1

)
· | △ | · 1

3
(r1 + r2 + r3) ,

(5.16)

where the final term is the radial coordinate of the barycentric centroid of the
triangle. We have here moved from (x, y) to (r, z), with the basis functions now

ηj(rk, Zk) = δjk . (5.17)

Second, our boundary conditions are (for component χ; the boundary conditions for
component ξ are defined analogously)

c = χ(r) on Z = 0, r ≤ 1 , (5.18)

∂c

∂Z
= 0 on Z = 0, r > 1 , (5.19)

∂c

∂r
= 0 on r = 0 , (5.20)

c = 0 on r2 + Z2 = R2
∞ . (5.21)

We then formulate the system in the same way as in the Alberty paper, except we
denote the variable for which we are solving as C, that is, the discrete approximation
to c(r, Z).

5.4 Deriving the Evaporative Flux

Once the system has been solved (i.e. C has been found) it remains to determine
the evaporation rate from the gradient near Z = 0. We assume the gradient is
constant inside every triangle (discontinuous, but approximable, at triangle edges
and nodes) and use barycentric coordinates to calculate the concentration at two
points along a vertical line inside each triangle. The constant vertical gradient can
be easily computed with this information;

∂c△
∂Z

=
c△,2 − c△,1

z2 − z1
for △ ∈ T (5.22)
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and where numerical subscripts indicate each point on the vertical line in the trian-
gle.
We calculate the gradient on each mesh node along the droplet by taking the area-
weighted mean of gradients in the triangles that have one vertex coinciding with the
node. The evaporative flux at the ith node is then just

Ji = − ∂c

∂Z

∣∣∣
i
. (5.23)

Given that the nodes are not, in general, located at the grid points of the droplet
simulation, we then have to compute an interpolation function, Jint, for the evapo-
rative flux. We can then use this to determine the evaporation at each grid point.

5.5 Finite Element Results

Using this method we were able to solve the diffusion equation with any arbitrary
initial condition on the droplet. We initialise a quarter circle mesh with a large
radius, R∞, that is refined near the droplet (specifically in the quarter circle r2+z2 ≤
1) and becomes less refined far from the droplet. This is shown in figure 5.1. The
mesh refinement function is

AT <

{
1× 10−4 r2 + Z2 ≤ 1

1× 10−4 eImesh(r
2+Z2−1) r2 + Z2 > 1 ,

(5.24)

where AT is the area of a triangle in the mesh and Imesh is the rate at which the
triangles increase in size. The cells grow up to a maximum size.

(a) The mesh near to the droplet. (b) The mesh far from the droplet.

Figure 5.1: A close-up and far-away view of the mesh used for FEM analysis. Here
R∞ = 150.

Figure 5.2 shows that the simulation performs as expected for a droplet with uniform
concentration; the concentration contours of figure 5.2b are largely similar to the
analytical case using equation 5.12, which is shown in figure 5.2a.
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The important part of this solution is the concentration just above the droplet, more
specifically its gradient, as this is what we use to determine the evaporative flux.
Figure 5.3 shows that the gradient of the finite element solution matches Popov’s
analytical solution well.

(a) Theoretical concentration field (b) FEM Solution of Diffusion Equation

Figure 5.2: FEM reproduction of the theoretical concentration field above a thin
droplet.

Figure 5.3: Comparison between Popov’s theoretical evaporation rate and computed
evaporation rate for a pure droplet. In this case Imesh = 0.4 and R∞ = 150.

5.6 Error Quantification

We can quantify the error associated with the discretisation of the domain by vary-
ing a few key parameters for a simulation of a pure droplet and comparing the
evaporation rate results with the theoretical form.
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In this section, the word ‘error’ refers specifically to the percentage error of the finite
element vapour field solution compared to the analytical solution, equation 5.12.

5.6.1 Finite Far-Field

In a simulation it is clear that the far-field boundary condition must be imposed
a finite distance from the droplet. This will lead to an error in the calculation of
the vapour field that, in turn, will cause an error in the computed evaporation rate.
Figure 5.4 is a scatter plot of the percentage error of the simulated vapour field from
the analytical solution.

Figure 5.4: The error on evaporation rate associated with imposing a finite far-
field condition compared to the theoretical form. The best-fit trend is reciprocal;
following the same logic as in chapter 3 we conclude that the error is integrably
finite as R∞ → ∞.

We can see from this plot that there is some degree of randomness involved in the
imposition of the boundary condition – this is because the mesh must be recomputed
for each value of R∞. However, it is evident that the error tends to decrease as R∞
increases, albeit relatively slowly.

5.6.2 Domain Discretisation

We can also measure how the error changes with the refinement of the discretisation.
A good measure for this feature is the number of coordinate points in the mesh. First
we examine the number of points in the largely unrefined outer region, Nouter, shown
in figure 5.5. In these simulations we have used R∞ = 210 and the number of points
in the refined, inner region Ninner ≈ 6000.
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Figure 5.5: The error associated with the discretisation of the whole quarter circle
domain. Although the error appears to decrease initially, there is no discernable
trend after Nouter = 30, 000.

We can again see that the accuracy increases as we increase the number of points
from 10,000 to 30,000, but there is no discernible increase in accuracy associated
with refining the mesh far from the droplet beyond this number. This is to be
expected – for us, a rarefied mesh far from the droplet exists only to permit us to
impose the far-field condition (analysed above in section 5.6.1); the critical part of
the vapour field as far as the evaporative flux is concerned is the region directly
above the droplet.
It is a different story when we look at the mesh near to the droplet. Figure 5.6
displays the relationship of the error to the number of points within the unit quarter
circle centred on the origin. We have used R∞ = 210 again and Nouter ≈ 36, 000.

(a) A direct plot of error against number
of inner points.

(b) A log-log plot that reveals a recipro-
cal relationship between error and num-
ber of inner points.

Figure 5.6: The error associated with the refinement of the unit quarter circle mesh
near to the droplet. In this case, the error again follows a reciprocal relationship,
indicating it is integrably finite as Ninner → ∞.

Figures 5.6a and 5.6b equivalently demonstrate that the higher the density of points
in the refined region near to the droplet, the smaller the error by the inverse power
shown. Following an analogous argument to that in chapter 3, we conclude that the
error approaches zero as the number of points approaches infinity.
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5.7 Incorporation into Method-of-Lines Algorithm

We are able to avoid the need for an explicitly time dependent simulation of the
vapour phase for two reasons. We saw in chapter 2 that Hu and Larson established
that the vapour phase relaxes about 105 times faster than the droplet, meaning all
changes in the gas above the droplet can be modelled to happen instantly compared
to the evaporation. Additionally, in our simulations composition gradients generally
emerge slowly compared to the evaporation.
Therefore we choose a composition change condition that, when met, pauses the
simulation, recalculates the vapour field, and updates the evaporative flux for each
component. It remains to decide on a condition; since we are particularly interested
in composition gradients and not necessarily absolute composition, we choose to
modify the evaporative flux whenever any of the discrete composition points changes
by 0.02.

5.8 Comparison To Static Evaporation

Varying the evaporative flux in this way tends to provide an overall smoothing effect
on the composition – an overload of one component somewhere in the droplet causes
the evaporative flux of that component to increase at that location too, meaning
the composition somewhat self-regulates. The gradients are therefore gentler and
Marangoni effects are reduced, though still present. We can see all this in figures
5.7, 5.10, and 5.11. Figure 5.7 displays a comparison between static and dynamic
evaporation for a droplet of C = 0.02; this of the three plotted values of C shows the
largest difference. The difference is emphasised when we examine the radial surface
curvature, shown in figure 5.8: where the droplet with static evaporation exhibits
strong curvature inversion near the edge, it is a much weaker and more short-lived
effect in the case with dynamic evaporation. In fact, we notice that it exhibits fairly
strong positive curvature at about the halfway point of evaporation instead.

(a) Static Evaporation (b) Dynamic Evaporation

Figure 5.7: A comparison between identical droplet evaporation processes, one with
constant evaporative flux and the other with variable evaporative flux. C = 0.02,
α = 0.6, β = −0.08. Dynamic evaporation decreases the W-shape suppression
caused by the Marangoni effect.
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(a) Static evaporation (b) Dynamic evaporation

Figure 5.8: A comparison of the curvature across the whole droplet between static
and dynamic evaporation. Includes times between t = 0.02 and t = 0.54; as usual,
early times are orange and become more yellow as time progresses. C = 0.02,
α = 0.6, β = −0.08

The stabilising effect of dynamic evaporation can also be seen by comparing the
composition variables, figure 5.9. Both droplets start similarly, with the predictable
increase in χ near the edge, where component ξ evaporates most quickly. However,
where the statically evaporating droplet has χ running unchecked, the dynamically
evaporating droplet clearly limits the extent to which composition gradients can
occur.

(a) Static Evaporation (b) Dynamic Evaporation

Figure 5.9: Composition comparison for C = 0.02, α = 0.6, β = −0.08. The effect
of dynamic evaporation is clear: composition gradients are much less pronounced,
hence the suppression of the Marangoni effect.

Figure 5.10 displays the same comparison up an order of magnitude in C. Immedi-
ately we see that the difference is much smaller and, although the W-shape reemerges
with dynamic evaporation, you would be forgiven for taking them to be identical,
at first glance at least. Figure 5.11, an order of magnitude higher again, prompts
us to wonder if the effect of dynamic evaporation wanes with increasing C.
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(a) Static Evaporation (b) Dynamic Evaporation

Figure 5.10: A comparison between identical droplet evaporation processes, one with
constant evaporative flux and the other with variable evaporative flux. C = 0.2,
α = 0.6, β = −0.08. At this larger value of C the dynamic flux does not oppose
Marangoni flows as much as in figure 5.7.

(a) Static Evaporation (b) Dynamic Evaporation

Figure 5.11: A comparison between identical droplet evaporation processes, one
with constant evaporative flux and the other with variable evaporative flux. C = 2,
α = 0.6, β = −0.08. At this larger value of C the dynamic flux does not oppose
Marangoni flows as much as in figure 5.7.

5.8.1 Impact of C, α, and β on Static vs Dynamic Flux

We can examine the mean difference between the curves at each time point; data
is presented in figure 5.12. The difference does indeed reduce for larger values of C,
at least initially. This indicates that, depending on our accuracy requirements for
any given simulation, we may choose a value of C below which to perform dynamic
experiments and above which to revert to static (less computationally expensive)
experiments.
However, the tendency towards uniformity between static and dynamic evapora-
tion does not continue indefinitely; we can see in figure 5.12b that the difference
has increased again for C = 20 (the comparison for which is presented in figure
5.13). Evidently, those simulations that change the most after switching to dynamic
evaporation are the ones with the fastest and sharpest changes in the composition,
but due to the complexity of the parameter space it is difficult to identify a sole
determining factor for this variable.
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Other work on binary sessile droplets asserted that a two-sided model was essen-
tial for agreement with experimental data, partly because of the large composition
gradients that would appear where the droplet became thin at the contact line (we
report similar gradient behaviour in chapter 4) [56]. This might be part of the
reason for the similarity we see at C ≈ 2 – the droplets at this level are quite flat
and, critically, they become thin uniformly (except near the edge, where the droplet
is pinned). This does not give the droplet much of a chance of forming strong
composition gradients in the first place.

(a) Within order of magnitude C ∼ 10−2 (b) Across four orders of magnitude C ∈
{10−2, 101}

Figure 5.12: Numerically comparing droplets with static and dynamic evaporative
fluxes. There is a minimum in difference between static- and dynamic-flux results
at C ≈ 2.

(a) Static Evaporation (b) Dynamic Evaporation

Figure 5.13: A comparison between identical droplet evaporation processes, one
with constant evaporative flux and the other with variable evaporative flux. C = 20,
α = 0.6, β = −0.08.

Examining the dependence of static-dynamic difference on parameters α and β, we
find the relationships depicted in figure 5.14. When α is very small or very large,
the droplet approaches pure droplet behaviour; α = 0 affords no opportunity for
composition gradients because both components evaporate at the same rate (this
is effectively a pure droplet), and α = 1 simulations finish with a pure droplet,
which will relax to the same shape regardless of whether the flux is dynamic or
static. Therefore, as can be seen in figure 5.14a, the peak dynamic/static difference
is observed at α ∼ 0.5.
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The relationship for β is a different story (figure 5.14b). As β gets large and negative,
the dynamic flux has a larger effect because Marangoni forces are acting to pull
liquid to the edge of the droplet, where the evaporative flux is always enhanced.
This phenomenon serves to increase the nonuniformity of χ across the droplet. Of
course, the droplet is most similar to a pure DiW at β = 0, so we are not surprised
that there is a minimum at that point. And as β becomes more positive, the potency
of the dynamic flux seems to decrease again; the opposite effect is occurring, where
liquid is drawn to the less volatile centre of the droplet by Marangoni forces.

(a) α ∼ 0.5 is where large differences oc-
cur.

(b) Varying β gives a more complicated
relationship.

Figure 5.14: Dynamic evaporation is more potent in droplets that exhibit large
compositional deviations from uniform composition. C = 0.2 in both; green dots are
for α variation and blue dots are for β variation.

There is a small decrease in the difference between β = −0.03 and β = −0.07. The
origin of this effect is unclear.
We have not included the final curve in figure 5.10 because it features a wave-like
instability (figure 5.15) that is worth considering.
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(a) Height (b) Composition

(c) Evaporative Flux

Figure 5.15: A numerical problem that features in the dynamic evaporation simu-
lation with C = 2, α = 0.6, β = −0.08.

The instability appears in the same manner independent of the MoL discretisation
and FEM mesh resolution; it is also clear from figure 5.15 that its wavelength is not
related to either of these numerical approximations. Another snapshot (from the
end of a simulation with β = −0.04) is shown in figure 5.16; here we can much more
clearly see a sinusoidal instability emerging in the evaporative flux.
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(a) Height (b) Composition

(c) Evaporative Flux

Figure 5.16: A numerical problem that features in the dynamic evaporation simu-
lation with C = 2, α = 0.6, β = −0.04.

This instability appears for simulations with dynamic flux in the approximate range
2 < C < 5, with α > 0.3 and β < −0.03 and only at very late time (∼ 0.97ttd).
Therefore it is largely inconsequential for most applications of the DiW model,
partly because we can safely analyse the droplets for 97% of their lifetime and
partly because it is this range of C that bears most similarity to the static flux
simulations. Although it would be beneficial to find its origin (particularly if one
wanted a precise simulation at the moment of touchdown), it is enough to simply
know to avoid this range of parameters when using dynamic flux.

5.9 Comparison to Experimental Data

In the same way as in chapter 4, we can compare the numerical simulation with
dynamic evaporation to the experimental data for binary droplets.

5.9.1 n-Pentyl Acetate and n-Butanol

We return to the n-pentyl/n-butanol droplet from chapter 4, section 4.7.5 (the phys-
ical data can be found there also). The comparison between simulation and exper-
iment is shown in figure 5.17, where the experimental value of C has been used
instead of the best fit from the previous comparison; the experimental data is again
represented by crosses and the simulation by solid lines.
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Figure 5.17: A comparison between simulation (solid lines) and experiment (crosses)
for n-pentyl acetate and n-butanol. C = 1.85, α = 0.37, β = −0.022. Dynamic
evaporation.

We notice that dynamic evaporation has brought us some success in aligning the
theoretical C-parameter with its experimental value, C = 1.85 – certainly for the
early stages of drying, the simulation has good agreement with the experimental
data and we can see that it captures the curvature inversion near the rim again.
At later stages disagreement emerges again; the simulated droplet is slightly flatter
than the experimental one near the rim. We could write this off as experimental
slippage of the pin, but it may also be a result of the weakness of the dynamic
evaporation algorithm; evaporative flux does not change continuously, but discretely,
and is static for short periods of time. We have already seen that a negative β-
parameter tends to flatten droplets out at the bottom, and also that dynamically
varying evaporative flux tends to negate this effect by working against fluctuations
in χ. This experimental comparison might be showing us that discretely changing
evaporation is not enough to capture the behaviour at the end of drying, when
the composition is usually changing the fastest and the droplet often has the most
curvature.
The vapour simulation also does not account for the depth of the well – the droplet
is thinnest near the edge, and sits below the surface of the substrate, where we have
assumed the interface to be in the vapour-phase calculation. While we apply the
lubrication approximation and assume the well is thin, we have also seen that small
variations in composition can have a large effect on the evaporative flux and it is
also possible that this discrepancy causes some error in calculating the evaporation.
Unfortunately we currently do not have more experimental data with which to com-
pare the theoretical model, as it is necessary to compare our model with pairs of
liquids for which Raoult’s Law is a good approximation. Divergence from Raoult’s
law is a consequence of non-ideal mixing, which we discussed in chapter 4 section
4.7.5.
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5.10 Conclusion

In our penultimate chapter we have started to investigate the role that the gas above
a DiW plays in its evaporation. Following in the footsteps of many other works,
we made use of the large difference in relaxation timescale between the vapour
and the droplet to argue that the system can, at any instant, be described by the
Laplace equation. For a binary droplet, this model included an interface concentra-
tion boundary condition that was variable in time and space; for such a problem
it was necessary to find a numerical solution instead of the analytical solution of-
fered by studies that use constant and uniform concentration at the interface. We
modified an existing finite element model so that it was able to solve the Laplace
equation for any given distribution of two components in 3D cylindrical space and
implemented it in the MoL algorithm for the droplet evaporation, using the concen-
tration gradient at Z = 0 for the evaporative flux. The newly dynamic evaporative
flux resulted in a droplet system with some self-correcting tendencies – as expected,
large deviations in volume fraction create variations in evaporative flux that tend to
oppose the compositional deviations.
We found that some groups of parameters were affected by the dynamic evaporation
more than others. Notably, those droplets that exhibited a higher degree of curva-
ture with static flux changed more under dynamic flux than those with less; and the
droplet with the flattest bottom we simulated became susceptible to instabilities in
its final moments of drying, leading us to lose trust in the model for particularly
flat, late-stage DiWs. Because of this, and of the additional computation cost as-
sociated with dynamically varying the evaporative flux, we believe it is important
to assess the need for a full two-sided DiW simulation before committing to one.
The conditions under which we observe the numerical instability happen to coincide
with the parameter range where dynamic-flux droplets are most similar to static-flux
droplets, that is C ≈ 2, and also only appeared for α > 0.3, β <= −0.03. For these
reasons, we suggest that it makes sense, if the researcher requires very late-stage
data (> 97% ttd), to use static evaporation when the experimental C parameter lies
in the range 2 < C < 5, α is non-zero, and β is negative.
In the final chapter, we shall look at the case of a droplet that has been printed
asymmetrically and use linear stability analysis to try to understand the rare – but
nonetheless experimentally observed – phenomenon of an unstable asymmetrical
droplet drying in a well.
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Stability of Asymmetrical Droplets

6.1 Non-Axisymmetric Droplets

In the DiW experiments, the droplet from the inkjet nozzle rarely lands exactly in
the middle of the well and the droplet often overflows the edges of the well. In
the vast majority of cases, the liquid relaxes back to an axisymmetric cap bounded
at the edge of the well as the liquid evaporates. For certain values of alpha and
beta, however, an asymmetry in the droplet is observed to grow with time. In rare
cases it has also been observed that an initially symmetric droplet spontaneously
develops an asymmetric profile. It is usually very difficult to investigate the process
experimentally; the rate of volume loss is hard to calculate for a skewed droplet, and
the droplet often overflows the well if the perturbation grows straight after printing.
However, the perturbation does more rarely occur part way through the drying,
figure 6.1. The origin of this phenomenon is not entirely known, but may be related
to small imperfections in well manufacture. Examining the cross section, figure 6.2,
reveals that the asymmetry begins just as the peak of the droplet passes through
the plane of the top of the well and the interface starts to slip down the left hand
side wall.

Figure 6.1: A DiW with an asymmetrical perturbation that emerges part way
through the drying. Image courtesy of Zhida Huang.
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Figure 6.2: A cross section (one of many possible choices) of the DiW shown in
figure 6.1. Image courtesy of Zhida Huang.

In order to investigate the stability conditions on the droplet we will perform a linear
stability analysis (LSA) on the system equations. We shall start with an analysis of
the two-dimensional binary problem introduced in chapter 4 (although we did not
enter into much detail about it), because it is significantly simpler than the full three-
dimensional cylindrical simulation and we would like to perform some numerical
calculations. Later in this chapter we will state the analogous lubrication equations
for a 3D non-axisymmetric droplet, but it will prove beyond the computational
power of our machinery to perform the full simulation.
The following kind of linear stability analysis is used a number of other works on
droplet and other thin films [138, 139, 140, 141, 142], but has not been performed
on an evaporating DiW before. There are questions about whether some of the as-
sumptions hold; while a flat-interface assumption is probably reasonable, given that
we are operating within the lubrication approximation, the frozen-interface assump-
tion (quasi-steady-state) may not hold when dealing with very volatile chemicals –
their evaporation rate may be fast enough to contradict the imposition of a frozen
interface. In this chapter we nonetheless intend to make some analytical progress
under these assumptions to understand some of the overall features of instability in
DiWs. We also hope to offer a mathematical starting point for future researchers to
investigate full, three-dimensional DiW instability.

6.1.1 Two-Dimensional Cartesian Coordinates

Deriving Dispersion Relations

We first apply the quasi-steady-state approximation in order to assume that the
growth rate of the perturbation is much faster than the evolution of the base state
variables, h and χ. We freeze our solution at an instantaneous time, t∗, and perform
the LSA on this frozen system. We also neglect spatial variation in the system,
instead perturbing a uniform base state solution {hb, χb}. In our system, there is
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only one spatially uniform base state for the height profile that satisfies the bound-
ary conditions: hb = 1. We have freedom to choose any composition base state
(we usually impose a uniform initial condition anyway), χb = χ0. While spatial
uniformity seems like a reductionist assumption, we are initially only searching for
a qualitative description of droplet asymmetry behaviour – why are some system
stable and others not?. The works cited above all make this assumption too; even
though the majority of them apply a LSA to a thin film without the DiW boundary
conditions, it will be informative to compare our results to theirs.
We then linearise the lubrication equations 4.44 and 4.45 about the base states at
our frozen time t = t∗ with normal modes,

h̃ = hb + δhe
ikx−ωt , (6.1)

χ̃ = χb + δχe
ikx−ωt , (6.2)

where we have applied a perturbation of wavelength k (a real number such that
k = nπ

2
in order to satisfy the boundary condition h = 1 at x = 1) and growth rate

ω (in general a complex number). We search for the ω-k dispersion relation that
emerges from the system when we substitute h̃ and χ̃ into equation 4.29:

ω(k) =
C
3
k4 − δχ

δh

M
2
k2 . (6.3)

This parameter indicates whether a perturbation will grow or shrink by its sign – if it
is positive the perturbation dies out, if it is negative the perturbation will grow. We
present the dispersion relation in figure 6.3 for two values of the perturbation ratio,
δh
δχ
. This reveals that capillary forces act to stabilise perturbations and are stronger

for large wavenumbers, while Marangoni forces serve to drive the instability.
There is an equivalent dispersion relation that emerges from the composition equa-
tion,

ω =
k2

Pe
, (6.4)

which indicates that χ, through diffusion, always seeks to stabilise after a small
perturbation.
Figure 6.3 also reveals the dependence of equation 6.3 on the perturbation ratio.

(a)
δχ
δh

= 0.05 (b)
δχ
δh

= 0.2

Figure 6.3: The dispersion relation (equation 6.3) for two different values of the
ratio δχ

δh
. The dashed vertical line indicates where k = π, representing the smallest

possible asymmetrical perturbation wavelength.
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Figure 6.4: The dispersion relation with δχ
δh

= 1.

Of course, the assumption that we start at h = 1, χ = χ0 and have no subse-
quent spatial variation in h is not generally useful: the experiments identify that
asymmetrical perturbations can grow at a number of different points in the droplet
evaporation, when the droplets shape is usually not flat. While we may be happy
to approximate these with equation 6.3 (the droplet is indeed always thin, having
a very small aspect ratio), there might also be situations in which we would prefer
to obtain a more general and accurate description of asymmetrical instability in a
DiW. This is especially true for analysing the stability of W-shaped droplets at later
stages, when curvature plays a larger role in its evolution.
However, we encounter a problem if we try to do this. If we set the height base state
hb = hb(x) and work through the equivalent derivation we arrive at a contradictory
expression for the dispersion relation, in which ω is a function not just of k, but
also of x through h. This contradicts the original assumption that ω was solely
dependant on k, by which we differentiated hb + δh.
One possible way to analyse a non-flat droplet is to introduce a perturbation that
itself varies spatially (in addition to its sinusoidal form):

δh = δhf(x)e
ikx−ωt, (6.5)

where we seek a function f(x) that cancels with the height base state to give a
dispersion relation ω(k). If we start by perturbing the base state that corresponds
to the initial parabolic shape of the droplet, the first term of the equation gives a
dispersion relation

Re(ω)(k) =
C
3

(
3h2

b

∂hb

∂x

(d3f
dx3

− 3
df

dx
k2
)

+ h3
b

(
− 3

d2f

dx2
k2 + fk4

)
+ h3

b

(d4f
dx4

− 3
d2f

dx2
k2
))

. (6.6)

We can immediately see that this approach will be fruitless – there is no function
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f(x) that will cancel with hb(x) such that we may obtain the desired dispersion
relation. However, we can set hb = f = 1 and retrieve the first term of equation 6.3.
Another possible approach is to express the base state and the perturbation as
Fourier series and plug them into the lubrication equations. We make use of the
known result for x2,

x2 =
2

3
+

4

π2

∞∑
n=1

(−1)n

n2
cos(nπx) , (6.7)

and write the perturbation as

δh =
∞∑

m=0

δm sin(mπx)e−ωmt . (6.8)

Inserting these expressions into the first term of equation 4.44 gives

∞∑
m=0

−δmωm

2i
(eimπx − e−imπx)e−ωmt =

− (1− a)3

π2

[
3
( ∞∑

n=1

(−1)ni

n
(einπx − e−inπx)

)
·

( ∞∑
n=1

(−1)n

n
(einπx + e−inπx)

)2
·

( ∞∑
n=1

δnn
3(einπx + e−inπx)e−ωnt

)
+ 16

( ∞∑
n=1

(−1)ni

n2
(einπx + e−inπx)
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In theory, we could find an expression for the real part of the growth parameter of
each mode, ωn, such that the spatial variation from x cancels out. In the analysis
in this chapter, we consider it enough to use the simpler expression that assumes
a flat film, equations 6.3 and 6.4. For the purpose of this thesis, we simply want
to understand why some systems develop asymmetry and we are not attempting to
match growth rates quantitatively; we will see that these equations can offer some
insight into the qualitative asymmetrical instability behaviour of simple, 2D DiWs.

Short-Time Simulation

We can underline equations 6.3 and 6.4 with some simulations; we start with those
in figure 6.5, which have a uniform initial height and composition profile with a
small sinusoidal perturbation,

δh = δχ = −δ sin(πx) . (6.10)
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We then run the usual simulation, without evaporation, for a short time. Of course,
strictly speaking, the dispersion relation no longer applies once we have a large
perturbation, or one that evolves away from a perfect sine curve; we will indeed
see this behaviour, even after short time. The simulations are only intended to
give us an indication of the validity of our derived dispersion relations. In this
section, we use red curves to symbolise the initial perturbed state, yellow–orange
for an intermediate step, and blue for the final curve that we consider (e.g. the flat
interface in figure 6.5a).

(a) β = 0 (b) β = −0.06

Figure 6.5: Short-time evolution of the uniform base state under a perturbation for
two values of β. Having a negative value of β drives the imposed instability over
the short period of time.

It is clear from figure 6.5 that, while a droplet without Marangoni forces equilibrates
quickly to the flat base state, the perturbation in a binary droplet with a large surface
tension difference grows.
We might be surprised to see the droplet’s asymmetry1 become asymmetrical and
no longer pass through the point (0, 1), especially given that ∂h

∂t
is a symmetrical

PDE. This phenomenon is likely caused by the evolution of the composition variable,
whose evolution equation (equation 4.44) contains a term in 1

h
. This term will lead

to an asymmetrical evolution of the composition because the perturbation in h is
odd around the z-axis.
The short-time evolution of the composition is presented in figure 6.6. We see that
the perturbation shrinks in both cases, as predicted by equation 6.4, and the system
with Marangoni effects briefly exhibits an off-central perturbation (thanks to the 1

h

term in the equation).

1for the avoidance of ambiguity, we should refer to this as odd-function symmetry. Figure
6.5b depicts a sinusoidal, odd, but technically symmetrical function that evolves into a truly
asymmetrical function
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(a) β = 0 (b) β = −0.06

Figure 6.6: Short-time evolution of the composition. Here Marangoni forces do not
have a large effect on the evolution of the perturbation in the composition; in both
cases the perturbation tends to decrease over the short time period.

There is some slightly unexpected behaviour in the case of positive β, shown in
figure 6.7. The prediction in equation 6.3 is initially fulfilled and the perturbation
shrinks. However, it subsequently inverts and begins to grow, despite the compo-
sition variable continuing to die out. We can understand the growth after the sign
inversion by noticing that the ratio δχ

δh
becomes negative and therefore ω < 0, but

what about the origin of the inversion itself? When β is positive, the surface ten-
sion is proportional to −χ, meaning liquid will be drawn away from regions of large
χ. We can see this by comparing figures 6.7a and 6.7b – where χ is largest, h is
depleted, and where χ is smallest, h increases.

(a) height (b) composition

Figure 6.7: Short-time evolution of the height and composition of a droplet with β =
0.03. The dotted curve represents an instant in which the perturbed interface has
become deflected to equilibrium at some places (near the centre) and has remained
perturbed at others (near the edge). Positive values of β appear to invert the
perturbation of the interface eventually, due to the interaction with the perturbed
composition.

We can conclude, then, that equations 6.3 and 6.4 describe the instantaneous be-
haviour of uniform base states accurately and give insight into the evolution of
perturbations over a short timescale. While this analysis clearly cannot describe
the asymmetry observed in some experiments quantitatively, it does indicate that
a critical factor in studying these unstable droplets is the Marangoni effect and the
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magnitude of parameter M. For future investigation, it would be desirable to prop-
erly compare simulation with experiment to determine the quantitative interaction
of the Marangoni effect and asymmetrical instability. For this, we would need a set
of experimental results and a fully three-dimensional model of the system.

6.1.2 Three-Dimensional Cylindrical Coordinates

A fully three-dimensional cylindrical treatment of the DiW system gives rise to
equations that depend on the azimuthal coordinate θ. Using the same derivation
method as in chapter 3, we arrive at

∂h
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= −1

r

( ∂

∂r
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− 1√
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(6.11)
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where the radial and azimuthal velocities are given by

u = −C
( ∂

∂r

[1
r

∂

∂r

[
r
∂h

∂r

]]
+

∂

∂r

[ 1
r2

∂2h

∂θ2

])(1
2
z2 − hz

)
+

M
2

∂χ

∂r
z (6.13)
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and the bar indicates that they are averaged over the droplet height.
We might conceive of initialising the 3D droplet as per figure 6.8, whose interface
has the form

hasym(r, θ) = a+ (1− a)r2 + δ r(r − 1)cos(θ) . (6.15)
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Figure 6.8: One possible initial condition of the perturbed 3D droplet. Perturbation
is exaggerated for visibility.

A full 3D simulation would be the logical next step for an analysis into the evolution
of asymmetrical DiWs, but is beyond the scope of this project.

6.2 Conclusion

In our final chapter we have examined the properties of the DiW system under the
inclusion of small perturbations to both the height and composition variables. Using
a linear stability analysis on a uniform base state, we were able to derive a dispersion
relation between the growth rate and wavenumber of a sinusoidal perturbation that,
critically, depends on the capillary and Marangoni numbers of the DiW system.
We tested the perturbation’s growth/death condition using a short-time simulation
on a flat DiW with a single-wavelength sinusoidal perturbation and found that our
model’s predictions were accurate: droplets with no Marangoni forces equilibrated
back to uniformity; droplets with negative β exhibited initial destabilisation which
slowed as the composition re-equilibrated; and those with positive β initially flat-
tened, only for the perturbation to invert and subsequently grow.
This model comprises a starting point for future investigation into the instability of
asymmetrical/non-axisymmetrical DiWs, which would require a fully 3D model and
simulation. We ended this chapter by suggesting such a model, which now depends
on the azimuthal coordinate θ.
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Conclusion

In this thesis, we have conducted a theoretical and numerical investigation into the
evaporation of a tiny droplet from a well. We have simulated the physics of pure
droplets, binary droplets, and the vapour concentration field to study a range of
important properties of these droplets in a well (DiWs), including the shape of the
droplet-gas interface as it dries, the flow field inside the droplet, and its complex
behaviour under Marangoni forces and a viscosity that changes with composition
distribution.
We established our central research questions in chapter 1: we wanted to construct a
model for a DiW that could probe the coffee-ring effect, noticing that there were no
complete mathematical models for this problem that accounted for large variation
in the capillary number. We wondered to what extent it would be possible to model
conditions under which the coffee-ringe effect (CRE) may be suppressed in both pure
and binary droplets, composed of different liquids and printed in a well of different
sizes. And, moving away from industrial application, we simply asked whether we
would be able to replicate experimental results; could we generate qualitatively, or
even quantitatively, accurate interface shapes compared to our colleagues’ results in
the lab.

7.1 Conclusions

Chapter 3 focused on pure DiWs and the derivation of a lubrication model to simu-
late their evolution. The main result from this chapter was the appearance of three
distinct regions of parameter C, in which we saw the droplet assume a W-, U-, or
C-shaped profile; we successfully built a model and simulation that was capable of
reproducing generic, qualitative properties of simple droplets observed in experi-
ments. Furthermore, we were able to match our model to experimental results (the
correlation only weakening towards the extreme outer edge of the droplet), proving
that the shapes we can produce are real and observable in experiment; while there is
some discrepancy in the quantitative agreement between experimental and theoret-
ical values of C, we are nonetheless confident in the qualitative ability of our model
to predict complex droplet surface morphology.
In chapter 2, we saw that one of the key predictors of deposit shape in a well was
the droplet shape at touchdown; Vlasko-Vlasov et al.’s paper [38] showed that the
sticking and slipping of the inner contact line (that is, the touchdown point) left a
deposit of concentric rings. We are confident, then, that our model is able to inform
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the general conditions by which one might avoid these kinds of deposits in a pixel
– conditions that favour W-shapes are likely to produce stronger ring patters than
those that favour U- or C-shapes, which are more likely to result in central disk
deposits.
It is not only the droplet shape that gives us information on the final deposit,
however. We saw, in works from Li et al. and Ooi et al. [45, 17], that flow velocity
also plays a role, the CRE being associated with large flow speeds near the edge of
the droplet, particularly towards the end of the drying. Our model is able to reveal
the velocity field of the DiW across all values of C; it can show the conditions under
which we see examples of faster radial flows early in the drying and rush-hour effects
late in the drying.
Chapter 4 moved past the simple pure droplet to extend the model to binary
droplets. We first introduced two new parameters, α and β, to represent the evap-
oration and surface tension differences between the two components; now we had
a model with three degrees of freedom. In this chapter we examined the effects
of varying these three parameters on the interface shape and velocity field in or-
der to catalogue a broader range of combinations of conditions for controlling the
deposit. We compared our simulation results to experimental data again, having
similar qualitative success with the overall shape as in the pure droplet case.
Recalling Hu and Larson’s extensive research on the Marangoni effect in sessile
droplets [7, 68], we were pleased to mirror their general CRE suppression result
(theirs obtained by finite element analysis (FEA), ours by method of lines (MoL)) –
we succeeded in transforming a W-shaped DiW into a flat-bottomed one by including
surface tension gradients that drew liquid from the centre of the droplet to the edge.
There is some small hole in the literature at this point – out of a desire to eliminate
the CRE for important and valid industrial purposes, the field has largely overlooked
the inverse effect. The Marangoni effect does not ubiquitously act to suppress ring
stains, because it is represented by a signed quantity. We found that flipping the
sign of β led to an opposite effect wherein W-shape droplets had their curvature
enhanced, by proxy supporting the CRE. Of course, this is simple to achieve in the-
oretical research and somewhat more difficult in experimental work, but we believe
that a complete understanding (both mathematical and practical) of the Marangoni
effect in DiWs will not emerge until we grapple with Marangoni flows that suppress
and enhance CRE-type behaviour.
Another feature of the Marangoni effect we discussed in the literature review is the
recirculating flow; in fact it is often held largely responsible for suppression of the
CRE. Our model was able to predict the emergence of regions where the flow turned
inwards, showing that for some range of parameters they disappear and for others
they are present. Although we only observed full recirculation for a small range
of the parameter space (namely, large C and negative β), all DiWs with C > 0.1
contained regions where the flow was directed towards the centre.
In chapter 4, we encountered, quite by accident, the phenomenon of a dimpled so-
lution in the limiting case of α −→ 0, i.e. when one component is involatile. Indeed,
we advanced our model to include scenarios in which one component is much more
viscous than the other, discovering that the magnitude of the variation in viscosity
had a large influence on the location of touchdown. Specifically, the greater the vis-
cosity of the less volatile component, the further from the centre the droplet touched
down. This represents another oversight in the small body of literature on DiWs

Chapter 7 Seth Richard Price 139



Modelling the Evaporation of a Binary Droplet in a Well

(especially binary ones); we mentioned that dimpled solutions in lubrication-limited
systems are found in closely related fields [127, 128, 129, 130, 131], but not specif-
ically in work on droplets or DiWs, despite the fact that such a phenomenon may
be useful industrially and conceptually in understanding the behaviour of droplet
deposits, as we discussed in this chapter.
Chapter 5 was motivated by an acknowledgement that the evaporative flux of the
two components in a binary droplet could not, in general, be described accurately
by the simple Popov form we had previously been using. We built a two-sided
simulation of a three-dimensional, axisymmetric droplet; while it was not possible
to solve this model analytically, we constructed a FEM simulation that tracked the
evolution of the vapour field as the droplet dried. We demonstrated its accuracy by
reproducing Popov’s form of the flux [13] that diverges at the contact line.
We proceeded to compare what we called static- and dynamic-flux simulations, the
former in which we used the Popov form throughout and the latter in which we
updated the flux every time a specific condition was met. Dynamic flux tended to
act against the effects we had observed in chapter 4; that is, the evaporative flux
increased and decreased according to the locations of peaks and troughs respectively,
causing them to be less pronounced over the course of the drying. While the overall
impact of the solutal Marangoni effect was not negated, it was certainly suppressed.
This Marangoni suppression was larger for different values of the parameters; for
C ≈ 2, for example, it was much smaller than for the other values we tested. This
indicates that a full dynamic-flux simulation (which is quite computationally expen-
sive) may not be necessary to model DiWs over the whole parameter space – for
certain droplet/well combinations it would be acceptable (depending on precision
requirements) to revert to a static-flux simulation.
From the small dataset at our disposal, we were able to fit a simulation to experi-
mental data with parameters much closer to those provided from the experiment. It
was very accurate near the centre of the droplet and also in the early and mid-stages
of drying, only losing accuracy towards the end and near the edge. We are confi-
dent that this dynamic-flux model could be refined through access to a larger set of
experimental data to further test the idea that including dynamic flux increases the
model’s accuracy at predicting some DiWs.
Finally, inspired by a chance observation in the lab, we spent chapter 6 briefly
exploring the instability dynamics of a droplet that prints asymmetrically. We used
a linear stability analysis to determine the conditions under which a droplet in a 2D
square well might become asymmetrically unstable, concluding that the Marangoni
term in the height lubrication equation was responsible for asymmetrical growth,
in accordance with others who have studied the instability of thin films [142]. We
went on to show that the dispersion relations can predict the asymmetry behaviour
of 2D DiWs that are initialised with a perturbation by analysing some short-time
simulations.

7.2 Drawbacks and Future Research

There is much room for future work in the field of evaporating pure and binary
DiWs. Primarily, this work is limited by the small body of experimental data with
which to compare a theoretical model, particularly for binary DiWs. The main
drawback of this project is that consistent quantitative agreement with the current
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selection of data sets is elusive – as long as a discrepancy between experimental and
theoretical values of C exists, a fully predictive model will be out of reach. The
elephant in the room for this project in particular is the COVID-19 pandemic, the
social restrictions for which started in March 2020 in the UK. Because of its nature
as a theoretical and numerical thesis, this project has not been affected to the same
extent as those that are lab-based, however the main limitations it has suffered are
precisely because the laboratory work was suspended for such a long time. Although
we were able to analyse and compare with the small range of data on pure droplets
that already existed, experimental work on binary droplets was paused.
Due to the complexity of the three-dimensional parameter space, and with the in-
tention of eliminating the experimental–theoretical discrepancy in these values, we
consider that a more rigorous data fitting procedure ought to be adopted for future
analysis. In chapter 4 we described a fitting method that started with the exper-
imental values of parameter and slowly changed them until we obtained a visual
match. An example of a much better method would be to train a neural network to
understand the parameter space (it could learn on a set of simulated curves, vary-
ing parameters C, α, β, χ0, a, Pe, and the sampled time points) and predict the
theoretical values of C, α, and β that correspond to experimental data.
Secondarily, there remains work to be done on the direct link between a DiW surface
profile and the material deposit. While we know, as we have stated at multiple points
in this report, that W-shaped profiles lead to strong coffee rings (with a mound in
the middle too, once the dimple evaporates) and U-shapes with lower radial flow
create more uniform deposits, for the theoretician there is still some hand-waving
and guesswork in this process. For example, we are unable to offer a numerical
relationship between the interface shape (for example, quantifying the curvature
at the touchdown point) and the density of a given solid deposit; although we
are confident the argument is qualitatively correct, more study is necessary on the
mechanisms that provoke the CRE in DiWs. A strength of our method is the ability
to set α = 1 and study a system in which one component is involatile. Because we
can point to the final shape (before the second, non-evaporative relaxation stage) as
an indicator of the deposit depth, we believe it would be worthwhile to investigate
this limit further.
Another drawback of this project is that it is limited to only consider relatively
simple scenarios; for example, we only give a treatment of binary droplets and do
not advance to tertiary ones. In this respect, our project offers a basic fundamental
model that could be built upon for future research into the dynamics of DiWs:
including multiple chemical components beyond just two; exploring the full effect of
polymer viscosity on dimpled solutions; and more thoroughly analysing the impact
of dynamic flux.
Including further chemical components would, of course, prove an additional chal-
lenge to future researchers; many of the assumptions we have made in the model in
this work would break down if we were to move to a tertiary system. For example,
we have consistently assumed ideal mixing, which is already one assumption too far
for some binary systems – how much more for triple-component droplets. We have
also neglected thermal Marangoni effects, an assumption that is unlikely to hold for
much more complicated droplets. Therefore many assumption made in this thesis
may have to be reevaluated before moving to tertiary systems.
We also acknowledge that we were unable to locate the source of the sinusoidal
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numerical instability that arose at the end of the drying for a small range of C
values. The wave pattern assumed by the evaporative flux, although detrimental to
the quality of the simulation, is an intriguing occurrence and we are sure finding its
origin would have led to a deeper understanding of the two-sided DiW system.
Finally, there remains the interesting problem of the asymmetrically unstable droplets.
While we made progress in understanding the forces that drive and restrain asym-
metry in a DiW, our analysis was limited to a 2D square well and approximated
with a flat interface. In order to understand the origins of non-axisymmetric inter-
faces in DiWs fully, we need a three-dimensional (r, θ, z) model that solves the two
lubrication equations and a set of experimental results to compare with.

7.3 Final Reflections

We have come a long way, then, from watching paint dry, spilling espressos on
tables, and finding excuses to have another glass of wine at a wedding. If my
conversation partners from chapter 1 are still with me after 20 minutes or so, a final
question often signals the end of their brief foray into science: “so, how is all this
going to change the world?” There is always a risk at this stage of either over- or
underselling the impact of the thesis and its contribution to our understanding of
the universe. However, I enjoy articulating something about the beauty of a simple
mathematical model that describes a niche part of the world. We started with a
single equation and a single dimensionless parameter that was capable of qualitative
and quantitative imitation of pure droplets drying in wells. And even when we
advanced the model with new parameters and a new equation for binary droplets,
we discovered interesting and unexpected behaviour that helps us to understand
the physics of more complex systems: mixtures of chemicals whose surface tensions
create new flows; the relevance of a dynamically changing evaporative flux; and the
conditions under which our droplets become wonky and even overflow.
As for technological implications, I would also mention that my project, along with
the experimental work performed by Zhida Huang and Teresa Colosimo, has made
progress in designing fluids that give uniform deposits when drying in pixels. My
interrogator may not notice the direct impact on her next iPhone, but between the
experimental and theoretical contributions of this work and others, we are well on
the way towards a more efficient manufacturing process for organic light emitting
diode displays.
After our conversation, I usually leave hoping that I have been able to inspire a stir
of excitement about the study and science of small and seemingly insignificant parts
of the world; I hope that the reader has also enjoyed our journey through the world
of droplets drying in wells.
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