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ABSTRACT OF THE DISSERTATION

Optimization and Information Problems in Operations

by

Puping Jiang

Doctor of Philosophy in Business Administration

Washington University in St. Louis, 2022

Professor Lingxiu Dong, Chair

Professor Panos Kouvelis, Co-Chair

The main purpose of this dissertation is to study the optimization problems and the value

of information in various commercial settings, especially the emerging platform economy.

Chapter 1, “Data-Driven Asset Selling”. Motivated by online asset selling marketplace

business (e.g., used cars and real estate), we formulate a data-driven asset selling dynamic

pricing framework which utilizes platforms’ access to customers’ online behavioral data. With

mild assumptions on the demand model, careful characterization of the problem structure

shows that the model admits some ideal properties that facilitate our regret analysis under

our dynamic programming setting. Instead of studying the policy performance with a long

horizon and large quantities of inventory, we study the asymptotic policy performance over a

single unit of product as the demand rate grows. We propose a deterministic approximation

policy (DA policy) and show that DA policy provides an upper bound for the original problem

and its induced pricing policy achieves asymptotic optimality as the scale of the problem

grows properly. Later we consider a dynamic pricing scenario where an idiosyncratic latent

value for each asset is unknown. We propose a Thompson-Sampling-based and a MAP-

xi



based pricing and learning policy. Since the platform is restricted in an infrequent pricing

environment, within each decision epoch, an adequate amount of customer online behavior

records is available. Utilizing large-sample deviation properties, we are able to conduct

regret analysis on the TS and MAP policies. Finally, we use numerical experiments to show

that our proposed algorithms could improve the revenue performance significantly compared

with an algorithm that is currently implemented by a leading used car platform. Besides,

we find that using a simple deterministic proxy of demand forecast is mostly harmless,

while accurate estimation on the idiosyncratic latent value can make significant differences.

Simulations also reveal that in our problem setting, the exploration step in the TS policy may

not help to outperform the MAP policy. This indicates that the effectiveness of exploration

highly depends on the nature of the problem, which may be of independent interest.

Chapter 2, “Cash Hedging Motivates Information Sharing in Supply Chains”. Finance

literature well documents that firms’ cash hedging strategies heavily depend on the mar-

ket conditions. Unsurprisingly, such decisions could be challenging for an upstream firm in

a supply chain where the end market conditions are not transparent to him. In this pa-

per, we study the interplay between firms’ information sharing behaviors and cash hedging

strategies in supply chains. First, we argue that the presence of a supplier’s cash hedging

decision may motivate downstream retailers’ voluntary market information sharing with the

supplier, since making the supplier more informed of the market conditions helps the retailer

handle her risk in the wholesale price. This also forms a new reason why a supplier should

consider hedging, since the cash hedging decision itself can be used as a bargaining tool

during the information sharing negotiation with his retailer. Then we find for homogeneous

Cournot-competing retailers, asymmetric information-sharing outcomes could emerge as an

equilibrium where publicly sharing information typically will not hurt, especially, sometimes

it can achieve Pareto improvement of the supply chain and consumer welfare. Finally, when

a single supplier serves multiple markets, the heterogeneity across market sizes and the cor-

xii



relation among market shocks play big roles in shaping the equilibrium. Especially in a

simultaneous information-sharing game, greater market size heterogeneity and negatively

correlated market shocks are more likely to result in the nonexistence of pure Nash equilib-

rium. When the Stackelberg sequence is introduced, greater market size heterogeneity and

positively correlated market shocks are more likely to induce information sharing in the equi-

librium. Furthermore, in the multi-market setting, the existence of an information-sharing

channel may hurt retailers, the system as a whole, and consumer welfare.

Chapter 3, “Display Optimization under the Multinomial Logit Choice Model: Balancing

Revenue and Customer Satisfaction”. In this paper, we consider an assortment optimization

problem in which a platform must choose pairwise disjoint sets of assortments to offer across

a series of T stages. Arriving customers begin their search process in the first stage, and

progress sequentially through the stages until their patience expires, at which point they make

a multinomial-logit-based purchasing decision from among all products they have viewed

throughout their search process. The goal is to choose the sequential displays of product

offerings to maximize expected revenue. Additionally, we impose stage-specific constraints

that ensure that as each customer progresses farther and farther through the T stages, there

is a minimum level of “desirability” met by the collections of displayed products. We consider

two related measures of desirability: purchase likelihood and expected utility derived from

the offered assortments. In this way, the offered sequence of assortment must be both high

earning and well-liked, which breaks from the traditional assortment setting, where customer

considerations are generally not explicitly accounted for.

We show that our assortment problem of interest is strongly NP-Hard, thus ruling out

the existence of a fully polynomial-time approximation scheme (FPTAS). From an algorith-

mic stand-point, as a warm-up, we develop a simple constant factor approximation scheme

in which we carefully stitch together myopically selected assortments for each stage. Our

main algorithmic result consists of a polynomial-time approximation scheme (PTAS), which

xiii



combines a handful of structural results related to the make-up of the optimal assortment

sequence within an approximate dynamic programming framework.
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1. Data-Driven Asset Selling

1.1 Introduction

With the fast developing business model of online asset selling platforms, e.g., Guazi (the

largest used car marketplace in China), CarMax (the largest used car marketplace in the

US) and Zillow (the largest real estate platform in the US), impressive growth in volume has

been taking place in the last decade, and the growth is forecasted to accelerate. Real estate

market is always being a significant part of economy. For used car markets, for instance,

China’s used car market is predicted to double the size by 2025 compared with 2020 at value

worth $306 billion.1 According to McKinsey the US used car market was worth twice as

much as new car market in 2018.2 Especially, during the pandemic disruption, the used

car market demonstrated significant robustness.3 Due to a couple of unique features of

online asset selling business, the operations of such platforms are drastically different from a

traditional inventory selling business. First, each unit of asset has idiosyncratic attributes,

thus the selling prices are essentially item-wise. Second, the inventory replenishment is only

partially controlled by the platform mainly via acquiring assets from exogenous individual

asset sellers. Besides, some specific business constraints further complicate the operations.

For example, in order to keep a high inventory turnover rate, used car platforms may set

targeted selling horizon for each car according to our conversations with a leading used car

platform where each car typically has an on-site life length around 7 weeks after which it will

1Bloomberg: China Wants to Build a $306 Billion Used-Car Market From Scratch.
2McKinsey: Used cars, new platforms: Accelerating sales in a digitally disrupted market.
3The Wall Street Journal: During Covid-19 Pandemic, the Used-Car Lot Is Hot.

1

https://www.bloomberg.com/news/articles/2021-01-06/china-wants-to-build-a-306-billion-used-car-market
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/used-cars-new-platforms-accelerating-sales-in-a-digitally-disrupted-market
https://www.wsj.com/articles/during-covid-19-pandemic-the-used-car-lot-is-hot-11593774001


be salvaged to other dealers. Also, frequent price change is unfavorable from the platform’s

perspective. On one hand, frequent price change is both computationally and practically

(e.g., menu cost) expensive; on the other hand, frequently changing prices may encourage

unideal strategic customer behaviors. In practice, a platform may update the prices at

most on a weekly basis (e.g., Guazi). According to [1], around 30% of the used cars on

CarMax experienced price changes during their on-site time (which is on average 14 days),

but very few of them experienced price changes over three times before being sold. Although

the price changes can take place more often in other large dealers, the pricing schemes are

way from being regarded as frequent pricing. Therefore, the inventory dynamics and the

pricing problem in the asset selling platforms is hard to be characterized by the frameworks

from seasonal products pricing literature where the decision makers typically have a pool

of identical items to sell and are able to change prices frequently. Unfortunately, given the

significance of the asset selling business and the uniqueness of its operational model, very

few work has been dedicated to formulate relevant models and this gap between literature

and practice motivates our paper.

Another major business challenge for the platform is to characterize customers’ valua-

tions over assets’ idiosyncratic attributes. For example, in used car business, typically a

platform would conduct close inspections on each car covering over one hundred points (see

[1]’s discussion on CarMax data, and Figure 1.1, screenshots from Guazi app, in Section

1.5). Those inspection details are often available for customers, but how those idiosyncratic

features would translate into customers’ reactions is often unclear. There could be several

reasons to that, e.g., the historical data is too sparse to support an accurate estimation com-

pared to the number of possible combinations of all features, and customers’ evaluations or

tastes may change over time which downgrades the relevance of data collected long time ago.

So typically, the platform would have some parsimonious estimation models which capture

some major features like car model, color, mileage, and some stylized rubrics on mechanical

2



nuances, yet still leaves room for learning customers’ reactions to those idiosyncratic features

(or we call latent value) on-the-fly for each car during price optimization. Indeed, as empiri-

cal evidence has shown (see [1]), the value of learning such car-specific latent value could be

significant. In a traditional brick-and-mortar asset selling business, customer behavior data

is not really informative, since the historical data is just a sequence of no-purchase before

a final purchase is made and then the problem ends. Therefore learning in a non-platform

setting would simply lead to a decreasing estimate over time with a markdown price trajec-

tory (see [2]). However, in the asset-selling platform’s setting, the data of customers’ online

behaviors before their final purchase decisions is observable from the platform’s perspec-

tive, which enhances the decision maker’s ability of learning an asset’s latent value. This

motivates our research on incorporating learning into the dynamic pricing framework.

In this paper, we build up a dynamic pricing model incorporating customers’ online

behavior process for an online asset selling platform, mainly motivated by the used car

business. But our framework can also be adapted to other online asset selling business.

Specifically based on our conversations with a leading used car platform, we have two high

level modeling assumptions. First, dynamic pricing policy is designed for each car separately,

in other words, we do not explicitly model the substitution effect led by price changes

on other cars. This is similar to the framework in the closely related empirical work [1],

while stylized way of capturing substitution effect is always possible. A side benefit of this

framework is that car acquisition decision is relatively trivial. This is because on one hand,

dynamic pricing on the selling side is independent of the acquisition price (which is sunk

once acquired); on the other hand, given individual car seller’s willingness to sell function,

acquisition price optimization is a single-dimension static maximization problem trading off

between the expected acquisition cost and the expected selling revenue. Therefore in this

paper we only focus on the selling-side for a given car. Second, within each pricing decision

epoch, the potential time delay between a customer’s online behavior and offline purchase

3



decision is negligible, since the decision epoch is relatively long in practice, and customers

typically don’t have incentives to delay their visits to the offline store for their interested

cars. Another way to interpret this modelling assumption is that the last step in a customer’s

sequential online behaviors (typically a test drive appointment) would almost surely inform

the final in-store purchase decision, i.e., the customer who chooses to test drive a car will

almost surely buy the car. This is because the car information provided online can be very

detailed (see screenshots from Guazi app, Figure 1.1) and a customer bears both time and

transportation costs to see the car, a final test drive generally should not lead to much

surprise.

Our paper has the following major contributions. Our first contribution is in model for-

mulation. Assuming log-concave individual customers’ choice function in price, we build a

dynamic asset pricing framework with Poisson demand process whose rate may change over

a discrete horizon. Importantly, we relax the typical assumption in inventory dynamic pric-

ing literature that in each decision epoch, at most one customer arrives at the system, and

we also incorporates the volatility in demand rate. This assumption relaxation is necessary

in model formulation to fit the practice reality and business interests. In reality, platforms

would typically avoid implementing real-time and high-frequency dynamic pricing as we in-

troduced before. Under the above mild assumptions, we show that this general asset selling

framework admits nice structural properties and allows us to conduct regret analysis although

the problem is a dynamic programming by its nature. We demonstrate both theoretically

and empirically (via numerical experiments) the good performance of a simple pricing policy

derived from deterministic approximation to the original problem under certain asymptotic

regimes. A major advantage of constructing a model from individual utility function is to

facilitate utilizing customers’ online behavioral data to better understand demand pattern,

which is particularly of the platform’s interests. Related to this, our second contribution is

to demonstrate how our model framework can utilize online behavior data to inform price
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optimization and how it performs. We propose both active (Thompson-sampling-based) and

passive learning (MAP-based) policies on the fly of price optimization. A typical difficulty

in analyzing the performance of Thompson sampling is the complexity of characterizing the

posterior belief, therefore people generally resort to weaker performance metric like Bayesian

regret. Traditional regret analysis could be conducted in a few special cases where the mod-

els have ideal structures and prior beliefs are well selected in order to have nice conjugate

structures. Performance analysis for MLE-type of learning strategy is also not easy since the

estimation update dynamic is challenging to characterize. However in our setting, thanks

to the infrequent nature of dynamic pricing, a potentially large amount of behavioral data

is observable within each pricing decision epoch, consequently some large-sample statistical

properties (e.g., sharper versions of Bernstein-von-Mises Theorem and Central Limit Theo-

rem) start to take effect. Correspondingly, such large-sample properties allow us to conduct

traditional regret analysis on our Thompson-sampling-based and MAP-based dynamic pric-

ing policy. We show that our proposed Thompson-sampling-based policy and MAP-based

policy both achieve asymptotic optimality at rate of O (log(n)/
√
n) starting from the second

decision epoch, where n is a scale factor in demand rate. Here we focus on the performance

metric starting from the second decision epoch because in the first period there is no learning

takes place, the performance is purely determined by the prior knowledge. Finally, we use

simulations to demonstrate the potentially significant values of dynamic pricing and demand

learning in our policies compared with a currently implemented policy by the platform.

Numerical results reveal that using a simple deterministic proxy for demand forecast gen-

erally performs very well, but the estimation accuracy of the idiosyncratic latent value can

make a significant difference. Interestingly, extensive simulations also reveal that Thompson-

sampling-based policy may not outperform MAP-based policy, that is, the exploration step

may not give learning strategies an edge.

5



Our paper calls researchers’ attention to the fast-growing yet less studied business, the

online asset selling business. We formulate an optimization framework that is particularly

relevant to practice and propose implementation policies. Our work also highlights the op-

portunities in conducting rigorous policy performance analysis that is contingent to business

settings, especially for learning policies when observable data scale is large.

The remainder of the paper is organized as follows. Section 1.2 reviews related literature

and highlights our contributions again with the comparison to the previous work. We for-

mulate our asset selling problem in section 1.3 and in section 1.4 we propose a deterministic

approximation to the original stochastic optimization problem and show that the approxi-

mation serves as an upper bound in section 1.4.1. In section 1.4.2 we calculate the expected

regret of the policy induced by the deterministic approximation. In section 1.5 we introduce

how our framework can incorporate online behavioral data and conduct demand learning and

price optimization via Thompson sampling and Maximum a posteriori estimation. We then

show regret analysis could be done using large-sample deviation properties. We demonstrate

the performance of our algorithms via numerical experiments in section 1.6 and finally we

summarize our work in section 1.7.

1.2 Literature Review

Our work directly contributes the literature of asset selling. Representative work includes

[1–5], etc. [2] studies a dynamic asset selling problem with Bayesian learning on demand rate,

where the observable data is sequence of 0-1 purchase records and specifically the realized

data is just a bunch of zeros, because once the purchase record turns out to be 1, the game

ends. This is a typical offline asset selling setting, while the salient feature of our online

asset selling is that a much richer data set is observable. Specifically, observing the online

visit data, the platform has a good sense of potential demand process. Furthermore, besides
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the final purchase record, the platform also has access to a sequence of customers’ online

behavior including clicking, adding to list, scheduling offline visit and test etc. Unlike the

offline setting where the seller only observes a sequence of zero records before the game ends,

which leads to a simple markdown pricing policy, online platforms are able to design more

elaborate pricing policies based upon much better understandings of customers’ willingness

to pay. The most relevant work to our paper is [1], where the authors empirically identify sig-

nificant value of car sellers’ learning on cars’ unobservable idiosyncratic features on an online

used car marketplace, CarMax. This paper builds up a structural model under a dynamic

pricing framework, which is the setting that motivates our research. Due to the technical

tractability concern and pragmatic relevance, the dynamic pricing optimization is conducted

on a single-car base and substitution effect is characterized via a heuristic manner. Our

paper falls into the similar framework. [3] studies a dynamic asset selling problem when the

seller is under debt, where a stylized aggregate demand function is assumed. Our work on

the other hand, formulates the problem starting from customers’ utility functions and thus is

able to utilize individual level behavioral data, which directly fits practice needs. [4] designs

a holistic dynamic pricing algorithm for an online truckload transportation platform which

accepts truckload orders from customers and sells the orders to truck carriers. Essentially

the work is a multi-unit asset selling problem and the authors propose a deterministic pric-

ing policy derived from fluid approximation to the original stochastic optimization problem.

There are a couple of salient differences between their problem and our business setting. Like

many multi-product pricing papers, one critical assumption in [4] is that at most one incom-

ing order and one carrier can arrive the marketplace in each decision epoch, however, in our

business setting, real-time dynamic pricing is neither technically tractable nor managerially

ideal in the sense that platforms tend to avoid confusing customers and developing strate-

gic customers via high-frequency price changes. Furthermore, demand learning and regret

analysis are not in the scope of [4]. [5] is a recent related work where the author investigates
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how long a single unit of product can be sold under various structural assumptions. Our

work contributes to this stream of literature by formulating our asset selling problem closely

adaptive to the real business environment, and providing rigorous performance analysis and

insights for the proposed policies via sharp characterization of the problem structure and

extensive numerical experiments.

The second stream of related literature is dynamic pricing with inventory constraints for

single and multiple products. Seminal work [6] and [7] propose deterministic approxima-

tions to the stochastic dynamic pricing problem and show the asymptotic optimality of the

simple policy. [8] formulates a unified framework for both dynamic pricing and capacity allo-

cation problems. Multi-product dynamic pricing has also been studied under more specific

demand models including attrition models, paired combinatorial models, diffusion models,

etc. Representative work include [9–11], etc, where some structural properties like convexity

are proven for the multi-product price optimization. Rigorous performance guarantees for

resolving heuristics are given by [12–14]. Especially, [12] provides the first logarithm regret

for the resolving deterministic heuristic, and recent paper [14] further improve the result to

be a constant. [13] shows that infrequent price update on a well-chosen subset of products is

sufficient to attain decent performance. However, again this literature also generally assumes

at most one customer arrives in each review period. To keep the review concise, we restrain

ourselves from the vast body of literature in network revenue management.

Finally the third related stream of literature is the extensive work on dynamic pricing

with demand learning. [15–19] study pricing problems under Bayesian learning settings. [20]

utilizes an extended MLE method for parametric learning and pricing problems. Work on

pricing with parametric learning also include [21–24], etc. [25–28] consider pricing problem

with non-parametric demand learning. [29] identifies the conditions for incomplete learning

to take place where the learning and optimization process would converge to a suboptimal

state. [30–32] study the effect of demand model mis-specification and find that some simple
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algorithms could have strong performance guarantees. [33] studies a learning and optimiza-

tion pricing problem with constraints on the number of price changes. The authors verify

the performance of a proposed algorithm via experiments. Our paper falls specifically into

the policy category of Thompson sampling. Early work includes [34] and [35] where au-

thors propose new metrics to measure the performance of Thompson sampling due to the

difficulties in conducting typical regret analysis in a Bayesian setting. [36–39] and a series

of following papers derive traditional regret analysis for Thompson sampling under some

specific problem settings with well selected prior distributions. [40] provides a well-cited em-

pirical evidence showing the superior performance of Thompson sampling over other widely

used multi-armed bandit polices. Work in this literature mostly deals with problems that

do not have inventory or capacity constraints. [41–43] are among the few papers consider

dynamic pricing with demand learning under inventory constrained settings. Specifically,

[42] applies Thompson sampling to a multi-product dynamic pricing setting and shows the

asymptotic optimality under the Bayesian regret. [41] proposes a MLE-based policy for sin-

gle product selling with finite inventory and compact action space. [43] improves [42] under

a general demand model via a MLE-based learning and optimization strategy. Notice that

the previous work on policy asymptotic performance requires scaling up in time horizon or

total inventory, the performance implications on each unit of product is not the focus. In our

paper, we focus on the asymptotic performance for a single unit of product (asset) instead,

which requires very different insights towards the functional structures. We apply the ideas

of both Thompson sampling and MAP (a natural extension of MLE with prior knowledge) to

the asset selling setting where the practical reality facilitates large-sample deviation analysis,

and we are able to conduct regret analysis on our algorithm. We also derive some interesting

insights via various numerical comparisons.
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1.3 Model

We consider a used-car platform which maximizes its expected revenue. In this paper,

we focus on the single-car dynamic policies that intend to sell the car within a discrete time

horizon with length T . The platform charges price pt for each period and the decision epochs

are indexed by t ∈ {1, · · · , T − 1}. At the end of the time horizon, the car will be salvaged

to other used-car dealers at a salvage price which is denoted by pT . The decision maker’s

problem is to find policy π that maximizes the expected present value:

max
π

{
E

[
X1 · pπ1 + (1−X1) ·X2 · pπ2 + · · ·

+
T−2∏
t=1

(1−Xt) ·XT−1 · pπT−1 +
T−1∏
t=1

(1−Xt) · pT

]}
, (1.1)

where Xt ∈ {0, 1}, t = 1, · · · , T − 1 are the random variables that denote whether the asset

is sold in period t.

In each period potential customers come and view the car following a Poisson process with

rate λt. We allow customer arrival rate to change over time, but within one decision epoch,

we assume the rate is well approximated by a steady Poisson process. But we do allow λt

to follow an exogenous distribution Λt (·) which could treated as the decision maker’s future

forecast. {λt}t=1,··· ,T1
are independently distributed and each λt is realized as the decision

maker approaches the beginning of each period t. As [44] points out, a lookahead model with

future forecast typically fixes the forecast and treat it as the true future. In our framework, we

do not model how the forecast itself would evolve and update over time either. Our analysis

in the paper has the potential to be applied to more general scenarios, e.g. when the forecast

evolution is well characterized by more sophisticated time series model (independent {λt}T−1
t=1

is then a special case in the more general setting). An underlying assumption of time series

model is that current knowledge on the time series model is treated as the ground truth
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and fixed in regret analysis. Most of our results have their analogues in the more general

time series framework and we will briefly mention them later. Given price pt, each arriving

customer would choose to purchase the car with probability qt (pt) if available. Therefore the

customers who choose to buy the car arrive following a Poisson process with rate λtqt (pt). In

turn, the probability that the car is sold in period t is equal to the probability that the first

customer who purchases the car arrives within period t. We know that the interarrival time

of Poisson process is exponentially distributed (and in our case, it follows a Exp(λtqt (pt))

distribution), so the probability that the car is sold in period t is 1 − e−λtqt(pt). Let Vt(λt)

denote the platform’s optimal expected revenue at time t given that the car has not been

sold and the potential customers’ arrival rate is λt, then we can write down the Bellman

equation of the dynamic pricing problem:

Vt(λt) = max
pt

{(
1− e−λtqt(pt)

)
pt + e−λtqt(pt)Eλt+1

[
Vt+1 (λt+1)

]}
, (1.2)

with terminal condition VT (λT ) = pT . We point out that here problem (1.2) is considered as

the base case where there is no constraint on the price decision and the platform knows the

distribution of λt, t ∈ {1, · · · , T} and can see the realization of λt for each period t before

deciding the price.

We consider individual purchasing probabilities that satisfy the following assumptions:

Assumption 1.3.1 Given λ, limp→∞
(
1− e−λq(p)

)
p = 0.

Assumption 1.3.2 q (·) : R → [0, 1], q′(p) < 0. q(p) is log-concave, i.e., −q′(p)/q(p) is

increasing in p.

We define the function space that contains all q(·) which satisfies the above assumptions as

Q. We point out that Q includes many commonly used demand probability functions such

as linear demand q (p) = β − αp, α, β > 0, logistic demand q (p) = eβ−αp

1+eβ−αp , α, β > 0 and
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exponential demand q (p) = βe−αp, α, β > 0. Let πt(pt;λt) =
(
1− e−λtqt(pt)

)
pt + e−λtqt(pt) ·

Eλt+1

[
Vt+1 (λt+1)

]
, then we have the following result:

Lemma 1.3.3 If q(·) ∈ Q, then for fixed λt, πt(pt;λt) is unimodal in pt.

The unimodularity of πt(pt;λt)
4 directly leads to the sufficiency of first-order condition to

the optimal policy calculation:

Proposition 1.3.1 Given q(·) ∈ Q, the optimal pricing policy {p∗t}T−1
t=0 is given by

∂πt(p∗t ;λt)

∂pt
= 0, for t ∈ {1, · · · , T − 1}.

However, we notice that in Bellman’s equation (1.2) the expectation is taken over future

demand arrival rate, therefore computation is intractable for continuous forecast on future

demand rate. To solve this issue, we propose a simple heuristic in the next section.

1.4 Deterministic Approximation and Heuristic

In this section, we introduce a deterministic approximation to the original problem.

However, we should point out that the deterministic approximation in the typical inventory

selling literature refers to the approximation on the inventory dynamics, while in our setting,

we simply mean a deterministic proxy to the demand rate forecast.

1.4.1 Deterministic Approximation as Upper Bound

Suppose that for period t ∈ {1, 2, · · · , T − 1}, the incoming potential demand rate λt

follows a distribution Ft (·). We propose the following pricing policy π̂: in any period t, for

4It is worth pointing out that the unimodularity of πt(pt;λt) does not require any assumptions on the
distributions of {λt}T−1

t=1 .
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realized potential demand rate λt, price pt is determined by solving the following dynamic

programming problem:

Ṽ DA
t (λt) = max

pt

{(
1− e−λtqt(pt)

)
pt + e−λtqt(pt) · Ṽ DA

t+1 (E [λt+1])
}
, Ṽ DA

T = pT . (DA)

It is trivial to see that as the demand process degenerates into a deterministic process, the

above algorithm gives the optimal price trajectory. The main result that we will show in

this section is that the value function Ṽ DA
t (λt) of simple algorithm described above actually

gives an upper bound of the optimal expected value Vt(λt) which is defined in (1.2).5

Theorem 1.4.1 Given q(·) ∈ Q, then Vt (λt) ≤ Ṽ DA
t (λt), t = {0, 1, · · · , T − 1}.

Proof Proof. We prove the theorem by induction. For t = T − 1, from definition, we have

VT−1 (λT−1) = Ṽ DA
T−1 (λT−1) which is because period T ’s salvage price pT is exogenously given.

Assume that the theorem holds for t+1 ∈ {1, · · · , T − 1}, i.e., Vt+1 (λt+1) ≤ Ṽ DA
t+1 (λt+1), we

will show that Vt (λt) ≤ Ṽ DA
t (λt), which will complete the proof. From Lemma A.0.1, we

know that Vt+1(λt+1) is increasing concave in λt+1, t = 0, 1, · · · , T − 1, therefore, we have

E [Vt+1(λt+1)] ≤ Vt+1 (E[λt+1]) ≤ Ṽ DA
t+1 (E[λt+1]) ,

where the first inequality is Jensen inequality and the second inequality comes from the

induction assumption. Therefore, it is straightforward to see that

Vt(λt) = max
pt

{(
1− e−λtqt(pt)

)
pt + e−λtqt(pt) · E [Vt+1(λt+1)]

}
≤ max

pt

{(
1− e−λtqt(pt)

)
pt + e−λtqt(pt) · Ṽ DA

t+1 (E[λt+1])
}
= Ṽ DA

t (λt).

5If the demand rate forecast is modeled to evolve over time following a more sophisticated time series
model mentioned in Section 1.3, Ṽ DA

t (λt) is not necessarily concave in λt, which means that deterministic
approximation may not serve as an upper bound of problem (1.2), yet we are still able to derive similar
regret results as in Section 1.4.2 with some appropriate assumptions on the time series.
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The proof is completed.

1.4.2 DA-Induced Heuristic and Regret

The deterministic approximation (DA) induces a pricing policy and in this section, we

would analyze the performance of this heuristic. Especially we are interested in the asymp-

totic behavior of the regret as the problem scales up. But before the analysis, we need to

first specify the asymptotic regime.

Asymptotic Regime.

For asset selling problem, there are two dimensions in which one problem could scale

up, i.e., potential demand rate and length of decision horizon. In our case, scaling up in

potential demand rate (or online flow volume) is more relevant to the nature of online asset

selling business, while the length of decision horizon for each unit of asset is typically set to

be limited because a high turnover rate is favorable to the platforms.

Remark. In our setting, since the price action space is not bounded, scaling up in demand

rate does not necessarily imply that the asset will be sold almost surely in the first period.

See [5] for rigorous discussions. Our problem could be considered as the mixture case between

dynamic pricing and static pricing in [5]. Numerical results in Section 1.6 show that even

when the problem scale is considerably large, the expected sale duration still reaches far

beyond the first epoch.

Next we formalize how the problem is scaled up in the dimension of potential demand

rate by making the following definition:

Definition 1.4.1 (Scale Up in Degree γ) We say a sequence of random variable {λn}

scales up in degree γ if E [λn] ∼ n and Sd (λn) ∼ nγ, where Sd (λn) is the standard deviation

of λn.
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Typically we would expect to see that 0 ≤ γ ≤ 1. We give examples for two probable

scale-up degrees: 1/2 and 1. One scenario is that the platform divides each decision epoch

t (normalized to have length of 1) into n equal-length monitored time slots and the realized

number of arrivals within each time slot is considered as one demand data point. The Poisson

rates λtni for each time slot i with length 1/n, i = 1, · · · , n, are independent and identically

distributed, then it is straightforward to find that an equivalent Poisson rate for the whole

decision epoch is λtn =
∑n

i=1 λtni/n. When the number of slots, n, increases as the potential

demand increases such that the distribution of each λtni/n keeps the same, λtn will scale up

in degree 1/2. An alternative scenario of scaling up in degree 1/2 is that the demand flow

consists of n independent and identical Poisson process with rate λtni, i = 1, · · · , n. Fixing

the rate of each sub-flow, λtni, the potential demand increases as the number of sub-flows

increases, then λtn will also scale up in degree 1/2. On the other hand, if we substitute the

independence in the above two scenarios with perfect correlation, we would see λtn scales up

in degree 1. In the context of forecast, scaling up in a degree less than 1 is saying that the

platform’s forecast of future demand becomes relatively more accurate as the market size

grows.

Closely related to the Definition 1.4.1, we define

Definition 1.4.2 (Gγ-Sequence) Let {Gn (·)} denote the corresponding sequence of cumu-

lative probability functions of random variable sequence {λn} which scales up in degree γ. We

say {Gn (·)} is a Gγ-sequence or simply denoted as {Gn (·)} ∈ Gγ if there exists a constant

ρ > 0, such that

Gn (ρ · n) ∼ o

(
nγ−1

log (n)

)
.
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As an example, if sequence {λn} scales up in degree 1/2, Gn (·) is sub-Gaussian and ρ is

any constant such that ρ < E [λn] /n, then Gn (ρ · n) decreases to zero way faster than

n−1/2/ log (n) as n grows large, which implies that {Gn (·)} ∈ G 1
2
.

To conduct the regret analysis, it is critical to understand how the value function would

react to parameter changes. It is useful to define the following auxiliary function:

F (λ,A) = max
p
{π (p;λ,A)} = max

p

{(
1− e−λq(p)

)
p+ e−λq(p) · A

}
,

where λ,A > 0 and q(·) ∈ Q. The following lemma summarizes the sensitivity results of our

auxiliary function F (·, ·), which provides important hints on the sensitivity of value function

Vt (·).

Lemma 1.4.2 For any A > 0, if c̄ = limλ→∞ (−q′ (p (λ)) /q (p (λ))) exists and is positive

(including infinite), then for λ > Λ(c), ∂F (λ,A)
∂λ

is upper bounded by 1/cλ where c is any

number within (0, c̄).

Proof Proof. According to Lemma A.0.1, we know that for any A ≥ 0:

0 ≤ ∂F (λ,A)

∂λ
≤ ∂F (λ, 0)

∂λ
=

p (λ) q (p (λ))

1− λp (λ) q′ (p (λ))
.

On the other hand,

p (λ) q (p (λ))

1− λp (λ) q′ (p (λ))
=

1

1
p(λ)q(p(λ))

+
(
− q′(p(λ))

q(p(λ))

)
· λ
≤ 1(
− q′(p(λ))

q(p(λ))

)
· λ

,

We know that as λ goes to infinite, p (λ) also goes to infinite, then if

c̄ = lim
p→∞

(−q′ (p (λ)) /q (p (λ)))
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exists and is positive, for λ > Λ(c) where Λ(c) is some positive constant depending on c, we

have

∂F (λ,A)

∂λ
≤ p (λ) q (p (λ))

1− λp (λ) q′ (p (λ))
≤ 1

cλ
, ∀ c ∈ (0, c̄) . (1.3)

The proof is completed.

We notice that in Lemma 1.4.2, we require limλ→∞ (−q′ (p (λ))) /q (p (λ)) exists and

positive. This de facto comes from the log-concavity of q (·) directly, because log-

concavity is equivalent to that −q′ (p) /q (p) is increasing in p. Therefore by requiring

limλ→∞ (−q′ (p (λ))) /q (p (λ)) > 0 we do not put any further assumptions on q (·) other than

Assumption 1.3.2. Besides the sensitivity properties of value function, it is also critical to un-

derstand the sensitivity properties of the optimal decision. Let p (λ,A) = argmaxp π (p;λ,A),

we have the following lemma:

Lemma 1.4.3 (i). 0 < ∂p(λ,A)
∂λ

and for any constant c ∈ (0, limp→∞ {−q′ (p) /q (p)}], there

exists λ (c) such that when λ > λ (c), ∂p(λ,A)
∂λ

< 1
cλ
. (ii). 0 < ∂p(λ,A)

∂A
< 1, for any λ > 0 and

A > 0.

Lemma 1.4.3 will play an important role later when we conduct regret analysis. It tells us

how p (λ,A) would increase as the two parameters λ and A grow large. Especially, we know

that p (0, 0) = 0, therefore Lemma 1.4.3 implies the following bound for p (λ,A):

p (λ,A) < C · log (λ) + A, (1.4)

where C is some positive constant independent of A.

Given the above Lemmas, we are ready to analyze the performance of the deterministic

approximation. With a slight abuse of notations, we use V π
t (λtn) to denote the expected

present value of pricing policy π̂ given the current realized demand rate λtn and here the

expectation is taken on all the future demand rate λτn, τ = t + 1, · · · , T − 1, based upon
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current forecast. To measure the performance of our algorithm, we define the following

metric:

Definition 1.4.3 The regret of a policy π is defined as:

Regret (π) = Eλ1n

[
V1 (λ1n)− V π

1 (λ1n)
]
,

where V π
1 (λ1n) is the expected profit when applying pricing policy π given current demand

rate λ1n.

Our main results below show the asymptotic optimality in scale factor n could be achieved

by DA policy:

Theorem 1.4.4 Assume that each sequence {λtn}, t = 1, · · · , T−1 scales up in degree γ and

each corresponding distribution sequence {Gtn (·)} ∈ Gγ and limp→∞ {−q′ (p) /q (p)} < ∞,

then

0 < Regret (πDA) < O
(
log (n)

n1−γ

)
.

We point out that in the above theorem, the condition limp→∞ {−q′ (p) /q (p)} < ∞ is sat-

isfied many commonly used functions in family Q. For example, when q (p) = eβ−αp

1+eβ−αp ,

limp→∞ {−q′ (p) /q (p)} = α, when q (p) = βe−αp, limp→∞ {−q′ (p) /q (p)} = α. Besides,

it is straightforward to check that for a series of qi (p), i ∈ I, that satisfies condition

limp→∞ {−q′i (p) /qi (p)} < ∞, then the multiplication q (p) =
∏

i∈I qi (p) also satisfies

limp→∞ {−q′ (p) /q (p)} <∞, which would be useful in the next section.
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Figure 1.1.: Example of Car Profile on Guazi Used Car Platform.
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1.5 Demand Learning via Online Behavioral Data

In this section, we dive deeper into customers’ preferences over the asset, and discuss

how the platform can better inform its pricing decisions via customers’ online behavior data.

We assume that the net value of car j which has been posted for t periods has form

ujt = Xjβ − αpjt + ξj + ϵjt, (1.5)

where Xjt is a vector of car j’s observable attributes and it could be time dependent, ξj is car

j’s latent value which is unobservable from the platform’s perspective, while is observable by

customers and ϵjt is each customer’s idiosyncratic preference shock for car j in period t with

a known distribution. Figure 1.1 shows the screenshots of a used-car profile on a platform’s

app. The platform typically conducts a thorough inspection covering over one hundred

mechanical nuances. However, when formulating an empirical model to estimate customers’

reactions to a car profile, generally only a subset of major factors would be included. One

reason is that the data may be too sparse to support a model that captures the full profile

of the attributes. Especially, customers’ preference may evolve over time, which makes the

data collected long time ago less relevant. Therefore, including an unobservable latent value

ξj besides the major factors into the empirical model and learning the latent value over

the selling process is a reasonable setup. As [1] shows, under such a setting, learning the

latent factor admits significant values. We assume that the effects of observable attributes

β is universal for all cars which could be learned from historical data, while ξj is associated

to each specific car j which is what the platform should learn along the dynamic pricing.

Furthermore, we assume that ξj is supported on a compact set, i.e., ξj ∈
[
ξ, ξ̄
]
. Because

we are focusing on the single car scenario, without introducing confusion, we drop the j

subscript hereafter.
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The nature of online business enables the platform to observe each single potential cus-

tomer’s online behaviors including not only the final purchase decision, but also intermediate

behaviors. In the used car online marketplace, typical intermediate behaviors include click,

online save and appointment for test drive etc. For exposition purpose, we focus on the

framework where the platform can well observe one specific type of customers’ online be-

haviors before customers make up their purchase decisions. And we assume that whether a

customer conducts such a behavior (e.g., test drive appointment) depends on the net value

ut and each customer’s reservation value which is sampled from a known distribution. Then

we call a customer who conducts the specific type of intermediate behavior as a promising

customer and for each visitor, she becomes a promising customer with probability q1t (ut).

Recall that the effects of observable attributes β could be estimated from historical data,

in our setting, we treat them as known constants, so we can write q1t (ut) as q1t (ξ − αpt),

where as a generalized linear function of pt, we assume q1t (ξ − αpt) ∈ Q. After conduct-

ing the intermediate behavior, each promising customer decides to purchase the asset with

probability q2t (ξ − αpt) where q2t (·) ∈ Q. Let qt (·) be the conversion rate. We assume that

qt (·) has the decomposed structure: qt (ξ − αpt) = q1t (ξ − αpt) · q2t (ξ − αpt). Notice that

here we made a simplification of the demand process. We assume the time delay between a

customer’s intermediate behavior and the final purchase decision is negligible, also we do not

model any strategic behaviors. In used-car selling business, a typical decision epoch lasts for

a couple of weeks, so for a popular car, we can expect most customers won’t delay their final

purchase decision across epochs. Especially, the recent movements of some leading used-car

companies (e.g., Carvana) to advocate the online-only car selling mode make a customer’s

whole purchasing process much shorter than a traditional offline selling mode.

The following lemma indicates that multiplication is closed in Q:

Lemma 1.5.1 If qi(p) ∈ Q, i = 1, · · · , n, and q(p) = Πn
i=1qi(p), then q(·) ∈ Q.
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Whence we know that qt (ξ − αpt) ∈ Q. One direct extension to the above setting is that the

platform is able to well observe S steps of intermediate behaviors, where S > 1. For example,

a customer should first click the product, then add it to wish list and finally schedule a test

drive. We assume that the order of these intermediate steps cannot be alternated and a

latter step cannot be conducted if one earlier step is skipped. Let qst (ξ − pt) ∈ Q denote

each customer’s probability of conducting step s given the previous steps are conducted, then

a customer’s purchase probability can be written as qt (ξ − pt) = ΠS
s=0q

s
t (ξ − pt). Lemma

1.5.1 implies that qt (ξ − pt) ∈ Q, therefore all the analysis can be easily extended to this

more general setting. To ease the exposition, we use the deterministic approximation (DA)

as the true optimal and conduct regret analysis. Once we do that, we will see later that it

is straightforward to get the regret when the true optimal is the original problem (1.2).

1.5.1 Data Description for Parameter Learning

Before we propose the policy for learning and pricing, we need to first specify the ob-

served data used for parameter learning. Here we denote the true latent value to learn

by ξ0 with prior distribution density hξ0 (·). As we indicated before, the firm can observe

each customer’s behaviors including both the intermediate decision and the final purchase

decision. In our setting, the data that the firm would mostly utilize is the intermediate be-

havior observations which indicate whether visitors become promising customers and each

observation is a Bernoulli random variable. To facilitate our analysis below, we assume the

platform collects data in the following way: (i). The firm divides a single decision epoch into

small monitored time slots with equal lengths such that mean number of arriving customers

in each time slot equals to a predetermined constant λt; (ii). After one decision epoch, the

platform collects the realized numbers of promising customers for all the time slots. Each

realized observation from one slot is treated as one data point. We notice that in our frame-
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work, we characterize the customer arrival process within each decision epoch as a stationary

Poisson process with rate λtn, therefore evenly divided time slots have identical mean value

of arriving customers. More specifically, given price pjt, the number of promising customers

of all the time slots within one decision epoch are independent and identically sampled from

distribution Pois (λtqt (ξ0 − αpt)) and the sample size is nt := λtn/λt. Collected data is used

to estimate the unobservable value ξ0.

1.5.2 Learning and Optimization Policies: Thompson Sampling & MAP

The firm’s ability to observe potential customers in online marketplace is critical in our

asset selling setting, because the final purchase observations would be all nos before the asset

is finally sold, which cannot support effective demand learning. In this section, we propose

two learning and optimization policies: an active learning policy based on Thompson sam-

pling, and a passive learning policy based on maximum likelihood estimation. By calling an

algorithm active/passive, we simply aim to distinguish algorithms with/without explorations

during learning. Our active learning policy works as follows:

Algorithm. (Thompson Sampling for Dynamic Pricing)

Iterate the following steps for t = 1, · · · , T :

1. Sample Unobservable Attribute: Sample a random parameter ξt ∈ Ξ according to the

posterior distribution of ξ0 given history Ht−1.

2. Offer Price: Solve the dynamic pricing problem and get the optimal pricing policy

{p∗τ}
T−1
τ=t :

Vt (λtn) = max
p

{(
1− e−λtnqt(ξt−αpt)

)
pt + e−λtnqt(ξt−αpt)Vt+1

(
E
[
λ(t+1)n

])}
,

with VT (·) = pT . Then set pTS
t = p∗t .
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3. Update Estimation: Observe the realized number of potential buyers for each time slot

Xt = {Xt1, · · · , Xtkt} with each observation sampled from Pois
(
λtqt

(
ξ0 − αpTS

t

))
and

update the history Ht = Ht−1 ∪ {Xt} and the posterior belief of ξ0 based upon Ht via

Bayes rule.

On the other hand, the passive learning policy works as follows:

Algorithm. (Maximum A Posteriori Estimation for Dynamic Pricing)

For t = 1:

1. Sample Unobservable Attribute: Sample a random parameter ξ1 ∈ Ξ according to the

prior distribution of ξ0.

Iterate the following steps for t = 1, · · · , T :

2. Offer Price: Solve the dynamic pricing problem and get the optimal pricing policy

{p∗τ}
T−1
τ=t :

Vt (λtn) = max
p

{(
1− e−λtnqt(ξt−αpt)

)
pt + e−λtnqt(ξt−αpt)Vt+1

(
E
[
λ(t+1)n

])}
,

with VT (·) = pT . Then set pMAP
t = p∗t .

3. Update Estimation: Observe the realized number of potential buyers for each time slot

Xt = {Xt1, · · · , Xtkt} with each observation sampled from Pois
(
λtqt

(
ξ0 − αpMAP

t

))
and update the history Ht = Ht−1 ∪ {Xt} and MAP estimation of ξ0 based upon Ht,

and let ξt+1 denote the MAP estimation. t = t+ 1.

Remark. Here we do not need to worry about the consistency of the learning, because: (i).

There is no uninformative state due to the fact that dq (ξ − αp) /dξ > 0 (see [29]); (ii). Our

policies are different from typical certainty-equivalence controls where in our setting multiple

observations are available within each decision epoch.
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1.5.3 Performance Analysis

A salient feature of our online pricing framework is that within each decision epoch, there

could be large amount of observations, while in a typical model of sequential decision making

with learning, decisions are made instantly after each new observation. Large observation

sample in each decision epoch opens the gateway for us to use asymptotic behaviors of some

statistics to get finer regret bounds which have not been seen in conventional settings. We

start from analyze the Thompson-sampling-based policy.

Within a given decision epoch t, t = 1, · · · , T − 1, with price pt, the platform ob-

serves nt number of independent and identically distributed random draws from distribution

Pois (λtq (ξ − αpt)). We know that under some regularity conditions, as the i.i.d. sample size

grows, the posterior distribution of ξ has asymptotic normality due to Bernstein-von-Mises

Theorem. Across different decision epochs, the random draws are still independent but not

identically distributed, because the prices change over time. Without loss of generality, we

assume n1 = n2 = · · · = nT−1 = n, then by slightly modifying the proof in [45], we still can

show the asymptotic normality of the posterior distribution.

Following the notations in [45], let (X,A ) be a measurable space and Lξ|A , ξ ∈ Ξ, a

family of probability measures, where Ξ is an open subset of R. Let ξ be a random variable

with prior distribution density hξ0 |B∩Ξ. Assume that λξ has a finite density ρ with respect

to the Lebesgue measure, which is positive on Ξ and zero on Ξc. Let Rtn,x be the posterior

distribution of ξ for the sample size t · n given x ∈ X tn after t decision epochs, which is

defined as

Rtn,x (B) =

∫
B
(Πt

τ=1Π
n
i=1lτ (xτi, σ)) ρ (σ) dσ∫

(Πt
τ=1Π

n
i=1lτ (xτi, σ)) ρ (σ) dσ

, B ∈ B,
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where in our setting l (·, ξ) = (λτqτ (ξ − αpτ ))
x e−λτ qτ (ξ−αpτ )/x!. Let Qtn,x be the normal

distribution centered at the maximum likelihood estimator ξtn (x) with covariance matrix

Γtn (x)
−1, where

Γtn (x) =

(
t∑

τ=1

n∑
i=1

∂2

∂ξ2
f (xti, ξ)

∣∣∣∣
ξ=ξn(x)

)
,

which is positive and f (xτi, ξ) = − log l (xτi, ξ).

Define the variational distance between the measures Rtn,x and Qtn,x as

d (Rtn,x, Qtn,x) = sup {|Rtn,x (B)−Qtn,x (B)| : B ∈ B} .

Then we can prove the following proposition:

Proposition 1.5.1 For any s ≥ 2 and every compact subset K of ξ there exists a constant

cK (s) > 0 such that

sup
ξ∈K

P tn
ξ

{
x ∈ X tn : d (Rtn,x, Qtn,x) > cK (s) · (t · n)−1/2

}
= O

(
(t · n)−s/2

)
.

Proof Proof. First we prove that within each decision epoch, the regularity conditions in

Appendix hold for any integer s ≥ 2. For given epoch t and price pt,

f (x, ξ) = − log

(
(λtqt (ξ − αpt))

x e−λtqt(ξ−αpt)

x!

)
= −x log (λtqt (ξ − αpt)) + log (x!) + λtqt (ξ − αpt) ,

and

f ′′ (x, ξ) =
∂2f (x, ξ)

∂2ξ
=

(
q′t (ξ − αpt)

qt (ξ − αpt)

)′

· x+ λtq
′′
t (ξ − αpt) .
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Therefore, we have

∣∣f (x, ξ)
∣∣ ≤ (∣∣ log (λtqt (ξ − αpt))

∣∣+ x− 1
)
· x+

(
x+

1

2

)
log (x) + C̃ < C · x2,

where C and C̃ are some positive constants independent of x and the first inequality comes

from the upper bound on x!: x! ≤ xx+ 1
2 e−x+1. In turn, for any integer s ≥ 2, we have∣∣f (x, ξ)

∣∣s < Cs · x2s, where Cs is some positive constant. On the other hand, we know that

given any ξ, x follows a Poisson distribution and any order of factorial moment of Poisson

distribution exists, therefore given any ξ, σ ∈ Ξ, Eσ

∣∣f (·, ξ)
∣∣s < ∞. We can apply the same

argument to
∣∣f ′′ (x, ξ)

∣∣s which is upper bounded by a linear function of x. Furthermore

Eξf
′′ (·, ξ) =

(
q′t (ξ − αpt)

qt (ξ − αpt)

)′

· λtqt (ξ − αpt) + λtq
′′
t (ξ − αpt)

=
λt

qt (ξ − αpt)
· (qt (ξ − αpt))

2 > 0.

Then it is not difficult to see that all the regularity conditions listed in the appendix hold

for any s ≥ 2. Finally, by slightly modifying the proof in [45], we can extend the results into

non-identically distributed observations across different decision epochs.

Proposition 1.5.1 indicates that the probability of convergence error exceeding

cK (t · n)−1/2 diminishes faster than any polynomial order, therefore when t · n is large,

Rtn,x (B) can be well bounded by
[
Qtn,x (B)− cK · (tn)−1/2 , Qtn,x (B) + cK · (tn)−1/2

]
. Now

that we are interested in the asymptotic regret, hereafter we will assume Qtn,x (B) − cK ·

(tn)−1/2 < Rtn,x (B) < Qtn,x (B) + cK · (tn)−1/2, for any B ∈ B.

Given samples are independent and identically distributed within each decision epoch

and independent distributed across different epochs, we are able to identify the consistency

and asymptotic normality of the maximum likelihood estimator ξtn (x). Consistency follow
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directly from the results in [24] and here we focus on the asymptotic normality and the

corresponding convergence rate.

Proposition 1.5.2 For any s ≥ 2 and every compact subset K of ξ there exists a constant

CK (s) > 0 such that

sup
ξ∈K

P tn
ξ

{
x ∈ X tn : d

(
Rtn,x, Q̃tn,x

)
> CK (s) · (t · n)−1/2

}
= O

(
(t · n)−s/2

)
.

Let Vt (λtn, ξ) be the optimal expected profit at time period t given that the current-

period demand rate is λtn and the latent value is ξ. Using the function F (λ,A, ξ) defined

in Lemma A.0.9, we can write down the recursive definition for Vt (λtn, ξ):

Vt (λtn, ξ) = max
pt

{(
1− e−λtnq(ξ−αpt)

)
pt + e−λtnq(ξ−αpt) · Vt+1 (ξ)

}
= F (λtn, Vt+1 (ξ) , ξ) .

(1.6)

Let V TS
t (λtn, ξt) be the expected profit at time period t by applying Thompson sampling

pricing policy given that the current-period demand rate is λtn and the drawn sample for

period t is ξt:

V TS
t (λtn, ξt) =

(
1− e−λtnq(ξ−αpTS

t (ξt))
)
pTS
t (ξt)

+ e−λtnq(ξ−αpTS
t (ξt)) · Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)]
, (1.7)

where we should notice that in the above the expectation on ξt+1 is taken based upon the

posterior belief on ξ at the beginning of period t+1. Our main result gives the performance

analysis for the Thompson sampling algorithm:
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Theorem 1.5.2 If limp→∞{−q′(p)/q(p)} < ∞, the regret of Thompson Sampling pricing

policy is given by:

0 < V1 (λ1n, ξ0)− Eξ1

[
V TS
1 (λ1n, ξ1)

]
<

T · σ0

α
· log (n) +O

(
log (n)√

n

)
,

0 < V2 (λ2n, ξ0)− Eξ2

[
V TS
2 (λ2n, ξ2)

]
< O

(
log (n)√

n

)
.

where σ0 = E
[∣∣ξ1 − ξ0

∣∣].
We notice that in the regret starting from the first period, there is a term T ·σ0

α
· log(n)

that is not decreasing as the scale factor n grows. This term is purely led by the initial

misspecification on ξ0, which is independent of whatever learning algorithm that is applied,

therefore the regret starting from the second period would be more meaningful. The above

calculation gives the regret of Thompson Sampling pricing policy in the deterministic ap-

proximation problem, and with some slight modifications, it is not difficult to get the regret

in the original problem (1.2). To avoid confusion, here we use V ∗
t (λtn, ξ0) to denote the true

optimal profit given the current period demand rate λtn and latent value ξ0. Then we have

the following corollary:

Corollary 1.5.3 Assume that each sequence {λtn}, t = 1, · · · , T − 1 scales up in degree γ

and each corresponding distribution sequence {Gtn (·)} ∈ Gγ, then

0 < Eλ1

[
V ∗
1 (λ1, ξ0)− Eξ1

[
V TS
1 (λ1, ξ1)

] ]
<

T · σ0

α
· log (n) · 1 {t = 1}+O

(
log (n)

nmin{1−γ,1/2}

)
.

We notice that Bernstein-von-Mises Theorem indicates that the posterior asymptotic

normal distribution is centered at MLE, it is not difficult to see that the regret analysis

for the Thompson-sampling-based policy includes the analysis for the MAP-based pricing

policy. Furthermore, the MAP distribution converges at the same asymptotic rate to the
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true parameter as the Bayesian posterior distribution, i.e., at the rate of 1/
√
n, therefore

results similar to Theorem 1.5.2 and Corollary 1.5.3 hold for MAP.

Theorem 1.5.4 If limp→∞{−q′(p)/q(p)} < ∞, the regret of MAP pricing policy is given

by:

0 < V1 (λ1n, ξ0)− Eξ1

[
V MAP
1 (λ1n, ξ1)

]
<

T · σ0

α
· log (n) +O

(
log (n)√

n

)
,

0 < V2 (λ2n, ξ0)− Eξ2

[
V MAP
2 (λ2n, ξ2)

]
< O

(
log (n)√

n

)
.

where σ0 = E
[∣∣ξ1 − ξ0

∣∣].
And analogous to Corollary 1.5.3, we have

Corollary 1.5.5 Assume that each sequence {λtn}, t = 1, · · · , T − 1 scales up in degree γ

and each corresponding distribution sequence {Gtn (·)} ∈ Gγ, then

0 < Eλ1

[
V ∗
1 (λ1, ξ0)−Eξ1

[
V MAP
1 (λ1, ξ1)

] ]
<

T · σ0

α
· log (n) ·1 {t = 1}+O

(
log (n)

nmin{1−γ,1/2}

)
.

1.6 Numerical Experiments

1.6.1 Performance of DA & The Value of Dynamic Programming

Our first numerical experiment investigates how well the deterministic approximation

(DA) algorithm works. As a comparison, we also consider a heuristic which simulates the

pricing algorithm conducted by a leading used car platform. The algorithm that is currently

being used works in the following way: Given horizon length T , for each period t, t =

1, · · · , T − 1 (one period typically corresponds to one week), the platform has an estimated

demand function, ϕt(p), which is the probability that the car could be sold at price p when
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there are T − t periods left before the car has to be salvaged at price pT . Then the platform

solves a simple optimization problem:

max
p

ϕt (p) p+ (1− ϕt (p)) pT .

The solution pt is set as the selling price at period t. For simplicity, in our simulation we

assume that ϕt (p) has the correct function form, but with the future demand arrival rates

to be the average forecasted rates and later when we consider the idiosyncratic learning, we

assume the customers’ latent value in ϕt (p) is captured by the mean of prior belief. In other

words, we assume ϕt (p) has form

ϕt (p) =
(
1− e−λtq(p)

)
p+ e−λtq(p)

((
1− e−λt+1q(p)

)
p+ · · ·+ e−λT−1q(p)pT

)
,

where λt is the observed rate in period t and λt+1, · · · , λT−1 are the mean value of forecast.

We have two points to make about this algorithm: First, the optimization problem that

the algorithm solves actually assumes a uniform price across the horizon from period t to

T − 1. We call this algorithm as Uniform Approximation (UA) algorithm. Although as

time moves forward, the demand function ϕt (p) gets updated every period, which still leads

to a dynamic price trajectory, the policy is not computed via dynamic programming. The

algorithm itself neglects the dynamic nature of the pricing problem, which will lead to a

significantly lower price trajectory compared with the true optimal. On the other hand,

as we have indicated before, deterministic approximation provides an upper bound for the

original problem, so DA policy would lead to a higher price trajectory than the true optimal.

Second, the demand model ϕt(p) is not developed based upon customers’ utilities and does

not have the active idiosyncratic learning as in the Thompson sampling policy. Idiosyncratic

learning has been shown to be valuable for used car marketplace by empirical work [1],
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therefore with the availability of large amount of customers’ online behaviors data, we would

expect great opportunities in improving revenues as we will indicate by simulations later.

In our first numerical experiment, we run simulations with horizon lengths T = 3, 5, 7,

respectively. Individual purchase probability has form q (p) = e−2p/ (1 + e−2p) with salvage

price pT = 2. We consider two scenarios where the problem scales up in degree 1/2 with scale

n with three-point distributed forecast demand rates, P (λt = n) = 1/2, P (λt = n− 3
√
n) =

P (λt = n+ 3
√
n) = 1/4, and P (λt = n) = 1/2, P (λt = n−

√
n) = P (λt = n+

√
n) = 1/4.

We consider scales n = 10, 50, 100, 500, 1000 respectively. For each given distribution, horizon

length T and scale n, we run the simulation for 1200 times. The average prices and time

periods at which the deal is made are summarized in Table 1.1 (with T = 7) and the results

of revenue approximation ratios are depicted in Figure 1.2 and 1.3, where Optimal is the

pricing policy of the original problem (1.2).

Table 1.1: Price of Deal and Time of Deal - (Price, Time)

Scale n 10 50 100 500 1000

(n, 3
√
n)

Algorithms

DA (2.184,5.940) (2.548,4.650) (2.807,4.215) (3.508,3.755) (3.849,3.569)

UA (2.186,5.838) (2.541,4.214) (2.784,3.631) (3.448,2.801) (3.766,2.546)

OPT (2.184,5.940) (2.548,4.650) (2.807,4.215) (3.508,3.755) (3.849,3.569)

(n,
√
n)

Algorithms

DA (2.171,5.973) (2.552,4.650) (2.784,4.284) (3.513,3.685) (3.853,3.542)

UA (2.170,5.882) (2.543,4.197) (2.757,3.737) (3.446,2.759) (3.767,2.545)

OPT (2.171,5.973) (2.552,4.650) (2.784,4.284) (3.513,3.685) (3.853,3.542)

Notes. T = 7, pT = 2. In (Price, Time), Price and Time are the simulated expected price and time at
which the deal is made.

According to some summary statistics from the used car platform we are working with,

the platform typically sets the time horizon to be 7 weeks (and conducts weekly price adjust-
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ment). On average, the deal prices are around 20% higher than the salvage prices and the

time each car stays on the platform is around 3 weeks. Therefore, as we can see from Table

1.1, when the problem scale is at 50, the parameters and corresponding results may be most

relevant to the real business environment. Our simulation results show that both DA and

UA work pretty well and especially, as shown by Figure 1.2 and 1.3, the performance of DA

policy almost totally achieves the optimal policy (they are almost not distinguishable from

each other on the graph). As the time horizon increases and the problem scale grows, the

performance of UA depreciates, while our proposed algorithm DA performs quite robustly.

Figure 1.2.: (Color online) Performance Comparison of Dynamic Pricing Algorithms
(n(±3

√
n))
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Figure 1.3.: (Color online) Performance Comparison of Dynamic Pricing Algorithms
(n(±

√
n))

In the simulations we run, on average DA achieves revenue around 1%− 2% higher than

UA. We notice that typically used car platforms’ profit rate per car is around 10%,6 therefore

such revenue increase could imply a considerable increase in profit.

The major takeaway from the simulation results is that neglecting the randomness in the

demand rate forecast is generally harmless once the dynamic formulation and the average

trend of demand rate are correctly characterized.

6See [1] and CarMax Reports First Quarter Fiscal 2021 Results.
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1.6.2 Performance of TS, MAP & The Value of Learning

Our second numerical experiment investigates the performance of Thompson Sampling

(TS) and Maximum A Posteriori algorithms and demonstrates the value of idiosyncratic

learning. As our previous experiment has already shown the performance of deterministic

approximation and the corresponding revenue gap is small, in our second experiment, we

assume that the forecasted demand arrival rates are constants. In TS, the posterior distri-

bution is simulated via MCMC method and we take 1000 iterations before each posterior

sampling. In our simulations, MAP runs much faster than TS, which is because optimiza-

tion can be conducted much more efficiently than MCMC. For comparison, we consider the

algorithm using the mean value of posterior distribution as the latent value input instead of

sampling from the posterior distribution. We call this algorithm as Bayesian Mean (BM)

algorithm. In implementation, BM algorithm requires taking average of a big sample of ran-

dom draws from posterior distribution. We also simulate the performance of the dynamic

programming algorithm using the mean value of the prior belief on the latent value as in-

put, i.e., Dynamic Programming with No Learning (DP NL) algorithm. Finally, we simulate

the algorithm that is most similar to the platform’s current running one, Uniform with No

Learning (U NL) algorithm, i.e., applying uniform price optimization using the mean value

of prior distribution on latent value (i.e., without idiosyncratic learning) as we described

before. In the experiment, we have λ1 = · · · = λT−1 = 1, ground truth latent value ξ is

sampled from standard normal distribution N (0, 1), prior belief over ξ has no bias, which

is also a standard normal distribution. Each arrival’s purchasing behavior consists of two

stages: First with probability eξ−p/(1 + eξ−p), the arrival becomes a promising customer.

This stage corresponds to customers’ online behaviors that indicate their strong interests in

the item. Then with probability eξ−p/(1 + eξ−p), each promising customer decides to pur-

chase the item. Each algorithm is simulated for 360 times. The simulation details for T = 7
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are summarized in Table 1.2 and Table 1.3, where Table 1.2 summarizes the performance of

algorithms from period 2 to the end, while Table 1.3 summarizes the whole horizon. The

reason that we make this distinction is that in the first period when we do not have historical

data, learning in the algorithm won’t make a difference, the revenue loss is largely driven by

the prior misspecification in the first period. All simulated revenue approximation ratios are

shown in Figure 1.4 (start from period 2) and Figure 1.5 (whole horizon), where Optimal

is the optimal pricing policy of (1.2) solved by a clairvoyant decision maker who knows the

true latent value ξ.

Table 1.2: Price of Deal and Time of Deal - (Price, Time), (Start from Period 2)

Scale 10 50 100 500 1000

Algorithms

TS (2.255,5.836) (2.563,5.178) (2.855,4.756) (3.389,4.333) (3.719,4.183)

BM (2.246,5.911) (2.541,5.256) (2.889,4.758) (3.383,4.453) (3.728,4.236)

MLE (2.254,5.853) (2.581,5.222) (2.905,4.814) (3.425,4.494) (3.735,4.347)

DP-NL (2.230,5.608) (2.474,4.925) (2.697,4.464) (3.171,4.361) (3.550,4.064)

U-NL (2.221,5.581) (2.440,4.764) (2.645,4.192) (3.104,3.914) (3.412,3.692)

OPT (2.283,6.086) (2.621,5.319) (2.942,4.842) (3.454,4.572) (3.735,4.372)

Notes. T = 7, pT = 2. In (Price, Time), Price and Time are the simulated expected price and time at
which the deal is made.

Table 1.3: Price of Deal and Time of Deal - (Price, Time)

Scale 10 50 100 500 1000

Algorithms

TS (2.189,4.808) (2.534,3.481) (2.712,3.214) (3.289,2.561) (3.659,2.200)

BM (2.191,4.797) (2.536,3.450) (2.711,3.189) (3.309,2.542) (3.699,2.139)

MAP (2.19,4.819) (2.539,3.442) (2.735,3.217) (3.327,2.594) (3.699,2.211)

DP-NL (2.193,4.714) (2.530,3.394) (2.700,3.258) (3.270,2.800) (3.606,2.578)

U-NL (2.182,4.706) (2.485,3.142) (2.651,2.892) (3.187,2.208) (3.489,1.975)

OPT (2.244,5.031) (2.649,4.058) (2.910,3.692) (3.503,3.100) (3.866,2.747)

Notes. T = 7, pT = 2. In (Price, Time), Price and Time are the simulated expected price and time at
which the deal is made.
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Figure 1.4.: (Color online) Performance Comparison of Dynamic Pricing Algorithms (Start
from Period 2)

As we can see from the results summary, TS, BM and MAP all achieve very high ap-

proximation ratios and their simulated performances are close. But in most simulated cases,

MAP appears to slightly outperform the other algorithms. This implies that the sophis-

tication in the exploration step of the active learning strategies does not necessarily bring

the edge over the passive learning strategies. The necessity of implementing active learning

strategies should depend on the specific problem settings. Although our problem scales up in

the demand rate for fixed horizon length, as a robustness check, we also conduct simulations

for longer horizon and fixed demand rate, see Table 1.4 and Figure 1.6, 1.7. Again, we find

in most cases, MAP slightly outperforms the other strategies.
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Figure 1.5.: (Color online) Performance Comparison of Dynamic Pricing Algorithms (Start
from Period 1)

Finally, compared to the numerical results in Section 1.6.1, our simulation results in

Section 1.6.2 indicate that the estimation accuracy of the idiosyncratic latent value can

make a more significant difference. This observation provides some meaningful insights to

the managers that correctly characterizing the average demand dynamics can generally lead

to a decent performance, while more effort should be invested into accurately understanding

the idiosyncratic value of each unit of asset.
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Table 1.4: Price of Deal and Time of Deal - (Price, Time)

Horizon
Length

10 15 20 25 30

ξ0 ∼ N(0, 1)

Algorithms

TS (2.199,8.197) (2.262,11.547) (2.307,14.931) (2.339,18.411) (2.359,21.903)

BM (2.200,8.228) (2.266,11.528) (2.314,14.989) (2.347,18.458) (2.357,21.747)

MAP (2.197,8.222) (2.265,11.536) (2.314,14.908) (2.358,18.639) (2.379,21.828)

DP-NL (2.196,8.119) (2.249,11.339) (2.296,14.586) (2.332,17.836) (2.333,21.300)

U-NL (2.196,8.006) (2.239,11.067) (2.283,14.200) (2.311,17.261) (2.307,20.642)

OPT (2.222,8.625) (2.327,12.525) (2.411,15.892) (2.449,19.703) (2.459,23.392)

ξ0 ∼ N(0, 2)

Algorithms

TS (2.256,7.231) (2.330,10.217) (2.355,13.706) (2.396,16.894) (2.450,18.314)

BM (2.262,7.136) (2.320,10.189) (2.343,13.639) (2.385,16.858) (2.474,18.514)

MAP (2.270,7.208) (2.359,10.333) (2.388,13.719) (2.416,17.367) (2.491,18.897)

DP-NL (2.246,7.039) (2.306,9.939) (2.329,13.075) (2.334,16.314) (2.428,17.281)

U-NL (2.235,6.936) (2.289,9.744) (2.306,12.717) (2.306,15.917) (2.378,16.997)

OPT (2.557,8.217) (2.643,11.681) (2.644,15.922) (2.686,19.989) (2.801,22.436)

Notes. Scale = 5, pT = 2. In (Price, Time), Price and Time are the simulated expected price and time
at which the deal is made.

1.7 Conclusion

Despite the fast-growing business of online asset selling including used car and real estate

marketplaces, limited amount of research has been devoted to developing models that are

closely adaptive to the real business environments. Our paper aims to fill this gap via formu-

lating a dynamic asset selling framework which can be extended into a data-driven setting.

We propose implementable algorithms that are proven to achieve asymptotic optimality as

the demand rates scale up. As most of the existing literature investigates asymptotic per-

formance of high-frequency dynamic pricing policies in the regime where the time horizon

or initial inventory grows large, due to the nature of our problem, we study the asymptotic
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Figure 1.6.: (Color online) Performance Comparison of Dynamic Pricing Algorithms

performance of infrequent dynamic pricing policies on a single unit of asset over a fixed time

horizon instead. Our model well fits some business restrictions encountered in real practice

including infrequent price change and volatility in demand patterns. Especially, our model

is build upon individual customer’s utility function, which naturally facilitates utilizing on-

line behavioral data for demand learning. We prove that our general asset selling framework

admits ideal mathematics properties and allows us to conduct regret analysis for various poli-

cies under a dynamic programming setting. Finally, we use numerical experiments to show

that our proposed algorithms can potentially improve the revenue performance significantly

compared with an algorithm that is currently implemented by a leading used car platform.
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Figure 1.7.: (Color online) Performance Comparison of Dynamic Pricing Algorithms

Besides, we find that using simple deterministic proxy of demand forecast is mostly harm-

less, while accurate estimation on the idiosyncratic latent value may make more significant

differences. Simulations also reveal that in our problem setting, the exploration step in an

active learning policy may not help outperform a passive learning policy. This indicates that

the effectiveness of active learning highly depends on the nature of the problem, which may

be of independent interest.
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2. Cash Hedging Motivates Information Sharing in Supply Chains

2.1 Introduction

Some major operational and financial activities of a firm are largely driven by the firm’s

understanding of the market conditions. Therefore, it can become quite challenging for

a firm to carry out those activities under an information asymmetric environment, like a

supply chain where the upstream supplier is not fully aware of the end market conditions.

Supply chain experts argue that market demand information sharing among retailers and

their suppliers improve supply chain efficiency, and under appropriate contracts can result

in benefits for all involved parties ( [46]). Erroneous understanding of market demand condi-

tions amplified through retail forecast errors propagate upstream to drive chaotic ordering,

which drives resource inefficiencies, increased inventories, or drastic shortages. The so-called

“bullwhip effects” of informational inefficiencies in the chain are well understood ( [47]), but

the information sharing practices encounter significant barriers in their implementation and

are not as frequently observed in practice ( [48], [49]).

The information sharing literature in supply chain systems with vertical relationships

among retailers and suppliers, and in the presence of horizontal competition among retailers,

argues that voluntary market demand information sharing among retailers and their supplier

(vertical information sharing) within such systems is hard to achieve as an equilibrium ( [50]

and [51]). Such information sharing has two effects: “direct effects” due to the changes in

subsequent decisions of the parties (retailer and supplier) involved in the information sharing,

and “indirect (leakage) effects” due to changes in decisions by other competing firms (retailers
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in our context) based on inferences of information from actions of the informed parties. The

direct effect benefits the supplier, who may appropriate extra value in the chain through

contract pricing using such information but disadvantages the retailer. The leakage effect

also hurts the retailer in their downstream competition, and thus under both effects, it is

unlikely for the retailer to voluntarily reveal market demand information in a non-cooperative

game equilibrium ( [50]).

The usual studied setting that confers the above observations is a two-level supply chain

with one upstream firm (supplier, “he”) and multiple downstream firms (retailers, “she”)

horizontally competing in a Cournot competition by selling a homogeneous product at a

constant marginal cost. The supplier supplies the retailer in a Stackelberg fashion via a

wholesale price contract. Within this setting, the private market demand information, when

revealed to the supplier, allows him to appropriate value through the wholesale price (di-

rect effect), and by observing the supplier prices, the competing retailers engage in more

aggressive Cournot competition (leakage effect). The limitation of this setting is that it

does not offer any opportunities for the retailer to gain from sharing the market demand

information through subsequent actions of the supplier. For example, the supplier may use

the market demand information to undertake operational actions justified in the presence of

strong market signals, such as operational improvement efforts that lower costs or financial

hedging contracts that hedge relevant cost risks. When the supplier takes such actions, he

alters his cost structure, and he may pass some of the benefits to the downstream players.

These trickled down to the retailers’ benefits may offer incentives to them for sharing their

demand information.

In our paper, we advance the argument that vertical market demand information sharing

may happen when such information leads to supplier operational actions altering its cost

structure in a way beneficial to the downstream players (retailers). We start with a bilat-

eral supply chain of a supplier and a retailer, with the supplier supplying in a Stackelberg
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fashion the retailer via a wholesale price contract. The supplier is financing his operational

improvements through his own cash flows, but these cash flows are volatile. The supplier

invests the realized cash outcome to increase production efficiency. The retailer faces price-

sensitive random demand, with the market potential her private information. The retailer

decides to reveal her information and orders from the supplier. There are various scenarios

to be modeled where the supplier controls actions that depend on the market demand infor-

mation, and when executed, alter his cost structure in ways that may benefit the retailer.

For example, the supplier decides on operational improvement investments depending on

realized internal cash flow and revealed market potential. Such decisions can lower sup-

plier costs, with some of the savings passed on through the wholesale price to the retailer.

Alternatively, the supplier may engage in financial hedging in the presence of operational

improvement investments convex on the invested cash flow, with such hedging justified in

the presence of strong market potential ( [52]). In the remaining of the paper, we are going

to model the second such scenario. It is practical, easy to execute, and has appealing ana-

lytical tractability. Our model allows us to enhance our understanding of how operational

actions, information-sharing policies, and financial decisions may interact within a supply

chain setting.

When we investigate the vertical information-sharing problem by taking the supplier’s

cash flow hedging decision process into consideration, the value of building up such an

information-sharing channel can be justified under some conditions. The supplier’s hedging

policy determines the wholesale cost risk the retailer faces, while the end market demand

information allows the supplier to make better hedging decisions on his own interest. How-

ever, the resulting cost outcome under supplier hedging may benefit the retailer as well. In

certain circumstances, the indirect benefits of the retailer from the supplier’s hedging turn

out to be enough to overcome the disadvantageous direct effect of information revelation,

and result in the retailer’s voluntary information sharing. On the other hand, our finding
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also provides a new reason why a firm should consider hedging. The presence of the hedging

option can be used to help achieve agreement on information sharing during the supplier’s

negotiation with the retailer.

We extend the basic bilateral supply chain into the case where there are multiple homoge-

neous Cournot-competing retailers, thus bringing up the opportunity for leakage effects. The

classic analysis of this setting (see [50]) substantiated the disadvantageous direct and leakage

effects for the retailers, and lead to a symmetric equilibrium of no-voluntary private market

information by the retailers. However, when the information allows cost control actions by

the supplier, as in engaging in financial hedging, the information-sharing game ends up in an

asymmetric equilibrium even though the competing retailers are identical. Furthermore, we

are able to show that building up an information-sharing channel generally won’t backfire

and sometimes can Pareto improve the system and consumer welfare.

Finally, we study the information-sharing game in a supply chain where we have inde-

pendent heterogeneous retailers, i.e., are located in different markets of differing potential

market sizes. While in the absence of supplier cost control actions, such setting would have

led to two separate and independent vertical channels, in the presence of such actions (e.g.,

our modeled financial hedging that depends on the total market), the two vertical channels

are interlinked. We find that the heterogeneity in market sizes, and the correlation between

market shocks, play significant roles in shaping vertical information sharing equilibrium.

Contrary to the single market competition setting, although the supplier can never do worse

by building up an information-sharing channel, information sharing may not only hurt the

retailer but also the system as a whole and consumer welfare. While in our two previous set-

tings, the supply chain efficiency is improved with information sharing, in the heterogeneous

independent market system having more informed agents does not necessarily mean a more

efficient system. In these cases, whether information-sharing channel benefits the system

really depends on the structure of the game (i.e., market sizes and correlation of market
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shocks). We also point out that the simultaneous information-sharing game of retailers from

different markets may not admit a pure Nash equilibrium, which suggests that in practice,

a sequential game process may be necessary to guarantee a stable outcome.

In contrast to the previous literature that proved the direct and leakage effects are dis-

advantageous for retailers in vertical information sharing with their common supplier, our

paper argues that supplier’s cost control actions based upon revealed market information may

provide indirect benefits to retailers to counter these disadvantageous effects. Our modeling

of financial cash flow hedging by the supplier, with cash flow investments driving operational

cost improvements, analytically supports this argument. Interestingly, vertical information

sharing may take place under plausible conditions, and in a counter-intuitive result, the Nash

equilibrium may be asymmetric even for the case of two identical retailers. In our paper,

we gain an understanding of the previously unexplored interaction between the two major

operational policies: informational operations and operational cost investments (e.g., cash

flow allocation and/or financial hedging). The financial policies of the supplier on opera-

tional improvements are dependent on accurate market information, and their execution may

provide benefits to downstream retailers. Thus, in an indirect fashion, the supplier’s cost

control actions provide the hidden incentives for retailers’ voluntary information sharing.

2.2 Literature Review

Our paper revisits the issue of incentives for firms to share information vertically in the

presence of horizontal competition. The setting we consider is that of a supplier serving many

competing retailers that have private information about the market demand. The supplier

employs an operational action that depends on market information (e.g., a financial hedge

of volatile cash flows in support of operational improvement investments) as an indirect

way to offer positive incentives to their counterparties (e.g., retailers) to reveal their private
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information. Therefore, the paper touches upon the literature of vertical information sharing

in the presence of horizontal competition, information sharing under oligopoly, and financial

hedging in support of operational actions.

Early economic work dealt with information sharing in an oligopoly. The classic refer-

ences in this literature are [53–59]. These papers are concerned with whether a firm has

incentives to share its private information with competing firms in an oligopoly. All of them

study horizontal information sharing without addressing issues of vertical information shar-

ing. A typical message of this work is that information sharing is unlikely to emerge as an

equilibrium in Cournot competition but may take place in Bertrand competition. Our pa-

per studies vertical information sharing in the presence of horizontal Cournot competition.

While it models both the direct and leakage effects for these environments, it brings up an

alternative operational viewpoint in the operation of the vertical channel. The retailers’ pri-

vate information is often enacting operational actions of the supplier that indirectly benefit

the retailers. This hidden incentive has important implications for the resulting information

sharing equilibrium under certain conditions.

The closest literature to our work is vertical information sharing in the context of hori-

zontal competition. In particular when the studied structure is that of a single supplier and

multiple retailers. For the case of demand uncertainty, [50] shows that both the direct effect

and the leakage effect are disadvantageous for the Cournot competing retailers to voluntarily

share information with the supplier. Furthermore, vertical information sharing reduces so-

cial benefits. [51] considers the stylized setting of a supplier serving two competing retailers

who sell differentiated goods. The paper shows that the supplier’s optimal strategy is inde-

pendent of the type of downstream competition, Cournot or Bernard, and that no voluntary

information sharing takes place. Motivated by these results, our work argues on the need

to model the implications of the revealed information on the supplier’s operational actions
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that alter his cost structure, and then through the vertical channel contracting mechanism

creating benefits for the downstream retailers.

Later work on vertical information sharing with horizontal competition brought up as-

pects of confidentiality ( [60,61]) and multiple competing supply chains ( [62–65]). Our work

considers a single supplier supplying horizontal competitors and thus does not deal with

competing supply chains. Furthermore, we do not study signaling issues involved in confi-

dential or voluntary disclose of information cases. Any shared information by the retailers

is publicly disclosed as in [50].

Most of the supply chain management literature works within a stylized supplier-retailer

bilateral supply chain, with the retailer modeled as a newsvendor in the presence of demand

uncertainty and the supplier responding to orders according to a contract. Authors model

information asymmetry issues via the retailer having private information about the demand

distribution. Information sharing studies in this literature either quantify the benefits of

information sharing by reduced “bullwhip” inefficiencies in ordering and service levels, or

address issues of contracting. The contracting work deals with double-marginalization and

offering incentives for sharing demand information. Our work departs substantially from

this literature as we are concerned with issues of vertical information sharing in the presence

of horizontal competition. The retailer competition is with market clearing quantities in an

uncertain size market. We are not concerned with the short-term market matching issues

(excess inventories or shortages) of a newsvendor retailer.

The value of information sharing in supply chains has been extensively studied by both

theoretical work (see [48,66–68]), and empirical work (see [69,70]). It is challenging to align

supply chain agents’ interests towards information sharing, with quite a few papers studying

associated contract issues. [67] study the contract design problem to induce credible informa-

tion sharing along the bilateral supply chain. [71] and [72] show that revenue/profit sharing

and buyback contracts could better align supply chains and achieve vertical information
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sharing. [73] design contracts that prevent information sharing. The non-monotone profits

of supply chain agents in forecast accuracy has been widely documented by work including

[74–78], etc. As we mentioned before, the “majority of these papers use a serial system

isolated from horizontal competition” (see [50]) and emphasize short-term market mismatch

gains through reduced inventories and shortages. As our focus has shifted to better under-

standing how operational actions of the supplier, in response to the revealed information,

play in environments of information leakage due to retailer competition, we have suppressed

these effects. This way the model focuses on the main issue we study and is tractable.

Another related literature comes from the financial hedging area. Our paper is motivated

by observations in the corporate finance literature that volatility in a firm’s cash flows may

compromise its ability to invest in operational improvement efforts. Our supplier may be

concerned about volatile cash flows for a multiplicity of reasons: material prices, production

yields, exchange rates, if a foreign supplier, and demand uncertainties. As pointed out

in [79], the supplier engaging in financial hedging better deploys operational improvement

investment opportunities, and this way lowers expected costs and risks. Some empirical

evidence in support of such practices appears in [80] and [81]. [82] present empirical evidence

that cash hedging policies in support of operational actions may be more effective than cost

hedging of independent factors (materials, exchange rates, etc.). Following the spirit of [79]

and [83], in our paper, the supplier uses internal funds to finance investments in cost-reducing

operational improvements. Addressing horizontal competition but not in a supply chain

context, [52] studies the cash hedging game with Cournot competing homogeneous retailers

and shows that asymmetric information sharing outcome may emerge as Nash equilibrium in

spite of the symmetric model setting. [84] studies a general duopolistic risk exposure game

and characterizes the conditions under which the competing firms are willing to expose

themselves to risks. The paper does not specify a business context, yet the framework built

in the paper is closely related to the horizontal hedging game in [52]. [85] study the cash
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hedging game in a bilateral supply chain but with fully symmetric information. It shows

that the correlation between agents’ cash flows, market size and volatility play critical roles

in determining the hedging equilibrium. To the best of our knowledge, there is no work so

far that investigates the interplay between informational policies (e.g., vertical information

sharing) and financial hedging in supply chains. Importantly, we identify a new reason

why a supplier should keep the option of hedging and call the awareness of his retailers to

the presence of his hedging lever, which is to garner more market information. Our paper

captures the hidden incentive for the retailer to share private information with the supplier,

when this information drives the right operational action of the supplier. Under certain

conditions, these new incentives overcome direct and leakage effects of vertical information

sharing for the retailer, and lead to voluntary information sharing equilibria. However, the

resulting equilibria may be surprising, with an asymmetric equilibrium potentially emerging

in a setting with multiple homogeneous retailers, and for heterogeneous separate retailers’

correlation among their market shocks shapes the equilibrium.

We organize the remainder of this paper as follows. Section 2.3 introduces our basic

bilateral supply chain model. Then we conduct equilibrium analysis and identify the con-

ditions for voluntary information sharing. And we explain the main intuitions via a profit

decomposition method. Section 2.4 extends the bilateral supply chain into a two-stage sup-

ply chain where there are multiple homogeneous Cournot-competing retailers. Section 2.5

studies the information-sharing game when the single supplier serves two independent but

heterogeneous markets. And finally, we conclude in Section 2.6 with a summary of our main

results and insights.
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2.3 A Bilateral Supply Chain

Consider a simple supply chain, there is a supplier “he” with marginal production cost

c = C(·) which is a convex decreasing function of investment, i.e., C ′(·) < 0 and C ′′(·) > 0.

The cost investment can include production technology upgrading and capacity planning,

etc. The investment comes from an internal random cash flow ξ, ξ ∼ Fξ (·). The supplier can

choose whether to hedge the cash flow, if he hedges, then the realized cash flow is ξ̄ = E[ξ].

Here we make two major assumptions. First, the supplier does not have access to external

finance, i.e., the supplier solely relies on his internal finance for investment. Second, the

marginal return to investment is higher than the opportunity cost of funds, which implies

that the realized cash flow will be fully invested into the cost improvement. Therefore, the

corresponding realized marginal cost is c = C(ξ) if the supplier does not hedge and c̄ = C(ξ̄)

if the supplier hedges. See [52] for more discussions on these two assumptions.

The supplier sells products via a wholesale price contract to the retailer. The retailer

“she” is a monopoly in a linear-demand market with demand function p = a− bq, where p is

retailing price and q is demand. The intercept a reflects the potential market size, a ∼ Fa(·)

and a is supported on [a, ā]. To ensure a positive production quantity, we assume that for

all realizations of potential market size a, cash flow and corresponding cost c, a > c. In this

production step after the cost realization, we assume both the supplier and the retailer are

not financially constrained. This is because unlike the cost investment which is generally

a longer-term decision and has to be committed at the beginning, cost incurred during

production process is short-term and is easier to be financed (also see [52] for the discussions

on this). The retailer can observe the market condition a and has the option to share this

information with the supplier before the realization of a. Following the majority of the

information sharing literature, information sharing in our paper refers to a pre-committed
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agreement on market information disclose. Like cost investment, information sharing is also

a long-term decision that should take place before the production process starts.

C(·), Fξ(·) and Fa(·) are public known. Then the timeline of events is as follows:

1. The retailer decides whether to disclose the market condition with her supplier.

2. Market condition a is realized. Upon getting the information of a (if the retailer shares

a), the supplier chooses whether to hedge the cash flow ξ.

3. After the realization of ξ, the supplier invests ξ into cost improvement and then decide

the wholesale price.

4. The retailer chooses the quantity to buy from the supplier. And finally profits are

realized.

2.3.1 Analysis

To analyze the equilibrium, we first derive the equilibrium under given information-

sharing policy and then discuss retailer’s information-sharing decision via comparison.

The Retailer Shares Information.

For given realization of a and wholesale price w, the retailer’s problem is:

max
q

πR(q; a) = max
q

(p− w) · q = max
q

(a− bq − w)q,

which leads to q∗ = (a − w)/2b and π∗
R(q

∗; a) = (a − w)2/4b. Given the retailer’s best

response, if the supplier does not hedge, then for any realizations of a and c, the supplier’s

problem is

max
w

πS(w; a, c) = max
w

(w − c) · q∗ = max
w

1

2b
(w − c)(a− w),
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which leads to w∗ = (a+ c)/2 and πS(w
∗; a, c) = (a− c)2/8b. Therefore, in the equilibrium,

q∗ = (a−w∗)/2b = (a− c)/4b and πR(q
∗; a) = (a− c)2/16b. So for the given a, the supplier’s

expected profit is

πnh∗
S (a) = Eξ[π

∗
S(w

∗; a, c)] = Eξ

[
(a− c)2

8b

]
=

1

8b

(
a2 − 2aEξ [c] + Eξ

[
c2
])

.

On the other hand, if the supplier hedges, then for any realization of a, the supplier’s problem

is

max
w

πS (w; a, c̄) = max
w

1

2b
(w − c̄) (a− w) ,

which leads to w∗ = (a+ c̄)/2 and πS (w
∗; a, c̄) = (a− c̄)2/8b. Therefore, in the equilibrium,

q∗ = (a−w∗)/2b = (a− c̄)/4b and πR(q
∗; a) = (a− c̄)2/16b. So for the given a, the supplier’s

expected profit is

πh∗
S (a) = Eξ[π

∗
S(w

∗; a, c̄)] =
(a− c̄)2

8b
.

Now we get

πh∗
S (a)− πnh∗

S (a) =
1

8b

(
2 (Eξ [c]− c̄) a−

(
Eξ

[
c2
]
− c̄2

))
,

therefore, the supplier hedges if and only if

a ≥ Eξ [c
2]− c̄2

2 (Eξ [c]− c̄)
∆
= t, (2.1)

which is consistent with the result in [85]. We assume that t ∈ [a, ā]. Based on this, we can

get the expected optimal profit of the retailer as follows,

πs∗
R = Eξ

[
Ea

[
(a− w∗)2

4b

]]
= Eξ

[∫ t

a

(a− c)2

16b
dF (a) +

∫ ā

t

(a− c̄)2

16b
dF (a)

]
=

1

16b

(
Ea

[
a2
]
− 2

(
Eξ [c]

∫ t

a

a dF (a) + c̄

∫ ā

t

a dF (a)

)
+ Eξ

[
c2
]
F (t) + c̄2F̄ (t)

)
.

(2.2)
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The Retailer Does Not Share Information.

For the given wholesale price w, the retailer’s problem is the same as before, so we still

have that q∗ = (a − w)/2b and πR (q∗; a) = (a − w)2/4b. Therefore, for any given a and c,

the profit of the supplier is πS (w; a, c) = (w − c) · q∗ = (w − c)(a − w)/2b. However, the

supplier does not know the realized value of a, so for a given c, the supplier’s problem is

max
w

Ea [πS (w; a, c)] = max
w

Ea

[
(w − c)(a− w)

2b

]
= max

w

(w − c)(Ea[a]− w)

2b
,

which leads to that w∗ = (Ea[a] + c)/2 and πS (w
∗; c) = (Ea[a] − c)2/8b. So if the supplier

does not hedge, his expected profit is

πnh∗
S = Eξ[π

∗
S(w

∗; c)] = Eξ

[
(Ea[a]− c)2

8b

]
=

1

8b

(
Ea[a]

2 − 2Ea[a]Eξ [c] + Eξ

[
c2
])

.

On the other hand, the hedged supplier’s expected profit is

πh∗
S = Eξ[π

∗
S(w

∗; c̄)] = Eξ

[
(Ea[a]− c̄)2

8b

]
=

1

8b

(
Ea

[
a2
]
− 2Ea [a] c̄+ c̄2

)
.

Now we get

πh∗
S − πnh∗

S =
1

8b

(
2 (Eξ [c]− c̄)Ea [a]−

(
Eξ

[
c2
]
− c̄2

))
,

therefore, the supplier hedges if and only if

Ea [a] ≥
Eξ [c

2]− c̄2

2 (Eξ [c]− c̄)
= t. (2.3)
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So when Ea [a] ≥ t, the supplier will hedge and w∗ = (Ea[a] + c̄) /2. The corresponding

expected profit of the retailer is

πns∗
R = Ea


(
a− Ea[a]+c̄

2

)2
4b

 =
1

16b

(
4Ea

[
a2
]
− 3Ea [a]

2 − 2Ea [a] c̄+ c̄2
)
. (2.4)

When Ea [a] < t, the supplier will not hedge and w∗ = (Ea[a] + c) /2. The corresponding

expected profit of the retailer is

πns∗
R = Eξ

Ea


(
a− Ea[a]+c

2

)2
4b


 =

1

16b

(
4Ea

[
a2
]
− 3Ea [a]

2 − 2Ea [a]Eξ[c] + Eξ[c
2]
)
.

(2.5)

2.3.2 Is Voluntary Information Sharing Possible?

By now, we have two assumptions on the parameters: (i), For any realizations of a and

c, we have a > c; (ii), t ∈ [a, ā]. We will check that under these two assumptions, whether

voluntary information sharing of the retailer is possible, i.e., πs∗
R > πns∗

R . The following

proposition characterizes the conditions under which voluntary information sharing takes

place:

Proposition 2.3.1 Voluntary information sharing takes place if and only if


2 (Eξ [c]− c̄)

∫ t

a

F (a) da > 3V ar (a) , if Ea [a] ≥ t

2 (Eξ [c]− c̄)

∫ ā

t

F̄ (a) da > 3V ar (a) , if Ea [a] < t.

(2.6)

Conditions in Proposition 2.3.1 involve three terms: Eξ [c] − c̄ measures the effectiveness

of cost reduction effect of cash hedging;
∫ t

a
F (a) da measures the likelihood of information
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sharing to change the cash hedging decision and we call it as information factor of hedging ;

V ar (a) measures the market volatility. As we can see, there are typically three requirements

that make (2.6) hold: (i) . The cash hedging effect of unit cost reduction, Eξ [c]− c̄, should

be significant, ; (ii) . Average market size E [a] is close to the cash hedging threshold t, i.e.,∫ t

a
F (a) da or

∫ ā

t
F (a) da is big enough; (iii) . Some but limited market volatility V ar (a).

The following corollary gives simpler necessary conditions of voluntary information shar-

ing:

Corollary 2.3.1 The following condition is necessary for voluntary information sharing to

take place:

Eξ [c]− c̄ >
3V ar (a)

2
∫ E[a]
a

F (a) da
, if t ≤ E[a] and Eξ [c]− c̄ >

3V ar (a)

2
∫ ā

E[a] F (a) da
, if t > E[a].

If potential market size, a, follows a symmetric distribution, the following distribution-free

condition is necessary for voluntary information sharing:

Eξ[c]− c̄ > 3σ0,

where σ0 is the standard deviation of random variable a.

Now we use an example to help better demonstrate the structural requirements of (2.6).

Example 1 (Scale up in β) Assume that the production cost function has form cβ (·) =

β · c (·), where β > 0 is a constant and c (·) is a convex decreasing function. The potential

market size has form aβ = a+(β − 1) · t, where a is a random variable following distribution

F (·) with support on [a, ā] and t =
Eξ[c2]−c̄2

2(Eξ[c]−c̄)
. Additionally, we assume E [a] ≥ t > a and for

any realization of c, we have c < a. We notice that such assumption can be compatible if

and only if t > maxξ {c (ξ)}. For example, c (ξ) = (1− ξ)3/2, which is convex decreasing and
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ξ ∼ U ([0, 1]), then t ≈ 1.34 > 1 = maxξ {c (ξ)}. We denote the distribution of aβ by Fβ (·).

Now condition (2.6) is written as

2 (Eξ [cβ]− c̄β)

∫ βt

a+(β−1)t

Fβ (aβ) daβ > 3V ar (aβ) ,

which is equivalent to

2β · (Eξ [c]− c̄)

∫ t

a

F (a) da > 3V ar (a) ,

therefore, condition (2.6) holds if and only if

β >
3V ar (a)

2 (Eξ [c]− c̄) ·
∫ t

a
F (a) da

,

that is, when the scale-up parameter β is greater than some threshold, voluntary information

sharing would take place. Specifically, in our example, we fix the volatility of market size

and apply translation on the mean market size, which keeps terms
∫ βt

a+(β−1)t
Fβ (aβ) daβ and

V ar (aβ) constant, while the scaling-up increases the magnitude of cost reduction effect.

The implication of our equilibrium analysis has two folds. First, we show that the presence

of cost risk from the supplier could motivate the retailer’s voluntary information sharing even

in the very simple bilateral supply chain. Second, it is straightforward to see that the supplier

can never do worse by having more information in our game, therefore we identify a new

reason why a firm would like to hedge. The presence of the hedge lever itself could help a

supplier garner more information about the end market. In other words, a supplier’s cash

hedging strategy could be used as a natural bargain tool during the information sharing

negotiation with the retailer.
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2.3.3 Insightful Decomposition

Retailer’s equilibrium profit difference between sharing and not sharing information is

the compound product of retailer’s information sharing behavior and supplier’s cash hedging

decisions. We conduct the following decomposition to demonstrate the intuitions of the value

of information sharing:

πs∗
R − πns∗

R =

∆1︷ ︸︸ ︷
(πs∗

R − π̃s
R)−

∆2︷ ︸︸ ︷
(πns∗

R − π̃ns
R )+

∆3︷ ︸︸ ︷
(π̃s

R − π̃ns
R ), (2.7)

where π̃s
R and π̃ns

R are the retailer’s equilibrium profits when sharing and not sharing in-

formation with the supplier not having cash hedging lever respectively. Therefore, ∆1 and

∆2 represent the effects of supplier’s hedging decision on retailer’s surplus with and without

retailer’s information sharing respectively. The last term, ∆3, represents retailer’s pure effect

of information sharing when the supplier does not have hedging decisions. Terms ∆1 and ∆2

are the effects of hedging decision under given information sharing scheme, therefore ∆1−∆2

represents the information rent on hedging effect. Following the idea of profit function de-

composition in [85], we can further decompose ∆1 and ∆2 into the cost-reduction effect of

hedging and the flexibility loss of hedging respectively.

∆1 = Eξ

[∫ ā

t

(
(a− c̄)2

16b
− (a− c)2

16b

)
dF (a)

]

=

∫ ā

t

2 (Eξ [c]− c̄) a− (Eξ [c
2]− c̄2)

16b
dF (a)︸ ︷︷ ︸

cost reduction effect of hedging > 0

−V ar (c)

16b
· F (t)︸ ︷︷ ︸

flexibility loss of hedging < 0

. (2.8)
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∆2 =


Eξ

∫ t

a


(
a− Ea[a]+c

2

)2
4b

−

(
a− Ea[a]+c̄

2

)2
4b

 dF (a)

 , if Ea [a] ≥ t,

0, if Ea [a] < t.

=



∫ t

a

(Eξ [c]− c̄)
(
((2a− Ea [a])− Eξ [c]) + ((2a− Ea [a])− c̄)

)
16b

dF (a)︸ ︷︷ ︸
cost reduction effect of hedging > 0

−V ar (c)

16b
· F (t)︸ ︷︷ ︸

flexibility loss of hedging < 0

, if Ea [a] ≥ t,

0, if Ea [a] < t.

(2.9)

In the above decomposition, the cost reduction effect of hedging is the expected profit differ-

ence between the retailer who has the hedging decision and the retailer who cannot hedge

but also has to determine wholesale price before the realization of cash flow ξ given that the

realized market size is big (here “big” refers to the market size that is bigger than hedging

threshold t, and the expected profit here is in terms of the unnormalized conditional market

size distribution). On the other hand, the flexibility loss of hedging is the expected profit

difference between the retailer who cannot hedge and has to determine wholesale price be-

fore the realization of cash flow and the retailer who cannot hedge but is able to determine

wholesale price after the realization of cash flow given that the realized market size is big.

Correspondingly, we refer to the difference between the cost reduction effect of hedging in

∆1 and ∆2 as the information rent on cost reduction effect of hedging and the difference
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between the flexibility loss of hedging in ∆1 and ∆2 as the information rent on flexibility loss

of hedging. On the other hand, for ∆3, we have

∆3 = Eξ

∫ ā

a

(a− c)2

16b
−

(
a− Ea[a]+c

2

)2
4b

 dF (a)


=

∫ ā

a

(
(a− Eξ[c])

2

16b
− ((2a− Ea [a])− Eξ[c])

2

16b

)
dF (a)

=
Ea

[
a2 − (2a− Ea [a])

2]
16b

= −3V ar (a)

16b︸ ︷︷ ︸
wholesale cost of information sharing < 0

. (2.10)

We have several observations from the above calculations (2.8), (2.9) and (2.10). First, we

notice that given information sharing outcome, the value of hedging decision represented by

∆1 and ∆2 involve the distributions of both potential market size a and cash flow ξ and

the cost function c (ξ). On the other hand, the value of information sharing represented by

∆3 only involves the volatility of the market, which is independent of the specific market

distribution form and the firm’s cost details. Besides, we notice that ∆3 is always a loss

for the retailer because additional market information gives the supplier more flexibility in

setting the wholesale price in order to exploit more profits from the retailer. So we call ∆3

as the wholesale cost of information sharing. Second, there are two positive terms in the

above decomposition that may incentivize the retailer to share information, i.e., the cost

reduction effect of hedging given information is shared and the negative flexibility loss of

hedging given no information is shared (if Ea [a] ≥ t). If the market size a could be well

characterized by a symmetric distribution, then we have clearer intuition on what drives the

retailer’s voluntary information sharing: When Ea [a] < t, only in the scenario where the

retailer shares information, the cost reduction effect of hedging and the flexibility loss of

hedging are nontrivial, and it is straightforward to see that it is the information rent on cost

reduction effect of hedging that may incentivize the retailer’s information sharing. When
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Ea [a] ≥ t and the distribution of a is symmetric, for the information rent on cost reduction

effect of hedging, we have

∫ ā

t

(Eξ [c]− c̄) ((a− Eξ [c]) + (a− c̄))

16b
dF (a)

−
∫ t

a

(Eξ [c]− c̄)
(
((2a− Ea [a])− Eξ [c]) + ((2a− Ea [a])− c̄)

)
16b

dF (a)

≥
∫ ā

t

(Eξ [c]− c̄) ((t− Eξ [c]) + (t− c̄))

16b
dF (a)

−
∫ t

a

(Eξ [c]− c̄)
(
(t− Eξ [c]) + (t− c̄)

)
16b

dF (a) = 0.

The second inequality is because of the condition Ea [a] ≥ t, and the last equality is because

of the symmetry of market size distribution. Therefore, the cost reduction effect of hedging

is always magnified by additional information, which encourages the retailer to share the

information. On the other hand, for the information rent on flexibility loss of hedging, we

have

−V ar (c)

16b
· F̄ (t) +

V ar (c)

16b
· F (t) =

V ar (c)

16b
· (2F (t)− 1) ≤ V ar (c)

16b
· (2F (Ea [a])− 1) = 0.

Therefore, the flexibility loss of hedging is also magnified by additional information which

discourages the retailer from sharing the information. So in summary, when the informa-

tion rent on cost reduction effect of hedging outweighs the information rent on flexibility

loss of hedging and the wholesale cost of information sharing, the retailer would share the

information with the supplier voluntarily.

As we have indicated on one hand, information sharing facilitates better cash hedging

policies that helps to enhance system efficiency. On the other hand, information sharing

increases the inefficiency by more severe double marginalization. It is possible to design

surplus division mechanism to better align the supply chain. While simple information
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sharing compensation contract cannot work in the traditional vertical information sharing

setting of a bilateral supply chain (see [50]), we characterize the conditions of the existence

of such contract by the following proposition.

Proposition 2.3.2 Information sharing compensation contracts that can Pareto improve

the supply chain exist if and only if


2 (Eξ [c]− c̄)

∫ t

a

F (a) da > V ar (a) , if Ea [a] ≥ t

2 (Eξ [c]− c̄)

∫ ā

t

F̄ (a) da > V ar (a) , if Ea [a] < t.

We notice that the conditions in the above proposition are strictly weaker than the conditions

in Proposition 2.3.1, which indicates that when information sharing is not favorable for the

retailer, there may still be an opportunity to induce information sharing and Pareto improve

system performance by implementing compensation mechanism for information between the

supplier and the retailer.

2.4 Competing Retailers with Demand Uncertainty Information

We now consider a two-tier supply chain with one supplier and n retailers engaged in

Cournot competition. And denote the set of n retailers by N = {1, 2, · · · , n}. Following

the framework of [50], we assume the downstream demand curve is p = a + θ − Q, where

θ ∼ N (0, σ2
0). Each retailer can observe a private signal Yi about θ and Yi = θ + ϵi, where

ϵi ∼ N (0, σ2). 1 Here σ0 and σ are common knowledge. To avoid the pathological cases, here

we assume that a is large enough compared with σ0 and any realization of production cost

1To facilitate our analysis, we assume normally distributed market size and signals, which may violate our
assumption a > c in the previous section. The justification could be that both the supplier and the retailer
commit to serving the market once their expected earning is positive (which can be guaranteed if the mean
value of market size is big enough compared to the cost) even if in some extreme cases they may lose money.
Such a relaxation does not change the main insights of our results.
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c such that the probability of a+ θ < c is negligible. Given θ, Yi, i ∈ N , are independently

distributed. Similar to the case above, the game consists of four stages: (i). Each retailer

decides whether to publicly disclose her private market signal2; (ii). The private signals are

realized and the supplier observes the signals, then determines whether to hedge the cash

flow or not; (iii). The cash flow is realized, and in turn the production cost c is realized,

then the supplier determines the wholesale price w; (iv). After knowing the wholesale price

w, the retailers determine their order quantities qi, i ∈ N , and then the profits are realized.

Remark. (Observable Information) Like [50] and [51], for simplicity, our model

assumes all the retailers can observe the publicly shared market information and the wholesale

price. Retailers do not need to know the realized production cost. However, as we will

see later, the supplier’s equilibrium wholesale price decision is a linear combination of the

realized production cost and the shared information. Since the shared information is public

knowledge, all the retailers can perfectly infer the realized cost. Importantly, the wholesale

price decision does not need to serve as a signal of competitors’ private information (see

[60]). We conjecture that information sharing with confidentiality should also lead to more

information sharing in the equilibrium as indicated by [60]. However, information sharing

with confidentiality would significantly complicate our analysis, while it is irrelevant to our

main insights derived from the bilateral supply chain model.

We regulate that if there are multiple equilibriums in the information-sharing game, we

apply Pareto refinement rule.

Let K, K ⊆ N , denote the set of retailers who disclose their private signals and the

supplier chooses to acquire their information. Here |K| = k. Using Bayesian rule, the post-

distribution of θ given sample Yj, j ∈ K, is N (µ1 (k) , σ
2
1 (k)), where σ

2
1 (k) =

(
1
σ2
0
+ 1

σ2/k

)−1

and µ1 (k) = σ2
1 (k)

∑
j∈K Yj/σ

2 = 1
k+s

∑
j∈K Yj, where s = σ2/σ2

0. Let ΠS (k) denote the

2As pointed out in [60], [50] actually assumes a public information revelation. In this paper, we also study
the problem under this benchmark. As shown in [60], signaling issues arise in the information-sharing game
with confidentiality, which may give the retailers more incentive to share information.
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supplier’s expected equilibrium profit when there are k out of n retailers share information.

Let ΠS
R (k) and ΠN

R (k) denote the expected equilibrium profit of retailer who shares and does

not share information given that k out of n−1 other retailers share information respectively.

2.4.1 Equilibrium Analysis

We refer readers to Appendix A and C for the technical details of analysis. The following

equations give the marginal utility of sharing information given k − 1 out of the rest n − 1

retailers share information:

ΠS
R(k)− ΠN

R (k − 1)

=
1

4(n+ 1)2

[
−

σ4
0σ

2
((

(2n+ 1) k − n
)
σ2
0 + 2nσ2

)((
(2n+ 3) k + n

)
σ2
0 + 2 (n+ 2)σ2

)
(
kσ2

0 + σ2
)(

(k − 1)σ2
0 + σ2

)(
(n+ k)σ2

0 + 2σ2
)2

+ 2(Eξ[c]− c̄)

(∫ t−a

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]
, k > 1,

where σ2
k =

kσ2
0

k+σ2/σ2
0
and Φ (·) is the cdf of standard normal distribution. And marginal utility

of information sharing when none of the other retailers share information has a slightly

different form:

ΠS
R(1)− ΠN

R (0)

=
1

4 (n+ 1)2

(
−
(
4
(
B0

2

)2 − (A1
1

)2) (
σ2
0 + σ2

)
+ 2 (Eξ [c]− c̄)

∫ |t−a|

−∞
Φ

(
x

σ1

)
dx

)
.

We notice that all retailers hold information is an equilibrium if and only if ΠS
R (1) −

ΠN
R (0) ≤ 0. All retailers disclose information is an equilibrium if and only if ΠS

R (n) −

ΠN
R (n− 1) > 0. k out of n retailers share information is an equilibrium if and only if
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ΠS
R (k) − ΠN

R (k − 1) > 0 and ΠS
R (k + 1) − ΠN

R (k) ≤ 0, for k = 2, · · · , n − 1. One of the

above three conditions must hold, therefore we have

Proposition 2.4.1 The information-sharing game must admit a pure Nash equilibrium.

Given the existence of the equilibrium, the following corollary answers how the system’s

equilibrium performance changes after building up the information-sharing channel.

Corollary 2.4.1 If no-information-sharing is not a Nash equilibrium, i.e., ΠS
R (1) > ΠN

R (0),

there must exist an information sharing equilibrium that improves the whole system upon the

no-information-sharing outcome in Pareto sense.

Corollary 2.4.1 indicates that building up an information-sharing channel may not only

generate nontrivial equilibrium outcomes, but can also benefit every agent in the system.

Next, we use the following two-retailer example to demonstrate the possibility of asym-

metric equilibrium outcome.

Example 2 (Scale up in β) We construct our example based upon Example 1 where the

production cost function has form cβ (·) = β · c (·), where β > 0 is a constant and c (ξ) =

(1− ξ)3/2, which is convex decreasing and ξ ∼ U ([0, 1]). The potential market size has form

aβ = a + (β − 1) · t + θ, where a = t − 1, t =
Eξ[c2]−c̄2

2(Eξ[c]−c̄)
≈ 1.34, θ ∈ N (0, σ2

0) with σ0 = 1

and signal accuracy σ = 0.5. 3 We know that the largest realization of cβ (·) is β, while

E [aβ] ≈ 1.34 · β − 1, therefore when β is larger than 15 or so, the largest realized production

cost is at least 3 standard deviations smaller than market size, which implies that it is well

justified to neglect the pathological cases where realized production cost exceeds the market

size. According to our calculation above, given the example setting, we have that

ΠS
R (1)− ΠN

R (0) = −2.873 + 0.118 · β , ΠS
R (2)− ΠN

R (1) = −0.711 + 0.021 · β,
3As we mentioned in the model setup, one caveat is that the support of the market size distribution is infinite
which may lead to the pathological case where production cost exceeds the market size in the linear demand
model, however, we argue that when the scale factor β is big enough, it is legit to neglect the pathological
possibility and keep the setting of normal distributions.
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both profit differences are linear in the scale factor β. As shown in Figure 2.1, we see that

the information sharing equilibrium outcome transfers from (N,N) to (S,N) (or (N,S)) to

(S, S) as β grows. For fixed market volatility, when scale factor β is small, the value of

20 25 30 35 40 45 50

β

-1

1

2

3

ΠS
R (1)−ΠN

R (0)

ΠS
R (2)−ΠN

R (1)

(S,N) or (N,S)(N,N) (S,S)

Figure 2.1.: Information Sharing Equilibrium Outcome

information is relatively salient, which implies that the wholesale price loss due to informa-

tion sharing outweighs the potential cash hedging benefits. As β grows, the magnitude of

production cost becomes large, and correspondingly the benefits of cash hedging led by infor-

mation sharing starts to exceed the wholesale price loss, then more agents turn to sharing

information.

Marginal Utility Decomposition and Distribution.

In this section, we show that how the marginal utility changes with one additional retailer

sharing information could be decomposed following the decomposition idea introduced in

Section 2.3.3. That helps us understand how the potential benefits of more information are
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distributed among supply chain agents. We can rewrite the marginal utility difference of the

retailer who is thinking about sharing information as follows:

ΠS
R(k)− ΠN

R (k − 1) =
1

4 (n+ 1)2
(
∆SN

I (k) + ∆H (k)
)
,

where

∆H (k) = 2(Eξ[c]− c̄)

(∫ t−a

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)
,

∆SN
I (k) = −

σ4
0σ

2
((

(2n+ 1) k − n
)
σ2
0 + 2nσ2

)((
(2n+ 3) k + n

)
σ2
0 + 2 (n+ 2)σ2

)
(
kσ2

0 + σ2
)(

(k − 1)σ2
0 + σ2

)(
(n+ k)σ2

0 + 2σ2
)2 < 0.

∆H (k) characterizes the information rent on cost reduction effect of hedging within which

the term
(∫ t−a

−∞ Φ
(

x
σk

)
− Φ

(
x

σk−1

)
dx
)
is the extension of the notion information factor of

hedging introduced in the simple bilateral model. It is not difficult to show that ∆H (k) > 0.

∆SN
I (k) on the other hand captures the wholesale cost of information sharing for the

marginal retailer who changes her position on disclosing her information and it is the sum-

mation of the direct effect and indirect (leakage) effect of information sharing in [50]. For

the retailers who have already shared their information, we have

ΠS
R (k)− ΠS

R (k − 1) =
1

4 (n+ 1)2
(
∆SS

I (k) + ∆H (k)
)
,

where ∆SS
I (k) denotes the benefits of receiving additional information for the retailer who

has already shared her information, which is always positive,

∆SS
I (k) =

σ4
0σ

2

(kσ2
0 + σ2) ((k − 1)σ2

0 + σ2)
> 0.
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And for the retailers who do not share information, we have

ΠN
R (k)− ΠN

R (k − 1) =
1

4 (n+ 1)2
(
∆NN

I (k) + ∆H (k)
)

=
1

4 (n+ 1)2

(
∆SS

I (k) +
(
∆NN

I (k)−∆SS
I (k)

)
+∆H (k)

)
,

where ∆NN
I (k) denotes the net benefit for the retailer who never shares information. 4 For

the supplier, we have a similar decomposition

ΠS (k)− ΠS (k − 1) =
n

4 (n+ 1)

(
∆S

I (k) + ∆H (k)
)
,

where ∆S
I (k) is the for the supplier

∆S
I (k) =

σ4
0σ

2

(kσ2
0 + σ2) ((k − 1)σ2

0 + σ2)
.

We find that the information rent on cost reduction effect of hedging has the same value

among all retailers which is always 1
n(n+1)

of the supplier’s value. However, the wholesale

cost of information sharing differs. Specially, ∆SS
I (k) is always positive and it has the same

form as ∆S
I (k). This indicates that more information from other retailers help the retailers

who have already shared information before and the supplier in the similar way (except for

a factor 1
n(n+1)

), since the market information they possess always stays the same. ∆SN
I (k)

is always negative, because the retailer does not gain new knowledge of the market but

forgoes her information advantage to the supplier and other competing retailers. And finally,

∆NN
I (k) is indefinite. On one hand, those retailers who never share information gain better

knowledge of the market from a newly shared piece of information as other retailers and

the supplier (captured by ∆SS
I (k)), but on the other hand, ∆NN

I (k) − ∆SS
I < 0 represents

4∆NN
I (k)−∆SS

I (k) = − 4(n+1)2σ6
0σ

2((2k2(k+1)+2k(k+1)n+n2)σ6
0+2(k(4k+3)+2(k+1)n)σ4

0σ
2+(5+10k+2n)σ2

0σ
4+4σ6)

((k−1)σ2
0+σ2)((n+k)σ2

0+2σ2)
2
(kσ2

0+σ2)((n+k+1)σ2
0+2σ2)

2 .
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the profit loss due to the enhanced ability of other retailers and the supplier to infer her

private information. ∆NN
I (k) reflects the involved interplay between those two effects. But

of course, this profit loss is not as much as the wholesale cost undergone by the retailer who

directly shares her information. The above insights are summarized by ordering the various

rents as follows:

Corollary 2.4.2 ∆SN
I (k) < ∆NN

I (k) < ∆SS
I (k)

(
= ∆S

I (k)
)
.

And obviously, it is the supplier who always garners the majority of the benefit from the

shared information.

Consumer Welfare.

Finally, we investigate the impact on customer surplus and social surplus when voluntary

information sharing takes place. Customer surplus when k out of n retailers share information

is defined as CS (k) = 1
2
E [Q2]. where Q is the total production quantity. Let ΠSC (k)

denote the total supply chain surplus when k out of n retailers share information, then the

corresponding total social surplus could be defined as W (k) = ΠSC (k) + CS (k) (see [50]).

Unlike what documented in the previous literature, in our framework, the consumer surplus

may increase in a non-trivial equilibrium (i.e., effective information sharing takes place),

Proposition 2.4.2 When no-information-sharing is not a Nash equilibrium, there must

exist an information sharing equilibrium where consumer surplus strictly improves upon the

no-information-sharing outcome.

Proposition 2.4.2 indicates that building up an information-sharing channel typically won’t

hurt and may lead to a strict win-win-win outcome.
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2.5 Two Markets

In this section, we investigate the case when the supplier serves retailers selling into

two separate markets, how the supplier’s cash hedging behavior interacts with the retailers’

information sharing incentives. The supplier’s hedging is what links the two vertical channels

for the markets. We index the two markets by m (m ∈ {1, 2}) and for market m, the retailer

m faces linear demand pm = am+θm−qm, where for tractability, we assume the two markets

follow two-point distribution:

P (θ1 = δ, θ2 = δ) = P (θ1 = −δ, θ2 = −δ) = α,

P (θ1 = δ, θ2 = −δ) = P (θ1 = −δ, θ2 = δ) =
1

2
− α,

and δ, δ > 0 and α ∈
[
0, 1

2

]
. The correlation coefficient between the two markets is 4α − 1.

Because we are interested in the effect of differentiated average market size, we do not

consider the difference in market volatility between the two markets. Moreover, to focus on

the tension generated from the two markets’ difference and facilitate our analysis, we assume

each retailer m can observe accurate condition θm in her own market.

We assume that the supplier can do price discrimination, i.e., provides different wholesale

prices for different markets. There are potentially four different information sharing scenar-

ios, we use the pair (m1,m2), m1,m2 ∈ {S,N} to denote each scenario where S stands for

information sharing and N stands for no information sharing.

Remark. (Observable Information) Here we do not need the information sharing

to be public, which means the shared information from a retailer will not be disclosed to the

other. Actually, since the two retailers are in separate markets, and both have full knowledge

of their own markets, there is also no need to know the other’s market condition during the

production process.
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2.5.1 Equilibrium Analysis

For the analysis details, please refer to Appendix B. We need to highlight that in this two-

market game the supplier’s hedging decision is driven by his expected belief over the expected

average market size between the two markets upon the available information. In effect the

market heterogeneity is not fully reflected by the supplier’s hedging decision. We find that

when a1+a2
2
≥ t+δ (a1+a2

2
≤ t−δ), the supplier would always (never) hedge, i.e., information

sharing has no impact on the supplier’s hedging decisions. We only focus on the cases

where information sharing has impact on supplier’s hedging, 2 (t− δ) < a1 + a2 < 2 (t+ δ).

Calculations give the following results:

Proposition 2.5.1 Nash equilibrium under Pareto refinement is summarized by Table 2.1.

Table 2.1: Information Sharing Equilibrium Summary (w. Pareto Refinement)

A2 :
2 (t− δ) < a1 + a2 <

2 (t− 2αδ)

A1 :
2 (t− 2αδ) ≤
a1 + a2 < 2t

B1 :
2t ≤ a1 + a2 <
2 (t+ 2αδ)

B2 :
2 (t+ 2αδ) ≤

a1 + a2 < 2 (t+ δ)

(S, S)

a1, a2 > max
{
t−

δ
(
1− 3δ

Eξ[c]−c̄

)
, t−

δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)}
t− δ

(
1− 3δ

Eξ[c]−c̄

)
<

a1, a2 <

t+ δ
(
1− 24αδ

Eξ[c]−c̄

) t− δ
(
1− 24αδ

Eξ[c]−c̄

)
<

a1, a2 <

t+ δ
(
1− 3δ

Eξ[c]−c̄

)
a1, a2 < min

{
t+

δ
(
1− 3δ

Eξ[c]−c̄

)
, t+

δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)}

(S,N) −

a1 >

t− δ
(
1− 3δ

Eξ[c]−c̄

)
a2 ≥

t+ δ
(
1− 24αδ

Eξ[c]−c̄

)
a1 <

t+ δ
(
1− 3δ

Eξ[c]−c̄

)
a2 ≤

t− δ
(
1− 24αδ

Eξ[c]−c̄

) −

(N,S) −

a1 ≥
t+ δ

(
1− 24αδ

Eξ[c]−c̄

)
a2 >

t− δ
(
1− 3δ

Eξ[c]−c̄

)
a1 ≤

t− δ
(
1− 24αδ

Eξ[c]−c̄

)
a2 <

t+ δ
(
1− 3δ

Eξ[c]−c̄

) −

(N,N)
a1, a2 ≤

t− δ
(
1− 3δ

Eξ[c]−c̄

) a1, a2 ≤
t− δ

(
1− 3δ

Eξ[c]−c̄

) a1, a2 ≥
t+ δ

(
1− 3δ

Eξ[c]−c̄

) a1, a2 ≥
t+ δ

(
1− 3δ

Eξ[c]−c̄

)

The fact that the supplier’s hedging decision somewhat neglects the heterogeneity across the

markets implies that supply chain agents’ preference over the hedging outcome may not be
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aligned, which results in a new incentive for the retailers to disclose market information.

Figure 2.2 depicts the equilibrium outcomes under different correlation parameter α and

volatility δ pairs. Two high-level observations on the equilibrium outcomes are that

(a) α = 0.2 , δ = 0.5 (b) α = 0.2 , δ = 1

(c) α = 0.4 , δ = 0.5 (d) α = 0.4 , δ = 1

Note: The blank regions denote the cases where a1 + a2 ≥ 2 (t+ δ) or a1 + a2 ≤ 2 (t− δ).

Figure 2.2.: Equilibrium Outcomes under Different Parameters (cβ (ξ) = β · (1− ξ)3/2, ξ ∼
U [0, 1], β = 100)

• Information sharing can emerge as an equilibrium when both retailers’ markets have

moderate sizes. When both markets are either rather large or rather small, no informa-

tion sharing will take place in the equilibrium. This is intuitive because the supplier’s

hedging decision is driven by the average size of the two markets. If both markets
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have similar but extreme sizes (very large or very small), information sharing would

have a rather limited influence on the supplier’s hedging policy. Therefore, sharing

information would mainly incur wholesale price exploitation from the supplier, which

would discourage both retailers from sharing information.

• When the two markets have distinctly different sizes and are more negatively correlated,

it is more likely that the information-sharing game admits no pure Nash equilibrium.

The intuition is that for rather heterogeneous markets (in expected size and correla-

tion), as we showed in equilibrium analysis (see Appendix B), retailer 1 would tend to

follow (deviate from) retailer 2’s information-sharing strategy, while retailer 2 would

tend to deviate from (follow) retailer 1’s information-sharing strategy, which can end

up with no pure Nash equilibrium.

2.5.2 Does Information-Sharing Channel Improve Efficiency?

In this section, we try to answer the question of whether building up an information-

sharing channel can help improve the system’s efficiency. To do so, we compare the total

system welfare under information-sharing outcomes (S, S) and (S,N) with the benchmark

outcome (N,N) respectively. It is straightforward to see that the supplier can never do

worse after building up the information sharing. The reason is the same as before because

the supplier can simply choose to neglect any collected information and act as if in the

scenario when there is no information sharing. But what is unclear under the duopolistic

setting is that how the potential inefficiency introduced by the interactions between the two

retailers would influence their welfare. We find that the information-sharing channel can

backfire both for the retailers and even the whole system. Specifically, we have the following

results:
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Proposition 2.5.2 The conditions under which building up information-sharing channel

can improve system efficiency are summarized in Table 2.2. The conditions under which

building up information-sharing channel can benefit the two retailers are summarized in

Table 2.3.

For technical details, please refer to Appendix B. The following gives a numerical example

Table 2.2: Conditions for Improved System Efficiency under Given Information Sharing
Outcome

A2 :
2 (t− δ) < a1 + a2 <

2 (t− 2αδ)

A1 :
2 (t− 2αδ) ≤
a1 + a2 < 2t

B1 :
2t ≤ a1 + a2 <
2 (t+ 2αδ)

B2 :
2 (t+ 2αδ) ≤

a1 + a2 < 2 (t+ δ)

(S, S)
a1 + a2 >

2t− 2δ + δ2

3α(Eξ[c]−c̄)

a1 + a2 >

2t− 2δ + δ2

3α(Eξ[c]−c̄)

a1 + a2 <

2t+ 2δ − δ2

3α(Eξ[c]−c̄)

a1 + a2 <

2t+ 2δ − δ2

3α(Eξ[c]−c̄)

(S,N) −
a1 + a2 > 2t− 4αδ +

2δ2(1−4α+8α2)
3(Eξ[c]−c̄)

a1 + a2 < 2t+ 4αδ −
2δ2(1−4α+8α2)

3(Eξ[c]−c̄)

−

(N,S) −
a1 + a2 > 2t− 4αδ +

2δ2(1−4α+8α2)
3(Eξ[c]−c̄)

a1 + a2 < 2t+ 4αδ −
2δ2(1−4α+8α2)

3(Eξ[c]−c̄)

−

Table 2.3: Conditions for Improved Profits for Retailer 1 and 2 under Given Information
Sharing Outcome

A2 :
2 (t− δ) < a1 + a2 <

2 (t− 2αδ)

A1 :
2 (t− 2αδ) ≤ a1 + a2 <

2t

B1 :
2t ≤ a1 + a2 <
2 (t+ 2αδ)

B2 :
2 (t+ 2αδ) ≤

a1 + a2 < 2 (t+ δ)

(S, S)

a1 >

t−δ

(
1− 3δ

2α(Eξ[c]−c̄)

) a1 >

t− δ

(
1− 3δ

2α(Eξ[c]−c̄)

) a1 <

t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

) a1 <

t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 >

t−δ

(
1− 3δ

2α(Eξ[c]−c̄)

) a2 >

t− δ

(
1− 3δ

2α(Eξ[c]−c̄)

) a2 <

t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

) a2 <

t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)

(S,N)

− a1 > t− δ
(
1− 3δ

Eξ[c]−c̄

)
a1 < t+ δ

(
1− 3δ

Eξ[c]−c̄

)
−

−
a2 > t+

(1− 4α) δ
(
1− 3(1−4α)δ

Eξ[c]−c̄

) a2 < t−
(1− 4α) δ

(
1− 3(1−4α)δ

Eξ[c]−c̄

) −

(N,S)

−
a1 > t+

(1− 4α) δ
(
1− 3(1−4α)δ

Eξ[c]−c̄

) a1 < t−
(1− 4α) δ

(
1− 3(1−4α)δ

Eξ[c]−c̄

) −

− a2 > t− δ
(
1− 3δ

Eξ[c]−c̄

)
a2 < t+ δ

(
1− 3δ

Eξ[c]−c̄

)
−

Note: For a given outcome ((S, S), (S,N) or (N,S)) and a total market size region (A1, A2, B1 or B2), the
upper box summarizes the conditions that the retailer 1 gets better off and the lower box summarizes the

conditions that the retailer 2 gets better off.
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where effective information sharing emerges in the equilibrium, while both retailers and the

whole system get worse off.

Example 3 (Negative Impact of Information Sharing) Similar as Example 1, we assume

production cost function has form cβ (·) = β ·c (·), where β > 0 is a scale-up factor and c (ξ) =

(1− ξ)3/2, ξ ∼ U ([0, 1]). Let β = 100, then tβ =
Eξ[c2β]−c̄2β

2(Eξ[cβ]−c̄β)
= β · Eξ[c2]−c̄2

2(Eξ[c]−c̄)
≈ 134. Consider

two markets with identical mean market sizes a1 = a2 = 134.53 and market shock δ = 1. The

two markets are negatively correlated with α = 0.03. Then 269.01 = 2 (tβ − 2αδ) < a1+a2 <

2tβ = 269.13 and 134.21 = tβ−δ

(
1− 3δ

Eξ[cβ]−c̄β

)
< a1, a2 < tβ+δ

(
1− 24αδ

Eξ[cβ]−c̄β

)
= 135.41,

which means that (S, S) is a Nash equilibrium (see Table 2.1). On the other hand, we have

a1 + a2 < 2tβ − 2δ + δ2

3α(Eξ[cβ]−c̄β)
= 269.52, a1 < tβ − δ

(
1− 3δ

2α(Eξ[cβ]−c̄β)

)
= 144.33 and

a2 < tβ − δ

(
1− 3δ

2α(Eξ[cβ]−c̄β)

)
= 144.33. From Table 2.2 and Table 2.3 we know that under

the equilibrium (S, S), both the retailers and the whole system get worse off compared with

the no-information-sharing outcome (N,N).

One direct observation from Table 2.2 is that an information-sharing channel can improve

the system efficiency when the average market size (a1 + a2) /2 is in a moderate range. On

the other hand, each retailer’s trade-off is between the cost of giving the supplier information

advantage in wholesale price exploitation and the benefit of shaping the supplier’s hedging

decisions into a more favorable manner. However, the heterogeneity between the two retailers

leads to their quite different preferences over the supplier’s hedging policy. The result of such

a difference is that they may fail to shape the supplier’s hedging policy into their most ideal

one, or manage to induce the right hedging policy but at a high cost of forgoing private

information. Especially, when the two markets are highly negatively correlated (i.e., α is

close to 0) and Eξ [c]− c̄ > 12δ, we can find from Table 2.1 that in Case (A2) and (B2), there

exist nontrivial regions where (S, S) emerges as the equilibrium. However, from Table 2.2,

we can see that the region for (S, S) to benefit the system would not exist when α is close
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to 0, which means that information-sharing channel induces nontrivial sharing decisions but

hurts the whole system. This is true even when the two markets have the same average

market size, which means that such inefficiency introduced by information-sharing channel

can hurt both retailers at the same time as well as the system.

Furthermore, it is straightforward to see that when the retailers can directly observe the

market realization and are monopolists in their own markets, the expected consumer surplus

introduced in Section 2.4 in each market is equal to one half of the corresponding retailer’s

expected equilibrium profit, i.e., CSm = 1
2
E [Q2] = 1

2
πRm. Therefore, our observations on

retailers’ profits under different information-sharing outcomes still hold on consumer surplus.

We summarize the above results in the following proposition:

Proposition 2.5.3 When the supplier serves multiple markets, the existence of information-

sharing channel may hurt (all) the retailers, consumer surplus in (all) the market(s) and the

whole system.

This result presents some quite different insights from Corollary 2.4.1 and [50]. When a

single supplier serves multiple markets, nontrivial information sharing may still emerge in

equilibriums in our cash-hedging-information-sharing game, but there may not exist a simple

information compensation scheme that achieves win-win-win outcome for the system. The

above are still true when Stackelberg game is introduced as below.

2.5.3 Stackelberg Information-Sharing Game

The potential nonexistence of Nash equilibrium in the simultaneous information-sharing

game implies that in practice a Stackelberg game sequence may need to be introduced.

Calculations give the following results:
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Proposition 2.5.4 The equilibrium outcomes under the Stackelberg game are summarized

by Table 2.4 and Table 2.5. The surplus improvement conditions keep the same as Proposition

2.5.2.

Table 2.4: Stackelberg Information Sharing Equilibrium Summary

A2 :
2 (t− δ) < a1 + a2 <

2 (t− 2αδ)

A1 :
2 (t− 2αδ) ≤ a1 + a2 <

2t

B1 :
2t ≤ a1 + a2 <
2 (t+ 2αδ)

B2 :
2 (t+ 2αδ) ≤

a1 + a2 < 2 (t+ δ)

Eξ [c]− c̄ ≥
(
12α+ 3

2

)
δ

(S, S)

a1 >

t−δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 >

t− δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)

a1 >

t− δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 < t− δ

(
1− 3δ

Eξ[c]−c̄

)
or

a1 < t+ δ
(
1− 24αδ

Eξ[c]−c̄

)
t− δ

(
1− 3δ

Eξ[c]−c̄

)
≤

a2 < t+ δ
(
1− 24αδ

Eξ[c]−c̄

)

a1 <

t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 ≥ t+ δ

(
1− 3δ

Eξ[c]−c̄

)
or

a1 > t− δ
(
1− 24αδ

Eξ[c]−c̄

)
t− δ

(
1− 24αδ

Eξ[c]−c̄

)
<

a2 < t+ δ
(
1− 3δ

Eξ[c]−c̄

)

a1 <

t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 <

t+ δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)

(S,N)
− a2 ≥ t+ δ

(
1− 24αδ

Eξ[c]−c̄

)
a2 ≤ t− δ

(
1− 24αδ

Eξ[c]−c̄

)
−

(N,S)
−

a1 ≥ t+ δ
(
1− 24αδ

Eξ[c]−c̄

)
t− δ

(
1− 3δ

Eξ[c]−c̄

)
≤

a2 < t+ δ
(
1− 24αδ

Eξ[c]−c̄

)
a1 ≤ t− δ

(
1− 24αδ

Eξ[c]−c̄

)
t− δ

(
1− 24αδ

Eξ[c]−c̄

)
<

a2 < t+ δ
(
1− 3δ

Eξ[c]−c̄

) −

(N,N)

a1 ≤

t−δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
or

a2 ≤
t− δ

(
1− 12(1−2α)δ

Eξ[c]−c̄

)
a1 ≤

t− δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 < t− δ

(
1− 3δ

Eξ[c]−c̄

)
a1 ≥

t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 ≥ t+ δ

(
1− 3δ

Eξ[c]−c̄

)
a1 ≥

t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
or

a2 ≥
t+ δ

(
1− 12(1−2α)δ

Eξ[c]−c̄

)

For details, we refer readers to the Stackelberg discussions in Appendix C. We notice that in

our framework, the interactions between the two retailers only take place in the information

sharing step, therefore under a given information sharing outcome, retailers’ optimal profits

keep the same forms as their counterparts under the simultaneous information-sharing game.

This is why Table 2.2 and 2.3 still hold under the Stackelberg game.

Figure 2.3 is the analog to Figure 2.2 with the same production cost structure and

parameters under the Stackelberg game. Table 2.4 and 2.5 suggest that information sharing

still emerges in the equilibrium when the average market size is moderate and similar to
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Table 2.5: Stackelberg Information Sharing Equilibrium Summary

A2 :
2 (t− δ) < a1 + a2 <

2 (t− 2αδ)

A1 :
2 (t− 2αδ) ≤ a1 + a2 <

2t

B1 :
2t ≤ a1 + a2 <
2 (t+ 2αδ)

B2 :
2 (t+ 2αδ) ≤

a1 + a2 < 2 (t+ δ)

Eξ [c]− c̄ <
(
12α+ 3

2

)
δ

(S, S)

a1 >

t−δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 >

t− δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)
a1 >

t− δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 < t+ δ

(
1− 24αδ

Eξ[c]−c̄

)
a1 <

t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 > t− δ

(
1− 24αδ

Eξ[c]−c̄

)
a1 <

t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 <

t+ δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)

(S,N)
−

a1 > t− δ
(
1− 3δ

Eξ[c]−c̄

)
t+ δ

(
1− 24αδ

Eξ[c]−c̄

)
≤

a2 ≤ t− δ
(
1− 3δ

Eξ[c]−c̄

)
or

Eξ [c]− c̄ > 12αδ

a2 > t− δ
(
1− 3δ

Eξ[c]−c̄

)

a1 < t+ δ
(
1− 3δ

Eξ[c]−c̄

)
t+ δ

(
1− 3δ

Eξ[c]−c̄

)
≤

a2 ≤ t− δ
(
1− 24αδ

Eξ[c]−c̄

)
or

Eξ [c]− c̄ > 12αδ

a2 < t+ δ
(
1− 3δ

Eξ[c]−c̄

)
−

(N,S)
−

Eξ [c]− c̄ ≤ 12αδ

a2 > t− δ
(
1− 3δ

Eξ[c]−c̄

) Eξ [c]− c̄ ≤ 12αδ

a2 < t+ δ
(
1− 3δ

Eξ[c]−c̄

) −

(N,N)

a1 ≤

t−δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
or

a2 ≤
t− δ

(
1− 12(1−2α)δ

Eξ[c]−c̄

)

a1 ≤

t− δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 < t+ δ

(
1− 24αδ

Eξ[c]−c̄

)
or

a1 ≤ t− δ
(
1− 3δ

Eξ[c]−c̄

)
t+ δ

(
1− 24αδ

Eξ[c]−c̄

)
≤

a2 ≤ t− δ
(
1− 3δ

Eξ[c]−c̄

)

a1 ≥

t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
a2 > t− δ

(
1− 24αδ

Eξ[c]−c̄

)
or

a1 ≥ t+ δ
(
1− 3δ

Eξ[c]−c̄

)
t+ δ

(
1− 3δ

Eξ[c]−c̄

)
≤

a2 ≤ t− δ
(
1− 24αδ

Eξ[c]−c̄

)

a1 ≥

t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
or

a2 ≥
t+ δ

(
1− 12(1−2α)δ

Eξ[c]−c̄

)

the simultaneous game, effective information sharing is more likely to happen when the two

markets are more positively correlated.

Specifically, we have the following observations:

• Different from the simultaneous game, complete ((S, S)) or partial ((S,N), (N,S))

information-sharing outcomes would emerge as equilibrium outcomes when the differ-

ence between the two markets’ average sizes is large. The insights follow the similar

logic introduced in simultaneous game analysis: for highly heterogeneous retailers, they

are more likely to have opposite interests towards supplier’s hedging decision, which

gives them the incentive to conduct more active information-sharing policies in order

to twist supplier’s hedging decisions into a more favorable manner or to offset the neg-
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(a) α = 0.2 , δ = 0.5 (b) α = 0.2 , δ = 1

(c) α = 0.4 , δ = 0.5 (d) α = 0.4 , δ = 1

Figure 2.3.: Stackelberg Equilibrium Outcomes under Different Parameters (cβ (ξ) = β ·
(1− ξ)3/2, ξ ∼ U [0, 1], β = 100)

ative impact of the competing retailer’s information-sharing effort in shaping supplier’s

hedging decision.

• Information sharing is more likely to take place in the equilibrium when the two markets

are more positively correlated. The intuition is that the supplier’s cash hedging decision

is determined by the average size of the two markets. If the two markets are highly

negatively correlated, the market shocks would largely cancel out each other (which is

especially true as we assumed that the shock magnitudes of the two markets are the
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same) which means that the average size between the two markets under any realized

market conditions would be similar to the expected average market size when there is

no information sharing. Therefore, neither of the retailers would have enough incentive

to disclose information.

Similar to the simultaneous game analysis, we are also interested in the performance

implications of implementing an information-sharing channel. We end this section by the

following numerical example which shows that even when Stackelberg sequence is introduced,

both the retailers and the whole system can get worse off. Especially, retailer 1 as the

Stackelberg leader still can get worse off.

Example 4 (Negative Impact of Information Sharing under Stackelberg Game) We keep

the parameter settings the same as Example 3 except that a1 = 134.25 and a2 = 134.80.

Then Eξ [cβ] − c̄β = 4.64 > (12α + 3/2) δ = 1.86, 269.01 = 2 (tβ − 2αδ) < a1 + a2 < 2t =

269.13 and a1 < tβ + δ

(
1− 24αδ

Eξ[cβ]−c̄β

)
= 135.41, 134.21 = tβ − δ

(
1− 3δ

Eξ[cβ]−c̄β

)
< a2 <

tβ + δ

(
1− 24αδ

Eξ[cβ]−c̄β

)
= 135.41, which means that (S, S) is a Nash equilibrium (see Table

2.4 and 2.5). On the other hand, we have a1 + a2 < 2tβ − 2δ + δ2

3α(Eξ[cβ]−c̄β)
= 269.52,

a1 < tβ−δ

(
1− 3δ

2α(Eξ[cβ]−c̄β)

)
= 144.33 and a2 < tβ−δ

(
1− 3δ

2α(Eξ[cβ]−c̄β)

)
= 144.33. From

Table 2.2 and Table 2.3 we know that under the equilibrium (S, S), both the retailers and the

whole system get worse off compared with the no-information-sharing outcome (N,N).

Example 4 shows a scenario where the whole system and both retailers get worse off simulta-

neous, which typically only happens in the marginal parameter regions. It is more common

to end up in a case where one of the retailer gets worse off in the equilibrium. For example,

when Eξ [c] − c̄ ≥
(
12α + 3

2

)
δ, 2 (t− 2αδ) ≤ a1 + a2 < 2t and a2 ≥ t + δ

(
1− 24αδ

Eξ[c]−c̄

)
,

according to Table 2.4 and 2.5, the Stackelberg equilibrium is (S,N). Then from Table 2.3,

we know that if only a2 is big enough, we can find an a1 such that a1 ≤ t− δ
(
1− 3δ

Eξ[c]−c̄

)
,
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which is the case where the Stackelberg leader, retailer 1, gets worse off in the equilibrium,

(S,N).

In summary, our analysis on the two-market model consolidates our insights derived from

the single-market model before. That is, on one hand, the supplier’s cash hedging decision

can provide incentive for retailers’ voluntary information sharing. And we need to highlight

that the mechanism of how the incentive takes place relies on the supply chain structure.

On the other hand, clearly the supplier can never do worse by having more information, we

identify a new reason why the supplier should consider cash hedging, which is to help the

negotiation with downstream buyers on market information sharing.

2.6 Conclusion

Informational operations and financial risk management are two critical parts of business

operations. Extensive research has been done in both areas, while little is known about the

implications of the interplay between the two operational levers. Our work is the first paper

that aims to understand such interaction via a game theoretical framework.

Classical literature indicates that effective horizontal information sharing and vertical

market information sharing on top of the widely used wholesale price contracts in Cournot

competition are unlikely to achieve. We first show that even in the simple bilateral supply

chain linked via wholesale price contract, the supplier’s cash hedging decision can induce the

retailer’s voluntary information sharing. We formulate a profit decomposition framework

to explain the intuition of the results. We identify three driving forces, i.e., information

rent on cost reduction effect of hedging, which is beneficial to the retailer; information rent

on flexibility loss of hedging and wholesale cost of information sharing, both of which are

unfavorable to the retailer. Therefore when the first benefit outweighs the latter two costs,

voluntary information sharing would take place. This is more likely to happen when expected

81



cost reduction after cash hedging is significant, expected market size is around some threshold

such that the supplier’s cash hedging policy is largely driven by the realization of market

size, and the volatility of market size is limited. We also identify this as a new reason why

a supplier should consider hedging and utilize the presence of his hedging option to achieve

information sharing agreement with his retailers. Such intuition continues to apply in the

general setting where there are multiple Cournot-competing retailers. Two major findings

for the multiple homogeneous retailers setting are: asymmetric information outcomes can

emerge as an equilibrium even though all the retailers are ex-ante homogeneous; building up

a public information-sharing channel generally won’t hurt and sometimes can Pareto improve

the system and the consumer welfare.

However, we later find that some of the insights are dependent on the supply chain struc-

ture, and in particular, multiple separate markets with heterogeneous retailers. We discuss

the situation where a single supplier serves two separate but correlated markets. We find

that the supplier’s hedging decision is dependent on the average size of the two markets. We

identify that the heterogeneity across the average market sizes and the random shock corre-

lation between the two markets play significant roles in shaping the equilibrium outcomes.

Specially, we find that when market size heterogeneity is more significant, and the market

shock correlation is more negative, the information-sharing game is more likely to admit no

pure Nash equilibrium. For this case, the Stackelberg sequence may be introduced to guar-

antee a stable outcome. Besides, we find that having a public information-sharing channel

may not be beneficial for retailers or even the system as a whole, while the supplier can never

be worse off. This is because the retailers in heterogeneous markets tend to have different in-

terests in supplier’s hedging decisions. Therefore the competition between different markets

may introduce significant inefficiency, which could lead to unfavorable information-sharing

outcomes from retailers’ standpoint. This implies that although voluntary information shar-
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ing can still emerge as equilibrium in such a system, there may not exist a simple lump-sum

compensation that achieves a win-win outcome.

Our paper serves as a first try to investigate firms’ information policy and financial

risk management policy along the supply chain in a unified framework, and it generates

managerial insights that reveal highly nontrivial interactions between the two operational

tools. Some insights in this paper remain to be supported and verified by future empirical

study, but our work opens the door to this intersection area that got little attention and

understanding from operations academia before.
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3. Display Optimization under the Multinomial Logit Choice

Model: Balancing Revenue and Customer Satisfaction

3.1 Introduction

The assortment optimization problem has come to be one of the well-studied problems

in the field of revenue management. At a high level, this now classic problem considers a

retailer or platform who is tasked with selecting a revenue-maximizing subset (assortment) of

products to display to arriving customers. Over the years, this standard problem blueprint

has been adapted and reshaped in many ways so as to capture a multitude of retailing settings

ranging from traditional brick and mortar shelf offerings to product recommendation displays

in e-commerce settings [86, Chap. 5].

As noted above, the focus for the many flavors of the assortment problem considered in

the literature has almost exclusively been to uncover profitable assortments, irrespective of

the fact that the revenue-maximizing assortment could be undesirable to the vast majority

of customers. 1 To the best of our knowledge, the work of [87] is the first paper to consider

an assortment setting where the goal is to choose an assortment that garners a large rev-

enue, while also delivering high expected utility to arriving customers. The intent of such a

framework is to incorporate customer considerations into the assortment planning decision,

rather than focusing exclusively on revenue. This effort, for example, could serve to increase

the chance for repeat customers, as customers who witness an assortment from which they

draw a high utility are more likely to return to the platform or store for future purchases.

1For example, it is easy to construct instances of the assortment problem where the optimal assortment
consists of a few high-revenue products that are purchased infrequently.
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In this paper, we adapt the revenue-utility trade-off framework of [87] to a setting where

the retailer must choose assortments to offer over T stages. Each arriving customer is as-

sumed to sequentially progress through the stages, stopping her search at some stage t ∈ [T ]

2. Then, from amongst all the products she has viewed across stages 1, . . . t, she is as-

sumed to make a multinomial-logit-based purchasing choice. Similar to the existing works

of [88] and [89], who both utilize a near-identical framework to capture choice behavior in

e-commerce applications, our goal is also to broadly model an e-commerce setting where

customers sequentially browse pages of displayed product recommendations. The goal of the

retailer is to choose assortments to offer across each stage with the intention to maximize

expected revenue. However, the twist in our setting is that we enforce stage-specific con-

straints meant to ensure that the assortments offered meet a minimum level of “desirability”.

In Section 3.1.1, we formalize both the structure of these constraints, as well as the notion

of a desirable assortment. Finally, we consider the problem extension with additional cardi-

nality constraints. With modifications of the previous PTAS, we construct a new PTAS to

find a proxy that meets the cardinality constraints while slightly violating the desirability

constraints.

3.1.1 Problem formulation

We consider a platform that has access to n items, indexed by the set [n] = {1, . . . , n},

where the revenue earned from selling a single unit of item i ∈ [n] is denoted ri. These items

are offered across T stages (or pages) of product displays, where we use At ⊆ [n] to denote

the set of item displayed in stage t ∈ [T ]. Each item can be offered in at most one stage,

and so the assortments A1, . . . , AT must be pairwise disjoint. We use A = (A1, . . . , AT ) to

denote any such pairwise disjoint sequence of assortments.

2Throughout the paper, for x ∈ Z+, we use the notation [x] = {1, . . . , x} and [x]0 = {0, 1, . . . , x}
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Purchasing dynamics. Beginning at the first stage, arriving customers are assumed to

browse the stages sequentially, stopping at stage t ∈ [T ] with probability λt. These stopping

probabilities will henceforth be referred to as stage weights. Each customer’s consideration

set consists of only the products she has viewed in this initial browsing phase. So, for

example, under the offered sequence A = (A1, . . . , AT ), a customer who browses only the

first two stages has a consideration set of A1∪A2. A type-t customer is called of patience level

t, and customers are categorized into K classes based upon their patience levels (K ≤ T ). A

class-k group consists of customers of patience levels [tk : tk+1) = {tk, tk + 1, · · · , tk+1 − 1},

k ∈ [K], t1 = 1 and tK+1 = T+1. Finally, from among the products considered, the customer

makes a purchasing decision according to a multinomial logit (MNL) choice model ( [90]).

Accordingly, we use wi to denote the weight associated with item i ∈ [n] and w(S) =
∑

i∈S wi

to denote the total weight of assortment S ⊆ [n]. As dictated by the MNL model, a customer

with consideration set S ⊆ [n] selects item i ∈ S with probability wi

1+w(S)
.

The assortment problem. We begin by noting that, under the purchasing dynamics

described above, any sequence of pairwise disjoint assortments A = (A1, . . . , AT ) can be

equivalently represented as a nested sequence of consideration sets S = (S1, . . . , ST ), where

St =
⊎

τ≤t Aτ . This vantage point turns out to be a more convenient way to express the

decisions of the platform, and hence for the remainder of the paper, we focus on selecting

a sequence of assortments S = (S1, . . . , ST ) that satisfy S1 ⊆ . . . ⊆ ST . In other words, we

assume that the stage-t assortment decision is to select the subset of products viewed by

customers who stop browsing at stage t, rather than the choice of the set of items to offer at

stage t. Given this translated view of the platform’s decision, the expected revenue earned

from offering the sequence of assortments S = (S1, . . . , ST ) is given by

R(S) =
∑
t∈[T ]

λt ·

(∑
i∈St

ρi
1 + w (St)

)
,
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where ρi = riwi. Additionally, let cs (w(St)) denote the “customer satisfaction” of assortment

St, and we have the following two assumption on cs (·),

Assumption 3.1.1 cs′ (·) ≥ 0.

Assumption 3.1.2 cs (c · x) ≥ c · cs (x), ∀0 ≤ c ≤ 1. cs (c · x) ≤ c · cs (x), ∀c ≥ 1.

The chosen sequence of assortments S must abide by class-dependent lower bounds of the

expected “customer satisfaction” α1, · · · , αK , i.e.,
∑

t∈[tk:tk+1)
λt · cs (w(St)) ≥ αk, k ∈ [K],

here for exposition’s simplicity, we drop the weight summation
∑

i∈[tk:tk+1]
λi in the denomi-

nator when we calculate the expectation. We place no restrictions on the sequence of lower

bounds α1, · · · , αK , nor do we place any restrictions on the stage weights λ1, . . . , λT . Mov-

ing forward, we use FK = {(S1, . . . , ST ) : St ⊆ [n],
∑

t∈[tk:tk+1)
λt · cs (w(St)) ≥ αk ∀ k ∈

[K], S1 ⊆ . . . ⊆ ST} to denote all feasible sequences of assortments. Combining everything,

our assortment problem of interest can be formulated as follows

max
S∈FK

R(S), (DISPLAY-OPT-K)

whose optimal solution is denoted as S∗ = (S∗
1 , . . . , S

∗
T ).

Distinguishing feature. The main differentiating element of our setting is the addition

of the customer satisfaction constraints for each class k ∈ [K]. There are two main forms of

cs (·) function with practical interpretations, which help highlight our intention to consider

a framework where the platform wishes to balance its need to offer profitable assortments

(those with high expected revenue) with the dueling desire to offer assortments that are “well-

liked”. These two forms are formalized below, where in both cases, we view our problem

framework from the e-commerce-based lens discussed previously.

1. Purchase likelihood: cs (w(S)) = w(S)
1+w(S)

. The platform would like to ensure that, as

customers progress farther through the displayed set of products, a minimal threshold
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is met for the likelihood that a purchase is made. This idea can be captured by enacting

a lower bound αk on the purchase probability of each customer class. More precisely,

we enforce that
∑

t∈[tk:tk+1)
λt · w(St)

1+w(St)
≥ αk for each class k ∈ [K].

2. Expected utility: cs (w(S)) = ln(1 + w(S)) + γ. Our second formulation views these

constraints through the lens of customer utilities. Specifically, under MNL preferences,

the expected utility derived from an assortment S is ln(1 + w(S)) + γ, where γ is

the Euler-Mascheroni constant ( [87]). Hence, constraints of the form
∑

t∈[tk:tk+1)
λt ·

(ln(1 + w(St)) + γ) ≥ αk enforce a lower bound on the expected utility of class-k

customers.

Note that in the special case where K = T , i.e., each class k only contains one type of

customers, the above two scenarios of constraints can be formulated into the same stage-

dependent form: w (St) ≥ Wt, t ∈ [T ], whereWt can be assumed to be monotone in t without

loss of generality.

3.1.2 Contributions

Below, we provide a high-level overview of our two algorithmic results.

The PTAS. Our main algorithmic contribution is the development of a polynomial time

approximation scheme (PTAS) for DISPLAY-OPT-K. More formally, for any fixed ϵ > 0, we

develop a polynomial-time algorithm that returns a sequence of assortments whose expected

revenue is at least (1 − ϵ) · R(S∗). Our PTAS turns out to be a best-case result in light of

the fact that we also show DISPLAY-OPT-K to be strongly NP-Hard, thus ruling out the

possibility of an FPTAS.

Our approach begins by partitioning the items based on their respective weights, grouping

items whose weights differ by at most a factor of 1 + ϵ. This partitioning of the items into
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so-called weight classes, allows for a more granular view of any assortment as the set of

items offered from each weight class. With this notion in mind, we show how to construct a

“proxy” optimal assortment Ŝ ∈ F , whose expected revenue satisfies R(Ŝ) ≥ (1− ϵ) ·R(S∗),

and more importantly, whose sequence of assortments Ŝ1, . . . , ŜT span the weight classes in

a succinct way. Specifically, under Ŝ, the set of items offered from each weight class are

either (i) added sequentially from largest to smallest ρ-value or (ii) match those added by

S∗ up to the first 1
ϵ
items, after which the left-over items from the particular class are again

sequentially added by descending ρ-value. Furthermore, we construct Ŝ so that in each

stage, the number of classes assigned this second categorization is never more than 2
ϵ
. In this

way, we establish that, in any stage, there are never more than 2
ϵ2

products that disobey the

ρ-order of particular class. Exploiting this special structure, we develop a dynamic program

that approximately recovers Ŝ, incurring only an ϵ-loss in expected revenue in the process.

3.1.3 Related Literature

In what follows, we detail the past work that most closely resembles ours. With this

summary, we hope to highlight the fact that our problem setting is a natural extension

of quite a few well-studied frameworks. However, to the best of our knowledge, we see

no straightforward way to directly apply the ideas in the papers summarized below to our

setting.

The MNL-based assortment problem. There are a multitude of papers that consider a

single stage variant of our problem, which has come to be known as the assortment optimiza-

tion problem. When the offered assortment is unconstrained, the seminal result of [91] shows

that the optimal assortment consists of all products priced above a certain threshold. [92]

consider a cardinality constrained variant of the assortment problem, which they show admits

an optimal algorithm whose running time scales quadratically in the number of products. [93]
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show that the addition of a simple knapsack constraint renders the MNL-based assortment

problem NP-Hard. Nonetheless, they provide a fully polynomial time approximation scheme

(FPTAS) for this problem, which extends to settings where choice is governed by a mixed-

MNL model with O(1) customer segments. Finally, to the best of our knowledge, [87] are the

first to consider a variant of the assortment problem where the sole objective is not merely to

maximize expected revenue, but also has customer-based utility considerations. Unlike our

work, where this trade-off is capture through a set of constraints, [87] model this trade-off in

the objective function, which has both expected revenue and expected utility terms. They

provide a parametric linear-programming-based approach to solve their problem optimally.

Assortment over time. The original assortment over time problem, as conceived by [94],

considers a variant of our problem under a general choice model, where the weight constraints

are replaced with constraints enforcing that at most one product can be added in each stage.

Hence, when choice is governed by an MNL model, their objective function precisely matches

ours, as seen in DISPLAY-OPT-K. Additionally, [94] impose that the stage weights are

uniform, i.e. λ1 = . . . = λT . In this setting, the authors provide a 1
2α
-approximation, which

assumes black-box access to a 1
α
-approximation for the single-stage cardinality constrained

assortment problem under the presumed choice model. [89] extend this problem landscape

by allowing for any collection of stage weights {λt}t∈[t] that follow a new better than used in

expectation (NBUE) distribution, while also enforcing a general cardinality constraint that

allows up to C to products to be added in each stage. In this more general setting, the

authors provide a π2

6α
-approximation, where the 1

α
term has the same interpretation as noted

previously. Finally, [88] provide a polynomial time approximation scheme (PTAS) to this

extended version of the assortment over time problem for arbitrary stage weights, however,

their approach only caters to the setting when choice is governed by an MNL model.

90



The incremental knapsack problem. The incremental knapsack problem considers a

T -stage setting identical to ours, except that the objective function in DISPLAY-OPT-K is

replaced with R(S) =
∑

t∈[T ] λt · (
∑

i∈St
ri), and the inequality in the weight constraints are

flipped so that a sequence of assortments S1 ⊆ S2 ⊆ . . . ⊆ ST is feasible only if w(St) ≤ Wt

for each stage t ∈ [T ]. When the stage-weights satisfy λ1 = . . . = λT , the problem is

referred to as the stage-invariant incremental knapsack problem. Surprisingly, [95] show

that the simpler stage-invariant version of the problem is strongly NP-Hard, even when

ri = wi for each item i ∈ [n]. The authors go on to provide a constant factor guarantee

for the general problem, as well as a PTAS when T = O(
√
log n) for the stage-invariant

version. Subsequently, [96] developed a PTAS for the stage-invariant version when there

are no restrictions on the input parameters. The PTAS of [97] applies to the most general

form of the incremental knapsack problem, but it requires that T = O(1). Most recently,

[98] provide the first PTAS for the general problem whose running time in polynomial in

the input, and [99] provide a polynomial time (1
2
− ϵ)-approximation for the generalized

incremental knapsack, where the rewards are stage-dependent. Also quite recently, [100]

provide an FPTAS for a variant of the incremental knapsack problem, where, among other

differences, each item is endowed with a deadline stage, indicating the latest stage where the

particular can be introduced.

3.2 A Polynomial-Time Approximation Scheme (K = T )

In this section, we present a PTAS for DISPLAY-OPT-K when K = T , which represents

a best-case algorithmic result in light of the fact that DISPLAY-OPT-K is strongly NP-

Hard, as shown in Appendix C.2.1.3 The exact nature of this PTAS is formalized in the

3In Appendix C.1, we also provide a strongly-polynomial 1/2−approximation to the scenario when K = T ,
which may be of independent interest.
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following theorem, whose proof unfolds over the remainder of this section. All proofs for this

section can be found in Appendix C.2.

Theorem 3.2.1 For any ϵ > 0, there is an algorithm that returns a sequence of assort-

ments S ∈ FT with expected revenue R(S) ≥ (1 − ϵ) · R(S∗), whose running time is

O
(
|I|O(1) · nO( 1

ϵ2
)
)
, where |I| denotes the size of the input.

3.2.1 Preliminaries

This section serves to introduce key pieces of notations that will dramatically simplify

the exposition of the PTAS. For ease of exposition, we assume throughout the remainder

of the paper that 1
ϵ
in an integer. Also, we denote the maximal and minimal weights as

wmax = maxi∈[n] wi and wmin = mini∈[n] wi respectively.

The weight classes. Let Cq = {i ∈ [n] : wmin · (1 + ϵ)q ≤ wi < wmin · (1 + ϵ)q+1} for

q ∈ [Q]0, where Q = ⌈log1+ϵ(
wmax

wmin
)⌉, denote the set of items in weight class q. Clearly,

the collection of all weight classes {Cq}q∈[Q]0 represents a partitioning of the products. For

assortment S ⊆ [n] and q ∈ [Q]0 , we let Sq = S ∩ Cq denote the class-q products offered

from S. Based on the make-up of Sq, we give class-q one of the following three labels:

• Exhausted classes: Let QE(S) = {q ∈ [Q]0 : |Sq| = |Cq|} denote the set of weight

classes for which all products are included in the assortment S.

• Active classes: Let QA(S) = {q ∈ [Q]0 : 1 ≤ |Sq| < |Cq|} denote the collection of

weight classes that are “in-use”, but not exhausted.

• Empty classes: Let Q∅(S) = {q ∈ [Q]0 : |Sq| = 0} denote the set of classes from which

no products have been offered.
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Additionally, for assortment S ⊆ [n] and k ∈ [|S|]0, we let S[k] denote the k highest ρ-valued

items in S. For the most part, we will use Cq[k] to refer to the k items with the largest

ρ-value from class q.

1
ϵ
-capped-class-q assortments. For class q ∈ [Q]0 and k ∈ [|Cq|]0, let S∗

q (k) ⊆ Cq denote

the assortment that contains the “first” k products added from class q under S∗. We assume

that products offered in earlier stages are added before those in later stages, and within a

stage, products are added in decreasing ρ-order. A 1
ϵ
-capped-class-q assortment, or simply

a “capped” class-q assortment for short, is defined as

C∗q (k) =


S∗
q (k) , if k ≤ 1

ϵ

S∗
q

(
1
ϵ

)
∪
(
Cq \ S∗

q

(
1
ϵ

)) [
k − 1

ϵ

]
otherwise.

Rounded total weight. We make-use of a “rounded” total weight of assortment S ⊆ [n],

defined as ŵ(S) =
∑

q∈[Q]0
|Sq| · wmin · (1 + ϵ)q. In other words, ŵ(S) is the total weight of

S if the weights of the products in each class q were rounded down to wmin · (1 + ϵ)q. We

clearly have that ŵ(S) ≤ w(S) ≤ (1 + ϵ) · ŵ(S), since the weights in each class differ by at

most a factor of 1 + ϵ.

3.2.2 Constructing the proxy assortment

In this section, we show how to construct a proxy optimal sequence of assortment Ŝ ∈ FT ,

whose expected revenue satisfies R(Ŝ) ≥ (1−O(ϵ)) · R(S∗). We will construct Ŝ from basic

building blocks, endowing it with a special structure that allows for its approximate recovery

via an efficient dynamic-programming-based approach. The main building block that we

utilize to construct Ŝ is what we refer to as a “fill event”, which is summarized below, and

formally presented in Algorithm 1.
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Fill event. Consider an arbitrary stage t ∈ [T ] and an assortment S ⊆ [n] that does not

satisfy the stage-t weight constraint with respect to the total rounded weight, i.e. ŵ(S) < Wt.

A fill event consists of the following steps. We begin by picking the lowest indexed active class

qmin = min{q ∈ [Q]0 : q ∈ QA(S̃)} and adding products from Cqmin
\S̃ to S̃ in decreasing order

of ρ-value until either ŵ(S̃) ≥ Wt (this check is with respect to the rounded total weight),

or class qmin is exhausted. We repeat these steps until either (i) a feasible assortment is

returned or (ii) there are fewer than 1
ϵ
active classes. The following lemma details the key

properties held by the assortment returned after a fill event, which concern its total weight

or its number of active stages.

Lemma 3.2.2 Consider an arbitrary stage t ∈ [T ] and an assortment S ⊆ [n] whose total

rounded weight satisfies ŵ(S) < Wt. For assortment S̃ = Fill(S, t), we have that w(S̃) ≤

(1 + 3ϵ) ·Wt if ŵ(S̃) ≥ Wt. Otherwise, we have that |QA(S̃)| ≤ 1
ϵ
.

Constructing the proxy sequence Ŝ. To build Ŝ, we sequentially construct three can-

didate sequences of assortments that are loosely based on the make-up of S∗. For the first

two, it is important to note that feasibility is checked with respect to the total rounded

weight.

• Candidate 1: The first candidate sequence of assortment is given by S(1), whose

contents are built as follows. For each stage t ∈ [T ] and class q ∈ [Q]0, we set

S
(1)
t,q =


Cq[k∗

t,q], if k∗
t,q ≤ 1

ϵ

Cq[⌈(1 + ϵ) · k∗
t,q⌉], otherwise,

where k∗
t,q = |S∗

t,q| denotes the number of products offered from class q in stage t under

S∗. If ŵ(S(1)
t ) ≥ Wt for each stage t ∈ [T ], then set Ŝ = S(1). Otherwise, we move to

Candidate 2, which builds on top of S(1) using fill events.
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• Candidate 2: The second candidate sequence of assortment S(2) is built recursively

as follows. For each stage t ∈ [T ], we set

S
(2)
t =


Stemp
t , if ŵ(Stemp

t ) ≥ Wt

Fill(Stemp
t , t), otherwise,

where Stemp
t = S

(1)
t ∪ S

(2)
t−1 (assuming that S

(2)
0 = ∅). Again, if ŵ(S(2)

t ) ≥ Wt for each

stage t ∈ [T ], then set Ŝ = S(2). Otherwise, we move to Candidate 3.

• Candidate 3: Let T< = {t ∈ [T ] : ŵ(S
(2)
t ) < Wt} denote the stages for which S(2)

remains infeasible with respect to the weight constraints, and let Q<
A =

⊎
t∈T< QA(S

(2)
t )

give the active classes during these stages. The third final and candidate solution S(3)

is defined as follows:

S
(3)
t =

 ⊎
q /∈Q<

A

S
(2)
t,q

 ∪
 ⊎

q∈Q<
A

C∗q (k
(2)
t,q )

 ,

where k
(2)
t,q = |S(2)

t,q | denotes the number of products offered from class q in stage t under

S(2). Finally, we set Ŝ = S(3) if this third candidate is indeed reached.

The efficacy of Ŝ as a proxy. The following lemma shows that Ŝ is indeed a good

proxy for S∗. We prove the result by showing its validity for each of the three candidate

assortments described above, conditioned that the particular candidate is in fact set to be

Ŝ.

Lemma 3.2.3 Let Ŝ be the proxy sequence of assortments defined above. Then, Ŝ ∈ F and

R(Ŝ) ≥ (1− 10ϵ) · R(S∗).
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Algorithm 1 fill event

1: procedure Fill(S, t)
2: S̃ ← S
3: while |QA(S̃)| > 1

ϵ
do

4: qmin ← min{q : q ∈ QA(S̃)}
5: A← Cqmin

\ S̃
6: for i ∈ A do [Iterate from largest to smallest ρ-value]
7: S̃ = S̃ ∪ {i}
8: if ŵ(S̃) ≥ Wt then
9: return S̃
10: end if
11: end for
12: end while
13: return S̃
14: end procedure
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3.2.3 The approximation scheme

In this section, we present a dynamic program that can be used to recover a sequence

of assortments whose expected revenue is within an O(ϵ)-factor of that of Ŝ. To do so, we

begin by constructing a universe of assortments U that contains Ŝt for any stage t ∈ [T ]. We

then show how to fold this universe of assortments into a dynamic programming formulation

of the problem, which is guaranteed to return an assortment whose expected revenue is at

least as large as that of Ŝ. Unfortunately, due to the exponential size of U , the running time

of this dynamic program is not polynomial. As such, we set about applying two updates

to U , which together yield an alternative universe of polynomially-many assortments Usmall.

Furthermore, we show that replacing Usmall with U in the aforementioned dynamic program

only degrades its performance by at most an O(ϵ)-factor.

Constructing U . Central to our approach is the notion that, for any stage t ∈ [T ] and

class q ∈ [Q]0, we must have either

• Ŝt,q = Cq[k] for some k ∈ [|Cq|]0 , or

• Ŝt,q = C∗q (k) for some k ∈ [|Cq|]0

based on the make-up of the three candidates outlined in Section 3.2.2. Given this structure,

we can guess Ŝt exactly for any stage t ∈ [T ] by enumerating over all combinations of the

following three parameters:

(i) A subset of classes QCAP ⊆ [Q]0, intended to contain the capped class-q assortments.

(ii) For each QCAP, a collection of assortments {Aq}q∈QCAP
such that Aq ⊆ Cq and |Aq| ≤ 1

ϵ
.

(iii) For each pair (QCAP, {Aq}q∈QCAP
), a collection of utilization vectors

K = {K = (k0, . . . , kQ) ∈ [|C0|]0×. . .×[|CQ|]0 : kq ∈ {|Aq|,
1

ϵ
+1, . . . , |Cq|} ∀ q ∈ QCAP},
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each of which indicates the total number of products added from class q ∈ [Q]0.

A parameter triplet (QCAP, {Aq}q∈QCAP
, K) satisfying conditions (i)-(iii) translates into the

assortment S with

Sq =


Cq[kq], if q /∈ QCAP

Aq, if q ∈ QCAP, kq = |Aq|

Aq ∪ (Cq \ Aq) [kq − |Aq|] otherwise.

We build U by enumerating over all such assortments corresponding to valid parameter

triplets. While U clearly contains an exponential number of assortments, it is easy to see

that Ŝt ∈ U for any stage t ∈ [T ].

The dynamic program. The state space of our dynamic program will be a stage t ∈ [T ],

and an assortment St−1 ∈ U indicating the set of products offered in stage t− 1 (we assume

S0 = ∅). The value functions VU(t, St−1) indicate the maximum expected revenue that can be

accrued from stage t, . . . , T given that the stage t assortment is St−1. Formally, the recursion

is as follows:

VU(t, St−1) = max
St∈U :

w(St)≥Wt,
St−1⊆St

{
λt ·

1

1 + w(St)
·
∑
i∈St

ρi + VU(t+ 1, St)

}
, (3.1)

with base case VU(T + 1, ·) = 0. Moreover, if there is no stage-t assortment that is feasible

in a particular state, we set the corresponding value function to be negative infinity. Since

the sequence of states

(0, ∅)→ (1, Ŝ1)→ · · · → (T, Ŝ1)

is feasible, we get that VU(0, ∅) ≥ R(Ŝ). As such, this dynamic program will produce a

sequence of assortments S ∈ F , whose expected revenue is at least as large as that of Ŝ,
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albeit in a running time that is clearly scales with the size of U , and hence is exponential

in the input. In the sequel, we set about reducing the size of the universe of assortments to

choose from, while at the same time sacrificing little in terms of the efficacy of the dynamic

program in (3.1).

Step 1: bounding the number of capped assortments. In what follows, we argue

that it is sufficient to focus on a universe of assortments built exactly like U , except we

update condition (i) to consider only QCAP ⊆ [Q]0 such that |QCAP| ≤ 2
ϵ
. To establish this

result, we upper bound the total number of capped assortments under Ŝt by
2
ϵ
, for any stage

t ∈ [T ]. This result is formally stated in the following lemma, where it is critical to recall

that Ŝ only uses capped assortments if Ŝ = S(3). Moreover, in this case, we have that Ŝt,q

is a capped assortment if and only if q ∈ {q ∈ Q<
A : k

(2)
t,q > 0}. Hence bounding the number

of capped assortment under Ŝ in a particular stage requires only bounding the size of this

latter set.

Lemma 3.2.4 For any stage t ∈ [T ], we have that

∣∣∣{q ∈ Q<
A : k

(2)
t,q > 0

}∣∣∣ ≤ 2

ϵ
,

where Q<
A is as defined is the construction of S(3).

Step 2: rounding the utilization vectors. Fixing the parameter pair

(QCAP, {Aq}q∈QCAP
) throughout this discussion, we propose the following “up-rounded”

version of the collection of utilization vectors K. Specifically, for any utilization vector

K ∈ K, we construct its rounded counterpart K↑ = (k↑
0, . . . , k

↑
Q) as follows, where for ease

of notation, we use S ⊆ [n] to denote the assortment corresponding to the parameter triplet

(QCAP, {Aq}q∈QCAP
, K). Also, let qmax(K) = max{q ∈ [Q]0 : kq > 0} denote the highest

indexed non-empty class and let L = ⌈log1+ϵ(
n
ϵ
)⌉. It is worth noting that this up-rounding
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scheme closely mirrors the one proposed in [98], and for this reason, we omit proof details

that would require directly replicating the arguments of this paper.

• For class q < [qmax(K)− L+ 1]+, we set k↑
q = |Cq|.

• For class q ≥ [qmax(K)− L+ 1]+ such that kq ≤ 1
ϵ
we set k↑

q = kq.

• For class q ≥ [qmax(K) − L + 1]+ such that kq > 1
ϵ
, we let w↑

q be an over-estimate of

w(Sq) by an additive factor of at most Power2[
(
ϵ
L
· w(S)

)
], where the operator Power2[·]

rounds up its input to the nearest power of 2. Specifically, we define w↑
q = µq ·Power2[ ϵL ·

w(S)] for the unique integer µq ≥ 1 satisfying

(µq − 1) · Power2
[ ϵ
L
· w(S)

]
< w(Sq) ≤ µq · Power2

[ ϵ
L
· w(S)

]
. (3.2)

Next, if q ∈ QCAP. we set

k↑
q = max

{
k ∈ [|Cq|]0 : w(Aq ∪ (Cq \ Aq) [k − |Aq|]) ≤ w↑

q

}
.

Otherwise, if q /∈ QCAP, we set

k↑
q = max

{
k ∈ [|Cq|]0 : w(Cq[k]) ≤ w↑

q

}
.

The following lemma establishes two crucial properties of this rounding scheme, the first

of which formalizes the notion that we are indeed up-rounding the utilization vectors, and

the second bounds the total weight added by this rounding.

Lemma 3.2.5 The up-rounding scheme outlined above maintains the following two proper-

ties:

(i) Monotonicity: Consider any pair of parameter triplets (QCAP, {Aq}q∈QCAP
, K) and

(Q+
CAP, {A+

q }q∈Q+
CAP

, K+) respectively corresponding to assortments S and S+ that sat-
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isfy S ⊆ S+. Then, the assortments S↑ and S+↑ corresponding to the up-rounded

triplets (QCAP, {Aq}q∈QCAP
, K↑) and (Q+

CAP, {A+
q }q∈Q+

CAP
, K+↑) must satisfy S↑ ⊆ S+↑.

(ii) Weight added: For any K ∈ K, let S and S↑ denote the assortments represented by

(QCAP, {Aq}q∈QCAP
, K) and (QCAP, {Aq}q∈QCAP

, K↑) respectively. Then we have that

w(S) ≤ w(S↑) ≤ (1 + 3ϵ) · w(S).

Constructing U small. We build Usmall by adding all assortments corresponding to every

combination of the following updated version of the original three parameters:

(i) A subset of classes QCAP ∈ {Q ⊆ [Q]0 : |Q| ≤ 2
ϵ
}.

(ii) For each QCAP, a collection of assortments {Aq}q∈QCAP
such that Aq ⊆ Cq and |Aq| ≤ 1

ϵ
.

(iii) For each pair (QCAP, {Aq}q∈QCAP
), a collection of utilization vectors K↑ = {K↑ : K ∈

K}.

The following lemma reveals that Usmall is indeed considerable smaller than U , however it is

important to note that due to the up-rounding scheme, we are no longer guaranteed to have

that Ŝt ∈ Usmall for any stage t ∈ [T ].

Lemma 3.2.6 |Usmall| = O
(
|I|O(1) · nO( 1

ϵ2
)
)
.

The approximate dynamic program. Our final step is to replace U with Usmall in (3.1),

thus yielding the following updated recursion:

VUsmall
(t, St−1) = max

St∈Usmall:
w(St)≥Wt,
St−1⊆St

{
λt ·

1

1 + w(St)
·
∑
i∈St

ρi + VUsmall
(t+ 1, St)

}
, (3.3)

with base case VUsmall
(T + 1, ·) = 0. Again, if there is no stage-t assortment that is feasible

in a particular state, we set the corresponding value function to be negative infinity. Given
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Lemma 3.2.6, we can compute the value function for any state (t, St−1) by simply enumerating

over all assortments St ∈ Usmall, and hence all value functions can be computed in a running

time of

O(|Usmall|2 · T ) = O
(
|I|O(1) · nO( 1

ϵ2
)
)
,

which matches the running time specified in Theorem 3.2.1. Our final result of this section

bounds the revenue lose incurred by replacing U with Usmall as seen in (3.3).

Lemma 3.2.7 VUsmall
(0, ∅) ≥ (1− 3ϵ) · R(Ŝ).

3.3 A Polynomial-Time Approximation Scheme (K = 1)

In this section, we present a PTAS for DISPLAY-OPT-K when K = 1.

The approximate dynamic program. Consider the following recursion:

VUsmall
(t, r, St−1) = max

St∈Usmall:
St−1⊆St

{λt · cs (St) + VUsmall
(t+ 1, ⌈r − λt · R(St)⌉1+δ, St)} , (3.4)

where δ = 14ϵ
T+1

, with base case

VUsmall
(T + 1, r, ·) =


0, if r ≤ 0,

−∞, if r > 0.

Given Lemma 3.2.6, we can compute the value function for any state (t, r, St−1)

by simply enumerating over all possible rounded revenue values and assortments

St ∈ Usmall, and hence all value functions can be computed in a running time of

O
((
|Usmall| · log1+δ (rmax/rminwmin)

)2 · T) = O
(
|I|O(1) · nO( 1

ϵ2
)
)
. Finally, the performance

of the above PTAS is summarized as follows,
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Theorem 3.3.1 For any ϵ > 0, there is an algorithm that returns a sequence of assort-

ments S ∈ F1 with expected revenue R(S) ≥ (1 − ϵ) · R(S∗), whose running time is

O
(
|I|O(1) · nO( 1

ϵ2
)
)
, where |I| denotes the size of the input.

3.4 A Polynomial-Time Approximation Scheme for General K (1 < K < T )

Given our algorithms proposed in Section 3.2 and 3.3, we are now ready to introduce our

PTAS for the general case of DISPLAY-OPT-K when 1 < K < T . The algorithm below is

a combination of the two algorithms above.

The approximate dynamic program. For every group k ∈ [K] customers, we can write

down the following inner-group recursion for t ∈ [tk : tk+1 − 1):

V(k)−inner
Usmall

(t, r, St−1, Stk+1−1)

= max
St∈Usmall∩Stk+1−1:

St−1⊆St

{
λt · cs (St) + V(k)−inner

Usmall

(
t+ 1, ⌈r − λt · R(St)⌉1+δ, St, Stk+1−1

)}
,

(3.5)

with base case

V(k)−inner
Usmall

(tk+1 − 1, r, Stk+1−1, Stk+1−1) =


0, if r ≤ 0,

−∞, if r > 0.

Let T
(
V(k)−inner
Usmall

(
tk, r, Stk−1, Stk+1−1

))
be the induced sequence of assortments S(k) =(

Stk , · · · , Stk+1−1

)
via computing V(k)−inner

Usmall

(
tk, r, Stk−1, Stk+1−1

)
. Similar to Section 3.3,

for given Stk−1 and Stk+1−1, the running time of computing an inner-group recursion

V(k)−inner
Usmall

(
tk, r, Stk−1, Stk+1−1

)
takes O

((
|Usmall| · log1+δ (rmax/rminwmin)

)2 · (tk+1 − tk − 1)
)
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We define R(k)
(
S(k)

)
=
∑tk+1−1

t=tk
λi ·
(∑

i∈St

ρi
1+w(St)

)
, and R(k) (∅) = −∞. Then we have

the outer-group recursion for break periods t1, · · · , tK ,

V(k)−outer
Usmall

(tk, Stk−1)

= max
r∈Domδ

Stk+1−1∈Usmall:

Stk+1−1⊇Stk−1

V(k)−inner
Usmall

(tk,r,Stk−1,Stk+1−1)≥αk

{
R(k)

(
T
(
V(k)−inner
Usmall

(
tk, r, Stk−1, Stk+1−1

)))

+V(k+1)−outer
Usmall

(tk+1, Stk+1−1)

}
, (3.6)

where Domδ = {0} ∪
{
(1 + δ)k : k ≤ k ≤ k

}
, where (1 + δ)k =⌊

rminwmin/
(
(1 + δ)T · (1 + wmin)

)⌋
1+δ

and (1 + δ)k =
⌊
rmax/ (1 + δ)T

⌋
1+δ

. Base case

is V(k)−outer
Usmall

(tK+1, ·) = V(k)−outer
Usmall

(T + 1, ·) = 0.

Given Lemma 3.2.6, we can compute the value function for any state (t, r, St−1) by

simply enumerating over all possible rounded revenue values and assortments St ∈ Usmall,

and hence all value functions in the outer-group recursion can be computed in a running

time of O
((
|Usmall| · log1+δ (rmax/rminwmin)

)2 ·K). Therefore in total we can fully solve the

dynamic programming (3.5) and (3.6) in running time of

∑
k∈[K]

O
((
|Usmall| · log1+δ (rmax/rminwmin)

)2 · (tk+1 − tk − 1)
)

+O
((
|Usmall| · log1+δ (rmax/rminwmin)

)2 ·K)
= O

((
|Usmall| · log1+δ (rmax/rminwmin)

)2 · T)
= O

(
|I|O(1) · nO( 1

ϵ2
)
)
.

Combining the proof for Theorem 3.2.1 and Theorem 3.3.1, one can show that
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Theorem 3.4.1 For any ϵ > 0, there is an algorithm that returns a sequence of assort-

ments S ∈ FK with expected revenue R(S) ≥ (1 − ϵ) · R(S∗), whose running time is

O
(
|I|O(1) · nO( 1

ϵ2
)
)
, where |I| denotes the size of the input.

3.5 Cardinality Constraints with T = O(1)

In many commercial settings, a natural business constraint is the cardinality constraint.

Imagine an online product display setting where the number of products shown on each page

(stage) is limited. The cardinality-constrained problem is formulated as follows

max
S∈FCard

K

R(S), (DISPLAY-OPT-K-CARD)

where FCard
K = FK ∩ {(S1, . . . , ST ) : St ⊆ [n], |St \ St−1| ≤ C}. Our algorithm works when

the cardinality constraints are stage-dependent, but here for exposition simplicity, we assume

the cardinality limits for all stages are the same, i.e., C.

Inspired by the algorithm before, we are able to give a PTAS that violates the customer

satisfaction constraints by ϵ when T = O (1). Given any assortment S, let permutation

P (S) rank product set S according to {ρi}i∈S in the descending order.

For the true optimal assortment S∗, we first construct a proxy Ŝ =
(
Ŝ1, · · · , ŜT

)
as

Section 3.2.2 does, then we construct a proxy Ŝsmall =
(
Ŝsmall
1 , · · · , Ŝsmall

T

)
∈×T

t=1
U (t)
small

to approximate Ŝ. The definition of candidate space U (t)
small will be introduced shortly. We

construct Ŝ in a way similar to Candidate 1 with a slight modification. For each stage

t ∈ [T ] and class q ∈ [Q]0, we set

Ŝt,q =


Cq[k∗

t,q], if k∗
t,q ≤ 1

ϵ

Cq[⌈(1− ϵ) · k∗
t,q⌉], otherwise.
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The efficacy proof of Ŝ as a proxy is given by the following lemma.

Lemma 3.5.1 Let Ŝ be the proxy sequence of assortments defined above. Then, Ŝ1 ⊆ · · · ⊆

ŜT ,
∣∣∣Ŝt \ Ŝt−1

∣∣∣ ≤ C,
∑

t∈[tk:tk+1)
λt · cs

(
w
(
Ŝt

))
> (1− 2ϵ) · αk, for t ∈ [T ], k ∈ [K]. And

R(Ŝ) ≥ (1− 2ϵ) · R(S∗).

Then we consider constructing a candidate assortment space U (t)
small, t ∈ [T ]. The building

block of the candidate assortment space comes from a modification of Usmall. We define space

U (t)
small for stage t by parameter sets

(
K↓

1 , · · · , K
↓
t ; lt1, · · · , ltt

)
. Here K↓

τ =
(
k↓
τ0, · · · , k

↓
τQ

)
is the rounded utilization vector for products added in stage τ ∈ [t]. On the other hand,

ltτ is the number that records how many products from class [qmax (Kτ−1)− L+ 1]+ to

[qmax (Kτ )− L]+ are added according to the descending ρ order in stage t ∈ [T ], i.e.,

P

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Cq \ Cq

[
kΣ
(t−1)q

]) [ltτ ] ,

where we define KΣ
t =

(
kΣ
t0, · · · , kΣ

tQ

)
and kΣ

tq =
∑t

τ=1 kτq. Then a parameter set(
K↓

1 , · · · , K
↓
t ; lt1, · · · , ltt

)
is translated into the assortment St with

St =

 ⊎
q∈[Q]

Cq

[
kΣ
tq

]⋃ t⊎
τ=1

P

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Cq \ Cq

[
kΣ
(t−1)q

]) [ltτ ]

 .

Let Kt = (kt1, · · · , ktQ) denote the utilization vector of
(
Ŝt \ Ŝt−1

)
. Then consider a

rounded utilization vector K↓
τ =

(
k↓
τ0, · · · , k

↓
τQ

)
which is defined in an analogous way as

(3.2) with some modifications as follows,

• For class q < [qmax(Kτ )− L+ 1]+, we set k↓
τq = 0.

• For class q ≥ [qmax(Kτ )− L+ 1]+ such that kτq ≤ 1
ϵ
we set k↓

τq = kτq.
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• For class q ≥ [qmax(Kτ ) − L + 1]+ such that kτq > 1
ϵ
, we define w↓

q = (µq − 1) ·

Power2

[
ϵ
L
· w(Ŝτ \ Ŝτ−1)

]
, where µq ≥ 1 is the unique integer such that

(µq − 1)·Power2
[ ϵ
L
· w(Ŝτ \ Ŝτ−1)

]
< w(Ŝτ,q\Ŝτ−1,q) ≤ µq ·Power2

[ ϵ
L
· w(Ŝτ \ Ŝτ−1)

]
.

On the other hand, define ρ↓q = (ξq − 1) ·Power2
[

ϵ
L
· ρ(Ŝτ \ Ŝτ−1)

]
, where ξq ≥ 1 is the

unique integer such that

(ξq − 1) · Power2
[ ϵ
L
· ρ(Ŝτ \ Ŝτ−1)

]
< ρ(Ŝτ,q \ Ŝτ−1,q) ≤ ξq · Power2

[ ϵ
L
· ρ(Ŝτ \ Ŝτ−1)

]
.

Then k↓
τq = min

{
k ∈ [|Cq|]0 : w((Cq \ Ŝτ−1,q)[k]) ≥ w↓

q , ρ((Cq \ Ŝτ−1,q)[k]) ≥ ρ↓q

}
.

And let

ltτ =

∣∣∣∣∣∣
[qmax(Kτ )−L]+⊎

q=[qmax(Kτ−1)−L+1]+

(
Ŝt,q \ Ŝτ−1,q

)∣∣∣∣∣∣ , τ ∈ [t].

The efficacy of proxy Ŝsmall is summarized by the following lemma.

Lemma 3.5.2 Let Ŝsmall be the proxy sequence of assortments defined above. Then, Ŝsmall
1 ⊆

· · · ⊆ Ŝsmall
T ,

∣∣∣Ŝsmall
t \ Ŝsmall

t−1

∣∣∣ ≤ C,
∑

t∈[tk:tk+1)
λt · cs

(
w
(
Ŝsmall
t

))
> (1− 5ϵ) · αk, for t ∈ [T ],

k ∈ [K]. And R(Ŝsmall) ≥ (1− 2(T + 3) · ϵ) · R(S∗).

In each stage t, we can enumerate all possible parameter sets
(
K↓

1 , · · · , K
↓
t ; lt1, · · · , ltt

)
in U (t)

small to find Ŝsmall
t . The total number of possible combinations is upper bounded

by
∣∣∣U (t)

small

∣∣∣ = O

((
ln
(

nwmax

wmin

)
· ln
(

nρmax

ρmin

)
· 2O(L/ϵ)

)t
· nt

)
< O

(
|I|O(1) · nO( T

ϵ2
)
)

=

O
(
|I|O(1) · nO( 1

ϵ2
)
)
.

Finally, to find a proxy of S∗ we can write down the recursions like (3.5) and (3.6). The

only differences are: (i) Substitute Usmall with U (t)
small for each stage t; (ii) Add cardinality

constraints |St \ St−1| ≤ C for each stage t; (iii) For given approximation error ϵ, substitute

the satisfaction constraints αk with (1− ϵ) · αk, k ∈ [K].
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Define

FCard−ϵ
K =

{
(S1, . . . , ST ) : St ⊆ [n], S1 ⊆ . . . ⊆ ST , |St \ St−1| ≤ C, ∀ t ∈ [T ],

∑
t∈[tk:tk+1)

λt · cs (w(St)) ≥ (1− ϵ) · αk ∀ k ∈ [K]

}
.

One can show that

Theorem 3.5.3 For any ϵ > 0, there is an algorithm that returns a sequence of assortments

S = (S1, · · · , ST ) ∈ FCard−ϵ
K with expected revenue R(S) ≥ (1 − ϵ) · R(S∗), whose running

time is O
(
|I|O(1) · nO( 1

ϵ2
)
)
, where |I| denotes the size of the input.

3.6 Numerical Experiments

In this section, we investigate the empirical performance of our algorithm under cardinal-

ity constraints. As a benchmark, we compare the performance of our algorithm against the

product framing algorithm, NEST Algorithm, proposed by [89]. Our goal is to understand

how good the revenue performance of our algorithm is, given that we are guaranteeing addi-

tional customer satisfaction performance which is hopefully higher than the solution given by

pure revenue-maximizing algorithms. All experiments were conducted on a standard laptop

with 16× 2.30GHz Intel Core i7 CPUs and 32GB of RAM. The algorithms were implemented

using Matlab.

3.6.1 Modified Algorithm

To achieve better computational efficiency, we implement our algorithm in a modified

way. The high-level idea of our PTAS is first constructing a relatively small candidate

assortment space, then solving a dynamic programming over stages via backward induction
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and exhaustive enumeration among the candidate space. The way we construct the candidate

space is basically by categorizing products into weight classes according to their rounded

weights, then enumerating enough representative combinations of product numbers for each

class and picking those numbers of products following the descending ρ−order within each

corresponding class. In our modified heuristic, we follow the high-level idea of the PTAS,

but construct the candidate space in a simpler way. One major change to improve the

computational efficiency is to make L independent of the problem instance, especially, we

let L = 2 or 3. For example, when L = 2, there are three weight classes: Cqmax , Cqmax−1

and I \ (Cqmax ∪ Cqmax−1). For stage t, we consider all combinations of utilization triplet

(k1, k2, k3) such that k1+k2+k3 ≤ t ·C. Each triplet fully characterizes one assortment that

picks k1, k2 and k3 products following the descending ρ−order from weight classes Cqmax ,

Cqmax−1 and I \ (Cqmax ∪ Cqmax−1) respectively. Then stage t’s candidate space U (t) consists

of all assortments that can be characterized by a feasible utilization triplet. Finally, we

implement the dynamic programming formulated in Section 3.5.

3.6.2 Experiments with Expedia Search Data

In our first numerical experiment, we use the public data set of hotel search and booking

records from Expedia platform ( [101]). We follow the exact fitting method as [102].

Experimental Setup

We randomly choose 50 search queries from Expedia’s Site 5 data, where each search

query contains all search results of a customer’s single hotel search. According to the statis-

tics summary Table C.1 from [102], the average number of search results of a search query is

around 25. We treat all search results under a search query as the total item set I = [n] where

each product’s revenue, i.e., hotel booking price, is given by the data, and MNL purchase
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weight is fitted by the parametric model. Then we run our algorithm comparison for each

selected query. We consider display products over three consecutive pages, i.e., T = 3; we

assume there is only one customer division, i.e., K = 1; and customer type distribution vec-

tor (λ1, λ2, λ3) is uniformly distributed. We consider two scenarios of cardinality constraints,

C = 5 and C = 10. Under a given scenario, we first run the NEST algorithm, and denote

the solution by SNEST =
(
SNEST
1 , SNEST

2 , SNEST
3

)
. Then for customer satisfaction con-

straints αβ = β · cs
(
SNEST

)
, β ∈ {0, 1.025, 1.05, 1.075, 1.1}, we run our modified algorithm

respectively, and denote the solution derived from our algorithm by Ŝβ =
(
Ŝβ1, Ŝβ2, Ŝβ3

)
.

Performance is measured by two metrics, the revenue ratio R
(
Ŝβ
)
/R
(
SNEST

)
and the

customer satisfaction ratio cs
(
Ŝβ
)
/cs
(
SNEST

)
. For each given factor β, we average the

revenue ratio and the customer satisfaction ratio over the outputs of the search queries. No-

tice that for β > 0, our algorithm is not guaranteed to generate a feasible solution. When we

average the performance metrics across the outputs of the search queries, we only account

for search queries that generate feasible solutions. Table 3.1 summarizes the performance

comparisons between our algorithm and the NEST algorithm, where ffeasible represents the

proportion of search queries that generate feasible solutions by our algorithm. Table 3.2

summarizes the running times of the tested algorithms (our algorithm is denoted by ADP).

Since our algorithm’s complexity does not depend on the constraint factor β, the average

running time of our algorithm is measured upon the unconstrained problem instances.

Discussions

The high-level observation is that although the NEST algorithm runs much faster than

our algorithm, under some instance settings, our algorithm attains a significant customer

satisfaction improvement without sacrificing much revenue. This is especially true for a small

cardinality constraint, C. It is interesting that our algorithm can achieve improvements in
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Table 3.1: Performance Comparisons

both revenue and customer satisfaction for small C, given that the objective function of our

algorithm is not revenue maximizing. The explanation is as follows. The NEST algorithm

achieves the revenue upper bound for one of the stages, meaning that our algorithm can
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Algorithm
Parameters Average Running Time (sec.)

C L ϵ δ ADP NEST

5 2 0.6 0.2 1.777 0.018

5 2 0.6 0.6 0.996 0.017

5 2 0.6 1 1.045 0.019

5 2 0.8 0.2 1.742 0.017

5 2 1 0.2 1.875 0.017

5 3 0.6 0.2 15.053 0.023

5 3 0.8 0.2 13.601 0.019

5 3 1 0.2 13.858 0.022

10 2 0.6 0.2 8.692 0.023

10 2 0.8 0.2 9.784 0.020

10 2 1 0.2 10.742 0.018

Table 3.2: Running Times

never attain a higher revenue at that particular stage. However, the NEST algorithm uses a

greedy strategy to construct other stages, which may significantly harm the overall revenue

performance. Recall that the average number of search results for each search query is around

25. When C = 10, T = 3, the overall revenue performance is likely to be only determined

by the first one or the first two stages (i.e., not adding more products in later stages), in

which case the NEST algorithm does not need to resort to the greedy construction much,

the revenue performance, in turn, is more likely to be good. Another interesting observation

is that larger ϵ may lead to better revenue and customer satisfaction performance. This is

because, in our algorithm modification, we set L = 2 or 3, then when ϵ is small, the heaviest

L weight classes may not contain enough products. Especially, they may exclude the “good”

products that have small weights but large ρ values. But still surprisingly, even when we

have ϵ to be 1, our algorithm can achieve impressive performance compared with the NEST

algorithm.
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3.6.3 Experiments with Synthetic Data

We also conduct the comparisons between our algorithm and the NEST algorithm using

synthetic data.

Generative Model

We randomly generate 99 products whose MNL weights take value from

[1 · scale, 2.5 · scale], where we consider three scales of the problem with scale =

0.01, 0.1, 1. Specifically, for each interval among [1 · scale, 1.5 · scale], [1.5 · scale, 2 · scale],

and [2 · scale, 2.5 · scale], we uniformly generate 33 products. Especially, with scale = 0.01,

the MNL weights are roughly at the same scale as the fitted results based upon the Expedia

data. As a comparison, we consider another scale with scale = 0.1. We also randomly gener-

ate revenue for each product, taking value from [100, 250]. Specifically, to mimic the pricing

effect on customers’ willingness to pay, we uniformly generate revenues from [200, 250] for

the products with MNL weights picked from [1 · scale, 1.5 · scale]; revenues from [150, 200]

for the products with MNL weights picked from [1.5 · scale, 2 · scale]; and revenues from

[100, 150] for the products with MNL weights picked from [2 · scale, 2.5 · scale]. We still let

T = 3, and consider three cardinality scenarios with C = 10, C = 15, and C = 20. After ex-

tensive trials, to well balance the performance and running time, we fix ϵ = 0.6 and δ = 0.4.

Like before, for each problem instance, we measure the comparisons by the revenue ratio

and the customer satisfaction ratio. For each given setup parameters combination (scale, C),

we generate 20 instances and average the two ratio metrics across the instances where our

algorithm generates feasible solutions. Table 3.3 summarizes the performance comparisons

between our algorithm and the NEST algorithm, and Table 3.4 summarizes the running

times of the tested algorithms.
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Algorithm
Parameters

(
R
(
Ŝβ
)
/R
(
SNEST

)
, cs
(
Ŝβ
)
/cs
(
SNEST

))
(%)

ffeasible (%)

C L ϵ δ scale β = 0 β = 1 β = 1.1 β = 1.2

10 2 0.6 0.4 0.01
(101.36, 123.37)

100
(101.36, 123.37)

100
(101.36, 123.37)

100
(103.36, 126.67)

65

10 2 0.6 0.4 0.1
(86.09, 115.56)

100
(86.09, 115.56)

100
(85.36, 115.82)

100
(84.86, 121.43)

20

15 2 0.6 0.4 0.01
(98.02, 122.72)

100
(98.02, 122.72)

100
(98.02, 122.72)

100
(98.90, 127.15)

60

15 2 0.6 0.4 0.1
(85.67, 111.38)

100
(85.67, 111.38)

100
(81.63, 112.82)

95 −

20 2 0.6 0.4 0.01
(100.02, 120.81)

100
(100.02, 120.81)

100
(100.02, 120.81)

100
(99.60, 125.17)

60

20 2 0.6 0.4 0.1
(81.75, 109.70)

100
(81.75, 109.70)

100
(84.34, 114.57)

30 −

Table 3.3: Performance Comparisons

Algorithm
Parameters Average Running Time (sec.)

C L ϵ δ scale ADP NEST

10 2 0.6 0.4 0.01 12.894 0.025

10 2 0.6 0.4 0.1 7.367 0.023

15 2 0.6 0.4 0.01 50.526 0.024

15 2 0.6 0.4 0.1 25.976 0.022

20 2 0.6 0.4 0.01 140.327 0.031

20 2 0.6 0.4 0.1 68.920 0.023

Table 3.4: Running Times

Discussions

The high-level observation is like before. Our algorithm may significantly improve cus-

tomer satisfaction while keeping a decent revenue performance under some instance settings.

Our algorithm performs very well compared with the NEST algorithm in problem instances

that are at a similar scale as the practical setting (scale = 0.01). However, our algo-

rithm’s revenue performance may lose more when the MNL weights of products become
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larger (scale = 0.1). There are two reasons for this phenomenon. On the one hand, when all

products’ weights are very small, the total weight of picked products does not matter much.

The revenue performance is mainly determined by the total ρ value of the assortment. There-

fore the optimal revenue-maximizing assortment tends to pick as many products as possible

following the descending ρ−order. This simple structure is aligned with the ρ−order picking

idea of our algorithm (especially when the weight class division is coarse, i.e., ϵ is large).

On the other hand, when the MNL weights are large, the optimal assortment tends to pick

the top revenue products without including too many products. Therefore, the cardinality

constraint is less likely to be binding for later stages (consider the extreme case when the

weights tend to be infinite, the optimal revenue-maximizing solution is to pick the product

with the highest revenue in the first stage and not add any products in later stages). As

we explained before, this is when the NEST algorithm will perform very well in terms of

revenue.

3.7 Future Work

Our work leaves a few unanswered questions. First, one natural question of DISPLAY-

OPT-K-CARD is whether there is an efficient algorithm to find a proxy that strictly meets

both the satisfaction constraints and the cardinality constraints. A second open question

is whether an FPTAS exists for the setting where T = O(1), as our proof that DISPLAY-

OPT-K is strongly NP-Hard requires the use of Ω(n) stages, and hence does not rule out

such a result.
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APPENDICES



A. Appendix for Chapter 1

Appendix: Proofs

Proof Proof for Lemma 1.3.3. We notice that the objective function could be written as

ϕ(p)(p − A) + A which after variable substitution p̃ = p − A could be further transformed

into ϕ̃(p̃)p̃ + A where ϕ̃(p̃) =
(
1− e−λq̃(p̃)

)
and q̃(p̃) = q (p̃+ A) = q(p). Whence q′(p)/q(p)

is decreasing in p is equivalent to q̃′(p̃)/q̃(p̃) is decreasing in p̃. In other words, q(·) ∈ Q

is equivalent to q̃(·) ∈ Q. Therefore, to prove Lemma 1.3.3, it is equivalent to rove the

following statement: If q(·) ∈ Q, then for fixed λ, π(p;λ) =
(
1− e−λq(p)

)
p is unimodal in p.

From Assumption 1.3.1, we know that optimal solution is finite. Thereby to prove the

unimodularity of π(·;λ), it is equivalent to showing that all the points where first-order

condition holds have to be local maximum (i.e., negative second-order derivative), which

implies that there is only one local maximum, i.e., global maximum. We can take the

first-order and second-order derivatives of π(p;λ):


π′(p;λ) = 1 + e−λq(p) (−1 + λpq′(p)) ,

π′′(p;λ) = λe−λq(p)
(
2q′(p)− λp (q′(p))

2
+ pq′′(p)

)
.

(A.1)

(A.2)

We need to prove that when (A.1) is zero, (A.2) is negative. When first-order condition

holds, we have p = −
(
eλq(p) − 1

)
/λq′(p). With this condition, proving (A.2) is negative is

equivalent to proving (
eλq(p) + 1

)
q′(p) <

(
eλq(p) − 1

)
q′′(p)

λq′(p)
.
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Because we know that λ > 0 and q′(p) < 0 (from Assumption 1.3.2), it is equivalent to

proving

λ

(
eλq(p) + 1

)
(eλq(p) − 1)

>
q′′(p)

(q′(p))2
.

We multiply both sides by q(p) and then minus 1:

λq(p)

(
eλq(p) + 1

)
(eλq(p) − 1)

− 1 >
q′′(p)q(p)− (q′(p))2

(q′(p))2
.

Assumption 1.3.2 implies that q′′(p)q(p) − (q′(p))2 < 0, therefore the right-hand side of the

above inequality is negative. On the other hand, the left-hand side is always positive. To

see this, we have

λq(p)

(
eλq(p) + 1

)
(eλq(p) − 1)

− 1 > 0⇔ (λq(p) + 1) + eλq(p)(λq(p)− 1) > 0.

Define function f(x) = (x + 1) + ex(x − 1), we have f ′(x) = 1 + exx > 0 for x > 0 and

f(0) = 0, therefore the right-hand of the above is true.

The proof is completed.

Lemma A.0.1 Define

F (λ,A) = max
p
{π (p;λ,A)} = max

p

{(
1− e−λq(p)

)
p+ e−λq(p) · A

}
,

where λ,A > 0 and q(·) ∈ Q, then (i). p∗ (λ,A) ≥ A and limλ→∞ p∗ (λ,A) = ∞,

limA→∞ p∗ (λ,A) = ∞, (ii). F (λ,A) is increasing concave in λ and limλ→∞ F (λ,A) = ∞,

(iii). F (λ,A) is increasing convex in A (which implies limA→∞ F (λ,A) = ∞) and (iv).

∂2F (λ,A)
∂λ∂A

< 0, i.e., F (λ,A) is submodular.

Proof Proof. We notice that the objective function could be written as ϕ(p)(p − A) + A

which after variable substitution p̃ = p − A could be further transformed into ϕ̃(p̃)p̃ + A
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where ϕ̃(p̃) =
(
1− e−λq̃(p̃)

)
and q̃(p̃) = q (p̃+ A) = q(p). It is straightforward to see that the

optimal price p∗ > A which is the first part of the lemma. The limiting behaviors of p∗ in

part (i) are also straightforward.

Now we look at part (ii) of the lemma. Let

F̃ (λ) = max
p
{ϕ(p)p} ,

where ϕ(p) =
(
1− e−λq(p)

)
and q(·) is log-concave, then F̃ (λ) is increasing concave in λ.

The following theorem from [103] is useful (see [103] Ch.11.7):

Theorem A.0.2 (Sensitivity Theorem) Let f , h ∈ C2 and consider the family of problems

max
x

f(x)

s.t. h (x) = c. (A.3)

Suppose for c = 0 there is a local solution x∗ that is a regular point and that, together with

its associated Lagrange multiplier vector λ, satisfies the second-order sufficiency conditions

for a strict local maximum. Then for every c ∈ Em in a region containing 0 there is an x(c)

depending continuously on c, such that x(0) = x∗ and such that x(c) is a local maximum of

(A.3). Furthermore,

∇cf (x(c)) |c=0 = λ.

Define z = λq(p), then we can write our optimization problem in the similar form to (A.3):

F̃ (λ+ δλ) = max
p,z

(
1− e−z

)
p

s.t. z/q (p)− λ = δλ.
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To avoid confusion of notations, we use µ to denote the Lagrange multiplier for the above

problem. It is not difficult to show that at solution (p∗, z∗), the second-order sufficiency

conditions for a strict local maximum are satisfied (see [103] Ch.11 for the definition of second-

order sufficiency conditions). From Theorem A.0.2, we know that ∇δλF̃ (λ+ δλ) |δλ=0 =

µ (λ), therefore to prove F̃ (λ) is increasing concave in λ, it is equivalent to proving that

µ(λ) > 0 and µ′(λ) < 0. We can write down the Karush-Kuhn-Tucker conditions at the

optimal solution (p∗, z∗) with δλ = 0 (with slight abuse of notations, we drop ∗ from the

superscript of optimal solutions):



(
1− e−z

)
+ µ · zq

′(p)

q2(p)
= 0,

e−zp− µ · 1

q(p)
= 0,

z

q(p)
− λ = 0,

(A.4)

which leads to

µ(λ) =
p(λ)q (p(λ))

1− λp(λ)q′(p(λ))
. (A.5)

It is straightforward to see that the optimal price cannot be negative, and we also have

q′(·) > 0 from assumption, therefore we have shown that µ > 0. Next we prove that µ(·) is

a decreasing function. From the above expression of µ, we have

dµ(λ)

dλ
=

1

(1− λp(λ)q′ (p(λ)))2
×(

p(λ)p′(λ)q′(p(λ))
[
1− λp(λ)q′ (p(λ))

]
+ q(p(λ))

{
p2(λ)q′(p(λ)) + p′(λ)

[
1 + λp2(λ)q′′(p(λ))

]})
, (A.6)
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and we want to show that the above derivative is negative, which is equivalent to show that

the numerator of the above result is negative. After algebra manipulation, we can write the

numerator as

{
p′(λ)

[
p(λ)q′(p(λ)) + q(p(λ))

]
+ p2(λ)q(p(λ))q′(p(λ))

}
+λp2(λ)p′(λ)

[
q(p(λ))q′′(p(λ))− (q′(p(λ)))

2
]
.

(A.7)

Given that we have q′(·) < 0 and q(p)q′′(p) − (q′(p))2 < 0 (equivalent to that q′(p)/q(p) is

decreasing in p), to prove (A.7) is negative, it is sufficient to have p′(λ) > 0 and p(λ)q′(p(λ))+

q(p(λ)) < 0. Proving the two lemmas below will complete the proof.

Lemma A.0.3 Optimal price is nondecreasing in the potential demand rate, i.e., p′(λ) > 0.

Proof Proof. It is sufficient to prove that near the optimal solution p∗(λ), the objective

function π(p, λ) = ϕ(p)p is supermodular in (p, λ). Indeed, we have

∂2π(p, λ)

∂p∂λ
= e−λq(p) (q(p) + p (1− λq(p)) q′(p)) ,

and on the other hand, first-order condition gives us

1− e−λq(p) (1− pλq′(p)) = 0.

Therefore, along the curve of p∗(λ), we have

∂2π(p, λ)

∂p∂λ
= e−λq(p)

(
p+ q(p)eλq(p)

)
> 0,

and because of continuity, the cross derivative of π(p, λ) is in turn positive around the solution

p∗(λ). Therefore, p∗(λ) is increasing in λ.
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Lemma A.0.4 For optimal price p(λ), we have p(λ)q′(p(λ)) + q(p(λ)) < 0.

Proof Proof. From first-order condition, we have

1− e−λq(p(λ)) (1− p(λ)λq′(p(λ))) = 0,

which leads to p(λ) = 1−eλq(p(λ))

λq′(p(λ))
. Therefore,

p(λ)q′(p(λ)) + q(p(λ)) < 0 ⇔ λq(p(λ)) < eλq(p(λ)) − 1.

The latter inequality holds because ex − 1 > x for x ∈ R. The proof is completed.

Now we have completed the proof for the second part of Lemma A.0.1, then we show that

F (λ,A) is increasing convex in A. To do that, we write the optimization problem as:

F (λ,A+ δA) = max
p,z

(
1− e−λq(p)

)
p+ e−λq(p)z,

s.t. z − A = δA.

Similar as before, from Theorem A.0.2, we know that ∇δAF (λ,A+ δA) |δA=0 = µ (A), there-

fore to prove F (λ,A) is increasing convex in A, it is equivalent to proving that µ(A) > 0

and µ′(A) > 0. Karush-Kuhn-Tucker conditions at the optimal solution (p∗, z∗) with δA = 0

gives us

µ (A) = e−λq(p(A)) > 0, (A.8)

whence we have already shown that F (λ,A) is increasing in A. On the other hand, given

the expression of µ (A), we have

dµ (A)

dA
= −e−λq(p(A))λq′ (p (A)) p′ (A) .
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To show that dµ(A)/dA > 0, we only need to show that p′(A) > 0. The following lemma

completes the proof:

Lemma A.0.5 Optimal price is nondecreasing in the future value, i.e., p′(A) > 0.

Proof Proof. Similar to the proof for Lemma A.0.3, it is sufficient to prove that near

the optimal solution p∗(A), the objective function π(p,A) =
(
1− e−λq(p)

)
p + e−λq(p)A is

supermodular in (p,A). Indeed, we have

∂2π(p,A)

∂p∂A
= −e−λq(p)λq′(p) > 0,

Therefore, p(A) is increasing in A.

Finally we prove that ∂2F (λ,A)
∂λ∂A

< 0. Similar to the method we use in A.4, we get

∂F (λ,A)

∂λ
= µ(λ,A) =

(p(A)− A)q(p(A))

1− λ(p(A)− A)q′(p(A))
,

whence

∂2F (λ,A)

∂λ∂A
=

∂µ(λ,A)

∂A

=
1

(1− λ (p(A)− A) q′(p(A)))2
·
(
(p(A)− A) p′(A)q′(p(A)) (1− λ (p(A)− A) q′(p(A)))

− q(p(A))
(
1− p′(A)

(
1 + λ (p(A)− A)2 q′′(p(A))

)) )
.
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To prove the above is negative, we only need to show that the numerator of the above is

negative.

(p(A)− A) p′(A)q′(p(A)) (1− λ (p(A)− A) q′(p(A)))

− q(p(A))
(
1− p′(A)

(
1 + λ (p(A)− A)2 q′′(p(A))

))
= (p(A)− A) p′(A)q′(p(A)) (1− λ (p(A)− A) q′(p(A)))− q(p(A)) (1− p′(A))

+ λ (p(A)− A)2 p′(A)q(p(A))q′′(p(A))

≤ (p(A)− A) p′(A)q′(p(A)) (1− λ (p(A)− A) q′(p(A)))

− q(p(A)) (1− p′(A)) + λ (p(A)− A)2 p′(A)(q′(p(A)))2

= q(p(A)) (p′(A)− 1) + (p(A)− A) p′(A)q′(p(A)), (A.9)

where the inequality is because p(A) > A, p′(A) > 0 (Lemma 1.4.3) and q(·) is log-concave.

So it is sufficient to show that (A.9) is negative. According to the definition of p(A), we can

write down the first-order condition which involves p(A):

e−λq(p(A))
(
eλq(p(A)) − 1 + (p(A)− A)λq′(p(A))

)
= 0,

which leads to

p(A)− A =
1− eλq(p(A))

λq′(p(A))
. (A.10)

Use the above formula in (A.9), we need to prove the following expression is negative

q(p(A)) (p′(A)− 1)− (eλq(p(A)) − 1)p′(A)

λ
= −q(p(A)) + p′(A)

λ

(
1 + λq(p(A))− eλq(p(A))

)
.

(A.11)

Because we have 1+x < ex, (A.11) is indeed negative. Therefore we have shown that F (λ,A)

is submodular.

Now, we finished the proof for Lemma A.0.1.
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Lemma A.0.6 |F (λ,A)− F (λ,B)| < |A−B|.

Proof Proof for Lemma A.0.6: From (A.8) we know that

dF (λ,A)

dA
= e−λq(p(A)) < 1,

then the lemma follows immediately.

Proof Proof for Lemma 1.4.3: Because of the unimodularity of π (p;λ,A), p(λ,A) is the

solution to

dπ (p;λ,A)

dp
= e−λq(p)

(
eλq(p) − 1 + (p− A)λq′(p)

)
= 0,

which leads to

p(λ,A) =
1− eλq(p(λ,A)) + Aλq′(p(λ,A))

λq′(p(λ,A))
.

We take derivative of both sides in λ

∂p (λ,A)

∂λ
= −1 + eλq(p(λ,A)) (λq (p (λ,A))− 1)

λ2q′ (p (λ,A))

+
∂p (λ,A)

∂λ
·

(
−eλq(p(λ,A)) +

(
eλq(p(λ,A)) − 1

)
q′′ (p (λ,A))

λ (q′ (p (λ,A)))2

)
,

which leads to

∂p (λ,A)

∂λ
= −

(
1 + eλq(p(λ,A)) (λq (p (λ,A))− 1)

)
q′ (p (λ,A))

λ
(
(1 + eλq(p(λ,A)))λq′ (p (λ,A))2 − (eλq(p(λ,A)) − 1) q′′ (p (λ,A))

) > 0. (A.12)

On the other hand, we know that q(p) is log-concave, i.e., q(p)q′′(p) ≤ q′(p)2, which is

equivalent to q′′(p) ≤ q′(p)2/q(p) (because q(p) > 0). To prove ∂p(λ,A)
∂λ

> 0, we need to show

the denominator of (A.12) is positive. Because eλq(p) − 1 > 0, it is sufficient to prove that

(
1 + eλq(p(λ,A))

)
λq′(p(λ,A))2 −

(
eλq(p(λ,A)) − 1

)
q′(p(λ,A))2/q(p(λ,A)) > 0,
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which is equivalent to

(
1 + eλq(p(λ,A))

)
λq(p)−

(
eλq(p(λ,A)) − 1

)
> 0.

It is easy to check that the above holds, because (1+ex)x− (ex−1) ≥ 0 for x ≥ 0. Therefore

0 <
∂p (λ,A)

∂λ

≤ −
(
1 + eλq(p(λ,A)) (λq (p (λ,A))− 1)

)
q′ (p (λ,A))

λ
(
(1 + eλq(p(λ,A)))λq′ (p (λ,A))2 − (eλq(p(λ,A)) − 1) q′(p(λ,A))2/q(p(λ,A))

)
=

1

λ

(
1 + λq (p (λ,A)) / (1 + eλq(p(λ,A)) (λq (p (λ,A))− 1))

)
(−q′(p(λ,A))/q (p (λ,A)))

<
1

λ (−q′(p(λ,A))/q (p (λ,A)))
,

where the last second inequality is due to 1 + ex (x− 1) > 0 for x > 0. Especially,

when λ becomes large, which in turn implies a large p (λ,A) (obviously), the derivative

∂p (λ,A) /∂λ should be upper bounded by 1/cλ, where c is any absolute constant within

interval (0, limp→∞ {−q′ (p) /q (p)}].

We take derivative of both sides in A

∂p (λ,A)

∂A
= 1 +

∂p (λ,A)

∂A

(
−eλq(p(λ,A)) +

(
eλq(p(λ,A)) − 1

)
q′′(p(λ,A))

λ(q′(p(λ,A)))2

)
,

which leads to

∂p (λ,A)

∂A
=

λq′(p(λ,A))2

(1 + eλq(p(λ,A)))λ(q′(p(λ,A)))2 − (eλq(p(λ,A)) − 1) q′′(p(λ,A))
. (A.13)
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Therefore, from (A.13), we have

∂p (λ,A)

∂A
≤ λq′(p(λ,A))2

(1 + eλq(p(λ,A)))λq′(p(λ,A))2 − (eλq(p(λ,A)) − 1) q′(p(λ,A))2/q(p(λ,A))

=
λq(p)

(1 + eλq(p))λq(p)− (eλq(p) − 1)

≤ max
x

{
x

(1 + ex)x− (ex − 1)

}
= 1.

In conclusion, we have shown that 0 < ∂p(λ,A)
∂A

< 1.

Lemma A.0.7 For A > B, we have
(
1− e−λq(p(λ,A))

)
p (λ,A) ≤

(
1− e−λq(p(λ,B))

)
p (λ,B).

Proof Proof. We prove by contradiction. Suppose that for A > B,(
1− e−λq(p(λ,A))

)
p (λ,A) >

(
1− e−λq(p(λ,B))

)
p (λ,B), according to Lemma 1.4.3, p (λ,A) >

p (λ,B), then

(
1− e−λq(p(λ,A))

)
p (λ,A) + e−λq(p(λ,A))B >

(
1− e−λq(p(λ,B))

)
p (λ,B) + e−λq(p(λ,A))B

>
(
1− e−λq(p(λ,B))

)
p (λ,B) + e−λq(p(λ,B))B,

where the first inequality comes from the proof assumption and the second inequality is

because e−λq(p) is an increasing function of p. The above inequality contradicts the definition

of p (λ,B), i.e., p (λ,B) = argmaxp
{(

1− e−λq(p)
)
p+ e−λq(p)B

}
. Therefore, we have proven

the lemma.

Lemma A.0.8 If F (·) is an increasing concave function, {λn} scales up in degree γ ≥ 0,

then

lim
n→∞

F (E [λn])− E [F (λn)]

F (E [λn])
= O

(
1

nγ

)
,
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and if for some c > 0, F ′ (λ) < 1
cλ
, and {Gn (·)} ∈ Gγ, where λn ∼ Gn (·), then

lim
n→∞

F (E [λn])− E [F (λn)] = O
(

1

nγ

)
.

Proof Proof: We have

F (E [λn])− E [F (λn)] =

∫
R+

(F (E [λn])− F (x)) dGn (x)

=

∫ E[λn]

0

(F (E [λn])− F (x)) dGn (x) +

∫ ∞

E[λn]

(F (E [λn])− F (x)) dGn (x)

≤
∫ E[λn]

0

(F (E [λn])− F (x)) dGn (x) ,

where the last inequality is because F (·) is an increasing function. Therefore,

F (E [λn])− E [F (λn)]

F (E [λn])
≤
∫ E[λn]

0
(F (E [λn])− F (x)) dGn (x)

F (E [λn])

=

∫ E[λn]

0

∫ E[λn]

x
F ′ (λ) dλ∫ E[λn]

0
F ′ (λ) dλ

dGn (x) ≤
∫ E[λn]

0

E [λn]− x

E [λn]
dGn (x) ∼

σn

2E [λn]
,
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where the second inequality is because F ′ (·) is a decreasing function (F (·) is a concave

function). When Gn (·) is a symmetric distribution, the last approximation can be derived

from Hölder’s inequality. When F ′ (λ) ≤ 1/cλ for some c > 0, then

F (E [λn])− E [F (λn)] ≤
∫ E[λn]

0

(F (E [λn])− F (x)) dGn (x)

=

∫ τ(n)

0

(F (E [λn])− F (x)) dGn (x) +

∫ E[λn]

τ(n)

∫ E[λn]

x

F ′ (λ) dλdGn (x)

≤ F (E [λn]) ·Gn (τ (n)) +

∫ E[λn]

τ(n)

E [λn]− x

cx
dGn (x)

≤ F (E [λn]) ·Gn (τ (n)) +
1

cτ (n)

∫ E[λn]

τ(n)

(E [λn]− x) dGn (x)

≤
(
1

c
log (E [λn]) + F (0)

)
·Gn (τ (n)) +

σn

cτ (n)
,

where τ (n) is any positive function of n, the first term in the second inequality is because

F (·) is an increasing function, the second term in the second inequality and the first term

in the last inequality are because F ′ (λ) ≤ 1/cλ and the second term in the last inequality

is due to Hölder’s inequality. The above inequalities lead to

F (E [λn])− E [F (λn)] ≤ inf
τ(·)

{(
1

c
log (E [λn]) + F (0)

)
·Gn (τ (n)) +

σn

cτ (n)

}
.

It is straightforward to see that the proof of the lemma is completed.

Proposition A.0.1 Assume that each sequence {λtn}, t = 1, · · · , T − 1 scales up in de-

gree γ and each corresponding distribution sequence {Gtn (·)} ∈ Gγ, then Ṽ πDA
t (E [λtn]) −

E [Vt (λtn)] ∼ O ((T − t) /n1−γ), for t = 1, · · · , T − 1.
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Proof Proof for Proposition A.0.1: We know that Ṽ DA
T = VT = pT , according to Lemma

1.4.2 and Lemma A.0.8, there exist constants CT−1 > 0 and NT−1 > 0, such that for

nT−1 > NT−1,

Ṽ DA
T−1

(
E
[
λ(T−1)n

])
− E

[
VT−1

(
λ(T−1)n

)]
= VT−1

(
E
[
λ(T−1)n

])
− E

[
VT−1

(
λ(T−1)n

)]
≤ CT−1 ·

σ(T−1)n

E
[
λ(T−1)n

] ∼ O( 1

n1−γ
T−1

)
.

From Lemma A.0.6, we know that

0 ≤ Ṽ DA
T−2

(
λ(T−2)n

)
− VT−2

(
λ(T−2)n

)
≤ Ṽ DA

T−1

(
E
[
λ(T−1)n

])
− E

[
VT−1

(
λ(T−1)n

)]
≤ CT−1 ·

σ(T−1)n

E
[
λ(T−1)n

] ,
whence

0 ≤ E
[
Ṽ DA
T−2

(
λ(T−2)n

)]
− E

[
VT−2

(
λ(T−2)n

)]
≤ Ṽ DA

T−1

(
E
[
λ(T−1)n

])
− E

[
VT−1

(
λ(T−1)n

)]
≤ CT−1 ·

σ(T−1)n

E
[
λ(T−1)n

] .
According to Lemma 1.4.2 and Lemma A.0.8 again, we have constants CT−2 > 0 and NT−2 >

0 where NT−2 is independent of NT−1 such that for nT−2 > max {NT−2, NT−1},

Ṽ DA
T−2

(
E
[
λ(T−2)n

])
− E

[
Ṽ DA
T−2

(
λ(T−2)n

)]
≤ CT−2 ·

σ(T−2)n

E
[
λ(T−2)n

] ∼ O( 1

n1−γ
T−2

)
.

Here we should highlight that the reason that NT−2 could be independent of NT−1 is because

to utilize the result in Lemma A.0.8, it is sufficient to have
(
Ṽ DA
T−2 (·)

)′
be upper bounded by
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1/cλ for some constant c, and the latter is guaranteed by Lemma 1.4.2 which is independent

of the next period. The above two inequalities leads to

Ṽ DA
T−2

(
E
[
λ(T−2)n

])
− E

[
VT−2

(
λ(T−2)n

)]
=
(
Ṽ DA
T−2

(
E
[
λ(T−2)n

])
− E

[
Ṽ DA
T−2

(
λ(T−2)n

)])
+
(
E
[
Ṽ DA
T−2

(
λ(T−2)n

)]
− E

[
VT−2

(
λ(T−2)n

)])
≤ CT−2 ·

σ(T−2)n

E
[
λ(T−2)n

] + CT−1 ·
σ(T−1)n

E
[
λ(T−1)n

] ∼ O( 1

n1−γ
T−2

+
1

n1−γ
T−1

)
.

Following the similar approach, for t = {1, · · · , T − 1}, there exist constants Ct > 0 and

Nt > 0 such that for nt > max {Nt, · · · , NT−1},

Ṽ DA
t (E [λtn])− E [Vt (λtn)] ∼ O

(
T−1∑
τ=t

(
1

n1−γ
τ

))
,

specifically, when we let nt = nt+1 = · · · = nT−1 = n > max {Nt, · · · , NT−1}, we have

Ṽ DA
t (E [λtn])− E [Vt (λtn)] ∼ O

(
T − t

n1−γ

)
.

The proof is completed.

Proof Proof for Theorem 1.4.4: From Lemma 1.4.3, for time period t, we can generate an

upper bound on the difference of the price induced by Ṽ DA
t (λtn), p

DA
t , and the price induced

by Vt (λtn), pt:

0 < pDA
t − pt ≤ Ṽ DA

t+1

(
E
[
λ(t+1)n

])
− E

[
Vt+1

(
λ(t+1)n

)]
∼ O

(
T − t− 1

n1−γ

)
. (A.14)

In this proof, we give the bound on the regret ratio,
(
Vt (λtn)− V DA

t (λtn)
)
/Vt (λtn).

The bound on the regret
(
Vt (λtn)− V DA

t (λtn)
)
could be constructed following the sim-
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ilar manner in Theorem 1.5.2. It turns out that the regret ratio and the regret share

the same asymptotic rate, which is because the denominator in the regret ratio, Vt (λtn),

increases rather slowly in both T and n. We first look at the regret. Notice that

Eλ(T−1)n

[
VT−1

(
λ(T−1)n

)]
− Eλ(T−1)n

[
VT−1

(
λ(T−1)n

)]
= 0, we assume that

(
Eλ(t+1)n

[
Vt+1

(
λ(t+1)n

)]
− Eλ(t+1)n

[
V DA
t+1

(
λ(t+1)n

)])
≤ O

(
(T − t− 1) (T − t− 2) log (n) /n1−γ

)
,

then

Vt (λtn)− V DA
t (λtn) =

((
1− e−λtnq(pt)

)
pt + e−λtnq(pt)Eλ(t+1)n

[
Vt+1

(
λ(t+1)n

)])
−
((

1− e−λtnq(pDA
t )
)
pDA
t + e−λtnq(pDA

t )Eλ(t+1)n

[
V DA
t+1

(
λ(t+1)n

)])
=
(
1− e−λtnq(pDA

t )
) (

pt − pDA
t

)
+ e−λtnq(pDA

t )
(
Eλ(t+1)n

[
Vt+1

(
λ(t+1)n

)]
− Eλ(t+1)n

[
V DA
t+1

(
λ(t+1)n

)])
+
(
e−λtnq(pDA

t ) − e−λtnq(pt)
)(

pt − Eλ(t+1)n

[
Vt+1

(
λ(t+1)n

)])
≤
(
Eλ(t+1)n

[
Vt+1

(
λ(t+1)n

)]
− Eλ(t+1)n

[
V DA
t+1

(
λ(t+1)n

)])
+

(
e−λtnq(p̃t)λtnq (p̃t)

(
−q′ (p̃t)

q (p̃t)

))(
pDA
t − pt

)
·
(
pt − Eλ(t+1)n

[
Vt+1

(
λ(t+1)n

)])
≤ O

(
(T − t− 1) (T − t− 2) log (n)

n1−γ

)
+O (log (n)) ·

(
pDA
t − pt

)
≤ O

(
(T − t) (T − t− 1) log (n)

n1−γ

)
, (A.15)

where in the first inequality, p̃t is some value in [pt, p
DA
t ]. The second inequality comes

from the facts that xe−x < 1, limp→∞−q′ (p) /q (p) < ∞ and (1.4). We notice that all of

the above inequalities are actually independent of the realization of λtn, therefore we have
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(
Eλtn [Vt (λtn)]− Eλtn

[
V DA
t (λtn)

])
≤ O ((T − t) (T − t− 1) log (n) /n1−γ). According to the

proof by induction, we can conclude that

Regret (πDA) < O
(
T 2log (n)

n1−γ

)
.

The proof is completed.

Lemma A.0.9 Define

F (λ,A, ξ) = max
p
{π (p; ξ, A)} = max

p

{(
1− e−λq(ξ−αp)

)
p+ e−λq(ξ−αp)A

}
,

where q(ξ−αp) ∈ Q, then (i). limξ→∞ p∗ (ξ, A) =∞, (ii). F (λ,A, ξ) is increasing convex in ξ,

especially 0 ≤ ∂F (λ,A,ξ)
∂ξ

≤ 1/α and limξ→∞ F (λ,A, ξ) =∞, (iii). , F (λ,A, ξ) is submodular,

i.e., ∂2F (λ,A,ξ)
∂ξ∂A

< 0.

Proof Proof for Lemma A.0.9. The idea of the proof is similar to A.0.1. First of all, similar

as before, we have F (ξ, A) =
(
1− e−λq(ξ−αp)

)
(p− A) + A. Therefore, to investigate the

∂F (ξ, A) /∂ξ, it is sufficient to focus on F̃ (ξ, A) =
(
1− e−λq(ξ−αp)

)
(p− A). Let z = ξ−αp,

then we can write the problem as

F̃ (ξ + δξ, A) =max
p,z

(
1− e−λq(z)

)
p

s.t. z + αp− ξ = δξ.

According to Theorem A.0.2, we have

∂F̃ (ξ, A)

∂ξ
= ∇δξ F̃ (ξ + δξ, A) |δξ=0 = µ (ξ) ,
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where µ (ξ) is the Lagrangian multiplier of the above optimization problem and the La-

grangian has form L (p, z;µ) =
(
1− e−λq(z)

)
p − µ (z + αp− ξ). We can write down the

Karush-Kuhn-Tucker conditions:

(
1− e−λq(z)

)
− αµ = 0,

e−λq(z) (p− A)λq′(z)− µ = 0,

z + αp− ξ = 0,

(A.16)

which leads to

µ (ξ) =
(p(ξ)− A)λq′(ξ − αp(ξ))

1 + (p(ξ)− A)αλq′(ξ − αp(ξ))
. (A.17)

It is straightforward to see that µ(ξ) > 0, because q′(·) > 0 and in the equilibrium p(ξ) > A.

On the other hand,

µ (ξ) =
(p(ξ)− A)λq′(ξ − αp(ξ))

1 + (p(ξ)− A)αλq′(ξ − αp(ξ))
=

1

α
· (p(ξ)− A)λq′(ξ − αp(ξ))

1/α + (p(ξ)− A)λq′(ξ − αp(ξ))
≤ 1

α
.

Therefore, we have shown that F̃ (ξ, A) is increasing in ξ with µ′(ξ) < 1/α. Given the

expression of µ(ξ), we have

µ′(ξ) =
λp′ (ξ) q′ (ξ − αp (ξ))− λ (p (ξ)− A) (αp′ (ξ)− 1) q′′ (ξ − αp (ξ))

(1 + αλ (p (ξ)− A) q′ (ξ − αp (ξ)))2
.

We would like to prove µ′(ξ) > 0, which is equivalent to proving the numerator of the above

is positive. Based upon (A.16) and (A.17), we can get the expressions for q(ξ) and q′(ξ) in

the equilibrium, whence after algebraic manipulation, the numerator of the above can be

written as

eλq(ξ−αp(ξ))λ2q′ (ξ − αp (ξ))3

α
(
(1 + eλq(ξ−αp(ξ)))λ (q′ (ξ − αp (ξ)))2 − (eλq(ξ−αp(ξ)) − 1) q′′ (ξ − αp (ξ))

) .
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Because q′ (·) > 0, to prove the above is positive, it is equivalent to proving the denominator

of the above is positive. Because q(·) is log-concave, for the denominator of the above, we

have

(
1 + eλq(ξ−αp(ξ))

)
λ (q′ (ξ − αp (ξ)))

2 −
(
eλq(ξ−αp(ξ)) − 1

)
q′′ (ξ − αp (ξ))

≥
(
1 + eλq(ξ−αp(ξ))

)
λ (q′ (ξ − αp (ξ)))

2 −
(
eλq(ξ−αp(ξ)) − 1

) (q′ (ξ − αp (ξ)))2

q (ξ − αp (ξ))

=
(q′ (ξ − αp (ξ)))2

q (ξ − αp (ξ))
·
((
1 + eλq(ξ−αp(ξ))

)
λq (ξ − αp (ξ))−

(
eλq(ξ−αp(ξ)) − 1

))
≥ 0.

The first inequality is because eλq(ξ−αp(ξ)) > 1 and the last inequality is due to (1 + ex)x >

ex − 1, for x ≥ 0. Therefore, we have shown that F̃ (ξ, A) (or equivalently F (ξ, A)) is

increasing convex in ξ.

On the other hand, we can write (A.17) as

µ(A) =
(p(A)− A)λq′ (ξ − αp(A))

1 + (p(A)− A)αλq′ (ξ − αp(A))
.

Therefore we have

∂2F̃ (ξ, A)

∂ξ∂A
=

λ ((p′(A)− 1) q′ (ξ − αp(A))− α (p(A)− A) p′(A)q′′ (ξ − αp(A)))

(1 + αλ (p(A)− A) q′ (ξ − αp(A)))2
.

We would like to prove that the above is negative, which is equivalent to proving the nu-

merator is negative. Using the similar techniques that we have seen before, we can write the

above numerator as

eλq(ξ−αp(A))λ (q′ (ξ − αp(A)))3

− (1 + eλq(ξ−αp(A)))λ (q′ (ξ − αp(A)))2 + (eλq(ξ−αp(A)) − 1) q′′ (ξ − αp(A))
.
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To prove the above is negative, it is further equivalent to proving the denominator of the

above is negative. Actually, we have

−
(
1 + eλq(ξ−αp(A))

)
λ (q′ (ξ − αp(A)))

2
+
(
eλq(ξ−αp(A)) − 1

)
q′′ (ξ − αp(A))

≤ −
(
1 + eλq(ξ−αp(A))

)
λ (q′ (ξ − αp(A)))

2
+
(
eλq(ξ−αp(A)) − 1

)
· (q

′ (ξ − αp(A)))2

q (ξ − αp(A))

= −(q′ (ξ − αp(A)))2

q (ξ − αp(A))
·
((
1 + eλq(ξ−αp(A))

)
λq (ξ − αp(A))−

(
eλq(ξ−αp(A)) − 1

))
≤ 0,

where the first inequality is because of the log-concavity of q(·) and
(
eλq(ξ−αp(A)) − 1

)
> 0 and

the last inequality is due to (1+ ex)x > ex−1. Therefore, we have shown the submodularity

of F̃ (ξ, A) (or equivalently F (ξ, A)).

Proof Proof for Proposition 1.5.2: Let Ltn (ξ) =
1
t

∑t
τ=1

(
1
n

∑n
i=1 fτ (xτi|ξ)

)
and Lt (ξ) =

1
t

(∑t
τ=1 Eξ0fτ (x|ξ0)

)
, then according to the definition of ξtn (x) and ξ0, we have L

′
tn (ξtn) = 0

and L′
t (ξ0) = 0, therefore for some ξ1 between ξtn and ξ0 such that

√
tn (ξtn − ξ0) = −

√
tnL′

tn (ξ)

L′′
tn (ξ1)

.

For the numerator, we have

√
tnL′

tn (ξ0) =
√
tn

(
1

t

t∑
τ=1

(
1

n

n∑
i=1

f ′
τ (xτi|ξ0)

)
− 0

)

=
√
tn

(
1

t

t∑
τ=1

(
1

n

n∑
i=1

f ′
τ (xτi|ξ0)

)
− 1

t

t∑
τ=1

Eξ0f
′
τ (x|ξ0)

)
→ N

(
0,

1

t

t∑
τ=1

V arξ0 (f
′
τ (x|ξ0))

)
,

where the last convergence comes from Lyapunov’s central limit theorem. Duo to the similar

argument in the proof of Proposition 1.5.1, arbitrary order of moment of f ′
τ (x|ξ0) exists (be-

cause arbitrary order of moment of Poisson distribution exists and f ′
τ (x|ξ0) can be bounded
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by some linear function of x). Then it is not difficult to verify that the Lyapunov’s condition

required for Lyapunov’s central limit theorem holds here. Furthermore, we can bound the

convergence error using Local Limit Theorem (see Appendix, also see [104] Chapter VII).

Let Yτi = f ′
τ (xτi|ξ0) /

√
V arξ0 (f

′
τ (x|ξ0)), τ = 1, · · · , t, i = 1, · · · , n. And let gτ (·) be the

probability density function of Yτi. Then it is straightforward to verify that E|Yτi|3 < ∞,

EYτi = 0, EY 2
τi = 1 and there exists some constant Cτ such that gτ (·) ≤ Cτ . Let gτn (x) be

the density of the random variable 1√
n

∑n
i=1 Yτi, then by Local Limit Theorem,

∣∣∣gτn (x)− ϕ (x)
∣∣∣ ≤ Aβ3

3τ max (1, C5
τ )√

n (1 + |x|2)
, (A.18)

where ϕ (·) is the pdf of standard normal distribution, β3τ = E|Yτi|3 and A is a constant. Let

ĝτn (·) be the probability density function of 1√
n

∑n
i=1 f

′
τ (xτi|ξ0), then by (A.18), we have

∣∣∣ĝτn (x)− ϕ̂ (x)
∣∣∣ ≤ Aβ3

3τ

√
Vτ max (1, C5

τ )√
n (Vτ + |x|2)

, (A.19)

where ϕ̂ (·) is the pdf of normal distribution N (0, Vτ ) and Vτ = V arξ0 (f
′
τ (x|ξ0)). Then let

g̃tn (·) denote the pdf of
√
tnL′

tn (ξ0) =
1√
tn

∑t
τ=1

∑n
i=1 f

′
τ (xτi|ξ0), then it is not difficult to

see that ∣∣∣g̃τn (x)− ϕ̃ (x)
∣∣∣ ≤ Ãt
√
tn
(
Ṽt + |x|2

) , (A.20)

where ϕ̃ (·) is the pdf of normal distribution N
(
0, Ṽt

)
and Ṽt =

1
t

∑t
τ=1 V arξ0 (f

′
τ (x|ξ0)).

On the other hand, for the denominator L′′
tn (ξ1), by the Law of Large Numbers, we have

L′′
tn (ξ1)→ L′′

tn (ξ0)→
1

t

t∑
τ=1

Eξ0f
′′
τ (x|ξ0) = −It (ξ0) < 0.
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Therefore, by Slutsky’s Theorem, we have

−
√
tnL′

tn (ξ)

L′′
tn (ξ1)

d−→ N

(
0,

1
t

∑t
τ=1 V arξ0 (f

′
τ (x|ξ0))

(I (ξ0))
2

)
,

then because

1

t

t∑
τ=1

V arξ0 (f
′
τ (x|ξ0)) =

1

t

t∑
τ=1

(
Eξ0 (f

′
τ (x|ξ0))

2 − (Eξ0f
′
τ (x|ξ0))

2
)

=
1

t

t∑
τ=1

Eξ0 (f
′
τ (x|ξ0))

2
= It (ξ0) ,

we have

−
√
tnL′

tn (ξ)

L′′
tn (ξ1)

d−→ N

(
0,

1

It (ξ0)

)
.

Similar to what we did on the numerator, we can use Local Limit Theorem to bound the

degeneration rate of the denominator. But because the degeneration rate of the denominator

is on a higher order compared with the convergence rate of the numerator, when we bound

the asymptotic normality behavior of −
√
tnL′

tn (ξ) /L
′′
tn (ξ1), we can neglect the effect from

the denominator. Let g∗tn (·) be the pdf of ξtn (x), then from (A.18), we have

∣∣∣g∗tn (x)− ϕ∗
tn (x)

∣∣∣ ≤ C̃√
tn (1 + |x|2)

, (A.21)

where ϕ∗
tn(·) is the pdf of distribution N

(
ξ0, (tnIt (ξ0))

−1) and C̃ is some constant indepen-

dent of t and n.

Qtn,x (B) =

∫
R
P (ξ ∈ B|ξtn (x) = δ) g∗tn (δ) dδ =

∫
B

(∫
R
Q′

tn,x (ξ|ξtn (x) = δ) g∗tn (δ) dδ

)
dξ

=

∫
B

(∫
R
Q′

tn,x (ξ|ξtn (x) = δ)ϕ∗
tn (δ) dδ

)
dξ

+

∫
R
P (ξ ∈ B|ξtn (x) = δ) (g∗tn (δ)− ϕ∗

tn (δ)) dδ,
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where the first term is the probability function of N
(
ξ0,Γtn (x)

−1 + (tnIt (ξ0))
−1) which we

denote by Q̃tn,x (B). We notice that the variance the normal distribution Q̃tn,x (·) converges

to zero in the rate of 1/tn. For the second term, we have

∣∣∣∣∫
R
P (ξ ∈ B|ξtn (x) = δ) (g∗tn (δ)− ϕ∗

tn (δ)) dδ

∣∣∣∣
≤
∫
R
P (ξ ∈ B|ξtn (x) = δ) |g∗tn (δ)− ϕ∗

tn (δ)| dδ

≤
∫
R
|g∗tn (δ)− ϕ∗

tn (δ)| dδ
(A.21)

≤
∫
R

C̃√
tn (1 + |δ|2)

dδ =
C̃ ′
√
tn

,

where C̃ ′ is a constant. We notice that the second term also diminishes in the order of

1/
√
tn which is similar to the convergence error between Rtn,x and Qtn,x. Combined with

Proposition 1.5.2, there exists a constant C̃K such that

sup
ξ∈K

P tn
ξ

{
x ∈ X tn : d

(
Rtn,x, Q̃tn,x

)
> CK (s) · (t · n)−1/2

}
= O

(
(t · n)−s/2

)
. (A.22)

Proposition A.0.2
∣∣∣Vt (λtn, ξ)− Vt (λtn, ξ0)

∣∣∣ ≤ (T − t) |ξ − ξ0| /α.

Proof Proof for Proposition A.0.2: We know that VT (·) = pT , according to Lemma A.0.9,

∣∣∣VT−1

(
λ(T−1)n, ξ

)
− VT−1

(
λ(T−1)n, ξ0

) ∣∣∣ ≤ |ξ − ξ0|
α

.

Assume that

∣∣∣Vt+1

(
λ(t+1)n, ξ

)
− Vt+1

(
λ(t+1)n, ξ0

) ∣∣∣ ≤ (T − t− 1) |ξ − ξ0|
α

.
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From Lemma A.0.6, we know that

∣∣∣Vt (λtn, ξ)− F
(
λtn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ
) ∣∣∣

=
∣∣∣F (λtn, Vt+1

(
λ(t+1)n, ξ

)
, ξ
)
− F

(
λtn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ
) ∣∣∣

≤
∣∣∣Vt+1

(
λ(t+1)n, ξ

)
− Vt+1

(
λ(t+1)n, ξ0

) ∣∣∣ ≤ (T − t− 1) |ξ − ξ0|
α

,

on the other hand, again by Lemma A.0.9,

∣∣∣F (λtn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ
)
− Vt (λtn, ξ0)

∣∣∣
=
∣∣∣F (λtn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ
)
− F

(
λtn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ0
) ∣∣∣ ≤ |ξ − ξ0|

α
.

Therefore,

∣∣∣Vt (λtn, ξ)− Vt (λtn, ξ0)
∣∣∣

≤
∣∣∣Vt (λtn, ξ)− F

(
λ(tn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ
) ∣∣∣+ ∣∣∣F (λtn, Vt+1

(
λ(t+1)n, ξ0

)
, ξ
)
− Vt (λtn, ξ0)

∣∣∣
≤ (T − t) |ξ − ξ0|

α
.

Therefore using proof by induction, we have shown that for t = {1, · · · , T − 1},

∣∣∣Vt (λtn, ξ)− Vt (λtn, ξ0)
∣∣∣ ≤ (T − t) |ξ − ξ0|

α
.

[148]



Proof Proof for Theorem 1.5.2: From Lemma 1.4.3, for time period t, we can bound the

difference between the optimal price pt and Thompson sampling price pTS
t (ξt) given the

random draw ξt (we will simply write as pTS
t when no confusion is created):

∣∣∣pTS
t (ξt)− pt

∣∣∣ ≤ ∣∣∣Vt+1

(
λ(t+1)n, ξt

)
− Vt+1

(
λ(t+1)n, ξ0

) ∣∣∣ ≤ (T − t− 1) |ξt − ξ0|
α

. (A.23)

When limn→∞ λtnqt (ξ0 − αpt) < ∞, ξt > ξ0, which implies pTS
t > pt Similar to the proof of

Theorem 1.4.4, we have

0 ≤ Vt (λtn, ξ0)− V TS
t (λtn, ξt) =

(
1− e−λtnqt(ξ0−αpt)

)
pt −

(
1− e−λtnqt(ξ0−αpTS

t )
)
pTS
t

+ e−λtnqt(ξ0−αpt)Vt+1

(
λ(t+1)n, ξ0

)
− e−λtnqt(ξ0−αpTS

t ) · Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)]
=
(
1− e−λtnqt(ξ0−αpTS

t )
) (

pt − pTS
t

)
+ e−λtnqt(ξ0−αpTS

t ) (Vt+1

(
λ(t+1)n, ξ0

)
− Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)])
+
(
e−λtnqt(ξ0−αpTS

t ) − e−λtnqt(ξ0−αpt)
) (

pt − Vt+1

(
λ(t+1)n, ξ0

))
≤
(
Vt+1

(
λ(t+1)n, ξ0

)
− Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)])
+

(
e−λtnqt(ξ0−αp̃)λtnqt (ξ0 − αp̃)

(
−q′t (ξ0 − αp̃)

qt (ξ0 − αp̃)

))(
pTS
t − pt

)
·
(
pt − Vt+1

(
λ(t+1)n, ξ0

))
≤ log (n)

(
pTS
t − pt

)
+ Eξt+1

[
Vt+1

(
λ(t+1)n, ξ0

)
− V TS

t+1

(
λ(t+1)n, ξt+1

)]
≤ (T − t− 1) log (n)

α
· |ξ0 − ξtn|+ Eξt+1

[
Vt+1

(
λ(t+1)n, ξ0

)
− V TS

t+1

(
λ(t+1)n, ξt+1

)]
. (A.24)
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On the other hand, when ξtn ≤ ξ0, p
TS
t ≤ pt,

0 ≤ Vt (λtn, ξ0)− V TS
t (λtn, ξtn) =

(
1− e−λtnqt(ξ0−αpTS

t )
) (

pt − pTS
t

)
+ e−λtnqt(ξ0−αpt)

(
Vt+1

(
λ(t+1)n, ξ0

)
− Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)])
+
(
e−λtnqt(ξ0−αpt) − e−λtnqt(ξ0−αpTS

t )
) (

Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)]
− pt

)
≤
(
pt − pTS

t

)
+
(
Vt+1

(
λ(t+1)n, ξ0

)
− Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)])
≤ (T − t− 1) |ξ0 − ξtn|

α
+ Eξt+1

[
Vt+1

(
λ(t+1)n, ξ0

)
− V TS

t+1

(
λ(t+1)n, ξt+1

)]
, (A.25)

where the second inequality is because pt ≥ pTS
t implies e−λtnqt(ξ0−αpt) ≥ e−λtnqt(ξ0−αpTS

t ) and

pt > Vt+1

(
λ(t+1)n, ξ0

)
≥ Eξt+1

[
V TS
t+1

(
λ(t+1)n, ξt+1

)]
, which makes the third term in the first

equality to be negative. So based on (A.24) and (A.25), we have the following bound on the

expected regret:

0 ≤ Eξt

[
Vt (λtn, ξ0)− V TS

t (λtn, ξt)
]
≤ log (n)

α
·
T−1∑
τ=t

(T − τ − 1) · Eξτ |ξ0 − ξτ | . (A.26)

Now we calculate the expected learning error on ξ0,

EξTS
tn

∣∣ξTS
tn − ξ0

∣∣ = ∫ ξ̄

ξ

∣∣ξTS
tn − ξ0

∣∣R′
tn,x

(
ξTS
t

)
dξTS

tn

=

∫ ξ̄

ξ

∣∣ξTS
tn − ξ0

∣∣ Q̃′
tn,x

(
ξTS
t

)
dξTS

tn +

∫ ξ̄

ξ

∣∣ξTS
tn − ξ0

∣∣ (R′
tn,x

(
ξTS
tn

)
− Q̃′

tn,x

(
ξTS
t

))
dξTS

tn

≤ C1√
tn

+
(
ξ̄ − ξ

)
·
∫ ξ̄

ξ

∣∣∣R′
tn,x

(
ξTS
tn

)
− Q̃′

tn,x

(
ξTS
t

)∣∣∣ dξTS
tn

≤ C1√
tn

+
C2√
tn

= O
(

1√
tn

)
,

where the first inequality comes from the property of normal distribution and the second in-

equality comes from Proposition 1.5.2. The above result indicates that the expected learning
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error decreases at rate 1/
√
tn as data accumulates over time t and potential demand rate n.

Therefore, we can write (A.26) as

0 < Eξt

[
Vt (λtn, ξ0)− V TS

t (λtn, ξt)
]
< O

(
log (n) ·

∫ T

τ=t

T − t√
tn

dτ

)
, for t = 2, · · · , T − 1.

(A.27)

We should notice that (A.27) holds for t > 1. This is because upon making the initial price

decision in period 1, there is no data available to learn the latent value ξ0, which makes the

regret of the first period do depend upon the prior distribution over ξ0, hξ0 (·) and such a

regret can never be avoided by any heuristics. Therefore, in summary we have

0 < V1 (λ1n, ξ0)− Eξ1

[
V TS
1 (λ1n, ξ1)

]
<

T · σ0

α
· log (n) +O

(
T 3/2 · log (n)√

n

)
, (A.28)

0 < V2 (λ2n, ξ0)− Eξ2

[
V TS
2 (λ2n, ξ2)

]
< O

(
T 3/2 · log (n)√

n

)
, (A.29)

where σ0 = E
[∣∣ξ1 − ξ0

∣∣], ξ1 ∼ hξ0 (·).

Proof Proof for Corollary 1.5.3. To avoid confusion, let p∗t denote the true optimal price

derived from solving original optimization problem (1.2). From (A.14) and (A.23), we can

get that

∣∣∣pTS
t (ξt)− p∗t

∣∣∣ = ∣∣∣pTS
t (ξt)− pt + pt − p∗t

∣∣∣ ≤ ∣∣∣pTS
t (ξt)− pt

∣∣∣+ ∣∣∣pt (ξt)− p∗t

∣∣∣
≤ O

(
max

{
T − t√

tn
,
T − t

n1−γ

})
, t > 1,

and for t = 1, we have

∣∣∣pTS
1 (ξ1)− p∗1

∣∣∣ ≤ T · σ0

α
+O

(
max

{
T√
n
,

T

n1−γ

})
.
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Then apply the similar analysis in Theorem 1.4.4, we can show that

0 < V ∗
t (λtn, ξ0)− Eξt

[
V TS
t (λtn, ξt)

]
< O

(
max

{
(T − t)2

n1−γ
,
(T − t)3/2√

n

}
· log (n)

)
.

Especially, for t = 1, we need to include the error led by initial belief bias, and we get

0 < V ∗
1 (λ1n, ξ0)− Eξ1

[
V TS
1 (λ1n, ξ1)

]
<

T · σ0

α
· log (n) · 1 {t = 1}+O

(
max

{
T 2

n1−γ
,
T 3/2

√
n

}
· log (n)

)
.

Take expectation over the demand rate, we complete the proof.

Proof Proof for Theorem 1.5.4. Since the proof is already included in the proof for Theorem

1.5.2, we omit it here.

Proof Proof for Corollary 1.5.5. Since the proof mirrors the proof for Corollary 1.5.3, we

omit it here.
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Appendix: Bernstein-von Mises Theorem ( [45])

Let (X,A ) be a measurable space and Pθ|A , θ ∈ Θ, a family of probability measures,

where Θ is an open subset of Rk. Let θ be a random variable with prior distribution λ|Bk∩Θ.

Assume that λ has a finite density ρ with respect to the Lebesgue measure, which is positive

on Θ and zero on Θc. Let Rn,x be the posterior distribution of θ for the sample size n given

x ∈ Xn, which is defined as

Rn,x (B) =

∫
B
Πn

i=1p (xi, σ) ρ (σ) dσ∫
Πn

i=1p (xi, σ) ρ (σ) dσ
, B ∈ Bk,

where p (·, θ) is a density of Pθ|A with respect to a dominating measure. Let Qn,x be the

normal distribution centered at the maximum likelihood estimator θn (x) with covariance

matrix Γn (x)
−1, where

Γn (x) =

(
n∑

ν=1

∂2

∂θi∂θj
f (xν , θ)

∣∣∣∣
θ=θn(x)

)
i,j=1,··· ,k

,

which is positive definite and f (xν , θ) = − log p (xν , θ).

Define the variational distance between the measures Rn,x and Qn,x as

d (Rn,x, Qn,x) = sup
{
|Rn,x (B)−Qn,x (B)| : B ∈ Bk

}
.

If the regularity conditions which depend on an integer s ≥ 2 in [45] Section 4 hold (also see

below), then for every compact subset K of Θ there exists a constant cK > 0 with

sup
θ∈K

P n
θ

{
x ∈ Xn : d (Rn,x, Qn,x) > cKn

−1/2
}
= O

(
n−s/2

)
.
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Regularity Conditions ( [45])

In the following s denotes an integer with s ≥ 2. Let f ′ (x, θ) = (∂/∂θ) f (x, θ) and

f ′′ (x, θ) = (∂2/∂θ2) f (x, θ).

1. θ → Pθ is continuous on Θ with respect to the supremum-metric on {Pθ : θ ∈ Θ}.

2. For each x ∈ X, θ → f (x, θ) is continuous on Θ̄.

3. For every θ ∈ Θ, there exists an open neighborhood Uθ of θ such that

sup {Eθ|f (·, τ)|s : σ, τ ∈ Uθ} <∞.

4. For every (θ, τ) ∈ Θ× Θ̄, θ ̸= τ , there exists neighborhood Uθ,τ of θ and Vθ,τ of τ such

that for all neighborhood V of τ with V ⊂ Vθ,τ ,

sup

{
Eσ| inf

δ∈V
f (·, δ)|s : σ ∈ Uθ,σ

}
<∞.

5. For each x ∈ X, θ → f (x, θ) is twice differentiable in Θ.

6. For every θ ∈ Θ, there exists an open neighborhood Uθ of θ such that

(a) inf {λ0 (τ) : τ ∈ Uθ} > 0, where λ0 (τ) is the smallest eigenvalue of Eτf
′′ (·, τ).

(b) sup {Eτ ∥f ′′ (·, τ)∥s : τ ∈ Uθ} <∞.

7. For every θ ∈ Θ, there exists an open neighborhood Uθ of θ and a measurable function

kθ : X → R̄ such that

(a) for every τ ∈ Θ there exists an open neighborhood Vτ of τ with

sup {Eσk
s
θ : σ ∈ Vτ} <∞.

(b) ∥f ′′ (x, τ)− f ′′ (x, σ)∥ ≤ ∥τ − σ∥ kθ (x) for all τ, σ ∈ Uθ, x ∈ X.

8. The probability measure λ|Bk has a finite Lebesgue-density ρ, which is positive on Θ

and zero on Θc.
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9. For every θ ∈ Θ there exists an open neighborhood Uθ of θ and a constant cθ > 0 such

that

|log ρ (σ)− log ρ (τ)| ≤ ∥σ − τ∥ cθ, for all σ, τ ∈ Uθ.

Statement of Local Limit Theorem ( [104] Chapter VII)

Let {Xn} be a sequence of independent random variables with a common distribution

and density p (x), such that

E|X1|3 <∞ , EX1 = 0 , EX2
1 = 1 , sup

x
p (x) ≤ C.

Let pn (x) be the density of the random variable 1√
n

∑n
j=1 Xj. Then

sup
x

∣∣∣∣∣pn (x)− 1√
2π

e−x2/2

∣∣∣∣∣ ≤ Aβ3√
n
max

(
1, C3

)
,

and for all x ∣∣∣∣∣pn (x)− 1√
2π

e−x2/2

∣∣∣∣∣ ≤ Aβ2m−1
3 max (1, C2m+1)√

n (1 + |x|m)
,

for m = 2 and m = 3, where β3 = E|X1|3 and A is an absolute constant.
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B. Appendix for Chapter 2

Appendix A: Cournot Competing Retailers

To characterize the game, we use backward induction and in this section, we first look

at the third and forth-stage equilibrium of the supplier and retailers. Because production

cost c is realized and publicly known the beginning of stage three, the game is exactly the

same as in [50] and we keep our notations consistent with this paper.
∑

j∈K Yj is a sufficient

statistic for estimating θ and the equilibrium wholesale price w is a monotone function of∑
j∈K Yj which implies that the retailers can have unbiased inference of market condition

via realized w. Given (Yi, w) observed by retailer i and the other retailers’ order quantity ql,

l ̸= i, her expected profit with respect of order quantity qi is

E[πi|Yi, w] =

(
a+ E[θ|Yi, w]− qi −

∑
l ̸=i

E[ql|Yi, w]− w

)
qi

=

(
a+

1

k + s

∑
j∈K

Yj − qi −
∑
l ̸=i

E[ql|Yi, w]− w

)
qi.

And the unique Cournot-Bayesian equilibrium strategies are that for i ∈ K,

q∗i (Yi, w) =
1

n+ 1

(
a− w + Ak

1

∑
j∈K

Yj

)
, (B.1)

where Ak
1 =

1
k+s

and for l ∈ N \K,

q∗l (Yl, w) =
1

n+ 1

(
a− w +Bk

1

∑
j∈K

Yj +Bk
2Yl

)
, (B.2)
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where Bk
1 = k+2s

(k+s)(n+k+1+2s)
and Bk

2 = n+1
n+k+1+2s

. And correspondingly, the retailer’s equilib-

rium profit is E[π∗
i |Yi, w] = [q∗i (Yi, w)]

2, i ∈ N . A direct property of q∗l (Yl, w) is that

E[q∗l (Yl, w) |Yj, j ∈ K] = q∗i (Yi, w),

where i ∈ K and l ∈ N \ K. Therefore, given the shared signals Yj, j ∈ K, the supplier

expects to have the same expected order quantity from all the retailers. [50] has shown

that the supplier should not do price discrimination upon the retailers’ information-sharing

decisions. Whence given the shared information, the expected total order quantity is

E[DS|(Yj), j ∈ K] = E

[∑
i∈N

q∗i (Yi, w)|(Yj), j ∈ K

]
=

n

n+ 1

(
a− w + Ak

1

∑
j∈K

Yj

)
, (B.3)

and the expected profit for realized cost c is

E[πS|c, (Yj), j ∈ K] = (w − c)E[DS|(Yj), j ∈ K],

thus the optimal wholesale price is

w∗(c, (Yj), j ∈ K) =
1

2

(
a+ c+ Ak

1

∑
j∈K

Yj

)
(B.4)

The corresponding supplier’s equilibrium expected profit is

E[π∗
S|c, (Yj), j ∈ K] =

n

4(n+ 1)

(
a+ Ak

1

∑
j∈K

Yj − c

)2

, (B.5)
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Then the expected profit difference between hedging and not hedging is

E[π∗
S|c̄, (Yj), j ∈ K]− E[Eξ[π

∗
S|c(ξ), (Yj), j ∈ K]]

=
n

4(n+ 1)

(
2

(
a+ Ak

1

∑
j∈K

Yj

)
(Eξ[c]− c̄)−

(
Eξ[c

2]− c̄2
))

.

Similar to (2.1), the supplier chooses to hedge if and only if

∑
j∈K

Yj ≥ (k + s)

(
Eξ[c

2]− c̄2

2 (Eξ[c]− c̄)
− a

)
= (k + s)(t− a)

∆
= tY (k). (B.6)

Specially, when there is no retailer sharing information, the left hand side of the above

criteria is substituted by zero, which means that the supplier chooses to hedge if a ≥ t and

not to hedge if a < t. Therefore from (B.5), the supplier’s expected equilibrium profit given

that K (K ≥ 1) retailers share information is

ΠS(k) = Eθ

[
E∑

j∈K Yj |θ

[
Eξ

[
π∗
S|c, (Yj), j ∈ K

]∣∣∣θ]]

=
n

4(n+ 1)
Eθ

[
Eξ

[ ∫ tY (k)

−∞

(
a+ Ak

1Y − c
)2

dFk(Y ) +

∫ ∞

tY (k)

(
a+ Ak

1Y − c̄
)2

dFk(Y )
]]

=
n

4(n+ 1)
Eθ

[
(a− c̄)2 + 2Ak

1kθ(a− c̄) + (Ak
1)

2(k2θ2 + kσ2)

− 2(a+ Ak
1tY (k))

(
Eξ[c]− c̄

)
Fk(tY (k))

+ 2

∫ tY (k)

−∞
Ak

1(Eξ[c]− c̄)Fk(Y )dY + (Eξ[c
2]− c̄2)Fk(tY (k))

]

=
n

4(n+ 1)

(
(a− c̄)2 + (Ak

1)
2(k2σ2

0 + kσ2) + 2Ak
1(Eξ[c]− c̄) ·

∫ tY (k)

−∞
F̃k(Y )dY

)
, (B.7)
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where Fk(·) is the cdf of distribution N(kθ, kσ2) and F̃k(·) is the cdf of N(0, k2σ2
0 + kσ2).

And when there is no information sharing,

ΠS(0) =


n

4(n+ 1)
(a− c̄)2, if a ≥ t,

n

4(n+ 1)

(
a2 − 2Eξ[c]a+ Eξ[c

2]
)
, if a < t.

(B.8)

The retailers’ equilibrium profits given realized cost c and shared signals (Yj)j∈K , k ≥ 1 are

E(Ym)m∈N\K [π
∗
i |c, (Yj), j ∈ K] =

1

4(n+ 1)2

(
a+ Ak

1

∑
j∈K

Yj − c

)2

, i ∈ K, (B.9)

and

E(Ym)m∈N\K [π
∗
l |c, Yl, (Yj), j ∈ K]

=
1

4(n+ 1)2

(
a+ (2Bk

1 − Ak
1)
∑
j∈K

Yj + 2Bk
2Yl − c

)2

, l ∈ N \K. (B.10)
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Given (B.6), (B.9) and (B.10), we can calculate retailers’ expected profits given k retailers

share information. Let
∑

j∈K Yj = Y (k), then Y (k)|θ ∼ N(kθ, kσ2). For the retailer who

shares information, i.e., i ∈ K, the expected profit is:

ΠS
R(k) = Eθ

[
Eξ

[
E∑

j∈K Yj |θ

[
E(Ym)m∈N\K [π

∗
i |c, (Yj), j ∈ K]

]∣∣∣θ]]

=
1

4 (n+ 1)2
Eθ

[
Eξ

[ ∫ tY (k)

−∞

((
Ak

1Y
)2

+ 2Ak
1 (a− c)Y + (a− c)2

)
dFk (Y )

+

∫ ∞

tY (k)

((
Ak

1Y
)2

+ 2Ak
1 (a− c̄)Y + (a− c̄)2

)
dFk (Y )

∣∣∣θ]]

=
1

4 (n+ 1)2
Eθ

[∫ ∞

−∞

((
Ak

1Y
)2

+ 2Ak
1 (a− c̄)Y + (a− c̄)2

)
dFk (Y )

−
∫ tY (k)

−∞

(
2Ak

1 (Eξ [c]− c̄)Y + 2a (Eξ [c]− c̄)−
(
Eξ

[
c2
]
− c̄2

))
dFk (Y )

]

=
1

4(n+ 1)2

(
(a− c̄)2 + (Ak

1)
2(k2σ2

0 + kσ2) + 2Ak
1(Eξ[c]− c̄) ·

∫ tY (k)

−∞
F̃k(Y )dY

)
,

(B.11)

where F̃k(·) is the cdf of N(0, k2σ2
0 + kσ2) and the above calculation involves two helpful

facts:

Eθ [Fk (t)] = F̃k (y) , Eθ

[∫ t

−∞
ydFk (y)

]
= tF̃k (t)−

∫ t

−∞
F̃k (y) dy.

For the retailer who does not share information, i.e., l ∈ N \K,

ΠN
R (k) = Eθ

[
Eξ

[
EYl,

∑
j∈K Yj |θ

[
E(Ym)m∈N\K [π

∗
l |c, (Yj), j ∈ K]

]∣∣∣θ]]

=
1

4(n+ 1)2
Eθ

[
Eξ

[
EYl|θ

[ ∫ tY (k)

−∞

(
a+ (2Bk

1 − Ak
1)Y + 2Bk

2Yl − c
)2

dFk(Y )

+

∫ ∞

tY (k)

(
a+ (2Bk

1 − Ak
1)Y + 2Bk

2Yl − c̄
)2

dFk(Y )
]]]
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(B.11)
=

1

4(n+ 1)2

(
(a− c̄)2 + (2Bk

1 − Ak
1)

2(k2σ2
0 + kσ2)

− Eθ

[∫ tY (k)

−∞

(
2
(
2Bk

1 − Ak
1

)
(Eξ [c]− c̄)Y + 2a (Eξ [c]− c̄)−

(
Eξ

[
c2
]
− c̄2

))
dFk (Y )

]

+ Eθ

[
Eξ

[
EYl|θ

[
4
(
Bk

2

)2
Y 2
l + 4

(
2Bk

1 − Ak
1

)
Bk

2 ·
∫ ∞

−∞
Y · Yl dFk (Y )

+ 4Bk
2 ·
∫ tY (k)

−∞
(a− c)Yl dFk(Y ) + 4Bk

2 ·
∫ ∞

tY (k)

(a− c̄)Yl dFk(Y )
]]])

=
1

4(n+ 1)2

(
(a− c̄)2 + (2Bk

1 − Ak
1)

2(k2σ2
0 + kσ2)

− 2
(
2Bk

1 − Ak
1

)
(Eξ[c]− c̄)

(
tY (k) F̃k (tY (k))−

∫ tY (k)

−∞
F̃k (Y ) dY

)

− 2 (Eξ [c]− c̄) (a− t) F̃k (tY (k))

+ 4
(
Bk

2

)2 (
σ2
0 + σ2

)
+ 4

(
2Bk

1 − Ak
1

)
Bk

2 · kσ2
0 − 4Ak

1B
k
2 (Eξ [c]− c̄) tY (k) F̃k (tY (k))

+ 4Ak
1B

k
2 (Eξ [c]− c̄) ·

∫ tY (k)

−∞
F̃k (Y ) dY

)

=
1

4(n+ 1)2

(
(a− c̄)2 + (2Bk

1 − Ak
1)

2(k2σ2
0 + kσ2) + 4

(
2Bk

1 − Ak
1

)
Bk

2 · kσ2
0

+ 4
(
Bk

2

)2 (
σ2
0 + σ2

)
+ 2Ak

1(Eξ[c]− c̄)×∫ tY (k)

−∞
F̃k(Y )dY − 2 (Eξ [c]− c̄)

((
2Bk

1 − Ak
1

)
− Ak

1 + 2Ak
1B

k
2

)
tY (k) F̃k (tY (k))

)

=
1

4(n+ 1)2

(
(a− c̄)2 + (2Bk

1 − Ak
1)

2(k2σ2
0 + kσ2) + 4

(
2Bk

1 − Ak
1

)
Bk

2 · kσ2
0

+ 4
(
Bk

2

)2 (
σ2
0 + σ2

)
+ 2Ak

1(Eξ[c]− c̄) ·
∫ tY (k)

−∞
F̃k(Y )dY

)
, for k ≥ 1, (B.12)
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where the last equality is because Bk
1−Ak

1+Ak
1B

k
2 = k+2s

(k+s)(n+k+1+2s)
− 1

k+s
+ n+1

(k+s)(n+k+1+2s)
= 0.

Specially, for k = 0 we have

ΠN
R (0) =


1

4(n+ 1)

(
(a− c̄)2 + 4

(
B0

2

)2 (
σ2
0 + σ2

))
, if a ≥ t,

1

4(n+ 1)

((
a2 − 2Eξ[c]a+ Eξ[c

2]
)
+ 4

(
B0

2

)2 (
σ2
0 + σ2

))
, if a < t.

(B.13)

Then we investigate ΠS
R(k)− ΠN

R (k − 1) to determine the information sharing equilibrium.

ΠS
R(k)− ΠN

R (k − 1)

=
1

4(n+ 1)2

[(
(Ak

1)
2(k2σ2

0 + kσ2)− (2Bk−1
1 − Ak−1

1 )2
(
(k − 1)2σ2

0 + (k − 1)σ2
)

− 4(2Bk−1
1 − Ak−1

1 )Bk−1
2 (k − 1)σ2

0 − 4(Bk−1
2 )2(σ2

0 + σ2)

)

+ 2(Eξ[c]− c̄)

(
Ak

1

∫ tY (k)

−∞
F̃k(Y )dY − Ak−1

1

∫ tY (k−1)

−∞
F̃k−1(Y )dY

)]

=
1

4(n+ 1)2

[
−

σ4
0σ

2
((

(2n+ 1) k − n
)
σ2
0 + 2nσ2

)((
(2n+ 3) k + n

)
σ2
0 + 2 (n+ 2)σ2

)
(
kσ2

0 + σ2
)(

(k − 1)σ2
0 + σ2

)(
(n+ k)σ2

0 + 2σ2
)2

+ 2(Eξ[c]− c̄)

(∫ t−a

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]

=
1

4(n+ 1)2

[
−

σ4
0σ

2
((

(2n+ 1) k − n
)
σ2
0 + 2nσ2

)((
(2n+ 3) k + n

)
σ2
0 + 2 (n+ 2)σ2

)
(
kσ2

0 + σ2
)(

(k − 1)σ2
0 + σ2

)(
(n+ k)σ2

0 + 2σ2
)2

+ 2(Eξ[c]− c̄)

(∫ −|t−a|

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]
, k > 1,
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where σ2
k =

kσ2
0

k+σ2/σ2
0
and Φ (·) is the cdf of standard normal distribution. And

ΠS
R(1)− ΠN

R (0)

=


1

4(n+ 1)2

(
−(4(B0

2)
2 − (A1

1)
2)(σ2

0 + σ2) + 2(Eξ[c]− c̄)

∫ t−a

−∞
Φ

(
x

σ1

)
dx

)
, if a ≥ t,

1

4(n+ 1)2

(
−(4(B0

2)
2 − (A1

1)
2)(σ2

0 + σ2) + 2(Eξ[c]− c̄)

∫ ∞

t−a

Φ

(
x

σ1

)
dx

)
, if a < t.

=
1

4 (n+ 1)2

(
−
(
4
(
B0

2

)2 − (A1
1

)2) (
σ2
0 + σ2

)
+ 2 (Eξ [c]− c̄)

∫ −|t−a|

−∞
Φ

(
x

σ1

)
dx

)
.

We notice that we still have a unified form for the profit difference of k > 1 and k = 1, that

is,

ΠS
R(k)− ΠN

R (k − 1)

=
1

4(n+ 1)2

[
−

σ4
0σ

2
((

(2n+ 1) k − n
)
σ2
0 + 2nσ2

)((
(2n+ 3) k + n

)
σ2
0 + 2 (n+ 2)σ2

)
(
kσ2

0 + σ2
)(

(k − 1)σ2
0 + σ2

)(
(n+ k)σ2

0 + 2σ2
)2

+ 2(Eξ[c]− c̄)

(∫ −|t−a|

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]
. (B.14)

Similarly, we can also write down the marginal utilities of the other retailers and the

supplier respectively when one additional retailer shares information. For the retailers who

have already shared their information:

ΠS
R (k)− ΠS

R (k − 1) =
1

4 (n+ 1)2

[
σ4
0σ

2

(kσ2
0 + σ2) ((k − 1)σ2

0 + σ2)

+ 2(Eξ[c]− c̄)

(∫ −|t−a|

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]
.
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And for the retailers who do not share information,

ΠN
R (k)− ΠN

R (k − 1) =
1

4 (n+ 1)2

[
σ4
0σ

2

(kσ2
0 + σ2) ((k − 1)σ2

0 + σ2)

− 1

((k − 1)σ2
0 + σ2) ((n+ k)σ2

0 + 2σ2)
2
(kσ2

0 + σ2) ((n+ k + 1)σ2
0 + 2σ2)

2×(
4 (n+ 1)2 σ6

0σ
2
( (

2k2 (k + 1) + 2k (k + 1)n+ n2
)
σ6
0

+ 2 (k (4k + 3) + 2 (k + 1)n)σ4
0σ

2 + (5 + 10k + 2n)σ2
0σ

4 + 4σ6
))

+ 2(Eξ[c]− c̄)

(∫ −|t−a|

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]
.

For the supplier:

ΠS (k)− ΠS (k − 1) =
n

4 (n+ 1)

[
σ4
0σ

2

(kσ2
0 + σ2) ((k − 1)σ2

0 + σ2)

+ 2(Eξ[c]− c̄)

(∫ −|t−a|

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

)]
.

Simple calculation gives the following relation, for any k ∈ {1, · · · , n},

ΠS
R (k)− ΠN

R (k − 1) < ΠN
R (k)− ΠN

R (k − 1) < ΠS
R (k)− ΠS

R (k − 1)

=
1

n (n+ 1)
(ΠS (k)− ΠS (k − 1)) .
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Appendix B: Duopoly Information-Sharing Game

Scenario (S, S). This is the case when both retailers share the market information to

the supplier. Following the analysis in section 2.3.1, given the realization of production cost

c, the equilibrium wholesale price is w∗
m = (ãm + c)/2 and the supplier’s profit in market

m is πSm(w
∗
m; ãm, c) = (ãm − c)2/8, m ∈ {1, 2}, where ãm = am + θm. The retailer m’s

corresponding order quantity is q∗m = (ãm−w∗
m)/2 = (ãm− c)/4 and profit is πRm(q

∗
m; ãm) =

(ãm − c)2/16. Therefore the supplier’s expected total profit when he does not hedge is

πnh∗
S (ã1, ã2) = Eξ

[
(ã1 − c)2 + (ã2 − c)2

8

]
=

1

8

(
ã21 + ã22 − 2 (ã1 + ã2)Eξ [c] + 2Eξ

[
c2
])

,

on the other hand, if the supplier hedges, the expected total profit is

πh∗
S (ã1, ã2) =

1

8

(
ã21 + ã22 − 2 (ã1 + ã2) c̄+ 2c̄2

)
.

thus we get

πh∗
S (ã1, ã2)− πnh∗

S (ã1, ã2) =
1

4

(
(Eξ[c]− c̄) (ã1 + ã2)−

(
Eξ[c

2]− c̄2
))

,

whence the supplier chooses to hedge if and only if

ã1 + ã2
2

≥ Eξ [c
2]− c̄2

2 (Eξ [c]− c̄)
∆
= t, (B.15)

which is quite similar to (2.1) but just substitute the single market size to the average size of

the two markets (and it is straightforward to see that when there are more than two markets,

the left hand side of the above criteria will be extended to the average size of all the markets).

Discussions fall into two cases: (A) Low average market size with 2(t − δ) < a1 + a2 < 2t

and (B) High average market size with 2t < a1 + a2 < 2(t + δ). In the first case, the
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supplier will only hedge when both of the markets turn out to be good (that is, ãm = am+δ,

m = 1, 2) and in the second case, the supplier will hedge unless both of the markets are

bad. The other two cases where a1 + a2 < 2(t − δ) (average market size is too low) and

a1 + a2 > 2(t+ δ) (average market size is too high) are off our interest, because in those two

cases, the supplier’s hedging decision would be independent of realized market conditions.

Case (A). When we incorporate hedging decision, the supplier’s expected total profit is

E
[
πnh∗
S (ã1, ã2)1{ā < t}

]
+ E

[
πh∗
S (ã1, ã2)1{ā ≥ t}

]
=E

[
1

8

(
ã21 + ã22

)]
− E

[(
1

2
āEξ[c]−

1

4
Eξ[c

2]

)
1{ā < t}

]
− E

[(
1

2
āc̄− 1

4
c̄2
)
1{ā ≥ t}

]
=
1

8

[
a21 + a22 + 2δ2 − (2 (1− α)Eξ[c] + 2αc̄) (a1 + a2) + 4α (Eξ[c]− c̄) δ

+ 2(1− α)Eξ[c
2] + 2αc̄2

]
. (B.16)

For the retailer m, if the supplier does not hedge, given the realization of the market condi-

tion, the expected profit is

πnh∗
Rm (ã1, ã2) =

1

16

(
ã2m − 2ãmEξ [c] + Eξ

[
c2
])

,

and if the supplier hedges, we have

πh∗
Rm (ã1, ã2) =

1

16

(
ã2m − 2ãmc̄+ c̄2

)
.

When the realized first market condition is, say ãm, then the probability that the supplier

will not hedge is

P (ã−m < 2t− ãm|ãm) =


1− 2α, ãm = am + δ,

1, ãm = am − δ.
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Therefore, the total expected profit of retailer m is

π∗
Rm = Eãm

[
P (ã−m < 2t− ãm)

(
1

16

(
ã2m − 2ãmEξ [c] + Eξ

[
c2
]))

+(1− P (ã−m < 2t− ãm))

(
1

16

(
ã2m − 2ãmc̄+ c̄2

))]
=

1

2

[
(1− 2α)

(
1

16

(
(am + δ)2 − 2(am + δ)Eξ [c] + Eξ

[
c2
]))

+ 2α

(
1

16

(
(am + δ)2 − 2(am + δ)c̄+ c̄2

))]
+

1

2

(
1

16

(
(am − δ)2 − 2(am − δ)Eξ [c] + Eξ

[
c2
]))

=
1

16

(
a2m + δ2 − (2(1− α)Eξ[c] + 2αc̄) am + 2αδ (Eξ[c]− c̄) + (1− α)Eξ[c

2] + αc̄2
)
.

(B.17)

Case (B). For the other case, the supplier’s expected profit is

E
[
πnh∗
S (ã1, ã2)1{ā < t}

]
+ E

[
πh∗
S (ã1, ã2)1{ā ≥ t}

]
=E

[
1

8

(
ã21 + ã22

)]
− E

[(
1

2
āEξ[c]−

1

4
Eξ[c

2]

)
1{ā < t}

]
− Eā

[(
1

2
āc̄− 1

4
c̄2
)
1{ā ≥ t}

]
=
1

8

[
a21 + a22 + δ2 + δ2 − (2αEξ[c] + 2 (1− α) c̄) (a1 + a2)

+ 4α (Eξ[c]− c̄) δ + 2αEξ[c
2] + 2 (1− α) c̄2

]
. (B.18)

When the realized first market condition is, say ãm, then the probability that the supplier

will not hedge is

P (ã−m < 2t− ãm|ãm) =


0, ãm = am + δ,

2α, ãm = am − δ.
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Therefore, the total expected profit of retailer m is

π∗
Rm = Eãm

[
P (ã−m < 2t− ãm)

(
1

16

(
ã2m − 2ãmEξ [c] + Eξ

[
c2
]))

+(1− P (ã−m < 2t− ãm))

(
1

16

(
ã2m − 2ãmc̄+ c̄2

))]
=

1

2

[
2α

(
1

16

(
(am − δ)2 − 2(am − δ)Eξ [c] + Eξ

[
c2
]))

+ (1− 2α)

(
1

16

(
(am − δ)2 − 2(am − δ)c̄+ c̄2

))]
+

1

2

(
1

16

(
(am + δ)2 − 2(am + δ)c̄+ c̄2

))
=

1

16

(
a2m + δ2 − (2αEξ[c] + 2(1− α)c̄) am + 2αδ (Eξ[c]− c̄) + αEξ[c

2] + (1− α)c̄2
)
.

(B.19)

Scenario (S,N). This is the case when retailer 1 shares the market information to the

supplier while retailer 2 does not. Following the analysis in section 2.3.1, given the realization

of production cost c, and reported market condition ã1, the equilibrium wholesale price for

market 1 is w∗
1 = (ã1+c)/2 and the supplier’s profit in market 1 is πS1(w

∗
1; ã1, c) = (ã1−c)2/8.

And correspondingly, retailer 1’s expected profit is πR1 (q
∗
1; ã1, c) = (ã1 − c)2/16. We know

that no matter whether the retailer shares the information or not, for given wholesale price

w, retailer m’s optimal order quantity is (ãm − w) /2. When ã1 = a1 + δ, then the supplier’s

expected profit in market 2 is

Eã2

[
1

2
(w − c) (ã2 − w)

]
= 2α

(
1

2
(w − c) (a2 + δ − w)

)
+ (1− 2α)

(
1

2
(w − c) (a2 − δ − w)

)
.

Therefore the optimal wholesale price is w∗
2 = (a2+(4α− 1)δ+ c)/2 and supplier’s expected

profit in market 2 is πS2(w
∗
2; a1 + δ, c) = 1

8
(a2 + (4α− 1) δ − c)2. The retailer 2’s profit
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is πR2 (q
∗
2; a1 + δ, c) = 1

16

(
(a2 + (4α− 1)δ − c)2 + 32α(1− 2α)δ2

)
. On the other hand, if

ã1 = a1 − δ, we can similarly get w∗
2 = (a2 − (4α− 1) δ + c) /2 and supplier’s expected

profit in market 2 is πS2 (w
∗
2; a1 − δ, c) = 1

8
(a2 − (4α− 1)δ − c)2, while retailer 2’s profit

is πR2 (q
∗
2; a1 − δ, c) = 1

16

(
(a2 − (4α− 1)δ − c)2 + 32α(1− 2α)δ2

)
. Therefore the supplier’s

expected total profit when he does not hedge is

πnh∗
S (ã1) =


Eξ

[
(a1 + δ − c)2

8
+

(a2 + (4α− 1)δ − c)2

8

]
, if ã1 = a1 + δ,

Eξ

[
(a1 − δ − c)2

8
+

(a2 − (4α− 1)δ − c)2

8

]
, if ã1 = a1 − δ.

=



1

8

(
(a1 + δ)2 + (a2 + (4α− 1)δ)2

)
− 1

4
(a1 + a2 + δ + (4α− 1)δ)Eξ[c]

+
1

4
Eξ[c

2], if ã1 = a1 + δ,

1

8

(
(a1 − δ)2 + (a2 − (4α− 1)δ)2

)
− 1

4
(a1 + a2 − δ − (4α− 1)δ)Eξ[c]

+
1

4
Eξ[c

2], if ã1 = a1 − δ,

on the other hand, if the supplier hedges, the expected total profit is

πh∗
S (ã1) =



1

8

(
(a1 + δ)2 + (a2 + (4α− 1)δ)2

)
− 1

4
(a1 + a2 + δ + (4α− 1)δ) c̄

+
1

4
c̄2, if ã1 = a1 + δ,

1

8

(
(a1 − δ)2 + (a2 − (4α− 1)δ)2

)
− 1

4
(a1 + a2 − δ − (4α− 1)δ) c̄

+
1

4
c̄2, if ã1 = a1 − δ.

thus we get

πh∗
S (ã1)− πnh∗

S (ã1)

=


1

4

(
(Eξ[c]− c̄) (a1 + a2 + δ + (4α− 1)δ)−

(
Eξ[c

2]− c̄2
))

, if ã1 = a1 + δ,

1

4

(
(Eξ[c]− c̄) (a1 + a2 − δ − (4α− 1)δ)−

(
Eξ[c

2]− c̄2
))

, if ã1 = a1 − δ.
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whence the supplier chooses to hedge if and only if


(a1 + a2 + 4αδ)

2
≥ Eξ [c

2]− c̄2

2 (Eξ [c]− c̄)
= t, if ã1 = a1 + δ,

(a1 + a2 − 4αδ)

2
≥ Eξ [c

2]− c̄2

2 (Eξ [c]− c̄)
= t, if ã1 = a1 − δ.

(B.20)

Therefore we can do further case discussions:

Case (A1). 2 (t− 2αδ) < a1 + a2 < 2t. In this case, the supplier would hedge when

observes ã1 = a1 + δ and the supplier’s expected profit is:

π
(S,N)∗
S =

1

8

(
a21 + a22 − (a1 + a2) (Eξ[c] + c̄) + Eξ[c

2] + c̄2

+ (δ + (4α− 1)δ) (Eξ[c]− c̄) + δ2 + (4α− 1)2δ2
)
. (B.21)

The expected profits for the two retailers are

π
(S,N)∗
R1 =

1

2

(a1 + δ − c̄)2

16
+

1

2
Eξ

[
(a1 − δ − c)2

16

]
, (B.22)

π
(S,N)∗
R2 =

1

2
πR2 (q

∗
2; a1 + δ, c̄) +

1

2
Eξ [πR2 (q

∗
2; a1 − δ, c)]

=
1

2

(
1

16

(
(a2 + (4α− 1)δ − c̄)2

))
+

1

2
Eξ

[
1

16

(
(a2 − (4α− 1)δ − c)2

)]
+ 2α(1− 2α)δ2.

(B.23)

Case (A2). 2 (t− δ) < a1 + a2 < 2 (t− 2αδ). In this case, with only one retailer shares

information, the supplier would never hedge, whence

π
(S,N)∗
R1 =

1

2
Eξ

[
(a1 + δ − c)2

16
+

(a1 − δ − c)2

16

]
, (B.24)

π
(S,N)∗
R2 =

1

2
Eξ [πR2 (q

∗
2; a1 + δ, c) + πR2 (q

∗
2; a1 − δ, c)]

=
1

2
Eξ

[
1

16

(
(a2 + (4α− 1)δ − c)2

)
+

1

16

(
(a2 − (4α− 1)δ − c)2

)]
+ 2α(1− 2α)δ2.

(B.25)
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According to the classic literature like [50], sharing information would be a pure loss for the

retailer. Therefore, it is clear that in Case (A2), (S,N) (or (N,S)) cannot be equilibrium,

(N,N) is an equilibrium and it is unclear that whether (S, S) could be an equilibrium.

Case (B1). 2t < a1 + a2 < 2 (t+ 2αδ). In this case, the supplier’s hedging strategy

is the same as in Case (A1). Therefore the supplier and the retailers’ expected profits also

keep the same as in Case (A1).

Case (B2). 2 (t+ 2αδ) < a1 + a2 < 2 (t+ δ). In this case, with only one retailer shares

information, the supplier would always hedge, whence

π
(S,N)∗
R1 =

1

2

(
(a1 + δ − c̄)2

16
+

(a1 − δ − c̄)2

16

)
, (B.26)

π
(S,N)∗
R2 =

1

2
(πR2 (q

∗
2; a1 + δ, c̄) + πR2 (q

∗
2; a1 − δ, c̄))

=
1

2

(
1

16

(
(a2 + (4α− 1)δ − c̄)2

)
+

1

16

(
(a2 − (4α− 1)δ − c̄)2

))
+ 2α(1− 2α)δ2.

(B.27)

For the same reasons as Case (A2), (S,N) (or (N,S)) cannot be equilibrium, (N,N) is an

equilibrium and it is unclear that whether (S, S) could be an equilibrium.

Scenario (N,S). This scenario is a symmetric analog to Scenario (S,N) above.

Scenario (N,N). When both of the retailers do not share information, for any realized

production cost c, the supplier’s expected total profit has form

π
(N,N)
S (w1, w2) = Eã1,ã2

[
1

2
(w1 − c) (ã1 − w1) +

1

2
(w2 − c) (ã2 − w2)

]
,
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which leads to optimal wholesale prices w∗
1 = (a1 + c)/2 and w∗

2 = (a2 + c)/2. Thus the sup-

plier’s corresponding optimal expected profit when he does not hedge and hedges respectively

are

πnh∗
S =

1

8

(
a21 + a22 − 2 (a1 + a2)Eξ [c] + 2Eξ

[
c2
])

,

πh∗
S =

1

8

(
a21 + a22 − 2 (a1 + a2) c̄+ 2c̄2

)
.

Whence the supplier prefers hedging when πh∗
S ≥ πnh∗

S which is equivalent to

a1 + a2
2

≥ Eξ[c
2]− c̄2

2 (Eξ[c]− c̄)
= t. (B.28)

The corresponding optimal profit of retailer m has the form

π
(N,N)∗
Rm =


Eξ

[
((am − c)2 + 4δ2)

16

]
, if

a1 + a2
2

< t,

((am − c̄)2 + 4δ2)

16
, if

a1 + a2
2

≥ t.

(B.29)

Equilibrium Analysis

For Case (A1), 2 (t− 2αδ) < a1 + a2 < 2t, from (B.22) and (B.29), we have

π
(S,N)∗
R1 − π

(N,N)∗
R1 =

1

32

(
2 (Eξ[c]− c̄) a1 −

(
Eξ

[
c2
]
− c̄2

)
+ 2δ (Eξ[c]− c̄− 3δ)

)
. (B.30)

From (B.17) and (B.23), we have

π
(S,S)∗
R2 − π

(S,N)∗
R2 =

1

32
(1− 2α)

(
(Eξ[c

2]− c̄2)− 2 (Eξ[c]− c̄) a2 + 2δ (Eξ[c]− c̄− 24αδ)

)
,

(B.31)
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To break the tie, we assume that if a retailer is indifferent between sharing and not sharing

information, the retailer would keep the information private. If (N,N) is an equilibrium,

then both (B.30) and its analogue for retailer 2 should be non-positive, which leads to

a1, a2 ≤ t− δ

(
1− 3δ

Eξ[c]− c̄

)
. (B.32)

If (S, S) is an equilibrium, then both (B.42) and its analogue for retailer 1 should be positive,

which leads to

a1, a2 < t+ δ

(
1− 24αδ

Eξ[c]− c̄

)
. (B.33)

We notice that the parameter region where (S, S) is an equilibrium overlaps the region where

(N,N) is an equilibrium, therefore we may conduct Pareto refinement in the overlapped

region. From (B.17) and (B.29), we have

π
(S,S)∗
Rm − π

(N,N)∗
Rm =

1

16

(
α
(
2 (Eξ [c]− c̄) am −

(
Eξ

[
c2
]
− c̄2

))
+2αδ (Eξ [c]− c̄)− 3δ2

)
, m = 1, 2. (B.34)

Therefore, (S, S) is ruled out after the Pareto refinement if and only if π
(S,S)∗
Rm ≤ π

(N,N)∗
Rm ,

m = 1, 2, which is equivalent to

a1, a2 ≤ t− δ

(
1− 3δ

2α (Eξ [c]− c̄)

)
. (B.35)

We know that α ∈
(
0, 1

2

)
, whence condition (B.32) is stronger than (B.35), i.e., once (N,N)

is an equilibrium, it Pareto dominates the outcome (S, S).
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If (S,N) is an equilibrium, then (B.30) should be positive while (B.31) should be non-

positive, which leads to

a1 > t− δ

(
1− 3δ

Eξ[c]− c̄

)
and a2 ≥ t+ δ

(
1− 24αδ

Eξ[c]− c̄

)
. (B.36)

Symmetrically, if (N,S) is an equilibrium, then

a1 ≥ t+ δ

(
1− 24αδ

Eξ[c]− c̄

)
and a2 > t− δ

(
1− 3δ

Eξ[c]− c̄

)
. (B.37)

Parameter regions for equilibrium (S,N) and (N,S) also overlap. We have that

π
(S,N)∗
R1 − π

(N,S)∗
R1 =

1

8
(1− 2α) δ (Eξ [c]− c̄− 12αδ) , (B.38)

π
(S,N)∗
R2 − π

(N,S)∗
R2 = −1

8
(1− 2α) δ (Eξ [c]− c̄− 12αδ) , (B.39)

which implies that neither (S,N) nor (N,S) can Pareto dominate the other, therefore in

the overlapped parameter regions of equilibrium (S,N) and (N,S), the two equilibriums are

both possible. We notice that the above analysis indicates that the parameter regions:

a1 ≥ max

{
t− δ

(
1− 3δ

Eξ [c]− c̄

)
, t+ δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

a2 ≤ min

{
t− δ

(
1− 3δ

Eξ [c]− c̄

)
, t+ δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

(B.40)

and

a1 ≤ min

{
t− δ

(
1− 3δ

Eξ [c]− c̄

)
, t+ δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

a2 ≥ max

{
t− δ

(
1− 3δ

Eξ [c]− c̄

)
, t+ δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

(B.41)
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admit no pure Nash equilibrium. We use (B.40) as an example to explain the intuition ((B.41)

has an analogous explanation). In the case of (B.40), the bigger player, retailer 1 tends to

deviate her information-sharing policy from the smaller player, retailer 2, while retailer 2

tends to follow retailer 1’s policy, which leads to no pure Nash equilibrium. Specifically,

without any information sharing, the supplier would not hedge which is not in favor of

retailer 1’s interest, therefore, if retailer 2 holds information, retailer 1 would like to build

up an information-sharing channel in order to incentivize supplier to hedge when retailer 1’s

market turns out to be high type. However, if retailer 2 shares information, the retailer 1’s

information sharing benefit of changing supplier’s hedging decision would be offset such that

the cost of giving supplier the information advantage in setting wholesale price outweighs

any benefits, which discourages retailer 1’s information sharing. On the other hand, for

the smaller player, retailer 2, without information sharing, supplier’s no-hedging decision

aligns with retailer 2’s interest, therefore when retailer 1 holds information, there is no

incentive for retailer 2 to set up the information-sharing channel. However, if retailer 1

shares information, retailer 2 is hurt due to supplier’s twisted hedging decision. Retailer 2

has a smaller market than retailer 1, therefore the benefit of offsetting retailer 1’s influence

on supplier’s hedging decision by sharing information can still outweigh the cost of more

severe double marginalization if the supplier is more informed of retailer 2’s market. Slightly

different but analogous phenomenon also takes place in Case (B1) below.

For Case (A2), 2 (t− δ) < a1 + a2 < 2 (t− 2αδ), as we have indicated before, (N,N)

is for sure an equilibrium, (S,N) or (N,S) cannot be equilibrium, now we check whether

(S, S) could be an equilibrium. From (B.17) and (B.25), we know that

π
(S,S)∗
R2 − π

(S,N)∗
R2 =

1

16
α
(
2 (Eξ [c]− c̄) a2 −

(
Eξ

[
c2
]
− c̄2

)
+ 2δ (Eξ [c]− c̄)

−24 (1− 2α) δ2
)
, (B.42)

[175]



Symmetrically, we can get the profit difference for retailer 1. Therefore, (S, S) is equilibrium

if and only if

a1, a2 > t− δ

(
1− 12 (1− 2α) δ

Eξ[c]− c̄

)
. (B.43)

Because retailers’ profit functions in equilibrium outcome (S, S) and (N,N) have the same

function forms as in Case (A1), condition (B.35) still holds here.

For Case (B1), 2t < a1 + a2 < 2 (t+ 2αδ), from (B.22) and (B.29), we have

π
(S,N)∗
R1 − π

(N,N)∗
R1 =

1

32

((
Eξ

[
c2
]
− c̄2

)
− 2 (Eξ[c]− c̄) a1 + 2δ (Eξ[c]− c̄− 3δ)

)
, (B.44)

and from (B.19) and (B.23), we have

π
(S,S)∗
R2 − π

(S,N)∗
R2 =

1

32
(1− 2α)

(
2 (Eξ[c]− c̄) a2 − (Eξ[c

2]− c̄2) + 2δ (Eξ[c]− c̄− 24αδ)

)
.

(B.45)

By exchanging a1 and a2, we can get the analogue results for scenario (N,S).

If (N,N) is an equilibrium, then both (B.44) and its analogue for retailer 2 should be

non-positive, which leads to

a1, a2 ≥ t+ δ

(
1− 3δ

Eξ[c]− c̄

)
. (B.46)

If (S, S) is an equilibrium, then both (B.45) and its analogue for retailer 1 should be positive,

which leads to

a1, a2 > t− δ

(
1− 24αδ

Eξ[c]− c̄

)
. (B.47)
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Similar as in Case (A1), from (B.19) and (B.29), we have

π
(S,S)∗
Rm − π

(N,N)∗
Rm =

1

16

(
α
((
Eξ

[
c2
]
− c̄2

)
− 2 (Eξ [c]− c̄) am

)
+2αδ (Eξ [c]− c̄)− 3δ2

)
, m = 1, 2. (B.48)

Therefore, (S, S) is ruled out after the Pareto refinement if and only if π
(S,S)∗
Rm ≤ π

(N,N)∗
Rm ,

m = 1, 2, which is equivalent to

a1, a2 ≥ t+ δ

(
1− 3δ

2α (Eξ [c]− c̄)

)
. (B.49)

We know that α ∈
(
0, 1

2

)
, whence condition (B.46) is stronger than (B.49), i.e., once (N,N)

is an equilibrium, it Pareto dominates the outcome (S, S).

If (S,N) is an equilibrium, then (B.44) should be positive while (B.45) should be non-

positive, which leads to

a1 < t+ δ

(
1− 3δ

Eξ[c]− c̄

)
and a2 ≤ t− δ

(
1− 24αδ

Eξ[c]− c̄

)
. (B.50)

Symmetrically, if (N,S) is an equilibrium, then

a1 ≤ t− δ

(
1− 24αδ

Eξ[c]− c̄

)
and a2 < t+ δ

(
1− 3δ

Eξ[c]− c̄

)
. (B.51)

Similar as Case (A1), neither of (S,N) nor (N,S) would be ruled out after Pareto refinement.

Analogous to Case (A1), in the following parameter regions, pure Nash equilibrium does not

exist:

a1 ≥ max

{
t+ δ

(
1− 3δ

Eξ [c]− c̄

)
, t− δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

a2 ≤ min

{
t+ δ

(
1− 3δ

Eξ [c]− c̄

)
, t− δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

(B.52)
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and

a1 ≤ min

{
t+ δ

(
1− 3δ

Eξ [c]− c̄

)
, t− δ

(
1− 24αδ

Eξ [c]− c̄

)}
,

a2 ≥ max

{
t+ δ

(
1− 3δ

Eξ [c]− c̄

)
, t− δ

(
1− 24αδ

Eξ [c]− c̄

)}
.

(B.53)

For Case (B2), 2 (t+ 2αδ) < a1 + a2 < 2 (t+ δ), as we have indicated before, (N,N)

is for sure an equilibrium, (S,N) or (N,S) cannot be equilibrium, now we check whether

(S, S) could be an equilibrium. From (B.19) and (B.27), we know that

π
(S,S)∗
R2 − π

(S,N)∗
R2 =

1

16
α
((
Eξ

[
c2
]
− c̄2

)
− 2 (Eξ [c]− c̄) a2 + 2δ (Eξ [c]− c̄)

−24 (1− 2α) δ2
)
, (B.54)

Symmetrically, we can get the profit difference for retailer 1. Therefore, (S, S) is equilibrium

if and only if

a1, a2 < t+ δ

(
1− 12 (1− 2α) δ

Eξ[c]− c̄

)
. (B.55)

Because retailers’ profit functions in equilibrium outcome (S, S) and (N,N) have the same

function forms as in Case (B1), condition (B.49) still holds here.

Supply Chain Efficiency

Case (A1). 2 (t− 2αδ) < a1 + a2 < 2t. Under scenario (S,N), the total welfare is

π
(S,N)∗
SC = π

(S,N)∗
S + π

(S,N)∗
R1 + π

(S,N)∗
R2

=
1

16

(
3
(
a21 + a22 − (Eξ [c] + c̄) (a1 + a2) + Eξ

[
c2
]
+ c̄2

)
+ 12αδ (Eξ [c]− c̄)

+2
(
3 + 4α− 8α2

)
δ2
)
.
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Under scenario (S, S), the total welfare is

π
(S,S)∗
SC = π

(S,S)∗
S + π

(S,S)∗
R1 + π

(S,S)∗
R2

=
3

16

(
a21 + a22 − 2 ((1− α)Eξ [c] + αc̄) (a1 + a2)

+2
(
(1− α)Eξ [c] + αc̄+ 2αδ (Eξ [c]− c̄) + δ2

))
.

Under scenario (N,N), the total welfare is

π
(N,N)∗
SC = π

(N,N)∗
S + π

(N,N)∗
R1 + π

(N,N)∗
R2 =

3

16

(
a21 + a22 − 2 (a1 + a2)Eξ [c] + 2Eξ

[
c2
])

+
δ2

2
.

Therefore, (S,N) increases total welfare (i.e., π
(S,N)∗
SC ≥ π

(N,N)∗
SC ) if and only if

a1 + a2 ≥ 2t− 4αδ +
2δ2 (1− 4α + 8α2)

3 (Eξ [c]− c̄)
.

And (S, S) increases total welfare (i.e., π
(S,S)∗
SC ≥ π

(N,N)∗
SC ) if and only if

a1 + a2 ≥ 2t− 2δ +
δ2

3α (Eξ [c]− c̄)
.

Combining the equilibrium analysis in Section 2.5.1, we summarize the conditions under

which (S,N), (N,S) and (S, S) emerge as equilibrium (after Pareto refinement) and decreases

the system’s efficiency:

Case (A2). 2 (t− δ) < a1 + a2 < 2 (t− 2αδ). As we have indicated before, (S,N) and

(N,S) would never emerge as an equilibrium under this scenario, while the profit functions

for both sharing outcome (S, S) and (N,N) are the same as in Case (A1), therefore all the

results in Case (A1) also hold here.
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Case (B1). 2t < a1 + a2 < 2 (t+ 2αδ). Under scenario (S, S), the total welfare is

π
(S,S)∗
SC = π

(S,S)∗
S + π

(S,S)∗
R1 + π

(S,S)∗
R2

=
3

16

(
a21 + a22 − 2 (αEξ [c] + (1− α) c̄) (a1 + a2)

+2
(
αEξ [c] + (1− α) c̄+ 2αδ (Eξ [c]− c̄) + δ2

))
.

Under scenario (S,N), the total welfare is

π
(S,N)∗
SC = π

(S,N)∗
S + π

(S,N)∗
R1 + π

(S,N)∗
R2

=
1

16

(
3
(
a21 + a22 − (Eξ [c] + c̄) (a1 + a2) + Eξ

[
c2
]
+ c̄2

)
+12αδ (Eξ [c]− c̄) + 2

(
3 + 4α− 8α2

)
δ2
)
.

Under scenario (N,N), the total welfare is

π
(N,N)∗
SC = π

(N,N)∗
S + π

(N,N)∗
R1 + π

(N,N)∗
R2 =

3

16

(
a21 + a22 − 2 (a1 + a2) c̄+ 2c̄2

)
+

δ2

2
.

Therefore, (S, S) increases total welfare (i.e., π
(S,S)∗
SC ≥ π

(N,N)∗
SC ) if and only if

a1 + a2 ≤ 2t+ 2δ − δ2

3α (Eξ [c]− c̄)
.

And (S,N) increases total welfare (i.e., π
(S,N)∗
SC ≥ π

(N,N)∗
SC ) if and only if

a1 + a2 ≤ 2t+ 4αδ − 2δ2 (1− 4α + 8α2)

3 (Eξ [c]− c̄)
.

Case (B2). 2 (t+ 2αδ) < a1+a2 < 2 (t+ δ). Due to the similar arguments as in Case (A2),

only (S, S) and (N,N) could be potential equilibriums and all the results hold the same as

in Case (B1).
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Appendix C: Duopoly Stackelberg Information-Sharing Game

We consider the following scenario where retailer 1 is the Stackelberg leader in the

information-sharing game.

For Case (A1), 2 (t− 2αδ) ≤ a1 + a2 < 2t, given that retailer 1 shares information,

retailer 2 would share information if and only if a2 < t+ δ
(
1− 24αδ

Eξ[c]−c̄

)
. On the other hand,

given that retailer 1 does not share information, retailer 2 would share information if and

only if a2 > t − δ
(
1− 3δ

Eξ[c]−c̄

)
. We know that t + δ

(
1− 24αδ

Eξ[c]−c̄

)
≥ t − δ

(
1− 3δ

Eξ[c]−c̄

)
is

equivalent to Eξ [c]− c̄ ≥
(
12α + 3

2

)
δ.

Therefore, when Eξ [c]− c̄ ≥
(
12α + 3

2

)
δ, if a2 ≤ t− δ

(
1− 3δ

Eξ[c]−c̄

)
, retailer 2 will follow

retailer 1’s information-sharing strategy; if t − δ
(
1− 3δ

Eξ[c]−c̄

)
< a2 < t + δ

(
1− 24αδ

Eξ[c]−c̄

)
,

retailer 2 will always share information; if a2 ≥ t + δ
(
1− 24αδ

Eξ[c]−c̄

)
, retailer 2 will always

conduct the opposite sharing strategy against retailer 1. Anticipating retailer 2’s strategies,

we then conduct discussions on retailer 1’s policies. When a2 < t − δ
(
1− 3δ

Eξ[c]−c̄

)
, retailer

1 needs to compare the equilibrium profits of sharing outcomes (S, S) and (N,N). We have

π
(S,S)∗
R1 − π

(N,N)∗
R1 =

1

16

(
2α (Eξ [c]− c̄) a1 − α

(
Eξ

[
c2
]
− c̄2

)
+ 2αδ (Eξ [c]− c̄)− 3δ2

)
,

whence retailer 1 would choose to share information and end up in the equilibrium outcome

(S, S) when a1 > t−δ
(
1− 3δ

2α(Eξ[c]−c̄)

)
, while retailer 1 would choose the alternative outcome

(N,N) when a1 ≤ t−δ
(
1− 3δ

2α(Eξ[c]−c̄)

)
. When t−δ

(
1− 3δ

Eξ[c]−c̄

)
≤ a2 < t+δ

(
1− 24αδ

Eξ[c]−c̄

)
,

retailer 1 needs to compare equilibrium outcomes of (S, S) and (N,S). Based on the calcu-

lations before, we know that retailer 1 would share information when a1 < t+δ
(
1− 24αδ

Eξ[c]−c̄

)
and hold information when a1 ≥ t + δ

(
1− 24αδ

Eξ[c]−c̄

)
. Lastly, when a2 ≥ t + δ

(
1− 24αδ

Eξ[c]−c̄

)
,

retailer 1 needs to compare equilibrium outcomes of (S,N) and (N,S). We have

π
(S,N)∗
R1 − π

(N,S)∗
R1 =

1

8
(1− 2α) δ (Eξ [c]− c̄− 12αδ) ,
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therefore when Eξ [c]−c̄ > 12αδ, retailer 1 would share information and end up in equilibrium

(S,N); otherwise when Eξ [c] − c̄ ≤ 12αδ, retailer 1 would hold information and end up in

equilibrium (N,S). Because we now assume that Eξ [c] − c̄ ≥
(
12α + 3

2

)
δ, retailer 1 would

share information and retailer 2 would hold information.

When Eξ [c] − c̄ <
(
12α + 3

2

)
δ, if a2 < t + δ

(
1− 24αδ

Eξ[c]−c̄

)
, retailer 2 will follow retailer

1’s information-sharing strategy; if t + δ
(
1− 24αδ

Eξ[c]−c̄

)
≤ a2 ≤ t − δ

(
1− 3δ

Eξ[c]−c̄

)
, retailer

2 will always hold information; if a2 > t − δ
(
1− 3δ

Eξ[c]−c̄

)
, retailer 2 will always conduct

the opposite sharing strategy against retailer 1. Anticipating retailer 2’s strategies, we then

conduct discussions on retailer 1’s policies. When a2 < t + δ
(
1− 24αδ

Eξ[c]−c̄

)
, retailer 1 needs

to compare the equilibrium profits of sharing outcomes (S, S) and (N,N). Same as before,

we have

π
(S,S)∗
R1 − π

(N,N)∗
R1 =

1

16

(
2α (Eξ [c]− c̄) a1 − α

(
Eξ

[
c2
]
− c̄2

)
+ 2αδ (Eξ [c]− c̄)− 3δ2

)
,

whence retailer 1 would choose to share information and end up in the equilibrium outcome

(S, S) when a1 > t−δ
(
1− 3δ

2α(Eξ[c]−c̄)

)
, while retailer 1 would choose the alternative outcome

(N,N) when a1 ≤ t−δ
(
1− 3δ

2α(Eξ[c]−c̄)

)
. When t+δ

(
1− 24αδ

Eξ[c]−c̄

)
≤ a2 ≤ t−δ

(
1− 3δ

Eξ[c]−c̄

)
,

retailer 1 needs to compare equilibrium outcomes of (S,N) and (N,N). Based on the calcu-

lations before, we know that retailer 1 would share information when a1 > t−δ
(
1− 3δ

Eξ[c]−c̄

)
and hold information when a1 ≤ t − δ

(
1− 3δ

Eξ[c]−c̄

)
. Lastly, when a2 > t − δ

(
1− 3δ

Eξ[c]−c̄

)
,

retailer 1 needs to compare equilibrium outcomes of (S,N) and (N,S). We have

π
(S,N)∗
R1 − π

(N,S)∗
R1 =

1

8
(1− 2α) δ (Eξ [c]− c̄− 12αδ) ,
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therefore when Eξ [c]−c̄ > 12αδ, retailer 1 would share information and end up in equilibrium

(S,N); otherwise when Eξ [c] − c̄ ≤ 12αδ, retailer 1 would hold information and end up in

equilibrium (N,S).

For Case (A2), 2 (t− δ) < a1+a2 < 2 (t− 2αδ), given that retailer 1 shares information,

according to (B.42) and (B.43), retailer 2 would share information if and only if a2 >

t− δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)
. On the other hand, if a2 ≤ t− δ

(
1− 12(1−2α)δ

Eξ[c]−c̄

)
, i.e., retailer 2 chooses

to hold information, there would be no incentive for retailer 1 to share the information in

the first place, because retailer 1’s information alone has no influence on supplier’s hedging

decision while it does provide the supplier better knowledge to exploit more profit from

the downstream. In the other scenario, given that retailer 1 holds information, there is no

incentive for retailer 2 to share information, because retailer 2 has no influence on supplier’s

hedging decision in this case, i.e., the only possible outcome would be (N,N). In summary,

retailer 1 would choose to share information if and only if retailer 2 prefers outcome (S, S)

over (S,N) and retailer 1 prefers outcome (S, S) over (N,N). The equilibrium profits for

outcomes (S, S) and (N,N) keep the same as in Case (A1), therefore we conclude that

retailer 1 would choose to share information and end up in outcome (S, S) if and only if

a1 > t − δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
and a2 > t − δ

(
1− 12(1−2α)δ

Eξ[c]−c̄

)
. Otherwise, the equilibrium

outcome is (N,N).

For Case (B1), 2t ≤ a1 + a2 < 2 (t+ 2αδ), given that retailer 1 shares information,

retailer 2 would share information if and only if a2 > t− δ
(
1− 24αδ

Eξ[c]−c̄

)
. On the other hand,

given that retailer 1 does not share information, retailer 2 would share information if and

only if a2 < t + δ
(
1− 3δ

Eξ[c]−c̄

)
. From the above t − δ

(
1− 24αδ

Eξ[c]−c̄

)
> t + δ

(
1− 3δ

Eξ[c]−c̄

)
is

equivalent to Eξ [c]− c̄ <
(
12α + 3

2

)
δ.

Therefore, when Eξ [c]− c̄ <
(
12α + 3

2

)
δ, if a2 < t+δ

(
1− 3δ

Eξ[c]−c̄

)
, retailer 2 will conduct

the opposite strategy against retailer 1; if t+δ
(
1− 3δ

Eξ[c]−c̄

)
≤ a2 ≤ t−δ

(
1− 24αδ

Eξ[c]−c̄

)
, retailer

2 will always hold information; if a2 > t−δ
(
1− 24αδ

Eξ[c]−c̄

)
, retailer 2 will always follow retailer
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1’s strategy. Anticipating retailer 2’s strategies, we then conduct discussions on retailer 1’s

policies. When a2 < t + δ
(
1− 3δ

Eξ[c]−c̄

)
, retailer 1 needs to compare the equilibrium profits

of sharing outcomes (S,N) and (N,S). We have

π
(S,N)∗
R1 − π

(N,S)∗
R1 =

1

8
(1− 2α) δ (Eξ [c]− c̄− 12αδ) ,

therefore when Eξ [c]−c̄ > 12αδ, retailer 1 would share information and end up in equilibrium

(S,N); otherwise when Eξ [c] − c̄ ≤ 12αδ, retailer 1 would hold information and end up in

equilibrium (N,S). When t + δ
(
1− 3δ

Eξ[c]−c̄

)
≤ a2 ≤ t − δ

(
1− 24αδ

Eξ[c]−c̄

)
, retailer 1 needs

to compare equilibrium outcomes of (S,N) and (N,N). Based on the calculations before,

we know that retailer 1 would share information when a1 < t + δ
(
1− 3δ

Eξ[c]−c̄

)
and hold

information when a1 ≥ t + δ
(
1− 3δ

Eξ[c]−c̄

)
. Lastly, when a2 > t − δ

(
1− 24αδ

Eξ[c]−c̄

)
, retailer 1

needs to compare equilibrium outcomes of (S, S) and (N,N). We have

π
(S,S)∗
R1 − π

(N,N)∗
R1 =

1

16

(
α
(
Eξ

[
c2
]
− c̄2

)
− 2α (Eξ [c]− c̄) a1 + 2αδ (Eξ [c]− c̄)− 3δ2

)
,

therefore when a1 ≥ t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
, retailer 1 would hold information and end up in

the equilibrium (N,N); when a1 < t+δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
, retailer 1 would share information

and end up in the equilibrium (S, S).

When Eξ [c] − c̄ ≥
(
12α + 3

2

)
δ, if a2 ≤ t − δ

(
1− 24αδ

Eξ[c]−c̄

)
, retailer 2 will conduct the

opposite sharing strategy against retailer 1; if t− δ
(
1− 24αδ

Eξ[c]−c̄

)
< a2 < t + δ

(
1− 3δ

Eξ[c]−c̄

)
,

retailer 2 will always share information; if a2 ≥ t + δ
(
1− 3δ

Eξ[c]−c̄

)
, retailer 2 will always

follow retailer 1’s strategy. Anticipating retailer 2’s strategies, we then conduct discussions
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on retailer 1’s policies. When a2 ≤ t−δ
(
1− 24αδ

Eξ[c]−c̄

)
, retailer 1 needs to compare equilibrium

outcomes of (S,N) and (N,S). We have

π
(S,N)∗
R1 − π

(N,S)∗
R1 =

1

8
(1− 2α) δ (Eξ [c]− c̄− 12αδ) ,

therefore when Eξ [c]−c̄ > 12αδ, retailer 1 would share information and end up in equilibrium

(S,N); otherwise when Eξ [c] − c̄ ≤ 12αδ, retailer 1 would hold information and end up in

equilibrium (N,S). Because we assume that Eξ [c] − c̄ >
(
12α + 3

2

)
δ, retailer 1 would

share information while retailer 2 would hold information. When t − δ
(
1− 24αδ

Eξ[c]−c̄

)
<

a2 < t + δ
(
1− 3δ

Eξ[c]−c̄

)
, retailer 1 needs to compare equilibrium outcomes of (S, S) and

(N,S). Based on the calculations before, we know that retailer 1 would share information

when a1 > t − δ
(
1− 24αδ

Eξ[c]−c̄

)
and hold information when a1 ≤ t − δ

(
1− 24αδ

Eξ[c]−c̄

)
. Lastly,

when a2 ≥ t+ δ
(
1− 3δ

Eξ[c]−c̄

)
, retailer 1 needs to compare the equilibrium profits of sharing

outcomes (S, S) and (N,N). Same as before, we have

π
(S,S)∗
R1 − π

(N,N)∗
R1 =

1

16

(
α
(
Eξ

[
c2
]
− c̄2

)
− 2α (Eξ [c]− c̄) a1 + 2αδ (Eξ [c]− c̄)− 3δ2

)
,

whence retailer 1 would choose to hold information and end up in the equilibrium outcome

(N,N) when a1 ≥ t + δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
, while retailer 1 would choose the alternative

outcome (S, S) when a1 < t+ δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
.

For Case (B2), 2 (t+ 2αδ) ≤ a1 + a2 < 2 (t+ δ), the analysis is analogous to Case

(A2). Given that retailer 1 shares information, according to (B.54) and (B.55), retailer

2 would share information if and only if a2 < t + δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)
. On the other hand,

if a2 ≥ t − δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)
, i.e., retailer 2 chooses to hold information, there would be

no incentive for retailer 1 to share the information in the first place. In the other scenario,

given that retailer 1 holds information, there is no incentive for retailer 2 to share information
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and the only possible outcome would be (N,N). In summary, retailer 1 would choose to

share information if and only if retailer 2 prefers outcome (S, S) over (S,N) and retailer 1

prefers outcome (S, S) over (N,N). The equilibrium profits for outcomes (S, S) and (N,N)

keep the same as in Case (B1), therefore we conclude that retailer 1 would choose to share

information and end up in outcome (S, S) if and only if a1 < t + δ

(
1− 3δ

2α(Eξ[c]−c̄)

)
and

a2 < t+ δ
(
1− 12(1−2α)δ

Eξ[c]−c̄

)
. Otherwise, the equilibrium outcome is (N,N).
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Appendix D: Proofs

Proof Proof for Proposition 2.3.1: First we consider the case when Ea [a] ≥ t. From (2.2)

and (2.4), we have

πs∗
R − πns∗

R =
1

16b

[
− 3Ea

[
a2
]
+ 3Ea [a]

2 + 2Ea [a] c̄− c̄2

− 2

(
Eξ [c]

∫ t

a

a dF (a) + c̄

∫ ā

t

a dF (a)

)
+ Eξ

[
c2
]
F (t) + c̄2F̄ (t)

]
. (B.56)

We notice that Ea [a
2]− Ea [a]

2 = V ar (a), then

(B.56) =
1

16b

[
− 3V ar (a) + 2Ea [a] c̄− c̄2 − 2

(
Eξ [c]

∫ t

a

a dF (a) + c̄

∫ ā

t

a dF (a)

)
+ Eξ

[
c2
]
F (t) + c̄2F̄ (t)

]
=

1

16b

[
− 3V ar (a) + 2Ea [a] c̄− 2

(
(Eξ [c]− c̄)

∫ t

a

a dF (a) + c̄

∫ ā

a

a dF (a)

)
+
(
Eξ

[
c2
]
− c̄2

)
F (t)

]
=

1

16b

[
− 3V ar (a)− 2 (Eξ [c]− c̄)

∫ t

a

a dF (a) +
(
Eξ

[
c2
]
− c̄2

)
F (t)

]
. (B.57)

Here we use the formulas
∫ t

a
a dF (a) = tF (t)−

∫ t

a
F (a) da and t =

Eξ[c2]−c̄2

2(Eξ[c]−c̄)
, then

(B.57) =
1

16b

[
− 3V ar (a)− 2 (Eξ [c]− c̄)

(
tF (t)−

∫ t

a

F (a) da

)
+
(
Eξ

[
c2
]
− c̄2

)
F (t)

]
=

1

16b

[
2 (Eξ [c]− c̄)

∫ t

a

F (a) da− 3V ar (a)

]
.

Therefore, voluntary information sharing is possible if and only if under the two conditions

mentioned above,

2 (Eξ [c]− c̄)

∫ t

a

F (a) da > 3V ar (a) . (B.58)
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Then we consider the other case when Ea [a] < t. From (2.2) and (2.5), we have

πs∗
R − πns∗

R =
1

16b

[
− 3Ea

[
a2
]
+ 3Ea [a]

2 + 2Ea [a]Eξ[c]− Eξ[c
2]

− 2

(
Eξ [c]

∫ t

a

a dF (a) + c̄

∫ ā

t

a dF (a)

)
+ Eξ

[
c2
]
F (t) + c̄2F̄ (t)

]
. (B.59)

Following the similar process, we can get the sufficient and necessary condition that leads to

voluntary information sharing when Ea [a] < t:

2 (Eξ [c]− c̄)

∫ ā

t

F̄ (a) da > 3V ar (a) , (B.60)

where F̄ (·) = 1− F (·).

Proof Proof for Corollary 2.3.1: Let E [a] = t, then condition (B.58) (similarly for (B.60))

directly leads to the following simpler necessary condition for voluntary information sharing:

Eξ [c]− c̄ >
3V ar (a)

2
∫ E[a]
a

F (a) da
. (B.61)

Let σ0 denote the standard deviation of random variable a, then for example if a follows

a truncated normal distribution, the right-hand side of (B.61) is less than 3
√
2πσ0/2; if

a follows a uniform distribution, the right-hand side of (B.61) is 2
√
3σ0. Because (B.61)

is a necessary condition to (B.58), if (B.61) does not hold, one can direct conclude that

there would not be information sharing. Furthermore, when a follows a symmetric distri-

bution, we can actually get a distribution-free criteria based upon (B.61) by calculating

infF (·)

{
3V ar(a)/2

∫ E[a]
a

F (a)da
}
. Let ã = a− E[a] which follows distribution F̃ (·), then we

have

∫ E[a]

a

F (a)da =

∫ 0

a−E[a]
F̃ (a)da = −

∫ 0

a−E[a]
af̃(a)da =

1

2
E [|ã|] ≤ 1

2

√
V ar(ã) =

1

2
σ0,
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where the inequality comes from Hölder’s inequality. Therefore, 3V ar(a)/2
∫ E[a]
a

F (a)da ≥

3σ0, that is, if Eξ[c]− c̄ < 3σ0, there would not be voluntary information sharing.

Proof Proof for Corollary 2.4.1: It is straightforward to see that the existence of the

information-sharing channel cannot make the supplier worse, because the supplier can simply

neglect any shared information and act as if there is no information-sharing channel. If no-

information-sharing is not an equilibrium, i.e., ΠS
R (1) − ΠN

R (0) > 0, there must exist an

integer k∗ ∈ {1, · · · , n− 1} such that ΠS
R (l) > ΠN

R (l − 1) for all l ≤ k∗ and ΠS
R (k∗ + 1) ≤

ΠN
R (k∗), then k∗ out of n retailers sharing information is a Nash equilibrium. We claim that

it Pareto improves the no-information-sharing outcome.

From (B.11) and (B.12), for any k ∈ {1, · · · , n}, we have

ΠN
R (k)− ΠS

R (k) =
4σ4

0σ
2 (n+ 1)2 ((k + 1)σ2

0 + σ2)

(kσ2
0 + σ2) ((n+ k + 1)σ2

0 + 2σ2)
2 > 0. (B.62)

Therefore for any l ≤ k∗, ΠS
R (l) ≥ ΠN

R (l − 1) > ΠS
R (l − 1), which leads to ΠS

R (k∗) >

ΠS
R (1) ≥ ΠN

R (0). On the other hand, ΠN
R (k∗) > ΠS

R (k∗) > ΠN
R (0), so we conclude that

the information sharing equilibrium where k∗ out of n retailers share information Pareto

dominates the no-information-sharing outcome.

Proof Proof for Lemma 2.4.2: Here we only prove ∆SN
I (k) < ∆NN

I (k), the rest of the

relations are straightforward. Direct calculation gives

∆NN
I (k)−∆SN

I (k) =
4 (n+ 1)2 σ2σ4

0 (σ
2 + (k + 1)σ2

0)

(σ2 + kσ2
0) (2σ

2 + (n+ k + 1)σ2
0)

2 > 0.

The proof is completed.
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Proof Proof for Proposition 2.4.2: From (B.1), (B.2) and (B.4), we know that for realized

production cost c and shared information {Yj}j∈K ,

Q (k) =
1

n+ 1

n (a− c)

2
+
(
kAk

1 + (n− k)Bk
1 −

n

2
Ak

1

)
·
∑
j∈K

Yj +Bk
2 ·

∑
i∈N\K

Yi

 .

On the other hand, we know that

∑
i∈N\K

Yi

∣∣∣∣ {Yj}j∈K ∼ N

(
(n− k)Ak

1 ·
∑
j∈K

Yj , (n− k)σ2 · A
k
1

An
1

)
,

∑
j∈K

Yj ∼ N
(
0, k2σ2

0 + kσ2
)
,

then we can get

CS (k) =
1

2
E
[
Q2
]
=

n2

8 (n+ 1)2
· E

(a− c+ Ak
1 ·
∑
j∈K

Yj

)2
+

(n− k)σ2

2 (n+ 1)2
· A

k
1

An
1

·
(
Bk

2

)2
=

n2

8 (n+ 1)2
·
(
(a− c̄)2 + 2 (Eξ [c]− c̄)Ak

1 ·
∫ tY (k)

−∞
F̃k (x) dx+ Ak

1 · kσ2
0

)
+

(n− k)σ2

2 (n+ 1)2
· A

k
1

An
1

·
(
Bk

2

)2
=

n2

8 (n+ 1)2
·
(
(a− c̄)2 + 2 (Eξ [c]− c̄)Ak

1 ·
∫ tY (k)

−∞
F̃k (x) dx+ Ak

1 · kσ2
0

+
4 (n− k)σ2

n2
· A

k
1

An
1

·
(
Bk

2

)2)
,
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therefore

CS (k)− CS (k − 1)

=
n2

8 (n+ 1)2
·

(
2 (Eξ [c]− c̄)

(
Ak

1

∫ tY (k)

−∞
F̃k (x) dx− Ak−1

1

∫ tY (k−1)

−∞
F̃k−1 (x) dx

)

+

(
Ak

1 · kσ2
0 +

4 (n− k)σ2

n2
· A

k
1

An
1

·
(
Bk

2

)2)
−
(
Ak−1

1 · (k − 1)σ2
0 +

4 (n− k + 1)σ2

n2
· A

k−1
1

An
1

·
(
Bk−1

2

)2))

≡ n2

8 (n+ 1)2
·

(
∆CS

I (k) + 2(Eξ[c]− c̄)

(∫ t−a

−∞
Φ

(
x

σk

)
− Φ

(
x

σk−1

)
dx

))
, k > 1,

and when k = 1,

CS (1)− CS (0)

=
n2

8 (n+ 1)2
·
(
A1

1 · σ2
0 +

4 (n− 1)σ2

n2
· A

1
1

An
1

·
(
B1

2

)2 − 4σ2 · A
0
1

An
1

·
(
B0

2

)2
+ 2 (Eξ [c]− c̄)

∫ |t−a|

−∞
Φ

(
x

σ1

)
dx

)
≡ n2

8 (n+ 1)2
·
(
∆CS

I (1) + 2 (Eξ [c]− c̄)

∫ |t−a|

−∞
Φ

(
x

σ1

)
dx

)
.

We can write the above in a more concise way as

CS (k)− CS (k − 1) =
n2

8 (n+ 1)2
(
∆CS

I (k) + ∆H (k)
)
.
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We notice that

∆CS
I (k)−∆SN

I (k)

= 4 (n+ 1)2 σ2

(
σ4
0 ((n (n− 1) + k − 1)σ2 + (k − 1)n (n+ 1)σ2

0)

((k − 1)σ2
0 + σ2) (n (n+ k)σ2

0 + 2nσ2)
2

+
(n− k) (nσ2

0 + σ2)σ4
0

n2 (kσ2
0 + σ2) ((n+ k + 1)σ2

0 + 2σ2)
2

)
> 0,

therefore the condition for CS (k) ≥ CS (k − 1) is weaker than ΠS
R (k) ≥ ΠN

R (k − 1). On the

other hand, according to the proof of Corollary 2.4.1, when no-information-sharing is not a

Nash equilibrium, there must exists a k∗ ∈ {1, · · · , n} such that ΠS
R (l) ≥ ΠN

R (l − 1) holds

for all l ≤ k∗. Therefore for such k∗, we have CS (l) > CS (l − 1) hold for all l ≤ k∗, which

directly leads to CS (k∗) > CS (0).
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C. Appendix for Chapter 3

C.1 A Constant-Factor Approximation (K = T )

In this section, for any ϵ > 0, we present a simple 1−ϵ
2
-approximation scheme for

DISPLAY-OPT-T that runs in polynomial time. The approach begins by considering each

stage independently of all others, and deriving near-optimal assortments for these T single-

stage sub-problems. We then show how to string together these T assortments to produce a

feasible sequence for our original problem, which achieves the desired performance guarantee.

The stage-t assortment problem. For each stage t ∈ [T ], we define the stage-t assort-

ment problem as

Rmyopic
t = max

St⊆[n]:
w(S)≥Wt

R(St), (C.1)

where R(S) =
∑

i∈S
ρi

1+w(S)
denotes the expected revenue earned from offering assortment S.

In Appendix C.1.1, we show that even this single-stage variant of our problem is NP-Hard via

a relatively straightforward reduction from the 2-partition problem, which is well-known to

be NP-Hard ( [105]). Nonetheless, a fully polynomial-time approximation scheme (FPTAS)

can easily be achieved, whose exact nature is formally stated in the following lemma.

Lemma C.1.1 For any stage t ∈ [T ] and ϵ > 0, there is an algorithm that returns an

assortment S̃t ⊆ [n] with total weight w(S̃t) ≥ Wt and expected revenue R(S̃t) ≥ (1 − ϵ) ·

Rmyopic
t , whose running time is O(n

ϵ
O(1)).
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The above result can be established with basic adaptations of the dynamic programming

ideas presented in [93], who show how to solve problem (C.1) with a flipped weight constraint

of w(S) ≤ Wt. Hence for brevity, we omit its proof.

Stitching the stage-t assortments together. Consider the T assortments S̃1, . . . , S̃T

derived from applying Lemma C.1.1 for each stage t ∈ [T ]. We recursively build the sequence

of assortments Ŝ = (Ŝ1, . . . , ŜT ) as follows. We set Ŝ1 = S̃1, and then for stage t ≥ 2, we set

Ŝt =


Ŝt−1, if w(Ŝt−1) ≥ Wt

Ŝt−1 ∪ S̃t, otherwise.

By construction, we clearly have that Ŝ ∈ F , and the following lemma shows that this

sequence of assortments achieves the desired guarantee with respect to its expected revenue.

Lemma C.1.2 R(Ŝ) ≥ 1−ϵ
2
· R(S∗).

C.1.1 NP-Hardness of the single-stage problem

Our proof utilizes a reduction from the the 2-partition problem, where the input is a

sequence of m integers S = {a1, . . . , am} whose sum is
∑

i∈[m] ai = 2L for some L ∈ Z+. The

goal is to find a subset S ⊂ [m] such that
∑

i∈S ai = L.

Given an arbitrary instance of 2-partition, we create the following instance of prob-

lem (C.1). We create a product for each of the m integers, whose associated weight is

wi = ai and whose revenue is ri = 0. Additionally, we create a “special product”, given

index s, whose revenue and weight is rs = ws = 1. Finally, we let Wt = L. In this case,

problem (C.1) reduces to

max
S⊆[m]:
w(S)≥L

∑
i∈S

1

2 + w(S)
, (C.2)
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since the special product must be included in the optimal assortment. Letting S∗ denote the

optimal solution to the above problem, it is straightforward to see that a partition exists if

and only if 1
1+w(S∗)

= 1
1+L

, in which case S∗ reveals the partition.

C.1.2 Proof of Lemma C.1.2

To begin, we show the following two intermediate claims, and note that we can assume

without loss of generality that w(S̃t−1) ≤ w(S̃t) and that R(S̃t−1) ≥ R(S̃t) for any t ∈ [T−1].

Claim C.1.3 For any stage t ∈ [T ], we have w(Ŝt) ≤ 2w(S̃t).

Proof We prove the result by induction over the t. The base of t = 1 holds trivially since

we set Ŝ1 = S̃1, and so we proceed to the general case of t ≥ 2. If Ŝt = Ŝt−1, we have that

w(Ŝt) = w(Ŝt−1) ≤ 2w(S̃t−1) ≤ 2w(S̃t),

where the first inequality uses the induction hypothesis and the second uses the fact that

w(S̃t−1) ≤ w(S̃t). On other hand, if Ŝt = Ŝt−1∪ S̃t, we must have that w(Ŝt−1) < Wt, and so

w(Ŝt) ≤ w(Ŝt−1) + w(S̃t) < Wt + w(S̃t) ≤ 2w(S̃t),

where the last inequality uses the feasibility of S̃t for stage t.

Claim C.1.4 For any stage t ∈ [T ], we have R(Ŝt) ≥ 1
2
·R(S̃t).
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Proof We prove the result by induction over the t. The base of t = 1 holds trivially since

we set Ŝ1 = S̃1, and so we proceed to the general case of t ≥ 2. If Ŝt = Ŝt−1 ∪ S̃t, we have

that

R(Ŝt) =
1

1 + w(Ŝt)
·
∑
i∈Ŝt

ρi

≥ 1

1 + 2w(S̃t)
·
∑
i∈Ŝt

ρi

≥ 1

1 + 2w(S̃t)
·
∑
i∈S̃t

ρi

≥ 1

2
·R(S̃t).

The first inequality uses Claim C.1.3, and the second uses the fact that Ŝt ⊇ S̃t. On the

other hand, if Ŝt = Ŝt−1, we have that

R(Ŝt) = R(Ŝt−1) ≥
1

2
·R(S̃t−1) ≥

1

2
·R(S̃t),

where the first inequality uses the induction hypothesis.

So, from Claim C.1.4, we get that

R(Ŝ) =
∑
t∈[T ]

λt ·R(Ŝt) ≥
1

2
·
∑
t∈[T ]

λt ·R(S̃t) ≥
1− ϵ

2
· R(S∗),

as desired.
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C.2 Proofs from Section 3.2

C.2.1 Problem DISPLAY-OPT-K is strongly NP-Hard.

Our proof utilizes a reduction from the the 3-partition problem, where the input is a

sequence of 3m integers S = {a1, . . . , a3m} whose sum is
∑

i∈S ai = mL for some L ∈ Z+.

The goal is to find a partition of S into m sets A1, . . . Am such that
∑

i∈A1
ai = . . . =∑

i∈Am
ai = L.

Given an arbitrary instance of 3-partition, we create the following instance of our as-

sortment problem. We create m stages and set λt = 2 + tL for each t ∈ [m]. We create

a product for each of the 3m integers, whose associated weight is wi = ai and revenue is

ri = 0. Additionally, we create a “special product”, given index s, whose revenue and weight

is rs = ws = 1. Finally, for each t ∈ [m], we let Wt = 1 + tL. The optimal sequence of

assortments is once again denoted as S∗ = (S∗
1 , . . . , S

∗
m).

Claim C.2.1 We have R(S∗) = m if and only if a valid 3-partition exists.

Proof First, note that S∗ clearly always adds the special product to the first stage, since it

is the only product with a non-zero revenue. As a result, we will implicitly assume that any

feasible sequence of assortments adds the special products to stage one, and let St ⊆ [3m]

denote the assortment decisions across stages t ∈ [m]. The expected revenue of any feasible

sequence of assortments is therefore

R(S) = (2 + L) · 1

2 + w(S1)
+ (2 + 2L) · 1

2 + w(S2)
+ . . .+ (2 +mL) · 1

2 + w(Sm)
(C.3)

LetA1, . . . , Am correspond to a valid 3-partition, and consider the sequence of assortments

S ′, where for stage t ∈ [m], we set S ′
t =

⊎
τ≤tAτ . We clearly have that S ′

t ⊂ S ′
t−1 for any

stage t ∈ [m− 1], and also, since w(S ′
t) = tL, we know that the stage-t weight constraint is
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met for each stage t ∈ [m]. Finally, given the expected revenue expression in (C.3), we see

that R(S ′) = m.

On the other hand, assume that the sequence of assortments S ′ satisfies R(S ′) = m.

Now, since feasibility of S ′ requires that w(St) ≥ tL, we have that R(S ′) = m if and only if

w(S ′
t) = tL for each t ∈ [m]. This directly implies that A1 = S1 and At = St \ St−1 for t ≥ 2

is a valid 3-partition.

Claim C.2.2 If a valid 3-partition does not exist, then R(S∗) ≤ m− 1
3+(m−1)·L .

Proof If a valid 3-partition does not exist, then is some stage t, the optimal sequence S∗

must satisfy w(S∗
t ) > tL. In this case, it is straightforward to see that the best expected

revenue is achieved by a sequence of assortment for which only the stage m − 1 weight

constraint is not satisfied with equality, and instead satisfies w(S∗
m−1) = (m− 1) · L+ 1. In

this case, we have

R (S∗) = m− 1 + (2 + (m− 1) · L) · 1

3 + (m− 1) · L

= m− 1

3 + (m− 1) · L
,

as desired.

Summary. Combining Claims C.2.1 and C.2.2, we see that an FPTAS for prob-

lem DISPLAY-OPT-K, run with ϵ < 1
m·(3+(m−1)·L) , would yield a sequence of assortments S

with expected revenue R(S) ≥ m · (1− ϵ) > m− 1
3+(m−1)·L if a valid partition exists. Conse-

quently, this FPTAS would return a valid 3-partition if one exists, in a pseudo-polynomial

running time. Since the 3-partition problem is strongly NP-Hard, this implies that prob-

lem DISPLAY-OPT-K cannot admit an FPTAS unless P = NP .
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C.2.2 Proof of Lemma 3.2.2

Case 1: S̃ returned by Step 2 (line 9). In this case, we get that ŵ(S̃) ≥ Wt. To

show the upper bound on the total weight, we let ℓ ∈ S̃ denote the final product added to

S̃ before the reaching the return statement, and let q(ℓ) ∈ [Q]0 be the class weight class to

which product l belongs. In this case, we get that

Wt > ŵ(S̃ \ {ℓ})

≥ ŵ

 ⊎
q∈QA(S̃)

S̃q


≥ 1

ϵ
· wℓ,

where the last inequality follows since S̃ must contain at least 1
ϵ
active classes indexed higher

than q(l). As such, we get that

1

1 + ϵ
· w(S̃) ≤ ŵ(S̃) ≤ Wt + wℓ ≤ (1 + ϵ) ·Wt,

and so the condition of the lemma statement is satisfied.

Case 2: S̃ returned by Step 2 (line 13). Moreover, this return statement is reached

only if |QA(S̃)| ≤ 1
ϵ
, and so the condition of the lemma statement holds.

C.2.3 Proof of Lemma 3.2.3

We show will show that each of the three candidate sequences of assortments satisfies the

lemma statement, if it is indeed chosen to be Ŝ.
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Candidate 1 feasibility. If Ŝ = S(1), then we know that w(S
(1)
t ) ≥ ŵ(S

(1)
t ) ≥ Wt for

each t ∈ [T ], and hence the weight constraint in each stage is satisfied. Moreover, since

k∗
t+1,q ≥ k∗

t,q for any stage t ∈ [T − 1] and class q ∈ [Q]0, we are also guaranteed that

S
(1)
1 ⊆ S

(1)
2 ⊆ . . . ⊆ S

(1)
T . Hence S(1) ∈ F .

Candidate 1 revenue. We have that

R(S(1)) ≥
∑
t∈[T ]

λt ·
1

1 + w(S
(1)
t )
·
∑

q∈[Q]0

∑
i∈Cq [k∗t,q ]

ρi

≥
∑
t∈[T ]

λt ·
1

(1 + 5ϵ)
· 1

1 + w(S∗
t )
·
∑

q∈[Q]0

∑
i∈Cq [k∗t,q ]

ρi

≥
∑
t∈[T ]

λt ·
1

(1 + 5ϵ)
· 1

1 + w(S∗
t )
·
∑

q∈[Q]0

∑
i∈S∗

t,q

ρi

≥ (1− 5ϵ) ·
∑
t∈[T ]

λt ·
1

1 + w(S∗
t )
·
∑

q∈[Q]0

∑
i∈S∗

t,q

ρi

= (1− 5ϵ) · R (S∗) .

The first inequality follows since S(1) adds at least k∗
t,q items from each class. The second

inequality follows because

w(S
(1)
t ) ≤

∑
q∈[Q]0:

k∗t,q≤
1
ϵ

wmin · (1 + ϵ)q+1 · k∗
t,q +

∑
q∈[Q]0:

k∗t,q>
1
ϵ

wmin · (1 + ϵ)q+1 ·

(1 + ϵ) · k∗
t,q + 1︸︷︷︸

ϵk∗t,q>1



≤ (1 + ϵ) ·

 ∑
q∈[Q]0:

k∗t,q≤
1
ϵ

wmin · (1 + ϵ)q · k∗
t,q +

∑
q∈[Q]0:

k∗t,q>
1
ϵ

wmin · (1 + ϵ)q ·
(
(1 + 2ϵ) · k∗

t,q

)


≤ (1 + 5ϵ) · w(S∗
t ).
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for any stage t ∈ [T ]. The second inequality uses the fact that
∑

i∈Cq [k∗t,q ]
ρi ≥

∑
i∈S∗

t,q
ρi for

any stage t ∈ [T ] and class q ∈ [Q]0, since Cq[k∗
t,q] is precisely the k∗

t,q items from Cq with the

largest ρ-value.

Candidate 2 feasibility. If S ′ = S(2), then it is again trivial that the weight constraint

in each stage is satisfied. Moreover, it is easy to see that S
(2)
1 ⊆ S

(2)
2 ⊆ . . . ⊆ S

(2)
T , based

on how Candidate 2 is defined and the fact that fill events only add products to each class.

Hence S(2) ∈ F .

Candidate 2 revenue. To establish the desired guarantee forR(S(2)) requires first proving

the following two intermediate claims, which together allow us to relate the total weight of

S
(2)
t to that of S∗

t in each stage t ∈ [T ]. For this purpose, let Tfill ⊆ [T ] give the stages in

which fill events were invoked in creating S(2). Furthermore, for stage t ∈ Tfill, let wfill
t =

w(S
(2)
t )−w(S

(1)
t ) denote the total weight added on top of S(1) by fill events in stages 1, . . . , t.

Claim C.2.3 For any stage t ∈ Tfill, we have wfill
t ≤ 4ϵWt.

Proof Consider arbitrary stage t ∈ Tfill, and note that that w(S
(1)
t ) ≥

∑
q∈[Q]0

wmin·(1 + ϵ)q ·

k∗
t,q. Additionally, we know that Wt ≤ w(S∗

t ) ≤
∑

q∈[Q]0
wmin ·(1 + ϵ)q+1 ·k∗

t,q by the feasibility

of S∗
t . Putting these two strings of inequalities together yields that w(S

(1)
t ) ≥ (1 − ϵ) ·Wt.

Moreover, by Lemma 3.2.2 we have that w(S
(2)
t ) ≤ (1+3ϵ) ·Wt, since the fill event must have

returned an assortment that abides by the stage t weight constraint. So, putting everything

together gives that

wfill
t = w(S

(2)
t )− w(S

(1)
t ) ≤ (1 + 3ϵ) ·Wt − (1− ϵ) ·Wt = 4ϵWt,

as desired.
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The second claim builds off of the first, relating the total weights in each stage under

S(2) and S∗.

Claim C.2.4 For any stage t ∈ [T ], we have w(S
(2)
t ) ≤ (1 + 9ϵ) · w(S∗

t ).

Proof If S
(2)
t = Fill(Stemp

t , t), then by Lemma 3.2.2, we must have that w(S
(2)
t ) ≤ (1 +

3ϵ) ·Wt ≤ (1 + 3ϵ) · w(S∗
t ). Otherwise, we have that S

(2)
t = Stemp

t = S
(1)
t ∪ S

(2)
t−1. For any

stage t ∈ [T ], let τlast = max{τ ∈ Tfill : τ < t} denote the latest stage among stages 1, . . . , t

in which a fill event was invoked in building Candidate 2. We have

w(S
(2)
t ) = w(S

(1)
t ∪ S

(2)
t−1)

= w(S
(1)
t ) + w(S(2)

τlast
\ S(1)

t )

≤ w(S
(1)
t ) + w(S(2)

τlast
)− w(S(1)

τlast
)

= w(S
(1)
t ) + wfill

τlast

≤ (1 + 5ϵ) · w(S∗
t ) + 4ϵWt

≤ (1 + 9ϵ) · w(S∗
t ).

The first inequality follows because S
(1)
t ⊇ S

(1)
τlast since τlast < t, while the second inequality

uses Claim C.2.3 along with the fact that w(S
(1)
t ) ≤ (1 + 5ϵ) · w(S∗

t ) as was established in

the revenue proof for Candidate 1.
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With these intermediate claims in-hand, we now consider the expected revenue earned

under S(2):

R(S(2)) =
∑
t∈[T ]

λt ·
1

1 + w(S
(2)
t )
·
∑

q∈[Q]0

∑
i∈Cq [k(2)t,q ]

ρi

≥
∑
t∈[T ]

λt ·
1

1 + w(S
(2)
t )
·
∑

q∈[Q]0

∑
i∈Cq [k∗t,q ]

ρi

≥
∑
t∈[T ]

λt ·
1

1 + 9ϵ
· 1

1 + w(S∗
t )
·
∑

q∈[Q]0

∑
i∈Cq [k∗t,q ]

ρi

≥ (1− 9ϵ) ·
∑
t∈[T ]

λt ·
1

1 + w(S∗
t )
·
∑

q∈[Q]0

∑
i∈S∗

t,q

ρi

= (1− 9ϵ) · R (S∗) .

The first inequality uses the fact that k
(2)
t,q ≥ k∗

t,q for any stage t ∈ [T ] and class q ∈ [Q]0, since

fill events only add products in descending ρ-order. The second inequality uses Claim C.2.4.

Candidate 3 feasibility. In this case, we show that the weight constraint in each stage

is satisfied by first considering stages t ∈ T<, and then stages t /∈ T<.

• Stages t ∈ T<: Recall that for stages t ∈ T<, a fill event was executed and stopped

at line 13; returning an assortment whose rounded weight does not satisfy the stage-t
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weight constraint, and that has fewer than 1
ϵ
active classes, all of which are infrequent.

With this in mind, we have

w(S
(3)
t ) = w

 ⊎
q /∈Q<

A

S
(2)
t,q

+ w

 ⊎
q∈Q<

A

C∗q
(
k
(2)
q,t

)

= w

 ⊎
q /∈Q<

A

S
(2)
t,q

+ w


⊎

q∈Q<
A :

k
(2)
t,q≤

1
ϵ

S∗
q

(
k
(2)
q,t

)
+ w


⊎

q∈Q<
A :

k
(2)
t,q>

1
ϵ

C∗q
(
k
(2)
q,t

)


≥ w

 ⊎
q /∈Q<

A

S
(2)
t,q

+ w


⊎

q∈Q<
A :

k
(2)
t,q≤

1
ϵ

S∗
t,q

+ w


⊎

q∈Q<
A :

k
(2)
t,q>

1
ϵ

C∗q
(
k
(1)
q,t

)


≥ w

 ⊎
q /∈Q<

A

S
(2)
t,q

+ w


⊎

q∈Q<
A :

k
(2)
t,q≤

1
ϵ

S∗
t,q

+
∑
q∈Q<

A :

k
(2)
t,q>

1
ϵ

wmin · (1 + ϵ)q+1 · k∗
t,q

≥ w

 ⊎
q /∈Q<

A

S
(2)
t,q

+ w

 ⊎
q∈Q<

A

S∗
t,q



= w

 ⊎
q /∈Q<

A :
q∈QA(S∗

t )

Cq

+ w

 ⊎
q∈Q<

A

S∗
t,q


≥ w(S∗

t )

≥ Wt.

The first inequality follows since we generally have that k
(2)
t,q ≥ k

(1)
t,q (where k

(1)
t,q = |S(1)

t,q |),

and because for all classes q ∈ Q<
A we must have that k

(2)
t,q ≥ k∗

t,q if k
(2)
t,q ≤ 1

ϵ
, and hence

by definition of 1
ϵ
-capped class-q assortments we have that S∗

q (k
(2)
q,t ) ⊇ S∗

t,q. The second

inequality follows by definition of k
(1)
t,q , and the third inequality follows by definition of
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k∗
t,q. To see the final equality, note that any non-empty class q /∈ Q<

A must be exhausted

under S(2) by construction of a fill event.

• Stages t /∈ T<: For stages t ∈ T<, we must have that ŵ(S
(2)
t ) ≥ Wt by construction.

Moreover, letting k
(3)
t,q = |S(3)

t,q |, it is easy to see that every stage-class pair, we have that

k
(2)
t,q = k

(3)
t,q , i.e. Candidates 2 and 3 add the same number of products from each class

in each stage. Consequently, we get that ŵ(S
(2)
t ) = ŵ(S

(3)
t ) ≥ Wt.

Finally, given that Candidates 2 and 3 add the same number of products from each class in

each stage, it is easy to see that S
(3)
1 ⊆ S

(3)
2 ⊆ . . . ⊆ S

(3)
T , and so S(3) ∈ F .

Candidate 3 revenue. We have

R(S(3)) =
∑
t∈[T ]

λt ·
1

1 + w(S
(3)
t )
·

∑
q∈Q<

A

∑
i∈C∗

q (k
(2)
t,q )

ρi +
∑
q∈Q<

A

∑
i∈Cq [k(2)t,q ]

ρi


≥

∑
t∈[T ]

λt ·
1

1 + w(S
(3)
t )
·
∑

q∈[Q]0

∑
i∈S∗

t,q

ρi

≥ (1− ϵ) ·
∑
t∈[T ]

λt ·
1

1 + w(S
(2)
t )
·
∑

q∈[Q]0

∑
i∈S∗

t,q

ρi

≥ (1− 10ϵ) ·
∑
t∈[T ]

λt ·
1

1 + w(S∗
t )
·
∑

q∈[Q]0

∑
i∈S∗

t,q

ρi

= (1− 10ϵ) · R (S∗) .

The first inequality the fact that k
(2)
t,q ≥ k∗

t,q combined with the fact that

∑
i∈C∗

q (k
′)

ρi ≥
∑

i∈S∗
t,q [k]

ρi

for any k, k′ ∈ [|Cq|]0 such that k ≤ k′. The second inequality uses the fact that Candidates

2 and 3 add the same number of products from each class in each stage, and so w(S
(3)
t ) ≤

(1 + ϵ) · w(S(2)
t ) for any stage t ∈ [T ]. The final inequality uses Claim C.2.4.
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C.2.4 Proof of Lemma 3.2.4

Recall that T< = {t ∈ [T ] : w(S
(2)
t ) < Wt} and that for any t ∈ T<, the assortment

S
(2)
t must be the result of a fill event that concluded with fewer than 1

ϵ
active stages (since

feasibility with respect to the weight constraint was never achieved during the fill event). As

such, letting τbefore = max{τ ≤ t : τ ∈ T<∪{0}} if and τafter = min{τ > t : τ ∈ T<∪{T+1}}

(we define S2
0 = S

(2)
T+1 = ∅), we have that

|{q ∈ Q<
A : k

(2)
t,q > 0}| = |QA(S

(2)
t ) ∩Q<

A|

=

∣∣∣∣∣∣∣QA(S
(2)
t ) ∩

 ⊎
τ≤t:
τ∈T<

QA(S
(2)
τ )


∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣QA(S

(2)
t ) ∩

 ⊎
τ>t:
τ∈T<

QA(S
(2)
τ )


∣∣∣∣∣∣∣

=
∣∣∣QA(S

(2)
t ) ∩QA(S

(2)
τbefore

)
∣∣∣+ ∣∣∣QA(S

(2)
t ) ∩QA(S

(2)
τafter

)
∣∣∣

≤ 2

ϵ
.

The second equality follows because Q<
A =

⊎
t∈T< QA(S

(2)
t ), while the third holds since we

know that any class q /∈ QA(S
(2)
τbefore) that is active in stage t < τ1 must be exhausted in stage

τ1 by definition of a fill event. Along these same lines, any class q /∈ QA(S
(2)
τafter) that is active

in stage t > τafter must be empty in stage τafter. The lone inequality follows since we have

max{|QA(S
(2)
τbefore)|, |QA(S

(2)
τafter)|} ≤ 1

ϵ
, as noted at the onset of this proof.

C.2.5 Proof of Lemma 3.2.5

Monoticity. To begin, note that we must have K ≤ K+, since S ⊆ S+. We consider two

cases:

• For any class q < [qmax(K
+)−L+1]+, we have that k+↑

q = |Cq| ≥ k↑
q . The lone inequality

follows because K ≤ K+ implies that qmax(K) ≤ qmax(K
+).
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• The remaining cases follow directly from Lemma 2 of [98], and hence we omit their

proof for brevity.

Total weight. We have that

w(S↑) ≤ w(S) + L · Power2
[ ϵ
L
· w(S)

]
+

∑
q<qmax(K)−L+1

w(|Cq|)

≤ w(S) + 2ϵ · w(S) +
∑

q<qmax(K)−L+1

w(|Cq|)

≤ w(S) + 2ϵ · w(S) + n · wmin · (1 + ϵ)qmax(K)−L

= w(S) + 2ϵ · w(S) + ϵ · wmin · (1 + ϵ)qmax(K)

≤ (1 + 3ϵ) · w(S),

where the last inequality follows since S must include at least one product from class qmax(K).

C.2.6 Proof of Lemma 3.2.6

We consider the total number of distinct three parameter triples (QCAP, {Aq}q∈QCAP
, K↑)

that result from rounding the parameter triples (QCAP, {Aq}q∈QCAP
, K) for all assortment

S ∈ U . Combining these three counts yields the desired result.

(i) For QCAP, the total number of possibilities is

O(Q
2
ϵ ) = O

((
1

ϵ
log

(
wmax

wmin

))O( 1
ϵ
)
)

(ii) For each QCAP, there are a total of

O

((
n

1
ϵ

)|QCAP|
)

= O
(
nO( 1

ϵ2
)
)
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options for the collection of such assortments {Aq}q∈QCAP
.

(iii) For each (QCAP, {Aq}q∈QCAP
), we must enumerate over all K↑ = {K↑ : K ∈ K}. Repli-

cating the arguments of Lemma 4 of [98], it is possible to show that

|K↑| = O

(
log

(
nwmax

wmin

)
· 2O(

L
ϵ )
)

= O

(
log

(
wmax

wmin

)
· nO( 1

ϵ2
)
)

C.2.7 Proof of Lemma 3.2.7

For each stage t ∈ [T ], we know that Ŝt is represented by the parameter triplet

(
Q̂CAP,

{
S∗
q

(
min{1

ϵ
, k̂t,q}

)}
q∈Q̂CAP

, K̂t

)
,

where Q̂CAP = {q ∈ Q<
A : k

(2)
t,q > 0} (= ∅ unless Ŝ = S(3)) and k̂t,q = |Ŝt,q|. Consider the

sequence of assortment Ŝ↑ = (Ŝ↑
1 , . . . , Ŝ

↑
T ), where Ŝ↑

t is the assortment corresponding the

parameter triplet (
Q̂CAP,

{
S∗
q

(
min{1

ϵ
, k̂t,q}

)}
q∈Q̂CAP

, K̂↑
t

)
,

i.e. we have simply up-rounded the utilization vectors that arise from the assortment Ŝt.

The following claim concerning Ŝ↑ is enough to establish the lemma; the first two condi-

tions establish feasibility for the dynamic program given in (3.3), and the third condition

establishes the revenue guarantee.

Claim C.2.5 The sequence of assortments Ŝ↑ satisfies the following three conditions:

(i) For any stage t ∈ [T ], we have that Ŝ↑
t ∈ Usmall

(ii) Ŝ↑ ∈ F

(iii) R(Ŝ↑) ≥ (1− 3ϵ) · R(Ŝ)

Proof We prove each of the three conditions as follows:
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• Condition (i): By Lemma 3.2.4, we have that |Q̂CAP| ≤ 2
ϵ
. Furthermore, we also clearly

have that |S∗
q

(
min{1

ϵ
, k̂t,q}

)
| ≤ 1

ϵ
for any q ∈ Q̂CAP.

• Condition (ii): Since the up-rounding scheme only added products to each class, we

have that w(Ŝ↑
t ) ≥ w(Ŝt) ≥ Wt for each stage t ∈ [T ], and hence the weight constraints

are satisfied. Furthermore, by the monotonicity property of Lemma 3.2.5, we have that

Ŝ↑
t ⊆ Ŝ↑

t+1 for any t ∈ [T − 1].

• Condition (iii): We have that

R(Ŝ↑) =
∑
t∈[T ]

λt ·
1

1 + w(Ŝ↑
t )
·
∑
i∈Ŝ↑

t

ρi

≥
∑
t∈[T ]

λt ·
1

1 + w(Ŝ↑
t )
·
∑
i∈Ŝt

ρi

≥
∑
t∈[T ]

λt ·
1

1 + (1 + 3ϵ) · w(Ŝt)
·
∑
i∈Ŝt

ρi

= (1− 3ϵ) · R(Ŝ),

where the first inequality follows since the up-rounding ensures that Ŝt ⊆ Ŝ↑
t , and the

second inequality follows by the total weight property of Lemma 3.2.5.

C.3 Proofs from Section 3.3

C.3.1 Proof of Theorem 3.3.1:

Let S∗ = (S∗
1 , · · · , S∗

T ) be the optimal solution to DISPLAY-OPT-1 with feasible space

F1 =

(S1, · · · , ST ) : St ⊆ [n],
∑
t∈[T ]

λt · cs (w (St)) ≥ α1, S1 ⊆ · · · ⊆ ST

 ,
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and define W ∗
t = w (S∗

t ). Then it is straightforward to see that S∗ is the optimal solution to

the DISPLAY-OPT-T problem with feasible space

F∗
T =

{
(S1, · · · , ST ) : St ⊆ [n], w (St) ≥ W ∗

t , S1 ⊆ · · · ⊆ ST

}
.

Here notice that any sequence S ∈ F∗
T must satisfy w (St) ≥ w (S∗

t ) = W ∗
t , ∀t ∈ [T ], or

equivalently cs (w (St)) ≥ cs (w (S∗
t )) due to the monotonicity assumption on cs (·), which

directly implies that S ∈ F1. Therefore, S cannot return a higher revenue than S∗, which

will otherwise contradict the optimality of S∗ to DISPLAY-OPT-1.

Then according to the construction of U and Usmall in Section 3.2.3, there must exist

sequences of assortments Ŝ =
(
Ŝ1, · · · , ŜT

)
∈×T

t=1
U and S̃ =

(
S̃1, · · · , S̃T

)
∈×T

t=1
Usmall

such that Ŝ1 ⊆ Ŝ2 ⊆ · · · ⊆ ŜT , S̃1 ⊆ S̃2 ⊆ · · · ⊆ S̃T , and

R
(
S̃
)
≥ (1− 3ϵ) · R

(
Ŝ
)
≥ (1− 3ϵ) (1− 10ϵ) · R (S∗) > (1− 13ϵ) · R (S∗) ,

where the first inequality comes from Lemma 3.2.7, and the second inequality comes from

Lemma 3.2.3. At the same time,

w
(
S̃t

)
≥ w

(
Ŝt

)
≥ W ∗

t , t ∈ [T ],

where the first inequality is due to the Weight added property in Lemma 3.2.5, and the

second inequality comes from the construction process of Ŝ in Section 3.2.2. This directly

implies that cs
(
S̃
)
≥ cs (S∗) ≥ α1.

Consider computing VUsmall

(
1, ⌊R (S∗) / (1 + δ)T ⌋1+δ, ∅

)
. We know that any nontriv-

ial feasible solution S to the Bellman’s equation (3.4) will result in a revenue such that

R (S) ≥ R (S∗) / (1 + δ)T+1. On the other hand, S̃ is clearly a feasible solution to (3.4)

when R (S∗) / (1 + δ)T+1 < (1− 13ϵ) · R (S∗). That is, when (1 + δ)T+1 > 1/ (1− 13ϵ),
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(3.4) is guaranteed to admit a nontrivial solution. Suppose the output of (3.4) is S̃∗,

then according to the formulation of (3.4), cs
(
S̃∗
)
≥ cs

(
S̃
)
≥ α1. At the same time

R
(
S̃∗
)
≥ R (S∗) / (1 + δ)T+1.

We know that R (S∗) takes value from set {0} ∪ [rminwmin/ (1 + wmin) , rmax], therefore

⌊R (S∗) / (1 + δ)T ⌋1+δ takes value from a (1+δ)−power Domδ = {0}∪
{
(1 + δ)k : k ≤ k ≤ k

}
where (1 + δ)k =

⌊
rminwmin/

(
(1 + δ)T · (1 + wmin)

)⌋
1+δ

and (1 + δ)k =
⌊
rmax/ (1 + δ)T

⌋
1+δ

.

The cardinality of Domδ is O
(
log1+δ (rmax/rminwmin)

)
. Therefore S̃∗ can be derived by

solving VUsmall
(1, R, ∅) with at most O

(
log1+δ (rmax/rminwmin)

)
number of enumerations on

R, which can be ended in a running time of O
((
|Usmall| · log1+δ (rmax/rminwmin)

)2 · T) =

O
(
|I|O(1) · 1

δ2
· nO( 1

ϵ2
)
)
. Let δ = 14ϵ/ (T + 1), then we can compute a nontrivial S̃∗ in a

running time of O
(
|I|O(1) · nO( 1

ϵ2
)
)
with

R
(
S̃∗
)
≥ R (S∗) / (1 + δ)T+1 = R (S∗) / (1 + 14ϵ/ (T + 1))T+1 ≥ (1− 14ϵ) · R (S∗) ,

and cs
(
S̃∗
)
≥ α1.

C.4 Proofs from Section 3.4

C.4.1 Proof of Theorem 3.4.1:

Let S∗ denote the true optimal solution to DISPLAY-OPT-K. Then following the

similar argument as in the proof of Theorem 3.3.1, there exists a proxy assortment

S̃ =
(
S̃1, · · · , S̃T

)
∈×t∈[T ]

Usmall such that R
(
S̃
)
> (1− 13ϵ) · R (S∗) and w

(
S̃t

)
≥ W ∗

t ,

t ∈ [T ] which means that S̃ is a feasible solution to (3.5) and (3.6). Therefore, (3.5) and

(3.6) are guaranteed to generate nontrivial solutions. Again, similar to the proof of Theorem

3.3.1, when δ = 14ϵ/ (T + 1), then we can compute a nontrivial S̃∗ in a running time of

O
(
|I|O(1) · nO( 1

ϵ2
)
)
with R

(
S̃∗
)
≥ (1− 14ϵ) · R (S∗) and S̃∗ ∈ FK .
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C.5 Proofs from Section 3.5

C.5.1 Proof of Lemma 3.5.1

Clearly, we have Ŝ1 ⊆ · · · ⊆ ŜT , then we show the efficacy of Ŝ in both feasibility and

revenue.

Ŝ feasibility. For any stage t,

∣∣∣Ŝt \ Ŝt−1

∣∣∣ =
∣∣∣∣∣∣
⊎

q∈[Q]0

(
Cq
[
k̂t,q

]
\ Cq

[
k̂t−1,q

])∣∣∣∣∣∣
=

∑
q∈[Q]0,k∗t,q>

1
ϵ

(
⌈(1− ϵ) · k∗

t,q⌉ − ⌈(1− ϵ) · k∗
t−1,q⌉

)
+

∑
q∈[Q]0,k∗t,q≤

1
ϵ

(
k∗
t,q − k∗

t−1,q

)
≤
∑

q∈[Q]0

k∗
t,q − k∗

t−1,q =
∣∣S∗

t \ S∗
t−1

∣∣ ≤ C,

therefore, the capacity constraints are satisfied. On the other hand,

w
(
Ŝt

)
= w

 ⊎
q∈[Q]0,k∗t,q≤

1
ϵ

Cq
(
k∗
t,q

)⋃ ⊎
q∈[Q]0,k∗t,q>

1
ϵ

Cq
(
⌈(1− ϵ) · k∗

t,q⌉
)

≤ w

 ⊎
q∈[Q]0

Cq
(
k∗
t,q

) ≤ (1 + ϵ) · w (S∗
t )

w
(
Ŝt

)
= w

 ⊎
q∈[Q]0,k∗t,q≤

1
ϵ

Cq
(
k∗
t,q

)⋃ ⊎
q∈[Q]0,k∗t,q>

1
ϵ

Cq
(
⌈(1− ϵ) · k∗

t,q⌉
)

≥ w

 ⊎
q∈[Q]0

Cq
(
⌈(1− ϵ) · k∗

t,q⌉
) ≥ (1− ϵ)2 · w

 ⊎
q∈[Q]0

S∗
t,q

 > (1− 2ϵ) · w (S∗
t ) .
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Therefore, for k ∈ [K],

∑
t∈[tk:tk+1)

λt · cs
(
w
(
Ŝt

))
>

∑
t∈[tk:tk+1)

λt · cs ((1− 2ϵ) · w (S∗
t ))

> (1− 2ϵ) ·
∑

t∈[tk:tk+1)

λt · cs (w (S∗
t )) ≥ (1− 2ϵ) · αk,

where the second inequality is due to Assumption 3.1.2. So the customer satisfaction con-

straint for each customer group is violated by a factor of (1− 2ϵ).

Ŝ revenue.

R
(
Ŝ
)
=
∑
t∈[T ]

λt ·
1

1 + w
(
Ŝt

) ·∑
i∈Ŝt

ρi ≥
∑
t∈[T ]

λt ·
1

1 + (1 + ϵ) · w (S∗
t )
· (1− ϵ) ·

∑
i∈S∗

t

ρi

>
1− ϵ

1 + ϵ
· R (S∗) > (1− 2ϵ) · R (S∗) ,

where in the first inequality, w
(
Ŝt

)
< (1 + ϵ) · w (S∗

t ) comes from the result that we just

derived above, and
∑

i∈Ŝt
ρi ≥ (1− ϵ) ·

∑
i∈S∗

t
ρi comes from the fact that in each class q, Ŝt,q

is picked following the ρ =order and |Ŝt,q| ≥ (1− ϵ) · |S∗
t,q|.

C.5.2 Proof of Lemma 3.5.2

Ŝsmall feasibility. It is easy to see that Ŝsmall
1 ⊆ · · · ⊆ Ŝsmall

T . We then argue that the

cardinality constraints are also satisfied. For any stage t and class q, we claim k↓
tq ≤ ktq. Ac-

cording to the definitions of k↓
tq and ktq, the claim is only not straightforward for class
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q ≥ [qmax (Kt)− L+ 1]+ such that ktq > 1
ϵ
. However, since w

((
Cq \ Ŝt−1,q

)
[ktq]

)
=

w
(
Ŝt,q \ Ŝt−1,q

)
≥ w↓

q , we have k↓
tq ≤ ktq. Therefore

∣∣∣Ŝsmall
t \ Ŝsmall

t−1

∣∣∣ =
∣∣∣∣∣∣

qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

(
Ŝsmall
t,q \ Ŝsmall

t−1,q

)∣∣∣∣∣∣+
∣∣∣∣∣∣
[qmax(Kt)−L]+⊎

q=1

(
Ŝsmall
t,q \ Ŝsmall

t−1,q

)∣∣∣∣∣∣
=

qmax(Kt)∑
q=[qmax(Kt)−L+1]+

k↓
tq +

t∑
τ=1

∣∣∣∣∣∣
[qmax(Kτ )−L]+⊎

q=[qmax(Kτ−1)−L+1]+

(
Ŝsmall
t,q \ Ŝsmall

τ−1,q

)
\
(
Ŝsmall
t−1,q \ Ŝsmall

τ−1,q

)∣∣∣∣∣∣
=

qmax(Kt)∑
q=[qmax(Kt)−L+1]+

k↓
tq +

t∑
τ=1

ltτ −
t−1∑
τ=1

l(t−1)τ

≤
qmax(Kt)∑

q=[qmax(Kt)−L+1]+

ktq +
t∑

τ=1

∣∣∣∣∣∣
[qmax(Kτ )−L]+⊎

q=[qmax(Kτ−1)−L+1]+

(
Ŝt,q \ Ŝτ−1,q

)∣∣∣∣∣∣
−

t−1∑
τ=1

∣∣∣∣∣∣
[qmax(Kτ )−L]+⊎

q=[qmax(Kτ−1)−L+1]+

(
Ŝt−1,q \ Ŝτ−1,q

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
qmax(Kt)⊎

q=[qmax(Kt)−L+1]+

(
Ŝt,q \ Ŝt−1,q

)∣∣∣∣∣∣
+

t∑
τ=1

∣∣∣∣∣∣
[qmax(Kτ )−L]+⊎

q=[qmax(Kτ−1)−L+1]+

(
Ŝt,q \ Ŝτ−1,q

)
\
(
Ŝt−1,q \ Ŝτ−1,q

)∣∣∣∣∣∣
=
∣∣∣Ŝt \ Ŝt−1

∣∣∣ ≤ C.
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Therefore, Ŝsmall satisfies the cardinality constraints. Then we check the customer satisfac-

tion constraints.

w
(
Ŝsmall
t

)
≥ w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝsmall
t,q

 = w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)
= w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Cq \ Ŝsmall

τ−1,q

) [
k↓
τ,q

]
≥ 1

1 + ϵ
· w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Cq \ Ŝτ−1,q

) [
k↓
τ,q

]
≥ 1

1 + ϵ
·

w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝτ,q \ Ŝτ−1,q

)
−

qmax(Kt)∑
q=[qmax(Kt)−L+1]+

t∑
τ=1

Power2

[ ϵ
L
· w(Ŝτ \ Ŝτ−1)

]
> (1− ϵ) ·

(
w
(
Ŝt

)
− 2ϵ · w

(
Ŝt

))
> (1− 3ϵ) · w

(
Ŝt

)
,

where the first inequality is due to the fact that within each weight class q, the real weights

won’t differentiate from each other by a factor of (1 + ϵ), and the second inequality comes

from the definition of k↓
τ,q. Therefore,

∑
t∈[tk:tk+1)

λt · cs
(
w
(
Ŝsmall
t

))
>

∑
t∈[tk:tk+1)

λt · cs
(
(1− 3ϵ) · w

(
Ŝt

))
> (1− 3ϵ) ·

∑
t∈[tk:tk+1)

λt · cs
(
w
(
Ŝt

))
≥ (1− 5ϵ) · αk,
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where the second inequality comes from Assumption 3.1.2, and the last inequality comes

from Lemma 3.5.1. We can also give an upper bound on w
(
Ŝsmall
t

)
.

w
(
Ŝsmall
t

)
≤ w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝsmall
t,q

+ w

[qmax(Kt)−L]+⊎
q=0

Cq


≤ (1 + ϵ) · w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝsmall
t,q

 ≤ (1 + ϵ) · w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝt,q


≤ (1 + ϵ) · w

(
Ŝt

)
,

where the second inequality comes from the definition of L, and the third inequality is due

to the fact that for q ≥ [qmax (Kt)− L+ 1]+, Ŝsmall
t,q ⊆ Ŝt,q. Then according to Lemma 3.5.1,

we hvae w
(
Ŝsmall
t

)
≤ (1 + 2ϵ) · w (S∗

t ).

Ŝsmall revenue. For q > [qmax (Kt)− L+ 1]+, according to the definition of k↓
tq, when

ktq ≤ 1
ϵ
, k↓

tq = ktq. What is more complicated is when ktq >
1
ϵ
, we have

0 < w
((
Cq \ Ŝt−1,q

)
[ktq]

)
− w

((
Cq \ Ŝt−1,q

) [
k↓
tq

])
< Power2

[ ϵ
L
· w(Ŝt \ Ŝt−1)

]
(C.4)

0 < ρ
((
Cq \ Ŝt−1,q

)
[ktq]

)
− ρ

((
Cq \ Ŝt−1,q

) [
k↓
tq

])
< Power2

[ ϵ
L
· ρ(Ŝt \ Ŝt−1)

]
, (C.5)

where
(
Cq \ Ŝt−1,q

)
[ktq] = Ŝt,q \ Ŝt−1,q.
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Therefore

w
(
Ŝsmall
t

)
= w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝsmall
t,q

+ w

[qmax(Kt)−L]+⊎
q=1

Ŝsmall
t,q


≤ w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)+ n · wmin · (1 + ϵ)qmax(Kt)−L

≤
(
1 + n · (1 + ϵ)−L

)
· w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)
= (1 + ϵ) · w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)
≤ (1 + ϵ) ·

w

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝτ,q \ Ŝτ−1,q

)
+

t∑
τ=1

qmax(Kt)∑
q=[qmax(Kt)−L+1]+

Power2

[ ϵ
L
· w(Ŝτ \ Ŝτ−1)

]
≤ (1 + ϵ) ·

(
w
(
Ŝt

)
+

t∑
τ=1

2ϵ · w
(
Ŝτ \ Ŝτ−1

))

= (1 + ϵ) (1 + 2ϵ) · w
(
Ŝt

)
< (1 + 4ϵ) · w

(
Ŝt

)
.

And on the other hand, since for q > [qmax (Kt)− L+ 1]+, k↓
τq ≤ kτq, τ ∈ [t], we have Ŝsmall

t−1,q ⊆

Ŝt−1,q. Notice that w
(
Ŝsmall
t,q \ Ŝsmall

t−1,q

)
= w

((
Cq \ Ŝsmall

t−1,q

) [
k↓
tq

])
, then ρ

(
Ŝsmall
t,q \ Ŝsmall

t−1,q

)
≥

ρ
((
Cq \ Ŝt−1,q

) [
k↓
tq

])
, where the inequality is due to the fact that for each q, Cq is ranked

by ρ−order. Combining with (C.5), we have

ρ
(
Ŝsmall
t,q \ Ŝsmall

t−1,q

)
≥ ρ

((
Cq \ Ŝt−1,q

) [
k↓
tq

])
> ρ

((
Cq \ Ŝt−1,q

)
[ktq]

)
− Power2

[ ϵ
L
· ρ(Ŝt \ Ŝt−1)

]
= ρ

(
Ŝt,q \ Ŝt−1,q

)
− Power2

[ ϵ
L
· ρ(Ŝt \ Ŝt−1)

]
. (C.6)
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The above inequalities imply the following,

ρ
(
Ŝsmall
t

)
= ρ

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)+ ρ

 t⊎
τ=1

[qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

Ŝsmall
t,q


= ρ

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)
+

t∑
τ=1

ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Ŝsmall
t,q \ Ŝsmall

τ−1,q

)
∪ Ŝsmall

τ−1,q


= ρ

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

t⊎
τ=1

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)
+

t∑
τ=1

ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Cq \ Cq

[
k↓
τ−1,q

]) [ltτ ]


+ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

τ−1⊎
i=1

(
Ŝsmall
i,q \ Ŝsmall

i−1,q

)
≥ ρ

 t⊎
τ=1

qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

(
Ŝsmall
τ,q \ Ŝsmall

τ−1,q

)
+

t∑
τ=1

ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(Cq \ Cq [kτ−1,q])

 [ltτ ]


+ρ

τ−1⊎
i=1

[qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Ŝsmall
i,q \ Ŝsmall

i−1,q

) (C.7)
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where the first inequality is due to the fact that k↓
τ−1,q ≤ k↓

τ−1,q and each class Cq is ρ−ordered.

Then

(C.7) ≥
t∑

τ=1

ρ

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

(
Ŝτ,q \ Ŝτ−1,q

)
−

qmax(Kt)∑
q=[qmax(Kt)−L+1]+

Power2

[ ϵ
L
· ρ(Ŝτ \ Ŝτ−1)

]
+

t∑
τ=1

ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(Cq \ Cq [kτ−1,q])

 [ltτ ]


+

τ−1∑
i=1

ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Ŝi,q \ Ŝi−1,q

)
−

qmax(Kτ )∑
q=[qmax(Kτ )−L+1]+

Power2

[ ϵ
L
· ρ(Ŝi \ Ŝi−1)

]
≥ ρ

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝt,q

− 22ϵ · ρ
(
Ŝt

)

+
t∑

τ=1

ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

(
Ŝt,q \ Ŝτ−1,q

)
+ρ

 [qmax(Kτ )−L]+⊎
q=[qmax(Kτ−1)−L+1]+

Ŝτ−1,q

− 2ϵ · ρ
(
Ŝτ−1

)
= ρ

 qmax(Kt)⊎
q=[qmax(Kt)−L+1]+

Ŝt,q

− 2ϵ · ρ
(
Ŝt

)
+ ρ

[qmax(Kτ )−L]+⊎
q=1

Ŝt,q

− 2ϵ ·
t−1∑
τ=1

ρ
(
Ŝτ

)
≥ (1− 2T · ϵ) · ρ

(
Ŝt

)
.
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Therefore, we have

R
(
Ŝsmall

)
=
∑
t∈[T ]

λt ·
ρ
(
Ŝsmall
t

)
1 + w

(
Ŝsmall
t

) · ≥∑
t∈[T ]

λt ·
(1− 2T · ϵ) · ρ

(
Ŝt

)
1 + (1 + 4ϵ) · w

(
Ŝt

)
>

1− 2T · ϵ
1 + 4ϵ

· R
(
Ŝ
)
>

1− 2T · ϵ
1 + 4ϵ

· (1− 2ϵ) · R (S∗)

> (1− 2 (T + 3) · ϵ) · R (S∗) .

C.5.3 Proof of Theorem 3.5.3:

The proof follows closely as Theorem 3.4.1.
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