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ABSTRACT

Few studies have considered the functional relationship model for circular variables. Anuar has proposed a new
model of Circular Simultaneous Functional Relationship Model for equal variances. However, the confidence
interval for all parameter estimates in this model has not received any consideration in any literature. This paper
proposes the confidence interval for all parameter estimates of von Mises distribution in this model. The parameters
are estimated using minimum sum (ms) and polyroot function provided in (built-in package) Splus statistical software.
The parameters confidence may be obtained from parameter estimation. Those estimation values are obtained by
minimizing the negative value of the log-likelihood function. Then, the confidence interval for all parameters based
on the bootstrap method will be compared with the normal asymptotic confidence interval via simulation studies. It
is found that bootstrap method is the superior method by measuring the performance using coverage probability and
expected length. The confidence intervals are illustrated using real wind direction data of Bayan Lepas that collected at
16.3 m above ground level, latitude 05°18’N and longitude 100°16’E. The results showed that the estimate parameters
fall between the estimate interval, and we note that the method works well for this model.

Keywords: Bootstrap confidence interval; circular simultaneous functional relationship model; normal asymptotic
confidence interval; parameters estimate; von Mises distribution

ABSTRAK

Beberapa kajian telah mempertimbangkan model hubungan fungsian untuk pemboleh ubah membulat. Anuar telah
mencadangkan model baru iaitu Model Hubungan Fungsian Membulat Serentak dengan Andaian Ralat Varians
Sama. Walau bagaimanapun, selang keyakinan semua anggaran parameter untuk model ini tidak mendapat pertimbangan
di mana-mana kepustakaan. Kajian ini mencadangkan selang keyakinan untuk semua anggaran parameter taburan
von Mises dalam model ini. Parameter dianggarkan menggunakan fungsi minimum sum (ms) dan fungsi polyroot yang
dibekalkan (built-in) dalam perisian statistik Splus. Keyakinan parameter boleh didapati daripada anggaran parameter.
Nilai anggaran tersebut boleh diperoleh dengan meminimumkan nilai negatif fungsi kemungkinan log. Kemudian,
selang keyakinan terhadap semua anggaran parameter berdasarkan kaedah pembustrapan dibandingkan dengan kaedah
normal asimptot melalui kajian simulasi. Didapati kaedah pembustrapan adalah kaedah unggul dengan mengukur
prestasi menggunakan kebarangkalian liputan dan jangkaan panjang. Kaedah ini diilustrasikan menggunakan data
arah angin Bayan Lepas yang dikumpul pada 16.3 m di atas paras tanah, latitud 05°18’N dan longitud 100°16’E. Hasil
kajian menunjukkan bahawa semua anggaran parameter jatuh antara selang anggaran dan kaedah tersebut berfungsi
dengan baik untuk model ini.

Kata kunci: Anggaran parameter; model hubungan fungsian membulat serentak; selang keyakinan pembutstrapan;
selang keyakinan normal asimptot; taburan von Mises
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INTRODUCTION

Circular data or directional data has its own distributional
topologies. Circular data refer to a set of observations
measured in degree (0”,360”]0r radian (0,27]. It can
be shown on the circumference of a unit circle. The
analysis of circular variables or directional data has
gained substantial attention in recent years as several
phenomenon in real-life applications have been detected.
In 2020, the directional data has been applied by
Ahmad et al. to study a new crescent moon visibility
criterion. Directional data also can be found in many
scientific fields for instance in movement coordination
(Stock et al. 2018), physics and biology (Fitak, Caves
& Johnsen 2018), meteorology, medicine, and geology.
In meteorology, the applications of circular statistics
have been used by meteorologists to study the rate of
heavy rain in a year (Mardia & Jupp 2000) and wind
directions (Gatto & Jammalamadaka 2007). Next in
medicine, the application of medical has been discussed
by Jammalamadaka et al. (1986) that the recovery of
orthopaedic patients can be accessed by measuring
the angle of knee flexion. While geologist consider the
directional data used in modelling cross-bedding data
(Jones & James 1969) and earthquake displacement
direction (Rivest 1997).

The theories and the statistical methods of circular
data are developed over the years (Badarisam, Rambli
& Sidik 2020; Hussin et al. 2013; Mohamed et al. 2016;
Rambli et al. 2015, 2012). However, they can be further
improved and refined in many statistical aspects. The
first statistical review paper regarding the development
of circular data analysis was from Jupp and Mardia
(1989). As for the circular data case, Hassan (2010)
stated that due to the complexity of the circular data,
there are limited references to functional relationship
for circular variables. Satari et al. (2014) have developed
the functional relationship model for circular variables
to study the error in variables (EIV) for Down Mardia
(DM) circular regression model. The Circular Functional
Relationship Model (CFRM) proposed by Satari et al.
(2014) is an extension of the DM circular regression
model to the error in variables model and it involves the
study of the relationship between two circular variables.
In 2018, Anuar proposed the Circular Simultaneous
Functional Relationship Model (CSFRM) for equal error
variances. Anuar’s model is an extension model from
Satari et al. (2014)’s model, where the model involves
more than one circular dependent variable(y,,»,),
simultaneously with a circular independent variable,

(x,). Von Mises distribution is commonly used as a
distribution to describe the circular random variable. The
probability density function (pdf) is given by

f(0;px)= exp(lccos(ﬂ—u)), 0<0<27,6>0 (1)

1
271, (k)
where u is the mean direction and K is the concentration
parameter. /, (x) is the modified Bessel function of the
first kind and order zero and it can be clarified as

I, (k)=

This is a continuous probability distribution, and the
distribution will be converged to the uniform distribution
asx approaches 0. Meanwhile, as k increase, the
uniform distribution converges to the point distribution
and it is concentrated in the direction x. Hence, Fisher
(1993) and Mardia (1972) stated that it will approach
the normal distribution with the mean #% and variance.
Besides, the concentration parameter, ¥ approximation
to the normal distribution has also been tested by Moslim
et al. (2017) via a simulation study.

Confidence interval is often used in data analysis, and
it is known as the interval for the estimated point where
the true value of the parameter lies within the interval.
Based on reviewed literature, the confidence interval for
parameters estimates in Circular Simultaneous Functional
Relationship Model (CSFRM) for equal variances has
not been published in any literatures. Therefore, in this
paper, estimation of confidence interval is proposed for
all parameters of von Mises distribution using Normal
Asymptotic Confidence Interval (NACI) and Bootstrap
Confidence Interval (BCI) in CSFRM.

The angular parameters and slope parameter,
a,a,, B, B,,®,0, are estimated using minimum
sum (ms) method and concentration parameter, K is
estimated using polyroot method. Since, the close form
of estimators cannot be obtained, the minimum sum
(ms) function is used to estimate the parameters and
concentration parameter, K is estimated using polyroot
method. The simulation studies are conducted to access
the accuracy of the CSFRM for equal variances and
compared with both methods of NACI and BCI. Their
performance is measured using coverage probability
and expected length (Hassan, Zubairi & Hussin 2012;
Hassan et al. 2014; Letson & McCullough 1998). Then,
the proposed confidence interval for all parameters
estimates is illustrated by using real wind direction data
set.
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ESTIMATION OF PARAMETER USING ms AND POLYROOT
FUNCTION

The method for parameters’ estimation used in this
study are minimum sum (ms) and polyroot function.
The estimation of parameters is obtained directly by
applying those functions which were provided in the
circular statistics library of Splus statistical package.
The estimation values of parameters are estimated by
minimizing the negative value of the log-likelihood
function. Thus, to find the estimators for angular and
slope parameters, the ms function is applied to log-
likelihood function equations with a set of initial values
which correspond to the maximum value of the precision
parameter. Meanwhile, for polyroot function is based
on the power series expansion of the mean resultant
length and the estimation of concentration parameters is
obtained from roots of polynomial function.

CONFIDENCE INTERVAL BASED ON ASYMPTOTIC
DISTRIBUTION (NACI)
The confidence interval for all parameters is
constructed based on the variance-covariance matrix
derived from Fisher information matrix. Therefore,
the Fisher information matrix for the distribution of
a,,8,, B, By, @, ®, is defined by

1 (3)
EA(E)B(d],,EQ,é)]) '

&1aﬂ1’031 NN (dpﬂ]sd)])’

1
RA(R)B(, 5,6, ) @

&vﬁz’a}z ~N (022’ﬂ2»a32)’

The 100 (1-@)% confidence interval for 0?1,0?2,,81,
By, @, ®, is given by
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The 100 (1- @)% confidence interval for K is defined by

i % _ % -lan
[2{1 - @ s (,e)ﬂ ’ [zn(l - A(A’()j mys (;e)} ’
K K
where
A= 22 0.613637
o 2 16 96  A<O :
A(%)= o1 1 prosizesr. (12

——
28 8k* 8k°

CONFIDENCE INTERVAL OF @,,,,f3,, 3,,®,,®, BASED
ON BOOTSTRAP METHOD (BCI)

The following steps describe bootstrap method for
a, ey, f B0,
Step 1: Re-sampling. The sample size of m <n is
drawn with replacement from the original sample.
Next, the usual estimate of e, a,, 3, B,,®,, @, are the
&,,a,, B, B,,@,, and K is the K for CFRM. Then,
simulate values m of the observe variables X and y
using CSFRM with fixed values of «,,a,,f,,5,,0,,®,
and K based from the generated random samples
X,0and ¢.
Step 2: Estimate IZ‘I* with m values of the observed
variables X and y from CSFRM.
Step 3: Repecat step 1 and step 2 to obtain
bootstrap,B=200.The estimate isq,,....,a,,
Oyseees Oy Brseeaes Py Bosevnos By )50y, and @, , ...,
ceees D,
Step 4: Then, sort the bootstrap estimate
(Step 3) in ascending order to obtain
& € S6,0 < LA B <SP < < B,

& <..<dy, and &, <....< D,
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The 100 (l1-a)% confidence interval for
&19&2:ﬂ19ﬂ29@17@2 iS deﬁned by

(600 13)
(B i) (14)
(@) (15)

where [ = integer part of [lBaJrlj and m=B-1 and
a =0.05. 2 2

CONFIDENCE INTERVAL OF k" BASED ON BOOTSTRAP
METHOD (BCI)

The following steps describe bootstrap method for K :
Step 1: Re-sampling. Draw a random sample of size
m<n with replacement from the original sample. Let
K be the usual estimate of X for CFRM. Then, simulate
m values of the observe variables X and y using CFRM
with fixed values of K based from the generated random
samples X,5 and g,

Step 2: Estimate K| with m values of the observed
variables X and yfrom CFRM.

Step 3: Repeat step 1 and step 2 for obtaining a total of
B =200, where B is the number of bootstrap estimates.
Step 4: After the total of B estimates is obtained, the
bootstrap estimate N]*,..., N;, need to be sorted in
ascending order to obtain ’?1* <..< E; .The 100 (1-)%
confidence interval for is defined by

! (16)

where [ = integer part of (lBaJrlj and m=B-1 and
a =0.05. 2 2

SIMULATION STUDIES

Simulation study is done using SPlus statistical package
with different random samples size of n = 30,50,100
and set of concentration parameter, K = 10,15,20. Then,
the values of the observe variablesX and y,,y, are
calculated using the new circular simultaneous functional
relationship model for equal variance with fixed values
of @ =0.785, a, =0.524, B, =0.785, S, =0.524 and
for both @ is fixed values of @ =0.5. Afterwards, the

confidence intervals for all parameters are obtained at
confidence level a =0.05 based on methods NACI and
BCI. The efficiency of both methods NACI and BCI is
measured by comparing the coverage probability and
expected length. The simulation study is repeated 000
times and the coverage probability (CP) is calculated as
below

Coverage Probability = < (17)
s

where ¢ is the number of true value of falls in the
confidence interval (CI); and s is the number of
simulations.

The expected length is calculated as follows
Expected length = Upper limit - Lower limit (18)

Hassan et al. (2012) stated that the coverage probability
is the proportion of the time that the confidence interval
contains the true value of error concentration parameter.
Meanwhile, the expected length is the size of the
confidence interval. The best method of confidence
interval will have the closest coverage probability to the
nominal coverage probability of 0.95 and the shortest
expected length for 95% confidence interval (Moslim
et al. 2019).

RESULTS AND DISCUSSIONS

Tables 1 to 4 summarize the performance of coverage
probability and expected length for angular parameter,
slope parameter and concentration parameter, K and
samples sizes,n for both methods. Both methods and
performance measures are labelled as below:
a. Performance measures:

i. CP 95% - coverage probability

ii. EL - expected length
a. Methods:

i. NACI - normal asymptotic confidence interval

ii. BCI — bootstrap confidence interval
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TABLE 1. Coverage probability and expected length for angular parameter, @, and @,

a a,
CP 95% EL CP 95% EL
K n NACI BCI NACI BCI NACI BCI NACI BCI
30 0.765 0.895 3.881 4.514 0.767 0.831 2.122 3.509
10 50 0.894 0.900 4.143 3.009 0.864 0.888 2.780 3.051
100 0.902 0.932 4.569 2.941 0.891 0.901 3.533 2.734
30 0.800 0.905 4321 3.377 0.874 0.881 3.098 2.819
15 50 0.921 0.925 4914 2.349 0.925 0.938 3.137 2.786
100 0.945 0.945 5.001 1.890 0.933 0.946 3.877 2.558
30 0.899 0.937 4.447 2.090 0.931 0.911 4.122 2.463
20 50 0.931 0.942 5.390 1.773 0.940 0.947 4.394 2312
100 0.940 0.955 5.989 1.116 0.949 0.955 4.501 1.927

The simulation results for confidence interval
estimation of angular parameter &, and &, are shown
in Table 1. From Table 1, the coverage probability for
bootstrap method (BCI) always closer to the nominal
coverage probability of 0.95 and reach the exact value.
In comparison, the asymptotic method (NACI) closes to
the nominal coverage probability of 0.95 but do not reach

the exact value. Therefore, bootstrap method is the best
method in finding the confidence interval for estimation
of angular parameter, ¢, and «,. Based on the results
of expected length, bootstrap method seems to give
the smallest values, thus suggesting its superiority as
compared to the asymptotic method. This may indicated
that bootstrap method is good to construct the confidence
interval of angular parameter ¢, and «,.

TABLE 2. Coverage probability and expected length for angular parameter, 5, and £,

A b
CP 95% EL CP 95% EL
K n NACI BCI NACI BCI NACI BCI NACI BCI
30 0.690 0.856 1.483 1.500 0.770 0.840 1.320 1.903
10 50 0.718 0.914 1.505 1.370 0.887 0.908 1.494 1.832
100 0.878 0.928 1.690 1.289 0.900 0.920 1.511 1.778
30 0.742 0.869 2.012 1.233 0.815 0.878 2.208 1.346
15 50 0.813 0.937 2.371 1.130 0.890 0.931 2.363 1.553
100 0.899 0.941 2.579 1.001 0.908 0.944 2.478 1.230
30 0.864 0.939 2.099 0.808 0.871 0.934 2.499 0.915
20 50 0.886 0.948 3.0005 0.740 0.909 0.955 2.573 0.780
100 0.900 0.952 3.137 0.676 0.911 0.955 2.599 0.458
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The simulation results for confidence interval
estimation of angular parameter S, and 3, are shown
in Table 2. From Table 2, similar findings are obtained
as angular parameter of &, and «,. As the increase of
sample size and concentration parameter, the coverage
probability for bootstrap method (BCI) also increase. The
BCI results closest to the nominal coverage probability
of 0.95 and reach the exact value. In comparison, the
asymptotic method (NACI) also closest to the nominal

coverage probability of 0.95 but do not reach the exact
value. Therefore, bootstrap method is the best method in
finding the confidence interval for estimation of angular
parameter, B, and f,. Based on the results of expected
length, bootstrap method seems to give the smallest
values, as compared to the asymptotic method. This
may indicate that bootstrap method is good to construct
the confidence interval of angular parameter B, and f,.

TABLE 3. Coverage probability and expected length for slope parameter, @, and o,

o, ®,
CP 95% EL CP 95% EL
K n NACI BCI NACI BCI NACI BCI NACI BCI
30 0.709 0.771 1.400 0.540 0.800 0.866 1.352 1.118
10 50 0.816 0.854 1.443 0.582 0.916 0.900 1.422 0.634
100 0.880 0.898 1.560 0.441 0.920 0911 2.323 0.541
30 0.874 0.879 1.636 0.376 0.879 0.899 1.478 1.012
15 50 0.891 0.899 1.744 0.391 0.924 0.913 2.115 0.455
100 0.900 0.910 1.770 0.379 0.937 0.940 2.764 0.333
30 0.900 0.925 1.801 0.288 0.914 0.922 1.574 1.009
20 50 0.923 0.944 1.813 0.292 0.939 0.939 2.637 0.302
100 0.945 0.955 1.855 0.211 0.940 0.949 2.881 0.294

Next, the simulation results for confidence
interval estimation of angular parameter @, and w, are
shown in Table 3. From Table 3, similar findings are
obtained as angular parameter of «;,a,, 8, and f3,. There
is an increment in coverage probability for bootstrap
method (BCI) as the increase number of sample size
and concentration parameter. The BCI results closest to
the nominal coverage probability of 0.95 and reach

the exact value. In comparison, the asymptotic method
(NACI) closest to the nominal coverage probability
of 0.95 but do not reach the exact value. Therefore,
bootstrap method is the best method in finding the
confidence interval for estimation of angular parameter,
o, and @, . Based on the results of expected length,
bootstrap method seems to give the smallest values, thus
suggesting its superiority as compared to the asymptotic



TABLE 4. Coverage probability and expected length for error concentration parameter, K
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CP 95% EL
K n NACI BCI NACI BCI
30 0.676 0.712 4.567 4.346
10 50 0.786 0.842 5.717 5.258
100 0.800 0.877 8.986 8.776
30 0.863 0.900 10.121 9.010
15 50 0.881 0.911 13.419 12.758
100 0.892 0.932 14.111 13.220
30 0.900 0.933 15.001 14.891
20 50 0.922 0.943 15.525 15.492
100 0.942 0.956 15.872 15.625
method. This may indicate that bootstrap method is PRACTICAL EXAMPLES

good to construct the confidence interval of angular
parameter, @, and o, .

The simulation results shown in Table 4 is the
confidence interval for error concentration parameter,
K . From Table 4, as sample size, 77 and concentration
parameter, K increases, the coverage probability for
bootstrap method gets closer to the nominal coverage
probability of 0.95. In comparison, the coverage
probability for asymptotic method also gets closer to
the nominal coverage probability of 0.95 but never
reach the exact value. If we look solely into the coverage
probability, it helps to indicate that the bootstrap method
is the best method in finding the confidence interval
for the error concentration parameter, K . Based on
the performance measure of the expected length, the
bootstrap method seems to give the smallest values, thus
suggesting its superiority as compared to the asymptotic
method.

As a practical example for the proposed confidence
interval, Bayan Lepas data recorded at latitude 05°18’N
and longitude 100°16’E were considered. These data
were collected in the year of 2005 and consisted 62
observations with 5000 m height at pressure 850 Hpa
(x), 300 m height at pressure 1000 Hpa (y,) and 1900
m height at pressure 500 Hpa (y,) as independent and
dependent variables.

The results shown in Table 5 are obtained using
the bootstrap confidence interval. Based on the data
with 95% confidence, all angular and slope parameters
always fall between the estimate intervals. Hence, it can
be concluded that the proposed confidence interval for
all parameters are works well for Circular Simultaneous
Functional Relationship Model (CSFRM) for equal
variances.
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TABLE 5. Confidence interval for wind direction data of Bayan Lepas

DATA BAYAN LEPAS
n 62
Parameter Estimate Standard Error

2, 13552 0.7474
a, 1.4939 0.7212
JiA 1.0811 0.5847
B, 1.4986 0.6040
Q, 0.0017 0.1312
o, 0.0244 0.0987
K 11.8918 0.2441

95% ClI for @,
95% Cl for @,
95% CI for B,
95% CI for f3,
95% CI for @,

95% CI for @,

95% CI for K

(0.0162, 3.1314)

(0.0065, 3.1308)

(1.0039, 1.1741)

(14003, 1.6428)

(-0.0237, 0.0380)

(-0.0034, 0.1419)

(7.1167, 16.9481)

CONCLUSION

This article proposed confidence interval for all
parameters estimate of von Mises distribution in
Circular Simultaneous Functional Relationship Model
(CSFRM) for equal variances. The confidence interval
is derived and verified by comparing it to both method
of Normal Asymptotic Confidence Interval (NACI) and
Bootstrap Confidence Interval (BCI). Its performance
is assessed through simulation studies using different
values of sample size and concentration parameter.
Based on measuring performance coverage probability
and expected length, the bootstrap method yields better

results compared to when using normal asymptotic
method. The practical value of the proposed confidence
interval of bootstrap method have been shown when
applied to real wind data set and the results showed it
worked well with the model. It is also proven that the
proposed confidence interval can be extended in cases
where the error variance is not equal.
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