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ABSTRACT

Multipopulation mortality modeling is a significant research problem in actuarial science. Mortality functions
involving multiple lives are also essential to determine the pricing of premiums. Moreover, the lifetime models based
on dependence and asymmetry are more realistic. Hence, this paper applies an asymmetric copula model, Generalized
FGM (GFGM) to model the bivariate joint distribution of future lifetimes. Premiums of first-death life insurance
products are calculated based on the proposed model and compared with independent and symmetrical models. The
results display that asymmetry has a significant effect on premium calculations. Also, it is concluded that the lowest
premiums are generally in asymmetric lifetime models. This paper also provides analytical examples for the proposed
model with Gompertz’s marginal law.
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ABSTRAK

Pemodelan mortaliti populasi berbilang merupakan permasalahan penyelidikan yang penting dalam bidang sains
aktuari. Fungsi mortaliti yang melibatkan model hayat berbilang juga berperanan untuk menentukan harga premium.
Selain itu, model masa-hayat berdasarkan kebersandaran dan asimetri adalah lebih realistik. Oleh itu, makalah ini
menggunakan model kopula asimetri dan Generalized FGM (GFGM) untuk memodelkan taburan tercantum bivariat
bagi jangka hayat masa hadapan. Premium bagi produk insurans hayat kematian-pertama dihitung berdasarkan model
yang dicadangkan dan dibandingkan dengan model tak bersandar dan simetri. Keputusan menunjukkan bahawa
asimetri mempunyai kesan yang signifikan ke atas pengiraan premium. Selain itu, dapat disimpulkan bahawa premium
terendah kebiasaannya ditunjukkan dalam model masa hayat asimetri. Kajian ini juga menyediakan contoh analisis
bagi model yang dicadangkan menggunakan marginal Gompertz.

Kata kunci: Hayat tercantum (kematian-pertama); insurans; kebersandaran asimetri; kopula; premium

INTRODUCTION reason for the interest in copulas is that copulas allow

There has been increased research on dependence the dependence of the joint distribution to be modeled

modeling by copulas in recent years. A great deal of
literature has emerged in the application areas of copulas,
e.g., in insurance (Carriere 2000; Denuit & Cornet 1999;
Frees, Carriere & Valdez 2006; Hsieh, Tsai & Wang 2020;
Lee, Lee & Kim 2014; Luciano, Spreeuw & Vigna 2008;
Shemyakin & Youn 2006), economics and finance (Jung,
Kim & Kim 2008; Uhm, Kim & Jung 2012). The main

independently of the marginal distributions without the
assumption of normality. For example, in the actuarial
field, couples’ future lifetimes can depend on exposure
to joint disaster and broken-heart syndrome (Jagger &
Sutton 1991). For this purpose, the copula is a popular
statistical modeling tool used to model the joint behavior
of correlated random variables.
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Sklar Theorem (1959) defines copula in the
literature. This theorem states that the joint distribution
functions with continuous marginals F(x) and G(y) can
be uniquely written via a copula C:[0,1]*— 0,1] in the
form H (x, y)=C (F(x), G (y)), or C (u,v)=H (FV (u),G"
D (v)) for uniform marginals. It satisfies the distribution
function properties. For the details, it can be looked to
Nelsen (2007).

On the other hand, there are concepts of symmetry
and asymmetry in dependency. A copula is said to be
asymmetric if C(u, v) # C(v, u) for all (u,v) in [0, 1]%,
if the distribution exhibits different behaviors in the
upper left and the lower right triangle of the unit square.
Suppose an example is given from the actuarial field. In
that case, symmetrical dependence means that for the
example of dependent lifetime data of married couples,
the first death of the spouses is male and the female has
the same effect on the survivor’s lifetime. However,
this effect is not the same, which shows the dependence
among couples’ lifetime is asymmetrical. In other words,
asymmetric dependence on lifetime data may occur since
men are affected more or less than women.

In the literature, it is noteworthy to mention that
despite extensive studies on symmetry by subject
dependence, very few studies on asymmetry exist.
There are some studies on asymmetric dependence in
applications such as hydrology and finance (Ang, Chen
& Xing 2006; Biicher, Irresberger & Weiss 2017;
Harvey & Siddique 2000). However, it is interesting that
asymmetric dependence is rarely studied in actuarial and
insurance fields despite its usefulness. Zhu, Tan and Wang
(2017) computed the swap premiums under asymmetric
Hierarchical Archimedean Copula (HAC). Dufresne et al.
(2018) and Lu (2017) model the lifetime data of married
couples with the Archimedean copulas. However, they
use symmetric Copulas, although they state that the data
is asymmetric. In line with the literature, the previous
study by Kara (2021) proposes showing the effect of
asymmetric dependence on actuarial insurance premiums
under joint last survivor status for the whole life insurance
policies. The results show that premiums are influenced
by asymmetric dependency. The symmetrical and
asymmetric lifetimes are assumed to be modeled by the
FGM and Type II GFGM copula families, respectively.

In the current study, to see the effect of asymmetric
dependence in premium calculations, the previous study
has been extended for other insurance products (whole
life, term life, and endowment life insurance policies)
under the first death status. FGM and Type 11 GFGM
copula families are used for symmetric and asymmetric

lifetime models since they are theoretically simple and
represent dependent structures with little correlation.
Firstly, the joint survival and mortality functions are
derived for these models based on Gompertz’s law
using the copula. Later, net single premium calculations
for selected ages and parameter values are performed
according to the whole, term, and endowment life
insurances. The results show significant differences
in the premiums calculated under symmetric and
asymmetric dependent lifetime. Also, it is concluded that
as the correlation increases, the premium coefficients
decrease. It can be said that while asymmetry is visibly
effective in whole and term life insurance policies, it
has a more negligible effect in endowment insurances.
Finally, the compared results demonstrate that the studied
dependence models are sensitive to the various Spearman
values and age differences.

The remainder of this paper is structured as
follows: In the next section, we introduce the symmetric
and asymmetric copula models. Subsequent section
presents the actuarial methodology in which we give
the definitions of the net single premium for various
life insurance products. In the section that follows is
the original part of this paper. Firstly, we derive the
joint survival and mortality functions for the studied
symmetric and asymmetric copula models. Then, using
these inferences, results for the net single premiums
of various life insurance products are illustrated. Last
section concludes the article. All proofs are deferred to
an appendix.

SYMMETRIC AND ASYMMETRIC COPULA MODELS

One of the most widely studied parametric copula
families is the Farlie-Gumbel-Morgenstern (FGM) copula
family and the distribution function is defined as follows
(Nelsen 2007):

CHM = uv + uv(1 —w)(1 — v) (1)

where 0€[-1,1] is dependence parameter. The FGM
distribution does not allow to model the high dependence
since Spearman’s p correlation coefficient is in interval
[-1/3,1/3]. To overcome this problem, Generalized FGM
(GFGM) copula families have been developed by some
authors (Rodriguez-Lallena & Ubeda-Flores 2004;
Shubina & Lee 2004). For example, Bairamov and Kotz
(2002), Bairamov, Kotz and Bekei (2001), and Huang and
Kotz (1999), also studied the special cases of the GFGM
copula family. For some selected parameter values, they



obtained p values greater than 0.33. These results on the
GFGM function are briefly summarized by Giiven and
Kotz (2008).

In the following, the bivariate GFGM family
introduced by Rodriguez-Lallena and Ubeda-Flores
(2004) is defined for 0 <u, v <1 as follows:

C(u,v) = uv + f(wg(v) )

Here, the general form called Type II has been obtained
as below by choosing f(u) = VOu?(1 —u)®and g(v) =

Vv (1 - v)P.
C(u,v) = uv + uv?(1 —w)*(1 — v)# (3)

where a > 1 and > 1 are asymmetry parameters; @ and b
are any given values. 6 is the dependency parameter that
contains interval [-1,1] for all @, b, a, > 1. Moreover,
the FGM copula family is obtained fora=b=c=d =

! - ! ] for
max{ty,pé} °  min{z8,¢@y} o

the Type II-GFGM. Here the 7, ¢, y, and J equations

1. @ is in the interval [—

restate for a = b. On the other hand, the Spearman’s p
correlation is given by

pc = 120Beta(b + 1,a + DBeta(b+ 1,8 + 1) (4)

where Beta(. , .) is the Beta function defined by Beta(k,
D= [} X1 -x)""dx, k1> 0.

Jung, Kim and Kim (2008) and Uhm, Kim & Jung
(2012) show that Type II is an asymmetrical copula
function. This paper studies the Type [I-GFGM copula to
evaluate premium calculations in the next section.

ACTUARIAL BACKGROUND

Bowers et al. (1997) and Gerber (1997) define the
actuarial notations for 7, the future lifetime random
variable of an individual aged x. The distribution
function and survival function are denoted by F', (¢) =
P(T < t)and S, (1) = P(T_ > t), respectively. In actuarial
literature, these functions are known as death and
survival probabilities ¢ and p , respectively.

In a single-life state, the relations between
mortality and survival functions are p = o~ fot u(x+s)ds ,
In[;px] for 0 <x<wand 0 <t <w - x.
Here w is the last age.

Similar notations are given for the joint-life state by
Dickson et al. (2013) and Menge and Glover (1938). The
lifetimes of two individuals ages x and y are indicated

and ¢fiy = "
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by T and T, respectively, the joint lifetime is denoted
by T, = min{7, T } The joint cumulative distribution
function and survival function of T, are defined as F,|

(1= P(T <fand S (t) P(T > t) respectively. For
T random variable, the joint probablhty dens1ty, and the
Jomt mortality functions are given by f (H= Foy (1) and

My = fx ,(0/S_ (). The relations between mortahty and
survival functlons are defined as following by actuarial
notations

t
- y+sds 5
tpx e fO #x+s.y+s ( )

a
thxy = _aln[tpxy] (6)

THE SURVIVAL FUNCTION FOR DEPENDENCE LIFETIME
MODELS

In the case of the dependence lifetime, Nelsen (2007)
defines the bivariate survival function as S o (s,)=S (s)+
S (D)-1+C(1-S _(s), 1-S (1). Here, if the joint dlstrlbutlon
functlon is denoted by H L= P(T <s,T < 1) then
it can be defined with a C copula function as H (s,0) =
C(F (), F, (1)) with the marginal functions, F (s)—l -S
(s), and F (6) = 1-S (). Also, by actuarial notatlons 1t
can be shown in the form of § (s,0)=p_ . Inthe next
section, we evaluate some 1nferences on premlums for
(x#y,s=t). Therefore,p_ can also be expressed based
on copula by P, =P, tp 1+C( qxu‘I) Here, p =
S.(),,p,=S (), q=1-pand g =1-p,

INSURANCE POLICIES AND ACTUARIAL NET PREMIUM
CALCULATIONS

We introduce three types of insurance policies in the
literature. One of them is a whole life insurance policy
that provides one unit of death coverage paid to the
policyholder at the end of the death year. The other
policy types are term and endowment insurances. In the
endowment insurance, while the death coverage is paid,
the insured dies during the contract period, i.c., before n
or lives in the last at time #; in the term insurance policies,
it is paid only if the insured dies before n.

On the other hand, policy types are issued according
to the single-life and joint-life situations. The policies
in a single life state are issued for only a person. The
policies for joint life state can be issued according to the
first death (joint life) and the last survivor situations. For
the joint-life policies, the death coverage is paid at the
end of the year of death in which the first death occurs,
while for the last survivor policies, it is paid when the
last survivor dies.
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This study makes premium calculations for the joint-
life (first-death) insurance policies in the next section.
The premium calculations have been studied for the last
survivor policies in Kara (2021).

Now, actuarial notations related to insurance
policies issued for an individual age x are summarized
as follows. For life insurance policies, the net single
premium is called the Actuarial Present Value (APV) in
the literature. It can be seen in Dickson et al. (2013) and
Menge and Glover (1938) for further details.

In the single life status, ‘{he APVs are defined by

f v tpx U (O)dt, Axqy = f VDx e (B)dE,

and Axm) = Ax_n] + v™,p, for whole, term, and

endowment life insurance policies, respectively. The
APVs for whole and endowment insurance policies can
also be computed by the equations A, = 1 — §a,, and
Zx:n] =1—80ay.y), respectively. Here a, shows the
present value of whole life annuity and it is defined as
ax = f0°° 17n1.“pxdt'
In the joint-life status, consisting of two
1nd1V1dua1s ages x and y, the APVs are defined by
f v tPxy Hx+t: y+tdt Axy nj _f v tPxy
uxHdet and Axy m] = Axy ] + v"Dyy for whole,
term, and endowment life insurance policies,
respectively. Also, the APVs for whole and endowment
insurance policies can be computed by the equations
A =1—0ay,y,and Axy m] = 1 — 8Qyy.m), respectively.
Here a,, shows the present value of whole life annuity with
the joint-life and it is defined as a, = fooo e &tpxydt.
Here v' = ¢ and the constant J is force of interest rate.

THE INFERENCES WITH SYMMETRIC AND ASYMMETRIC
DEPENDENCE

This section aims to derive the joint survival and
mortality functions under the dependence lifetime
models by using Equations (5) and (6). The joint
survival functions are given for FGM and GFGM models,
respectively.

tDxy =t PxT¢Dy — 1+ FGM[1—py, 1_tpy' 0] @)

tPxy =t PxteDy — 1+ GFGM[1—;py, 1—py, 0,b, @, B](8)

The details of these implications for Gompertz’s
laws are given in Appendix A. On the other hand,
the inferences for the FGM(0) and GFGM(6, b, o,

) copula models constitute the original part of this

paper. For this purpose, survival and mortality
functions for the first death state are simplified with
actuarial notations in the lemmas below. Next, explicit
numerical solutions for some parameters are obtained
with Mathematica 12.

Lemma 4.1 The survival and mortality functions for the
symmetric dependence (FGM copula) are given by

tPxy = 1+ 9(1_tpx_tpy+tpxtpy))

1 q q
thzy = E(tux(K o ey (K =)

tFx

where K = (1 +0(1—¢px— tpy+tpxtpy))

tPx Py

Lemma 4.2 The survival and mortality functions for the
asymmetric dependence (GFGM copula) are given by

tpxy =t pxtpy + 9( tpx)a( tpy)B(l_tpx)b(l_tpy)b

> (tpxtpy(tlix t”y) bG(( tgx) Hx —

tYx’/ ¢

1
oy = | —————
oy <tpxtpy +G

<tzy> Auy) G(aguy + ,Bt/ly))
t

t1y

where G = 0(:px)*(:py)P (1—p)? (1—py)".

THE NET SINGLE PREMIUMS UNDER THE DEPENDENCE
LIFETIME

This section aims to explain the effect of asymmetry on
actuarial premiums. Throughout the paper, Gompertz
(B=0.001, ¢c=1.0887) is used for mortality function.
The dependence parameters of FGM(0) and GFGM(0,
b=1.5,a=2.5, =1.8) are derived for the Spearman’s
correlation values, p €{0.1, 0.2, 0.3} using Equation
(4). For the dependency models, the selected parameter
values and asymmetric measure values are given in
Table 1. The graphs, , p,, and I, for GFGM are presented
in Figure 1 by p = 0.3. using Lemma 4.2.

Next, we examine the pricing of the proposed
models by considering the different life insurance
policies. Table 2 presents the net single premiums under
Spearman’s correlations p €{0.1, 0.2, 0.3} for Gompertz’s
laws. The premium plots for p = 0.3 are shown in Figure
2. Here the force of interest is taken as 0.06; the period
is assumed to be ten years for a term insurance policy.
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TABLE 1. The selected parameter values and the asymmetric measures for FGM and GFGM copulas

Spearman’s Dependence .
. Asymmetric measures
correlations parameters
2 2 @)
P 0 p‘l(l.ll) plgi) |puv ~ Pyu
FGM 0.1 0.3 0.005 0.005 0.0000
03<p<03
-1<6<1 0.2 0.6 0.020 0.020 0.0000
0.3 0.9 0.045 0.045 0.0000
2 2 2 2
p 0 P p@ e - o
GFGM 0.1 3.86744 0.01463  0.00944 0.00519
(b=15,0=25=18)
-0.25177 < p < 0.30795
2973732 < 0.< 11.90980 0.2 7.73489 0.05855 0.03777 0.02078
0.3 11.6023 0.13175 0.08499 0.04676

# oy GFGM_Gompertz

/ T R

tthey GFGM_Gompertz

AT

FIGURE 1. The graphs (left panel) Py and (right panel) , u  for GFGM model (p = 0.3 and 1 =10)

We draw the following observations based on
Table 2. 1) Dependency significantly affects premiums.
Indeed, the premiums reduced under symmetric
dependence generally decrease even more under
asymmetric dependence. 2) Asymmetry on the premiums
is more significant in highly correlated lifetimes. It is
remarkable that as the correlation value increases, the

asymmetry also increases. For example, ZSS:SO =0.78822

and A, = 0.78934 for p=0.1 , A, =0.77447 and
Ay, = 0.77784 for p = 0.3 and, that is, the differences
are 0.00112 and 0.00337 by assuming p = 0.1 and p =
0.3, respectively for GFGM model. 3). The premiums are
sensitive to the age differences. Indeed, the symmetrical
or asymmetrical effect is more pronounced in increasing
age differences. For example, ZSMS =0.77447 , Zsom =
0.81378 and A,, .. = 0.85380 by assuming p = 0.3 and
GFGM model.

50:65
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TABLE 2. The net single premiums for the joint-life insurance policies

Gomperts Whole Life (Axy)
Independent FGM GFGM
Female Male 50 55 60 65 50 55 60 65 50 55 60 65
p=0.1 0.75576 | 0.78932 | 0.82563 | 0.86168 | 0.75486 | 0.78822 | 0.82477 | 0.86127
50 p=0210.76217 | 0.79509 | 0.83026 | 0.86500 | 0.74934 | 0.78355 | 0.82100 | 0.85837 | 0.74755 | 0.78134 | 0.81927 | 0.85753
p=0.3 0.74292 | 0.77778 | 0.81637 | 0.85505 | 0.74024 | 0.77447 | 0.81378 | 0.85380
p=0.1 0.81398 | 0.84225 | 0.87194 | 0.78934 | 0.81345 | 0.84152 | 0.87139
55 p=0210.79509 | 0.81961 | 0.84716 | 0.87575 0.80834 | 0.83733 | 0.86814 | 0.78359 | 0.80728 | 0.83588 | 0.86702
p=03 0.80270 | 0.83242 | 0.86433 | 0.77784 | 0.80111 | 0.83024 | 0.86266
p=0.1 0.86251 | 0.88521 | 0.82640 | 0.84248 | 0.86227 | 0.88479
60 p=021]0.83026 | 0.84716 | 0.86719 | 0.88918 0.85782 | 0.88124 | 0.82253 | 0.83779 | 0.85736 | 0.88040
p=03 0.85314 | 0.87728 | 0.81867 | 0.83311 | 0.85244 | 0.87728
p=0.1 0.90111 | 0.86276 | 0.87272 | 0.88555 | 0.90108
65 p=0.21] 0.86500 | 0.84716 | 0.88918 | 0.90481 0.89742 | 0.86052 | 0.86969 | 0.88193 | 0.89734
p=03 0.89372 | 0.85828 | 0.86666 | 0.87831 | 0.89361
Term Life (Z,lfy,n])
Independent FGM GFGM
Female Male 50 55 60 65 50 55 60 65 50 55 60 65
p=0.1 0.69674 | 0.75466 | 0.81080 | 0.85778 | 0.69755 | 0.75592 | 0.81164 | 0.85794
50 p=021]0.70985 | 0.76519 | 0.81772 | 0.86173 | 0.68363 | 0.74412 | 0.80388 | 0.85382 | 0.68524 | 0.74664 | 0.80555 | 0.85415
p=03 0.67052 | 0.73359 | 0.79695 | 0.84987 | 0.67294 | 0.73736 | 0.79947 | 0.85036
p=0.1 0.79368 | 0.83359 | 0.86967 | 0.75784 | 0.79572 | 0.83427 | 0.86954
55 »=0.210.76519 | 0.80265 | 0.84010 | 0.87392 0.78471 | 0.82709 | 0.86543 | 0.75048 | 0.78879 | 0.82844 | 0.86515
p=03 0.77574 | 0.82059 | 0.86118 | 0.74312 | 0.78186 | 0.82262 | 0.86077
p=0.1 0.85883 | 0.88425 | 0.81365 | 0.83531 | 0.85932 | 0.88403
60 p=0210.81772 | 0.84010 | 0.86426 | 0.88842 0.85340 | 0.88008 | 0.80388 | 0.83052 | 0.85438 | 0.87964
p=03 0.84797 | 0.87591 | 0.80550 | 0.82574 | 0.84944 | 0.87525
p=0.1 0.90086 | 0.85949 | 0.87089 | 0.88480 | 0.90088
65 p=021]0.86173 | 0.87392 | 0.88842 | 0.90462 0.89711 | 0.85724 | 0.86785 | 0.88118 | 0.89715
p=03 0.89336 | 0.85499 | 0.86482 | 0.87755 | 0.89341
Endowment Life (ny:n])
Independent FGM GFGM
Female Male 50 55 60 65 50 55 60 65 50 55 60 65
p=0.1 0.76516 | 0.79378 | 0.82710 | 0.86197 | 0.76338 | 0.79213 | 0.82602 | 0.86151
50 p=021]0.77019 | 0.79882 | 0.83148 | 0.86524 | 0.76014 | 0.78875 | 0.82273 | 0.85871 | 0.75658 | 0.78544 | 0.82056 | 0.85777
p=03 0.75512 | 0.78371 | 0.81836 | 0.85544 | 0.74977 | 0.77875 | 0.81510 | 0.85404
p=0.1 0.81616 | 0.84299 | 0.87210 | 0.79318 | 0.81528 | 0.84213 | 0.87151
55 p=0210.79882 | 0.82140 | 0.84776 | 0.87587 0.81093 | 0.83823 | 0.86832 | 0.78755 | 0.80915 | 0.83650 | 0.86714
p=03 0.80570 | 0.83346 | 0.86454 | 0.78191 | 0.80303 | 0.83087 | 0.86278
p=0.1 0.86277 | 0.88527 | 0.82763 | 0.84308 | 0.86248 | 0.88483
60 p=02]0.83148 | 0.84776 | 0.86740 | 0.88922 0.85814 | 0.88131 | 0.82377 | 0.83840 | 0.85757 | 0.88045
p=03 0.85352 | 0.87736 | 0.81992 | 0.83372 | 0.85265 | 0.87606
p=0.1 0.90113 | 0.86300 | 0.87284 | 0.88560 | 0.90108
65 p=02]0.86524 | 0.87587 | 0.88922 | 0.90482 0.89743 | 0.86076 | 0.86981 | 0.88198 | 0.89735
p=03 0.89374 | 0.85852 | 0.86678 | 0.87835 | 0.89362
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— Ind

— FGM
— GFGM
FIGURE 2. (top panel) The 3D plots for the GFGM model and (bottom
panel) the plots of 4, nym] and nym] for the proposed models (p = 0.3
and n=10,x=50<y)
THE ILLUSTRATIVE EXAMPLES premiums are sensitive to the correlation size. To explain

This section shows that the premiums have considerable these differences, the net single premiums are computed
differences due to the asymmetry, even if the insurance fgr various Valges of p and average age 55. Table 3
policies are issued for ages with the same average. Also, gives the numerical results based on Gompertz’s laws.

TABLE 3. The APVs of the joint-life insurance policies

Spearman’s Age (x=50,y=60) (x=55,y=55) (x=60,y=50)
correlations  premiyms Ind FGM  GFGM  Ind FGM GFGM Ind  FGM  GFGM
Ay 0.83026  0.82563 0.82477 0.81961 0.81398 0.81345 0.83026 0.82563 0.82640
p=0.1 Ty 0.81772  0.81080 0.81164 0.80265 0.79368 0.79572 0.81772 0.81080 0.81365
Aryn 0.83148  0.82710 0.82602 0.82140 0.81616 0.81528 0.83148 0.82710 0.82763
A 0.83026  0.82100 0.81927 0.81961 0.80834 0.80728 0.83026 0.82100 0.82253
p=02 Ty 0.81772  0.80388  0.80555 0.80265 0.78471 0.78879 0.81772 0.80388 0.80957
Ay 0.83148  0.82273  0.82056 0.82140 0.81093 0.80915 0.83148 0.82273 0.82377
Ay 0.83026  0.81637 0.81378 0.81961 0.80270 0.80111 0.83026 0.81637 0.81867
p=03 Ty 0.81772 079695 0.79947 0.80265 0.77574 0.78186 0.81772 0.79695 0.80550

Asyn) 0.83148  0.81836 0.81510 0.82140 0.80570 0.80303 0.83148 0.81836 0.81992
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To illustrate the effect of asymmetry on premiums
according to the various policy types, the results for
life insurances in joint life status are exemplified below
by assuming p = 0.3. Here, the death benefits are
considered to be 100.000 units. The net single premiums
are denoted by (P™4, PFoM, pSroMy for independence,
FGM and GFGM models, respectively.

Example 1. For a whole life insurance policy, issued
for two individuals ages 50 and 60, the premiums
reduce 1389 (= P - pFéM = 83026 - 81637) units
with the effect of symmetry and reduce more 259 (=
proM - peréM = 81637 - 81378) units with the effect
of asymmetry. Similarly, due to the asymmetric effect,
there is a more 252 and 326 unit decrease in premiums
according to symmetric impact, respectively, for ten
year term and endowment insurance policies.

Example 2. The premiums vary due to the policy
types and age averages by assuming {50,60} and p = 0.3.

Case (x < y): P9 is the lowest for whole life
(83026, 81637, 81378) and endowment life (83148,
81836, 81510) insurance policies, while P is the
lowest in term life (81772, 79695, 79947) insurance
policies.

Case (x=y=55): P is the lowest for whole life
(81961, 80270, 80111) and endowment life insurance
policies (82140, 80570, 80303), while P is the
lowest in term life insurance policies (80265, 77574,
78186).

Case (x > y): PF9 is the lowest for whole life
(83026, 81637, 81867), term life (81772, 79695, 80550),
and endowment life (83148, 81836, 81992) insurance
policies.

The examples show that the premiums are
decreasing due to asymmetry. The premium change rates
can also explain the effect on premiums of asymmetry.
Table 4 presents the results and calculated with P,
_ (' =P)for (i) {independent:1, FGM:2, GFGM:3}.
Karap(12021) performs similar evaluations for the last
survivor-life insurance policies. This paper, differently,
summarizes the results for the first death - life insurance
policies as follows:

Corollary 4.1 The insurance policies which are
the most affected by asymmetry are term life (3.64%),
followed by whole life (2.59%), and finally endowment
life (2.51%) policies for and ages (50,55).

Corollary 4.2 P, is higher than P, for whole and
endowment life insurance policies, while vice versa for
term life insurance policies.

Corollary 4.3 The ordering of premiums differs due
to the same average ages. In the whole and endowment
life insurance policies, the direction of variation is
positive (P,,>0), while in the term insurance policy, it is
negative (P,,<0) for almost every x <y. For nearly every
x >y, it is negative (P, < 0) for all insurance policies.

Corollary 4.4 The symmetric and asymmetric
effects decrease as the age difference increases in all life
insurance policy types.

TABLE 4. The effect of the symmetry and asymmetry on the premiums due to the age differences

Spearman’s Age (x=50,y=55) (x=50,y=60) (x=50,y=065)

correlations  premiyms P P, P, P, P, P, P, P, P,
A 0.0073  0.0014  0.0086  0.0056  0.0010  0.0066 0.0038  0.0005  0.0043
p=0.1 - 0.0138  -0.0017 00121  0.0085 -0.0010  0.0074  0.0046 -0.0002  0.0044
Awa 00063 00021 00084 00053 00013 00066 0.0038  0.0005  0.0043
A 0.0145 00028 00173 00112 00021 00132 00077  0.0010  0.0086
p=02 Ay 0.0275 -0.0034 0.0242 00169  -0.0021  0.0149  0.0092 -0.0004  0.0088
Awm 00126 00042 00167 00105 00026 00131 0.0075 0.0011  0.0086
A 0.0218 00043  0.0259 00167  0.0032 00198 00115 00015 0.0129
p=03 - 0.0413  -0.0051  0.0364  0.0254 -0.0032 00223 00138 -0.0006 0.0132
Awam 00189 00063 00251 00158  0.0040 00197 0.0113 00016  0.0129




CONCLUSIONS

In this paper, we investigated the problem of pricing
for life insurance policies using the symmetric and
asymmetric dependence approach under the joint-life
status. It is assumed that symmetric and asymmetric
dependence lifetimes are modeled with FGM and GFGM
Type II copulas. The joint survival and mortality
functions are derived for the proposed models under
Gompertz marginals. Then, net single premiums are
compared for various Spearman correlation values and
ages. The results demonstrate that premiums are sensitive
to dependency and age differences. It is also observed
that the proposed asymmetric model generally has the
lowest premium ordering. These results will influence
other significant actuarial decisions such as determining
investment and reserve amounts.

The fact that premiums are low in dependent
and asymmetric models can be interpreted as follows
for the insured. The surviving spouses’ lifetime, who
may experience broken heart attack syndrome due to
a reason such as the death of one of the spouses from
any disease, may change. The spouses’ lifetime might
be asymmetrically dependent since the spouses are not
affected by these events at the same rate. In this study, in
such cases, purchasing low-premium insurance products
with the assumed asymmetric model may be an incentive
for such cases. For example, given the future lifetime of
individuals aged 60 and over who are most affected by
a current pandemic, insured persons may be advised to
purchase lower-priced dependent insurance products for
their surviving spouses.
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APPENDIX
Here, the proofs of lemmas 5.1 and 5.2 are given using
the survival and mortality functions for the independence
model by | P, = PP, and g, e = M T The functions

_B(—1+ct)(cx+cy)

are p = e Logc] and M, = B! (c+¢”) for
__<Bc"(—1+ct))
Gompertz marginals: = ¢ Loglel ) and  u = Bc*™.

Proof of Lemma 4.1 The survival and mortality
functions are derived for the FGM copula.

The joint survival function for FGM has the
explicit Mathematica solution by Equation (7) as follow:

2B(—1+ct)(c¥+cY)

tPxy = Ke Log[c] (A1)
BcX(-1+ct) BcY(-1+ct) B(-1+ct)(c*+cY)
whereK =0 —e logld §—e Llogld §+4e  Logld |

(1+6) or it can be re-written in terms of p_and p,

K= 6——0-——6+—
tPx tPy

(1+06)

tPx Py

= 1 (1 + 9(1—tpx_tpy+tpxtpy))

tPx¢Py

by substituting the K and ,p_in Equation (A1)

tPxy = Ktpxtpy

= : (1 + 6(1_tpx_tpy+tpxtpy)) tpxtpy

tPxPy

= (1 + 9(1_tpx_tpy+tpxtpy))

The joint mortality function is derived by Mathematica
solution using Equation (6) as follows;
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1 BcY(-1+ct) Bc*(-1+ct)
thyy = E(Bct(c"(e —e Logld 9+ K)+cY(@—e Logld
0 + K)))
BcY(-1+ct) Bc*(-1+ct)

= %(BCtCX(Q —e Llogd 0+ K)+ Bc'c¥(f —e Logldl
0 +K))

= 1 ta(6 = (500 + K)+epy (0 = ()8 + K))

-1 _t _ tx
=2 (e (K iy 0)+ 1y (K D ).

Proof of Lemma 4.2 The survival and mortality
functions are derived for the GFGM copula.

The joint survival function for GFGM has the
explicit Mathematica solution by Equation (8) as
follow:

_B(=1+cH)(c*+cY)

tPxy = € Log|c] +G (A2)
_ Bc¥(=1+ch) _ BcY(-1+ch)
where G = (e Loglc] )& (e Logld )A(1—e
BcX(—1+ch) BcY (—1+ch) L
T TLogld )P(1—e T Logid )bgor it is formed as

G = e(tpx)a(tpy)ﬁ(l_tpx)b(1_tpy)b- On the other
hand, by substituting the G and , p_in Equation (A2)

_B(—1+ct)(cx+c3’)

tPxy = € Log[c] + G
=t PxPy + (tpx)a(tpy)ﬁ(l_tpx)b(1_tpy)b9

=t PxPy + 9(tpx)a(tpy)ﬁ(t%ctqy)b



The joint mortality function is derived by Mathematica
solution using Equation (6) as follows;

B(-1+ct)(c¥+c¥)

_ _ bowr - -
Hxy = _w (BC (C ( e og[c]
e Log|c] +G
bG
¥ b~ “0)
—1+e Logl
_B(1+ch)(rc¥) be
+c¥(—e Loglc] + — s BG))
—1+e Logl]

aG)

(B (—¢px,p ML
ey _1+1/tpx

B _<tpxtpy +G
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+ BCY+t(_tpxtpy + - ﬂG))

bG
-1+ 1/tpy

bep
) (tﬂx(tpxtpy -G (% - a))_tﬂy(tpxtpy

tYx

( 1
tpxtpy +G
bp
-G (ﬂ _ ﬂ)))
to
tPx

) (D Py (ethx—ttty) — bG((—) I

tqx t

<tpxtpy +G

= b6 () - (ﬂ) ) = GCaete + itty).

tqx/ ¢ tdy/,



