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ABSTRACT

For years, geotechnical engineers have been concerned about expansive soils. Expansive soils are characterized by large 
volumetric changes related to variations in moisture content. Variations in soil water content may take place naturally 
during seasonal changes or maybe manmade caused by dewatering activities. The quantity of shrinkage and swell is 
influenced by numerous parameters, including the quantity of minerals clay in the soil, moisture content, dry density, and 
climate change. In most countries, numerous structures, including pavements and buildings, are damaged as a result of 
this shrinkage/swelling. Several ground improvement techniques are available for stabilizing expansive soil to modify its 
engineering performance. These methods include soil replacement, mixing with chemical additives, and soil reinforcement. 
The present study expressions the effect of nano-lime (i.e., 0.1, 0.3, 0.5, 0.7, 1.0, 2.0 and 3.0%), and lime (1, 3, 5, 8, and 10%), 
as chemical additive to improve clayey soil (i.e., illite and kaolinite). The effect of nano-lime and lime were investigated 
using Atterberg’s limits tests. The Atterberg limits were screening significant changes in the proportion of additional nano-
lime and lime. The results show that less amount of nano-lime (1% and 2% for illite and kaolinite respectively) decreased 
the plastic limit, while for lime it was reported 8% for illite and 5% for kaolinite respectively. In conclusion, less quantity 
of nano-lime (1-2%) is able to improve soil parameters.
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INTRODUCTION

The application of nanotechnology in various fields is 
receiving widespread attention. Nanotechnology is the 
process of re-engineering materials and devices at the 
atomic level. In other words, nanotechnology is a field 
driven by advances in basic chemistry and physics research, 
in which atomic and molecular understanding is applied to 
create materials and structures that perform tasks that are not 
achievable using the materials in their classic macroscopic 
form (Firoozi et al. 2014; Alsharef et al. 2016; Mobasser et 
al. 2016; Firoozi et al. 2014).

The use of additives is beneficial since cost-
effectiveness is one of the most significant requirements 
for civil engineering projects. Land that has to be improved 
can sometimes cover a wide area and span long distances. 
As a result, the necessity to keep the project on budget 
necessitates the use of low-cost materials. Industrial by-
products or garbage have also been widely explored to 
meet this requirement and these highlighted an essential 
question (Firoozi et al. 2017). Hazardous chemical leaching 
into the environment has caused health problems, hence 
another key condition for candidate materials for soil 
improvement is that they must not leach toxic chemicals 

into the environment. An easily interpretable plasticity 
chart, on the other hand, is provided for using the Atterberg 
limits of clays as a tool for identifying them and researching 
their physical properties. Because the required equipment 
is simple and inexpensive, this deterministic technique has 
obvious appeal for under-equipped laboratories and even 
temporary field stations. The chart was created primarily for 
geologists working in developing nations, where the main 
interest in clay minerals is their potential for commercial 
exploitation, and the emphasis is on recognizing industrial 
clay types (Chittoori et al. 2013; Taha et al. 2013; Kazemian 
2010; Chittoori, 2003).

Improvement of an extremely highly plastic expansive 
clay with hydrated lime and fly ash studied by Süt Ünver 
et al. (2021). They mixed clayey with additional 1, 3, 5, 
7, and 9% of lime and 5%, 10%, 15, 20, and 25% of fly 
ash. They showed that lime content reducing the liquid 
limit and plasticity index ranged from 4 to 5%, whereas 
approximately 8% lime was necessary to attain an allowable 
swell percentage, whereas, fly ash did not effectively 
improve the extremely highly plastic clay in reasonable 
amounts (20 to 25%) in terms of its swelling properties. 
Sudhakar et al. (2021) studied performance of quarry dust 
treated expansive clay for road foundations. They added 
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the quarry dust (10-25%) to clay samples. They found 
that the unconfined compressive strength (UCS) as well as 
the maximum dry density increases up to 85% soil + 15% 
quarry dust proportion. Hence, the swell potential decreases 
from 14.73 to 7.17% at 15% of quarry dust.

Improving engineering characteristics of expansive soils 
using industry waste as a sustainable application for reuse 
of bagasse ash is investigated by Dang et al. (2021). Their 
results revealed that addition of bagasse ash (BA), lime, and 
in particular, combined BA-lime remarkably improved the 
maximum strength (815%), the bearing capacity (9.2 times), 
the compressibility (83%), and the 100% swell properties of 
stabilized soils due to rich amorphous silica properties of BA 
waste that promoted higher pozzolanic reactivities of BA-
lime-soil-mixtures and therefore, enhanced the engineering 
characteristics of treated soils. Also, they showed that a 
proper combination of BA waste and lime, as a stabilizing 
additive, can effectively enhance the engineering properties 
of expansive soil while addressing the environmental 
impact of BA waste disposal. Zha et al. (2021) considered 
engineering properties of expansive soil stabilized by 
physically amended titanium gypsum. They found that 
the coarse particles of the soil increased and the plasticity 
index, swelling potential shrinkage, and compression index 
decreased while the strength characteristics of unconfined 
compressive strength, cohesion and internal friction 
angle of the stabilized soil were significantly improved. 
They recommended 7 days curing time for stabilizing the 
expansive soil. Also, stabilized soil at 25% titanium gypsum 
admixture can satisfy the requirements of the Chinese 
standard for subgrades below Grade II.

Improvement of engineering properties of expansive 
soil using liming leather waste ash examined by Parihar & 
Gupta (2021). They observed that the liming leather waste 
ash contains cementitious characteristics of lime and silica 
combined and can substantially reduce the plasticity and 
swell-shrink behavior of the soil and improve its strength 
and bearing characteristics. The UCS and California bearing 
ratio (CBR) values have also shown multifold increase post 
curing with UCS and soaked CBR escalating by 278% and 
387% respectively.

Pachideh et al. (2021) evaluated the rate of engineering 
properties of expansive soils caused by the effect of 
varying curing temperature together with the addition of 
silica nanoparticles on lime. Based on the results, as the 
temperature decreases (especially temperatures below 20 
oC with storage duration shorter than 28 days), pozzolanic 
activities as well as growth process of cementitious mixtures 
(e.g., CSH and CAH nanostructures), was disrupted and 
after the addition of lime, the improvement process will be 
majorly affected by short-term reactions (cation exchange 
capacity and increase in Osmotic pressure). Conclusively, 
application of lime-silica nanoparticles (especially in cold 
weather and short curing duration) intensifies the lime’s 
effect and in addition, reduces the consumption of additives 
by 50%.

Elhakim et al. (2022) examined improvement of 
expansive soil using granulated scrap tires. Treated soil 
samples are mixed with different amounts of granulated 
scrap tires (5, 10, and 15% by weight of soil). The effects 
of mixing different percentages of either cement or lime 
(0 to 6% by soil weight) to the soil-granulated scrap tires 
mixture are also investigated. The test program included the 
index properties, maximum dry density/optimum moisture 
content, California bearing ratio, swelling potential, and 
unconfined compressive strength tests. They recommended 
the use of granulated scrap tires on the behavior of the 
tested swelling clay. Assessment of swelling and strength 
characteristics of expansive soil with addition of waste 
recycled product (WRP) studied by Choudhary et al. (2021). 
Their test results revealed that addition of WRP to expansive 
soil in appropriate proportion not only reduces its swelling 
and shrinkage behaviour but also there is a significant 
improvement in its strength and deformation characteristics. 
After adding 30% WRP (by dry weight of soil) in expansive 
soil, the percentage increase in subgrade modulus and 
unconfined compressive strength was 89.18% and 68.78%, 
respectively.

Fernandez et al. (2021) investigated performance 
of calcium lignosulfonate (CLS) as a stabilizer of highly 
expansive clay. CLS is a bio-based polymer, obtained as 
a sub-product of the paper industry. Clay was stabilized 
using 3.0 and 5.0% mass of CLS. The efficiency of CLS as 
a stabilizing agent was measured studying its influence on 
the physical properties of Clay (Atterberg limits, Cation 
Exchange Capacity, Specific Surface Area). Considerable 
reductions of the cation exchange capacity and the specific 
surface were registered. They showed that a relatively 
small amount of CLS might yield a reasonably satisfactory 
performance as a stabilizer, particularly in reducing the 
natural Clay’s swelling potential. Moreover, CLS induced 
an increase in the stiffness and strain at failure of Clay and a 
reduction in its porosity.

The effect of zeolite and cement stabilization on the 
mechanical behavior of expansive soils examined by 
Chenarboni et al. (2021). They used four different cement 
contents (6, 8, 10, and 12%) and various percentages of 
cement replacement with zeolite (0, 10, 30, 50, 70, and 
90%). They found that the addition of cement led to an 
increase in the maximum dry density and optimum moisture 
content of the soil-cement mixture, whereas increasing the 
zeolite content resulted in opposite trends. After 28 days of 
the curing period, cement replacement with 30% zeolite also 
resulted in achieving the maximum UCS. The maximum 
UCS improvement rate was obtained from 12% cement 
replaced with 30% zeolite in the specimen.

Limestone is broken down at high temperatures to form 
lime (i.e., over 900 oC). As a result, three forms of lime are 
produced: hydrated lime (calcium hydroxide–), quicklime 
(calcium oxide – CaO), and hydrated lime slurry; all of 
which can be used to treat soils. 
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Lime is formed when limestone is broken down at high 
temperatures (i.e., over 900 oC). As a result, three types of 
lime are produced: hydrated lime (calcium hydroxide–), 
quicklime (calcium oxide – CaO), and hydrated lime slurry, 
all of which are suitable for soil treatment.

Calcium carbonate (limestone–) is chemically 
transformed into calcium oxide to make quicklime. In 
addition, when quicklime reacts chemically with water, 
hydrated lime is formed. Strong cementitious connections 
are produced when hydrated lime and clay particles are 
joined. Lime has been demonstrated to reduce the swelling 
potential, liquid limit, plasticity index, and maximum dry 
density of soils while increasing the optimum water content. 
It also improves the workability and compact ability of 
subgrade soils. When lime is given to clayey soil, it causes 
the soil to become more alkaline. Depending on the type 
of clay being treated, these treatments can take a long time 
to complete. As a result, the lime-treated soil is allowed to 
cure for 1 to 4 days, as mellowing aids in the formation of a 
consistent or homogeneous mixture (Al-Rawas et al. 2005; 
Ismail, 2014). When lime is combined with water and the 
soluble silica and alumina in the clay, a chemical reaction 
occurs, resulting in the formation of new compounds. 
When coupled with water, its primary function is to alter 
particle structure and increase resistance to shrink-swell and 
moisture susceptibility. Particle binding and strength gain 
are secondary effects when clay is mixed with it. To obtain 
a homogenous, friable combination, a mellowing period 
of 1 to 4 days is recommended, because particle structure 
changes slowly depending on the type of clay employed. 
The following is a summary of these reactions:

Lime stabilization enhances soil engineering attributes 
such strength, resistance to fracture, fatigue, and permanent 
deformation, enhanced resilient properties, reduced 
swelling, and moisture-related damage resistance. The 
clays with moderate to high plasticity show the greatest 
improvements in these properties (Firoozi et al. 2017).

According to Al-Kiki et al. (2011) the properties 
of treated soil have an impact on strength increase over 
time. Soil pH, organic content, exchangeable sodium, 
clay mineralogy, natural drainage, weathering conditions, 
extractable iron, carbonates, and the silica-alumina ratio 
are some of the elements that influence strength increase. 
When lime was used to stabilize acidic soil, the compressive 
strength was lower than in alkaline soil (Ghobadi et al. 2014; 
Abdullah & Abdullah, 2013).

Finally, the goal of this study is to introduce nano-lime 
to use for civil engineering projects rather than traditional 
lime and show how with the use of very less amount of 
nano-lime (i.e., 1-2%) we will take the same results when 
using a higher proportion of lime (i.e., 5-8%) and with this 
method reduce the environmental effect. Plastic limit and 
liquid limit were two of the characteristics investigated in 
this study.

EXPERIMENTAL SETUP

Kaolinite and illite were the clay minerals and silica 
sand with fine-grained particles (45 microns) used in this 
research. Clayey samples (i.e., kaolinite and illite) were 
obtained in commercial packages to control the quality of 
the tests (Fig. 1). Kaolinite, illite, and silica was dried at 
100 ± 5 oC for over 24 hours in the laboratory oven (ASTM 
D2216 - 19). Properties of kaolinite, illite, nano-lime and 
hydrated lime are shown in Tables 1 to 4, which were 
obtained by conducting a series of geotechnical laboratory 
tests by using ASTM standards. Also, the arrangement and 
shapes of particles (kaolinite, illite, and nano-lime) are 
displayed in Figs. 2 to 4 which are captured by scanning 
electron microscope (SEM).

FIGURE 1. A typical commercial packs of kaolinite (S-300) and 
Illite (KM800)

FIGURE 2. Kaolinite elements under SEM
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FIGURE 2. Kaolinite elements under SEM 

 

 
FIGURE 3. Illite elements under SEM 

 

 
FIGURE 4. Nano-lime elements under SEM 

 
TABLE 1. Material's properties of clayey 

Illite Kaolinite 
Specific 

gravity (Gs) 
ASTM D854 

2.701 
Specific 

gravity (Gs) 
ASTM D854 

2.723 

pH 4.5 pH 4.0 

Moisture 
content 

Below 
2.0% 

Moisture 
content 

Below 
1.5% 

Average 
particle size 

2.5-
5.0µ 

60 mesh 
residue 

Below 
0.5% 

325 mesh 
residue 

Below 
3.0% 

100 mesh 
residue 

Below 
10% 

 
 

TABLE 2 . Chemical compositions of materials 
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Al2O3 2.71 Fe2O3 0.38 TiO2 1.36 
SiO2 97.29 K2O 1.34 MgO 1.76 

- - Al2O3 9.11 Fe2O3 1.85 
- - SiO2 85.76 K2O 8.21 

- - heat 
loss 3.41 SiO2 29.43 

- - - - Al2O3 52.37 

- - - - heat 
loss 5.02 

 
TABLE 3 . Chemical composition and surface area of 

nano-lime 

Formula Concentration (%) 

SSA (specific surface area) 
m2/g 93 

CaO 78.00 
Fe2O3 10.90 
Al2O3 8.50 
SiO2 3.00 

 
TABLE 4 . Chemical contents of hydrated lime 

Formula Concentration (%) 
Cao (OH)2 90.0 

MgO 3.0 
CaCO3 6.0 

As 11 p.p.m 
Pb 8 p.p.m 

SSA (specific surface area) 
m2/g 48 

 
 

SOIL MIXTURES 
 

Mixing nano-sized powders (i.e., nano-lime) with 
macro-sized particles (soil) is a key concern. Thus, 
in this research, the horizontal ball mill method was 
used for the mingling of soil through nano-lime 
(Firoozi et al. 2019). Mixing of the powders was 
performed at a laboratory scale. Forces created 
during mixing should be calculated to determine the 
viability of a nanoparticle mixing method. The 
degree of these forces is then determined to be larger 
than the adhesive or cohesive forces acting on 
powders. Mechanical forces are electrostatic and 
magnetic attraction, Van der Waals, and chemical 
forces are divided into two classes: first, forces that 
do not require physical bonds, such as, electrostatic, 
magnetic attraction, and Van der Waals forces. 
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FIGURE 3. Illite elements under SEM

FIGURE 4. 
NANO-LIME elements under SEM
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used for the mingling of soil through nano-lime 
(Firoozi et al. 2019). Mixing of the powders was 
performed at a laboratory scale. Forces created 
during mixing should be calculated to determine the 
viability of a nanoparticle mixing method. The 
degree of these forces is then determined to be larger 
than the adhesive or cohesive forces acting on 
powders. Mechanical forces are electrostatic and 
magnetic attraction, Van der Waals, and chemical 
forces are divided into two classes: first, forces that 
do not require physical bonds, such as, electrostatic, 
magnetic attraction, and Van der Waals forces. 
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the horizontal ball mill method was used for the mingling 
of soil through nano-lime (Firoozi et al. 2019). Mixing of 
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these forces is then determined to be larger than the adhesive 
or cohesive forces acting on powders. Mechanical forces are 
electrostatic and magnetic attraction, Van der Waals, and 
chemical forces are divided into two classes: first, forces 
that do not require physical bonds, such as, electrostatic, 
magnetic attraction, and Van der Waals forces. Second, 
forces that do require material bridges, such as liquid bonds 
and capillary attachment forces. In general, the first group 
is more important at low humidity, whereas the second 
progresses at moisture condition. As a result, molecular 
forces govern the adhesive and cohesive forces that act 
among elements in dry particle mixing, and their relevance 
reduces as particle size increases.

Interparticle forces are minimal in contrast to particle 
weight for relatively large elements (greater than 20 mm). 
These forces can be ignored in mixing, and the efficacy 
of a dry mingling procedure can be measured in terms of 
the applied macroscopic forces. These powders could be 
blended precisely, as long as the applied macroscopic forces, 
such as shear and compressive or extensional stresses, are 
significant enough to break any loosely shaped aggregates. 
In the most conditions, mixing can be accomplished by 
simply shaking the powder, with the mixing efficiency being 
the only consideration. The overall motion of particles must 
be appropriate for efficient mixing and can be measured in 
terms of particle paths’ spatial distribution.

The filling ratio and media ratio (Eqs. 3 & 4) were 
calculated in the first part of the inquiry to optimize the 
mixing process, and the kinetics of mixing was evaluated 
in the second part. The dried soil was then divided into two 
stages and blended with nano-lime. Pre-mixing or manual 
mixing took place for 20 minutes before the sample was 
placed into a 1.5 L plastic container. The mixture was then 
milled for one to 24 hours with steel balls (i.e., 5,8, and 12 
mm) (Figs. 5 & 6).

The intensity and size of segregation were used to 
assess mixing quality with absorption data collected from 
X-ray diffraction (XRD) and energy-dispersive X-ray 
spectroscopy (EDX) investigations. The corresponding de-
agglomeration was computed using particle size analysis 
which used Malvern Mastersizer 2000. Also, field-emission 
scanning electron microscopy (FESEM), and specific surface 
was capture to check the effects of particle size distribution. 

After six (6) hours of horizontal milling at 4 to 1 ratio of 
balls to the soil mix, FESEM examination revealed that 
nano-lime had an acceptable distribution. However, after 6 
hours of ball milling, the ratio of agglomeration of nano-
lime powder was reduced.

FIGURE 5. Planetary steel ball mills (5,8,12 mm)

FIGURE 6. Horizontal ball mill process was used in this study

50 per cent clay (kaolinite/illite) + 50 per cent silica 
sand was chosen for the test. The proportions of nano-lime 
chosen were (0, 0.1, 0.3, 0.5, 0.7, 1, 2, and 3% respectively) 
reactively of the total dry weight of the soil mixture and 
selected lime were (0, 1, 3,5, 8, and 10% respectively). 
Finally, according to the ASTM D4318-17 standard, 
the plastic limit (P.L.) and liquid limit (L.L.) tests were 
performed. 

RESULT AND DISCUSSION

The effects of nano-lime and hydrated lime content on the 
liquid limit (L.L.) and plasticity index (P.I.) soil mixtures 
are shown in Figs. 7 to 10. For both illite and kaolinite 
mixtures, the L.L. increased as the percentage of nano-lime 
and lime differed. The reason for that is nano-lime and lime 
absorb water to process chemical reactions between self 
and clay particles. However, water absorption was more 
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percentages due to the more cation exchange between illite 
particles. While the curve of P.L. decreased to a minimum 
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2%, and for kaolinite mixtures, the minimum P.L. index 
happens when nano-lime touched to 1%. For lime, the 
P.L. significant decreased by 8% and 5% for the illite and 
kaolinite mixture respectively. The high surface area of 
nano-lime and the unique properties of this nanomaterial are 
the causes of this behavior between nano-lime and lime. As 
a result, adding small amounts (nanomaterials) to the soil 
can improve its qualities even at modest doses.
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FIGURE 7. Effects of nano-lime on the L.L.

FIGURE 8. Effects of lime on the L.L.

FIGURE 9. Effects of nano-lime on the P.L.

FIGURE 10. Effects of lime on the P.L.

CONCLUSION

Hazardous chemical leaching (i.e., lime, cement, and fly 
ash) into the environment has caused health problems, 
hence another key condition for candidate materials for soil 
improvement is that they must not leach toxic chemicals into 
the environment. To meet the sustainable aspect demanded 
by modern infrastructures, civil engineering projects are 
increasingly turning to the usage of environmentally friendly 
materials. As a result, in the last two decades, the expansion 
of this concept, combined with rising global warming, has 
prompted concerns about the widespread use of Portland 
cement, fly ash, and lime, owing to the substantial carbon 
dioxide emissions associated with their manufacture 
and it is needed to reduce amount this kind of materials. 
The development of nanotechnology and nanomaterials 
concretes point to a shift in soil stabilizing techniques 
and other civil engineering projects. This study revealed 
that using nano-lime and hydrated lime as an additive to 
improve expansive clayey parameters (i.e., plastic limit). 
The results show that a few of amount nano-lime (1-2%) 
can significantly decrease the P.L. of clayey do high surface 
area and unique properties of nano-lime compare the same 
results that found with hydrated lime (5-8%). As it is clear 
the average amounts of used nano-lime was six times less. 
Finally, the present study has been done on commercial 
mineral clayey and it is need to do more examine on natural 
clayey with different percentages and recommend more 
comprehensive research on different regions as well as on 
montmorillonite minerals.
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