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ABSTRACT OF THE DISSERTATION

The Application of Dynamic Models in Operations Management

by

Yunzhe Qiu

Doctor of Philosophy in Supply Chain, Operations, and Technology

Washington University in St. Louis, 2022

Professor Panos Kouvelis, Chair

The dynamic program is a principal method for analyzing stochastic optimization problems.

This dissertation studies three operations management problems that arise in the dynamic

environment. The principal motivation behind these comes from the applicability in three

areas: the agricultural supply chain, the container shipping industry, and supply chain

financing. In the first chapter, we consider the hog production industry, where the hog raising

farm should decide the selling strategy among several selling options. The farm also faces the

uncertain yield of different weights of hogs and spot price volatility from other interactive

markets. In the second chapter, we formulate a blockchain-based cargo reservation system,

where a token is designed to be used as a booking deposit to compensate the contractual party

if the other side fails to honor the booking, i.e., the overbooking from the service provider and

customer no-show. In the third chapter, we study advance payment as a financing instrument

in a multitier supply chain to mitigate the supply disruption risk and compare the traditional

system (with limited visibility) with the blockchain-enabled system (with perfect visibility).

The main goal of this chapter is to shed light on how blockchain adoption impacts agents’

operational and financial decisions and profit levels in a multitier supply chain.

We apply the genre of dynamic models to formulate all three problems, but we address them

by different methodologies because of the difference in the contexts. The first two problems

xi



possess structural properties adequate to find the optimal structural policy for a dynamic

program, whereas the last problem can be applied to game theory. In the hog production

chapter, we find that the optimal selling strategy for the hog farm is non-monotone. The

counter-intuitive situation, namely, the farm does not fulfill the long-term contract but

sells to the open market to speculate the high spot price, happens when the open market

is good enough. We also propose a newsvendor-like heuristic policy that improves the

profit of the hog farm by over 25%. We find the service provider has different acceptance

strategies for the maritime container shipping problem with and without overbooking. He

always prefers reliable customers without overbooking but prefers unreliable customers with

overbooking in some circumstances. In the deep-tier supplier chain finance, take a game-

theoretic approach to compare how blockchain-enabled deep-tier financing schemes affect a

financially constrained supply chain’s optimal risk-mitigation and financial strategies. We

find that although improved visibility via blockchain adoption can help the manufacturer

make informed supply chain financing decisions, whether it can benefit all supply chain

members depends on the financing schemes in use. Blockchain-enabled delegate financing

increases risk-mitigation investments and benefits all three tiers of the supply chain only when

tier-2 is severely capital-constrained with the working capital below a threshold. Because

delegate financing endows the intermediary tier-1 supplier leverage over the manufacturer,

the inefficiency inhibits an all-win outcome when the tier-2 is not severely capital-constrained.

Blockchain-enabled cross-tier direct financing exhibits a compelling performance as it always

leads to win-win-win outcomes (and thus ubiquitously implementable) regardless of the

supplier’s working capital profile.
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Chapter 1

Managing Operations of a Hog Farm

Facing Volatile Markets: Inventory and

Selling Strategies

We study a dynamic finishing stage planning problem of a pork producer who gets to see how

many market-ready hogs she has available for sale at the beginning of each week and the

current market prices. Then, she must decide how many hogs to sell to a meatpacker and on

the open market and how many to hold until the following week. The producer has a contract

to deliver a fixed quantity to the meatpacker each week priced according to a predetermined

formula that depends on market commodity indices. She pays a penalty if she fails to deliver

to the meatpacker. The numbers of hogs that become market-ready every week, all costs,

and all prices fluctuate over time. We use a dynamic programming approach to derive an

optimal policy and a one-period look-ahead heuristic informing the farmer what hogs to

sell at the beginning of each week. We show there are sell/hold thresholds that depend on

1



the available hogs’ weights, quantities, and prices. Unfortunately, identifying the thresholds

requires messy computations. So, we propose an approximate dynamic programming approach

that preserves the optimal policy structure and produces a sharp heuristic that is easy to

implement. Numerical experiments calibrated to a pork producer’s data (The Maschhoffs)

reveal the optimal policy is a substantial improvement over the existing practice (around 25%

on average), and the one-period look-ahead policy is as close as 1.76% to the optimal. The

majority of the improvement value over the current practice is recognizing and exploiting the

“real option” value of under-weight hogs in hedging supply uncertainty and stochastic prices.

1.1 Introduction

The U.S. is the world’s third-largest producer and consumer of pork and pork products

globally. In 2019, the value of U.S. pork and pork product exports to the world reached

a record $7.0 billion, accounting for over 15% of the entire world’s trading volume [103].

Figure 1.1 illustrates a typical U.S. pork supply chain. Upstream, we see grain producers

(e.g., raw crops agribusiness firms in corn and soybeans, etc., such as ADM, Bunge, and

Cargill) whose output is crucial in animal feed. Grain producers supply animal feed to pork

producers (also called hog farmers), who raise live pigs to sell to meatpackers and food

producers. Meatpackers and food producers then deal with food distributors and retailers

that sell to consumers.

1st Tier Suppliers
Corn/Soybean 

Producers
FM

Pig &Hog
Producers

(Farm: breed, farrow, 
nursery, and finish)

OM & 
CM

1st Tier Buyers
Meat Packers

(Slaughterhouses: 
Meat processing and 

wholesaling)

MM

2nd Tier Buyers 
Retailers

(Supermarkets, 
Grocery stores)

Figure 1.1: Hog Supply Chain
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This paper focuses on a planning decision of the second tier in the above chain – the pork

producer (hog farmer). The authors of this paper were introduced to the problem when

working with The Maschhoffs, the largest family-owned pork producer in the U.S. and a

top-ten pork producer globally. The Maschhoffs’ pig operation employs about 1500 employees

and sells about 5 million live hogs annually. Their buyers are mostly packing plants and food

producers such as Cargill, Hormel Foods, and Farmland.

In modern hog farming, hogs at different stages of growth are raised at specialized farm sites.

It all starts at sow (or breeding) facilities. After three weeks, the piglets are transferred to

weaning farms specially equipped to care for young pigs. At about ten weeks, the young pigs

are moved to feeding and finishing facilities that accommodate larger-sized animals. The

planning decision we will analyze involves the finishing stage that lasts for 13 to 16 weeks.

The finishing farms are often located close to a major buyer. As one can imagine, pig farming

is a complex logistics operation with a continuous flow of pigs from sow facilities to weaning,

feeding, and finally finishing operations. The Maschhoffs contract with over 70 sow farms,

and they transport 700 to 800 trailer truckloads of live pigs each week.

When the pigs are between 23 and 26 weeks old, the pork producer divides the pigs into

two pools: an under-weight pool and a regular-weight pool. Each week, the producer must

decide how many regular-weight and under-weight hogs to sell through a contract with a

meatpacker and how many regular-weight and under-weight hogs to sell on the open market

where farmers can auction off livestock. Each week, the producer (the finishing farm) is under

a contractual obligation to sell a fixed quantity of regular-weight hogs to a meatpacker for a

contractually pre-determined price. The price is set via a formula that depends on relevant

commodity market indices (e.g., fodder and pork prices), and as a result, the price fluctuates

over time. (We describe contracts in §1.4.1 and provide more details in §1.3.2.)

3



At the beginning of each week, the producer observes how many regular-weight and under-

weight hogs are market-ready, the open market and contract prices of regular-weight and

under-weight hogs, and the default penalty she must pay the meatpacker for each undelivered

hog. (The terms of the contract with the meatpacker state that the producer must pay the

penalty for each undelivered regular-weight hog.) If the producer delivers an under-weight

hog as a substitute for a regular-weight hog, the penalty is waived, but the contract price for

the substitute hog is lower than the regular-weight price. In contrast, if the producer keeps

a regular-weight hog for one additional week, it incurs a feeding cost. However, hogs that

stay on the farm can satisfy future contractual obligations with the meatpacker and help

avoid the penalty. The numbers of hogs that become market-ready every week, all costs, and

all prices are stochastic. Flows between weaning and feeding farms may be affected by pig

mortality rates (especially vulnerable to viruses and illnesses earlier in their lives), the weight

growth rates (vary depending on diets at different contracted farms and supply availability

of different feed mixes due to agribusiness markets), weather (slower growth rates in the

summer, with animals eating less in the summer heat), and other environmental, market,

and logistics factors.

Our research question – a question that Maschhoffs have to answer as part of their sales

and operations planning cycle – is how many market-ready hogs should the farm sell to

the meatpacker and on the open market at the beginning of each week. We are looking

to devise a decision framework and a rule that the farmer can employ to make her weekly

planning decision. From a managerial perspective, the farmer needs to understand better

how to exercise her “real options.” That is, the farmer needs to know the value of holding an

under-weight (or even regular-weight) hog for another week and the value of selling hogs in

the open market.
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Currently, the producer uses an always fulfill (AF) policy. Under this policy, the farm fulfills

the meatpacking contract, no matter what, and sells all remaining excess hogs on the open

market. If the number of regular-weight hogs is insufficient to fulfill the contract, then the

producer substitutes under-weight for regular-weight ones. It is an open question of how good

the AF policy is compared to an optimal policy, which has to be established as is unknown

in the current literature.

We view the pork producer’s problem as a dynamic, multi-item (e.g., hogs of different weights)

inventory model with supply uncertainty (uncertain number of available under-weight and

regular-weight hogs) and stochastic prices in the contractual and spot markets. We answer

the research question using a conventional dynamic programming approach. Although

inventory policies in environments that we just described are generally not simple or easily

implementable, we can derive an optimal policy structure. The optimal policy’s key feature is

that there are two different types of thresholds reflecting decision switches (holding to selling

to the contract or holding selling to the open market). For each threshold type, there are

separate thresholds for the under-weight and the regular-weight hogs. Whenever the number

of hogs in a particular weight pool – under-weight or regular-weight – is below any applicable

threshold, the producer should do nothing, i.e., she should let the hogs feed for at least one

more period. When the number of market-ready hogs exceeds the relevant threshold, the

producer should sell the excess either on the open market or to the meatpacker, depending

on the prevailing market prices. The thresholds (of two different decision switch types and

specialized by weight pool, four in total) are sensitive to the current and the future number

of available hogs and prices. As such, they are not straightforward to derive in practice.

To overcome the computational difficulties around identifying the thresholds, we derive a

sharp one-period look-ahead heuristic. Calibrated numerical experiments reveal that the

optimal policy substantially improves the existing practice (between 22.55 and 25.89% on

5



average). At the same time, the optimal policy outperforms the one-period look-ahead policy

by as little as 1.76%. This heuristic’s performance is noteworthy because the one-period

look-ahead algorithm is easy to implement and significantly improves the farm’s existing

practice.

In summary, the current paper makes the following contributions to the literature:

(1) We formalize the pork producer’s finishing sales planning problem and devise a rule

that tells her how many under- and regular-weight hogs to hold and sell every week.

(2) We prove the optimality of a threshold policy in an environment with many sources

of uncertainty. An interesting sidelight of the optimal policy that we present is that

it does not necessarily have the simple form that intuition might lead one to predict.

Specifically, the optimal policy can have two disjoint hold regions. As such, the farmer

may find it optimal to hold some quantity hogs and sell the excess. However, if the

excess is too large, she might want to hold some of the excess hogs as well.

(3) We demonstrate that a one-period look-ahead policy can be implemented as a practical,

near-optimal heuristic. Using data from The Maschhoffs pork producer and publicly

available commodity prices, we demonstrate the benefits of the optimal policy over the

currently used “Always Fulfill" policy (around 25%), and the near optimality of the

easy to implement one-period look-ahead policy (within 2%).

(4) From a managerial insights perspective, we provide an economic interpretation of the

thresholds underlying the decision switches between holding for another week and

fulfilling the contract or selling to the open market. We fully characterize the marginal

value of holding, contract fulfillment, and spot market selling and the relevant factors

affecting them. The optimal policy structure and the numerical results on the near-

optimal performance of the look-ahead policy informed us on the high “real option"

6



value of holding under-weight hogs as a valuable hedge for both supply and price

uncertainty. Our pork producer heavily underestimated the value of such an option in

her planning formula. The majority of the improvement value over the current policy

comes from better managing the under-weight hog pool, occasionally exercising the

option to hold regular-weight hogs.

The rest of the paper is organized as follows. §1.2 reviews the most relevant literature. §1.3

describes the data pf this project. §1.4 presents the model and describe the current policy.

§1.5 derives optimal policy structure. §1.6 describes the one-period look-ahead heuristic. §1.7

extends our baseline model in two directions. §1.8 numerically investigates the optimal and

heuristic policies to infer the practical implications of our results. §1.9 concludes. All proofs,

data calibration details are provided in Appendices.

1.2 Related Literature

The pork producer’s finishing stage planning problem that we study has three notable features:

(a) The farmer sells market-ready hogs via a long-term contract (at contractually pre-

determined prices pegged to market indices) and in the spot market. Both the contract

and spot prices are stochastic.

(b) The farmer’s problem is dynamic because the long-term contract binds her to deliver a

pre-determined quantity and quality of market-ready hogs every week. Any shortfall

triggers a penalty that is pegged to stochastic market indices.

(c) Finally, the sizes of the under-weight and over-weight pools are stochastic due to the

uncertainty in early sourcing flows from sowing and weening farms. Uncertainty in

7



birth rates and illnesses drive fluctuations in ween death rates. Weather conditions

yield hard-to-control variations in the weight-gain process.

A stream of literature related to Part (a) includes research on procurement/selling strategies

involving simultaneous trading in spot and forward markets. Firms in these papers participate

in both markets while looking either for the best price or increased operational flexibility

while facing uncertain demand. Examples of static models include [21, 63], and [72]. [63]

study a game-theoretic model where two competing OEMs procure inputs from a single

supplier and provide a strategic-based rationale for why firms source in both forward and

spot markets. In [21] an OEM orders components under demand uncertainty, processes to

order, and sells any unused components in a secondary market once demand uncertainty is

resolved. [72] show how forward selling can mitigate risk in product quality while producing

wine.

Notable examples of papers that explore spot and forward trading in a dynamic environment

include [27, 39, 61, 64]. [61] show how firms can utilize a portfolio of procurement contracts

to increase expected profits and reduce procurement risk over time. [64] study how online

business-to-business (B2B) exchanges affect buyer-supplier relationships where an exchange

takes the role of a secondary market in which buyers of the initial product can trade

excess inventory to address supply and demand imbalances. [27, 39] consider integrated

optimization problems of procurement, processing, and trading of commodities. [39] focus on

applications in petroleum refining, [27] concentrate on soybean production and processing. All

papers mentioned above essentially characterize optimal policy structures in their respective

environments.

Although the models in the papers that we just mentioned are dynamic, they do not necessarily

cover all the complexities our farmer faces. In [64] selling prices are fixed rather than stochastic,
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in [27, 39] there is no long-term contract that the firm must satisfy, and in [61] there is no

uncertainty about the output’s quality. For additional details, see Table 1.1.
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Table 1.1: Summary of the Literature

Mashhoffs’ Problem Complications

11 Research Article Contract and
Spot Markets

Multiple
Product
Qualities

Default
Penalties

Dynamic
Model

Stochastic
Costs and
Prices

[42] ✓ ✓
[48] ✓ ✓
[61] ✓ ✓ ✓#

[106] ✓(option
+spot mar-
ket)

✓⋆ ✓#

[63] ✓ ✓
[64] ✓ ✓ ✓#

[73] ✓ ✓
[98] ✓
[21] ✓ ✓(only

multiple
products)

✓

[44] ✓ ✓
[5] ✓ ✓ ✓
[8] ✓ ✓ ✓
[27] ✓ ✓ ✓ ✓
[39] ✓ ✓§ ✓ ✓
[4] ✓ ✓†
[14] ✓
[56] ✓ ✓ ✓#

[31] ✓
[84] ✓ ✓‡ ✓
[7] ✓ ✓
[72] ✓ ✓ ✓#

[10] ✓ ✓ ✓
[40] ✓ ✓ ✓ ✓
[15] ✓
[9] ✓ ✓ ✓

This paper ✓ ✓ ✓ ✓ ✓

⋆ [106] only assume that sellers face stringent penalties for nonperformance under contract to set
as a capacity constraint.

† [4] only did sensitivity analysis w.r.t. penalty cost.
‡ [84] treat spot market as emergency sourcing, penalty cost is the same as a spot market price.
§ [39] consider the penalty cost for the downstream retailers.
# [61], [106], [64], [56] and [72] only consider the random price in the spot market not in the
long-term contract.

10



Table 1.2: The following items may be included in your dissertation or thesis, in the order in
which they are listed. Any optional components, if used, must be included in the table of
contents, unless noted below.

Major Part
Thesis

Component Required Optional Page Numbering

Front Matter Title page ✓ counted, not numbered

Copyright page ✓ neither counted, nor numbered

Table of Contents ✓ begins on page number ii

List of Figures ✓ [lowercase Roman numerals continue]

List of Illustrations ✓ [lowercase Roman numerals continue]

List of Tables ✓ [lowercase Roman numerals continue]

List of Abbreviations ✓ [lowercase Roman numerals continue]

Acknowledgments ✓ [lowercase Roman numerals continue]

Dedication* ✓ [lowercase Roman numerals continue]

Abstract page ✓ [lowercase Roman numerals continue]

Preface ✓ [lowercase Roman numerals continue]

Body Epigraph* ✓ begins on a page numbered 1

Chapters ✓ [Arabic numerals begin or continue]

Back Matter References** ✓ [Arabic numerals continue]

Appendices ✓ [Arabic numerals continue]

Curriculum Vitae*** ✓ [Arabic numerals continue]

* Do not include in the table of contents.
** There are two options for the placement of references; they can be listed at the end of each chapter,

or at the end of the document.
*** Do not put your Social Security Number, birthdate, or birthplace on your CV.
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1.3 Data Description

When making the selling decision for the Maschhoffs farm, our model includes both the

production uncertainty caused by the variance of hogs’ growth velocity, the mortality rate

and the variability of market prices. Therefore, we categorize data required to calibrate our

model into the following two parts: 1) Maschhoffs’ hog production data and 2) price data.

The first data set describes the inputs and outputs of the farm’s hog production. The input

production data includes

• the wean pigs’ production schedule (total head of wean pigs and starting date, projected

total head, and date to be market-ready);

• weekly feed consumption;

• feed cost; and

• weekly feed conversion ratio (pounds of meals consumed to grow one pound of weight),

and weekly yardage cost.

The output production data includes the daily quantity and the average weight of marketable

hogs from different batches. Most batches are about 150 to 200 heads of marketable hogs.

The farm’s production data starts from July 3, 2017, and ends on June 7, 2019. We aggregate

the daily data into weekly data for both the under-weight and regular-weight hogs from all

sites to match the farm’s decision epoch.

The second data set includes the vector P t, which are prices at which producers (farmers)

and processors (meatpackers) transact without a central exchange. We refer to such a market

as the “over-the-counter” (OTC) and the prices, P t, as OTC prices. In (1.4a), we need to take
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expectations over these prices without necessarily knowing their joint distribution. Having

data will allow us to estimate that distribution.

The OTC price data, which includes meatpacking contract prices, open market transaction

prices, holding costs, penalties (see §1.4.1) also, come from the Maschhoffs farm. The contract

price data comes from 5 to 10 year-long contracts the farm signed with its major downstream

meatpackers. On average, 92.04% of the hogs are sold through a meatpacking contract.

Each contract specifies producer and packer’s obligations and default conditions, including

default penalties. Examples include laws and regulations relating to facility operations,

delivery schedule (due dates and hog counts), health condition, and weight requirement for

the delivered hogs. The contract also defines the pricing formula, which will be provided in

§1.3.2. We use a consistent time frame for the OTC price data to match the production data.

1.3.1 Production Data

The farm’s production data includes the input quantity of to-market-weans, production

quantity and hogs’ weight. Recall that in each week, the farm needs to put a certain quantity

of piglets into the production pipeline, which grow into marketable hogs around 20 to 23

weeks later. The input decision is not closely related to the market conditions since the

production lead time is relatively long, which is evidenced in §1.3.3. As per the meatpacker’s

contractual terms, hogs at 205 pounds or higher are regular-weight; lighter hogs are classified

as under-weight. We find that the number of new incoming marketable hogs is a random

variable that follows a normal distributions1 for both regular-weight and under-weight hogs

each week. The weekly mean quantity of regular-weight hogs is 62,906, with a standard
1The number of new incoming under-weight and regular-weight hogs passes the normality test. We use the

Lilliefors test for normality, with the null hypothesis saying that the data comes from a normal distribution.
The p-Value for the test is 0.2411 for under-weight hogs and 0.4210 for regular-weight hogs, respectively.
Since the p-value for the test is higher than 0.05, we cannot reject the null hypothesis that the data is normal
distribution at 95% or higher confidence level.
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deviation of 9,551. The weekly mean of under-weight hogs is 28,959, with a standard deviation

of 7,839. Hence, we use those normal distribution parameters to simulate the random yield

of incoming marketable hogs in our numerical experiment in §1.8.2.

1.3.2 OTC Price Data

As per Equation (1.3), the contractually pre-determined base price that the farm receives

from the focal meatpackers consists of livestock prices, pork prices, and prices of agricultural

foodstuff used to produce animal feed. We refer to them as factor prices, denote them as ΠO
t ,

ΠM
t and ΠF

t . These prices are publicly available from both the Chicago Mercantile Exchange

and the USDA (United States Department of Agriculture) [104].2

PC
t =

103.8%

3
LM_HG201︸ ︷︷ ︸

OM Price

+
91.8%

3
(LM_PK602︸ ︷︷ ︸

MM Price

+0.57) +
1

3
max {Floor, 103.8%LM_HG201}︸ ︷︷ ︸

Mix of OM and FM Price

.

The first one-third of the base price is the average livestock price negotiated between

slaughterhouses and packers in the open market before the delivery day, which is reported

in the National Daily Slaughtered Swine Report (LM_HG201 from [102])3. The second

one-third comes from the pork market, which considers the pork cutout value. This pork

price is obtained from the National Daily Negotiated Pork Report (LM_PK602). The last

one-third is determined by the greater of the open market price, or the corn and soybean meal

average prices (reported in SJ_GR850 and GX_GR117 reports from USDA), which essentially

accounts for the feeding cost to compensate the producer. The meatpacking contract price

works as a pass-through price, which is a standard way of pricing commodity-based contracts

in many industries [57].
2LM_HG201 stands for National Daily Direct Hog Prior Day Report-Slaughtered Swine. LM_PK602

stands for National Daily Pork FOB Plant-Negotiated Sales. The “Floor” contains Corn/Soybean Meal
Component: $36.44346+ (4.40235 ·Corn) + (0.044845 · SBM) where Corn is from report SJ_GR850, Soybean
Meal is from report GX_GR117. For detailed explanations of these price indexes, see Appendix B.

3The report excludes Saturdays and Sundays and six holidays (New Year’s Day, Memorial Day, Indepen-
dence Day, Labor Day, Thanksgiving Day, and Christmas Day).
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The fixed contract price discount for under-weight hogs is a constant contractually pre-

determined by each meatpacker. The penalty cost, CP
t , is calculated as a set percentage of

the open market price. Again, the rates vary from one meatpacker to another.

We obtain the open (or “spot”) market price for under-weight hogs per head, P 1
t , by aggregating

the weekly spot market trading prices of slaughtered hogs that were under 205 pounds. We

apply similar logic to calculate the spot market price for the regular-weight hog per head, P 2
t .

We consider both the yardage cost and feeding cost per head to calculate the holding cost,

CH
t . The feeding cost can be obtained from the unit price of corn, soybean, and soybean

meal components multiplied by the corresponding consumption volume of hogs each week,

using the weekly feed conversion rate recorded by the Maschhoffs.

1.3.3 Relationship Between Production Data and OTC Price Data

Before we proceed to fit the OTC prices, we examine the relationship between the input

decision and market prices. We want to investigate if the input decision is correlated with

market prices. Figure 1.2 demonstrates the weekly piglets input quantity of the farm, which

is different from the pattern of the OTC market prices in Figure 1.13. Figure 1.3 shows that

there is no correlation between the number of to-market weans and open market prices and

contract price. Indeed, the correlation coefficient between the number of input weans and the

open market price of the regular-weight hogs is 0.255 (0.268 for the under-weight hog), and

the correlation coefficient with the contract price is 0.313. This is due of the long lead time,

which makes the hog producer hard to make any adjustment far in advance according to the

market condition.
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Figure 1.2: Weekly Wean-to-market Quantity

Figure 1.3: Weekly Wean-to-market Quantity

1.4 Analytical Model of Wean-to-Finish Hog Farm

We study a discrete-time, multi-period model of a wean-to-finish hog farm, which sells

market-ready hogs on the open market and via a long-term contract with meatpackers.

At the beginning of each week, t, roughly ten-week-old hogs (“weans”) arrive at the farm to

feed and grow. The hogs become market-ready approximately thirteen to sixteen weeks later,

at which point the farmer divides them into two pools according to weight. Market-ready
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hogs that weigh less than 205 pounds are labeled as under-weight and assigned to Pool 1;

the remaining hogs are labeled as regular-weight and assigned to Pool 2. Due to natural

fluctuations in birth rates and mortality, the number of hogs that arrive at the farm to

become market-ready is random. In addition, the rate at which hogs gain weight depends

on weather and other environmental conditions. So, if W t = [W 1
t ,W

2
t ] denote the numbers

of under-weight and regular-weight hogs that the farmer transitions from the growing stage

to the finishing stage in each period t, then {W t, t ∈ N} is a stochastic process defined

over some filtered common probability space [Ωw,Aw,Pw]. Throughout the paper, we use

uppercase letters to denote random variables and lowercase letters to denote realizations of

random variables. Bold letters denote vectors.

The total number of hogs that are available for sale in each period t, however, consists not

only of hogs that the farmer transitions to the market-ready stage at the beginning of period

t but also of market-ready hogs that she did not sell in period (t− 1). We use the notation

zit−1 to denote market-ready hogs that stayed on the farm at the end of period (t− 1), where

the superscripts indicate the pools into which the farmer assigned them at the beginning

of period (t − 1). Any market-ready hog that stays on the farm incurs a feeding cost of

cHt per week. Feeding, however, affects the hogs in Pools 1 and 2 differently: whereas the

under-weight hogs gain lean weight and grow to become regular-weight between periods

(t− 1) and t, the regular-weight hogs gain mainly fat without gaining market value. (For this

reason, we will say that regular-weight hogs do not gain weight when they feed. However, we

mean that they do not gain economic value.)

Taken together, the flow of market-ready hogs is subject to the following conservation

constraints:

S1
t = W 1

t and S2
t = W 2

t + z1t−1 + z2t−1, (1.1)
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where Si
t , i = 1, 2 is the number of market-ready hogs available in Pool i = 1, 2 in period

t. The left side constraint in (1.1) says that the number of under-weight hogs at time t

equals the number of hogs assigned to Pool 1 at the beginning of t. The right side constraint

says that the number of regular-weight hogs in period t includes everything left over from

period (t− 1) plus the number of hogs assigned to Pool 2 at the start of period t. Henceforth,

whenever we write St, we refer to the vector [S1
t , S

2
t ], which directly inherits its stochastic

nature from the vector W t.

The farmer sells the available hogs in two principal ways. First, she has a long-term contract

with a maturity date of T to deliver q regular-weight hogs to a meatpacker for a price of pCt

each week t ≤ T . (The maturity date of this obligation is T , where T is large, typically 200 or

more weeks.) The farmer can wriggle out of the contract by paying a penalty of cPt for each

undelivered hog or delivering an under-weight hog instead of a regular-weight one. However,

the meatpacker pays a (lower) price of (1− α)pCt for the under-weight hogs, where 0 < α < 1

is a contractually pre-determined constant. We let yt = (y1t , y
2
t ) represent the quantities of

hogs that the farmer sells to the meatpacker from each pool i = 1, 2. It follows that

y1t + y2t ≤ q,

which is a contract capacity constraint.

Second, the farmer has the option to sell any market-ready hogs on the open market for spot

prices of p1t and p2t , where p1t ≤ p2t . (Incidentally, because the farmer can also buy hogs on

the open market, the open market price, p2t , represents an upper on the default penalty, cPt .)

If xt = (x1
t , x

2
t ) denote the quantities of hogs that the farmer sells on the open market, then
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preservation of mass requires

xi
t = sit − yit − zit, i = 1, 2. (1.2)

In other words, the number of hogs to be sold on the open market is fully determined after

the farmer decides how many hogs to hold until the next period and how many to sell to the

meatpacker. So, our model’s decision vector is (yt, zt), if we take st to be the state vector.

1.4.1 Stochastic Prices, Costs, and Penalties

Much like prices of other commodities, contract prices, open market prices, fodder prices,

and the default penalty, P t = [PC
t , P 1

t , P 2
t , CH

t , CP
t ], are all stochastic, where {P t, t ∈ N} is

defined over some common filtered probability space [Ωp,Ap,Pp]. The farmer gets to see the

realization of the vector pt = [pCt , p1t , p2t , cHt , cPt ] at the beginning of each period, t.

An interesting aspect of the farmer’s selling decision is the nature of the long-term contracts

with the food producers (meatpackers). The contract specifies the delivery of a fixed quantity

but at a stochastic future price expressed as a pricing formula that depends on market price

indices. These market price indices reflect the feeding cost (fodder commodity prices, such as

soybeans and corn, etc.), the live pig open market prices, and the pork meat market prices.

To give an example, the contract price in a recent Maschhoffs’ contract with Farmland Foods,

Inc., specifies the contract price as

PC
t =

1

3
· 103.8% · LM_HG201 +

1

3
· (LM_PK602 + 0.57) · 91.75%

+
1

3
·max {Floor Price, 103.8% · LM_HG201} .

(1.3)
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Equation (1.3) reveals that PC
t is a price index with a contractually pre-specified floor.

Without getting into institutional market details, the index LM_HG201 reflects live hog

open market prices, and LM_PK602 reflects pork market prices. In the third term, as part

of the floor price, fodder market costs are captured via corn and soybean market prices. See

section 1.3.2 for more details on the nature of the contracts and the commodity indices used.

Although the stochastic process, {P t, t ∈ N}, can be quite general (e.g., auto-correlated and

non-stationary), we do impose standard no-arbitrage conditions.

Assumption 1.1 (No Arbitrage). EtP
C
t+1 − pCt ≤ cHt and EtP

2
t+1 − p2t ≤ cHt .

The no arbitrage assumption above asserts that expected increases in the regular-weight

hog’s prices on the open and the contract markets never surpass the feeding costs. (Thus

the farmer cannot make a risk-less profit by simply holding regular-weight hogs.) The other

assumption is that {P t, t ∈ N} and {W t, t ∈ N} are independent, which reflects that the

farm is too small to affect U.S. pork and fodder prices.

1.4.2 Optimization Objective and Dynamic Program

If β denotes a single-period discount factor, then the optimization of the expected proceeds

from sales of market-ready hogs corresponds to the following dynamic program:

Vt(st,pt) = max
yt,zt

{
vt(yt, zt; st,pt) : y

1
t + y2t ≤ q, y1t + z1t ≤ s1t , y

2
t + z2t ≤ s2t

}
, (1.4a)

vt(yt, zt; st,pt) = rt(yt, zt; st,pt) + β EtVt+1(St+1,P t+1), t = 1, 2, . . . , T (1.4b)

rt(yt, zt; st,pt) = pCt
(
y2t + (1− α) y1t

)
+

2∑
i=1

pit
(
sit − yit − zit

)
−

2∑
i=1

cHt z
i
t − cPt

(
q − y1t − y2t

)
,

(1.4c)

where St+1 is given by (1.1). The subscript on the expectation operation denotes filtration.
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The best period t payoff is related to the best period (t+ 1) payoff through the transition

probabilities that may evolve over time and that are encapsulated in the expectation operator

Et[. . .], t = 1, 2, . . . , T . Thus, the MDP may be non-stationary, reflecting changing market

conditions and prices. The maturity date of the meatpacking contract, T , provides a natural

stopping time for the problem because the best period t payoff reflects the contractual

obligation that the farmer has with the meatpacker until time T at which time she has to

enter into a new – and a different – contract.

Lemma 1.1 (Farmer’s Incentive Compatibility of the Contract ). There exists a q > 0 such

that the farmer can obtain more expected profit than q = 0 if E
∑T

t pCt ≥ E
∑T

t p2t .

Proof. It can be proved as follows. When q = 0, the farmer’s only option is to sell all hogs to

the open market. Holding is never an option because of the implicit no-arbitrage assumption

for the open market (otherwise, there exist an arbitrage that the farmer purchase from the

open market and hold to the next period). Then we use the contradictory to prove the

incentive compatibility.

Suppose that for all q > 0, we have signing the long-term contract always leads to a less

expected profit. However, for a very small q > 0 such that s2t > 0 holds for all t, we can find

the following policy that the farmer always fully fulfills the contract and sells the remaining

to the open market. Then the expected profit of this policy is less than the maximal one of

q = 0 only if the expected average contract price is less than the open market, which is a

contradictory. We complete the proof.

Lemma 1.1 shows the farmer’s incentive compatibility to sign the long-term contract with

the meatpacker when the average contract price is higher, which is a realistic assumption
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according to the data from the Maschhoffs. The farmer can choose the higher option between

fulfilling the contract and selling to the open market in each period, which guarantees the

positive profit surplus.

Although extending the problem into an infinite horizon is not one of our goals in this paper,

[68, 69] gives a procedure for doing that. Specifically, in [68, 69], there is a T -period problem

for every possible terminal salvage function which might occur. By taking an expectation

over these salvage values, one can infer the infinite-horizon policy. Later in the paper (§1.8.2),

we propose a surprisingly sharp one-period look-ahead heuristic, which reveals that a solution

that considers only two periods can be near-optimal for a planning horizon T >> 2.

1.4.3 The Current Policy

Before we characterize the optimal policy, we report what the farm behind this research –

the Maschhoffs – uses currently. The current policy works as follows:

If q ≤ s2t , the farm fulfills the contract with regular-weight hogs only; all other hogs go

to the open market.

If s2t < q < s1t + s2t , all regular-weight hogs are used to fulfill the contract, and the

contractual shortage is satisfied with under-weight hogs. The farm sells all remaining

under-weight hogs on the open market.

If q > s1t + s2t , all market-ready hogs are used to fulfill the contract.

The current policy should be expected to work quite well whenever all four markets are

deterministic, and the meatpacking contract pays more than the open market. Data that

we present in §1.3, however, reveals that market prices are far from deterministic and that
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the open market sometimes pays more than meatpacking contact. In §1.8.2), we use the

same data to calibrate our model and evaluate the gap between the current and the optimal

policies.

1.5 An Optimal Policy

Using T as the maturity date, in this section, we utilize the standard backward induction

algorithm to find a policy that is optimal in (1.4). If one wanted to know the optimal policy

for an infinite horizon, [68, 69] give a computational procedure. However, as we show later in

the paper (§1.8.2), a surprisingly sharp one-period look-ahead heuristic can be near-optimal

for planning horizons that far exceed two periods. (The standard values of T we see in

practice are around 200 weeks.) For this reason, we decided not to pursue the infinite horizon

analysis in this paper.

The thrust of our analysis in this section is as follows. In Lemma 1.2, we show that the value

function is jointly concave in the decision variables for all states. In Lemma 1.4 (1.3), we

exploit the concavity property of Lemma 1.2 to describe the trade-off between keeping hogs

on the farm until the next decision period and selling them either to the meatpacker or on

the spot market in the current period. We conclude with Proposition 1.1, where we combine

Lemmas 1.3 and 1.4 to arrive at an optimal policy. Where convenient, the mnemonics F, S,

and H will indicate that the farmer is fulfilling the meatpacking contract, selling on the spot

market, and holding hogs in inventory, respectively.

Lemma 1.2 (Concavity). The value function vt(yt, zt; ·) is jointly concave in (yt, zt) for all

t = 1, 2, . . . , T .

The lemma asserts that the value function is concave in the decision vector, (yt, zt), which

expresses how many hogs are sold to the meatpacker and held on the farm for one more
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period. (Recall that the number of hogs to be sold on the open market is entirely determined

after (yt, zt) are set).

The concavity property reflects that marginal contributions from selling to the meatpacker in

the current period and holding market-ready hogs on the farm until the next decision period

– the F- and H-margins – are decreasing in the number of hogs. (The marginal contribution

from selling the hogs on the open market in the current decision period – the S-margin – is

constant.) All three margins can be seen graphically in Figures 1.5 and 1.6 and are formally

quantified in Table 1.3.

The F-margin in each period t has two components. First, the farmer “receives back” the

penalty of cPt , which the meatpacker would otherwise charge her for each undelivered hog.

Second, the meatpacker pays the farmer a unit price of either pCt or (1− α)pCt , depending on

the hog’s weight. The F-margin is constant up to the meatpacking contract’s capacity, q,

and zero after that.

The decreasing H-margin reflects that the number of selling alternatives open to the farmer

in the subsequent decision period diminishes in the number of hogs that the farmer decides to

hold in the current period. Viewed from period t, consider what happens if the farmer’s next

period’s total inventory, S2
t+1 (see Equation 1.1), is smaller than the meatpacking contract’s

size, q. Then, she can sell all her hogs to the meatpacker or on the spot market or continue

to hold them, depending on which option yields the highest expected payoff. However, any

quantity that exceeds the meatpacking contract’s capacity of q must be sold on the spot

market or stay on the farm for one more period.

Mathematically, the H-margin is a messy expectation bounded on an interval that we

characterize in the last column of Table 1.3. The lower and upper interval bounds depend on
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the lowest and highest prices the farmer can hope to get in the subsequent decision period

minus the feeding cost, which she must expend to hold the hogs for one more period.

Table 1.3: Marginal Values of Selling Hogs and Holding Them in Inventory

Marginal Values of Selling Marginal Values of Holding

Hog Pool F-margin (= ∇yiVt) S-margin (= ∇xiVt) H-margin (= ∇ziVt) †

Under-weight
(
(1− α) pCt + cPt | y1t + y2t ≤ q

)
p1t

[
βpH

t+1
− cHt , βp̄Ht+1 − cHt

]
Regular-weight

(
pCt + cPt | y1t + y2t ≤ q

)
p2t

[
βpH

t+1
− cHt , βp̄Ht+1 − cHt

]
† The expressions for p̄Ht+1 and pH

t+1
are as follows:

p̄Ht+1 = lim
w→0

E
[
Vt+1

([
w1, w2 + s1t + s2t + 1

]
,P t+1

)
− Vt+1

([
w1, w2 + s1t + s2t

]
,P t+1

)]
, (1.5a)

pH
t+1

= lim
w→∞

E
[
Vt+1

([
w1, w2 + s1t + s2t + 1

]
,P t+1

)
− Vt+1

([
w1, w2 + s1t + s2t

]
,P t+1

)]
. (1.5b)

Because the F-margin and S-margin are constants, they cannot cross. (Although, in a special

case, they can equal.) The H-margin, however, is decreasing in quantity, implying that it will

cross the F- and S-margins at most once from above. In Lemmas 1.3 and 1.4, we define zit,

and z̄it, i = 1, 2 as the smallest quantities of hogs from pools 1 and 2 for which the H-margin

crosses the F- and S-margins and give conditions under which the crossing points exists. We

show zit, and z̄it, i = 1, 2 graphically in Figures 1.5 and 1.6

For instance, if zit ∈ (0,∞) (see the conditions in Lemma 1.3 ), then it follows that the

farmer is better off holding the first zit hogs until the next period and selling the excess to the

meatpacker (up to q hogs). This strategy reflects that contract prices are low in the current

period, in which case the farmer has an incentive to let the hogs gain weight while she is

waiting to see the next period’s prices. However, holding too many hogs in the current period
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becomes economically futile for reasons that we already explained earlier (see our explanation

of why the H-margin decreases in quantity).

Lemma 1.3. Let t = 1, 2, . . . , T . There exist two, unique break-even stocking levels, zit,

i = 1, 2 such that if Si
t = zit, then the farmer is indifferent between selling the marginal, zit-th,

hog from pool i = 1, 2 through the contract in period t and holding it in inventory until period,

t+ 1. Moreover:

1. z2t = 0 for any prices, i.e., the H- and F-margins do not cross.

2. z1t ∈ (0,∞) iff (1 − α)pCt + cPt ∈
[
βpH

t+1
− cHt , βp̄

H
t+1 − cHt

]
, where pH

t+1
and p̄Ht+1 is

defined in Equations (1.5). (If (1 − α)pCt + cPt < βpH
t+1

− cHt , then z1t = ∞. If

(1− α)pCt + cPt > βp̄Ht+1 − cHt , then z1t = 0. In neither case, the H- and F-margins do

not cross.)

Lemma 1.4. Let t = 1, 2, . . . , T . There exist two, unique break-even stocking levels, z̄it,

i = 1, 2 such that if Si
t = z̄it, then the farmer is indifferent between selling the marginal, z̄it-th,

hog from pool i = 1, 2 on the open market in period t and holding it in inventory until period,

t+ 1. Moreover:

1. z̄2t ∈ (0,∞) iff p2t < βp̄Ht+1 − cHt , where p̄Ht+1 is defined in Equation (1.5a). (If p2t ≥

βp̄Ht+1 − cHt , then z̄2t = 0, i.e., the S- and H-margins do not cross.)

2. z̄1t ∈ (0,∞) iff p1t ∈
[
βpH

t+1
− cHt , βp̄

H
t+1 − cHt

]
, where pH

t+1
and p̄Ht+1 is defined in (1.5).

(If p1t < βpH
t+1

− cHt , then z̄1t = ∞. If p1t > βp̄Ht+1 − cHt , then z̄1t = 0. In neither case, the

S- and H-margins cross.)

Lemmas 1.3 and 1.4 are optimal policies for Pools 1 and 2, provided that the farmer can

trade only in a single market – either on the open market or with the meatpacker.

26



In the next Proposition 1.1, we exploit Lemmas 1.2 through 1.4 to develop a period-t decision

rule, given state vectors, st and pt, which reveal the current period’s hog availability in each

weight pools, prices, feeding costs, and penalties.

Proposition 1.1 (An Optimal Policy). 1. Let p2t > pCt + cPt , t = 1, 2, · · · , T

(a) If p1t > (1 − α)pCt + cPt , the optimal solution is y1t = y2t = 0, z1t = s1t ∧ z̄1t , and

z2t = 0.

(b) Otherwise, the optimal solution is y1t = (s1t − z1t )
+ ∧ q, z1t = (s1t − q)+ ∧ z̄1t , y2t = 0,

and z2t = 0.

2. Let p2t ≤ pCt + cPt , t = 1, 2, · · · , T .

(a) If p1t > (1− α)pCt + cPt , the optimal solution is y1t = 0, z1t = s1t ∧ z̄1t , y2t = s2t ∧ q,

and z2t = (s2t − q)+ ∧ z̄2t .

(b) else if 0 ≤ (1 − α)pCt + cPt − p1t ≤ pCt + cPt − p2t , the optimal solution is y1t =

(s1t − z1t )
+ ∧ (q − s2t )

+, z1t = (s1t − y1t )
+ ∧ z̄1t , y2t = s2t ∧ q, and z2t = (s2t − q)+ ∧ z̄2t .

(c) else, the optimal solution is y1t = (s1t − z1t )
+ ∧ q, z1t = (s1t − q)+ ∧ z̄1t , y2t =

s2t ∧ (q − (s1t − z1t )
+)+, and z2t = (s2t − y2t )

+ ∧ z̄2t .

Case 1a

In this case, the open market pays the farmer more than the meatpacker does for both regular-

and under-weight hogs. Thus, the S- dominates the F-margin. The rational farmer responds

to these open market prices by “defaulting” on the meatpacking contract and selling her entire

period-t inventory of regular-weight hogs on the open market. Trading all regular-weight hogs

is optimal because the farmer cannot expect them to gain weight or price in period (t+ 1).
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In contrast, with the under-weight hogs, the farmer faces a risky trade-off. On the one

hand, open market prices are high, making it attractive to sell these hogs. On the other

hand, under-weight hogs trade at a discount compared to the regular-weight hogs, and the

farmer knows that they will become regular-weight if she lets them continue to feed. Thus,

by waiting, the farmer will be able to sell these for a full price in the next period, (t+ 1).

Waiting, however, is not without risk because the loss due to a drop in prices between periods

t and (t+ 1) may more than offset the gain from the associated increase in weight.

Part 1a of Proposition 1.1 asserts that the optimal way of resolving this risky trade-off is

by hedging, which involves selling some under-weight hogs now and selling the rest later.

Specifically, the farmer optimally sells (s1t − z̄1t ) hogs4 on the open market (to take advantage

of the high prices) and lets the remaining z̄1t hogs continue to feed (to bet that the weight

gain offsets a potential drop in price). As such, if there are fewer than z̄1t under-weight hogs

available in period t, then all under-weight hogs optimally stay on the farm until the period

(t+ 1).

Figure 1.4 summarizes the farmer’s optimal decisions of Case 1a graphically.

Case 1b

In Case 1b, the open market (contract with the meatpacker) pays more for the regular-weight

(under-weight) hogs than the contract with the meatpacker (open market) does. That is, the

S-margin is higher than the F-margin, which is something that we show graphically in Figure

1.5(b).

In this situation, the farmer sells her entire inventory of regular-weight hogs on the open

market, which is what she does in the previous Case 1a.
4Recall that z̄1t is the break-even stocking level of Lemma 1.4.

28



0 s2t S2
t

Sell to OM

(a) Selling Strategy for Regular-Weight Hogs

0 s1tz̄1t S1
t

Hold as Inventory Sell to OM

(b) Selling Strategy for Under-Weight Hogs

Figure 1.4: Selling Strategy for Case 1a

For under-weight hogs, trading with the meatpacker takes priority over trading on the open

market. To decide how many hogs to trade with the meatpacker, the farmer computes the

break-even level, z1t of Lemma 1.3. Then she keeps the first z1t hogs until the next decision

period and sells min {s1t − z1t , q} to the meatpacker. (Following Lemma 1.3, the H-margin is

higher than the F-margin on the first z1t .)

In a situation, in which the number of the under-weight hogs is high, i.e., when min {s1t − z1t , q} =

q, the farmer needs to decide what to do with the remaining (s1t − q − z1t ) hogs. She computes

the second break-even level of Lemma 1.4, z̄1t . Following Lemma 1.4, whatever quantity she

has on hand above the break-even quantity, z̄1t , she sells on the open market. Any under-

weight hogs that remain on the farm in period t continue to feed to become regular-weight in

period (t+ 1).

Interestingly, if q < (s1t − z1t ) and z̄1t < (s1t − q), then the farmer’s policy becomes non-

monotone – the policy transitions from H to F to H to S – which is something that we show

graphically in Figure 1.5(b).
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0 s2t S2
t

Sell to OM

(a) Selling Strategy for Regular-Weight Hogs

z1t z̄1t

0 s1tz1t z̄1t + qz1t + q S1
t

Hold Fulfill Hold Sell

(b) Selling Strategy for Under-Weight Hogs

Figure 1.5: Selling Strategy for Case 1b

Case 2a

In Case 2a, the meatpacker (open market) pays more for the regular-weight (under-weight)

than the open market (meatpacker) does. That is the F-margin is higher than the H-margin

on the regular-weight hogs. For the under-weight hogs, the H-margin dominates the S-margin.
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The farmer optimally responds to these prices by selling min{q, s2t} of regular-weight hogs to

the meatpacker. If s2t > q, i.e., if there are regular-weight hogs left over, she computes the

break-even level z̄2t of Lemma 1.4. Then, she keeps up to z̄2t regular-weight hogs in inventory

until the next period (t+ 1) and sells the excess (if any) on the open market. We show these

thresholds graphically in Figure 1.6.

The rationale for holding regular-weight hogs is that the open market prices are low in

the current period. The farmer cannot sell more hogs to the meatpacker because of the

meatpacking contract’s capacity. However, the open market might improve in the next

period. Alternatively, the farmer might sell some regular-weight hogs to the meatpacker

if an insufficient number of hogs are available at the beginning of the next period. Thus,

by holding some regular-weight hogs, the farmer also hedges against the risk of paying the

default penalty meatpacking contract.

The treatment of under-weight hogs is straightforward. The farmer computes the break-even

level of Lemma 1.4, keeps the first z̄1t hogs on the farm until the next decision period, and

sells the excess on the market. The rationale behind this policy towards the under-weight

hogs is already explained in our discussion of Lemma 1.4. Figure 1.6 summarizes the Case 2a

graphically.

Case 2b and 2c

In the last two cases of Proposition 1.1, the meatpacker pays more than the open market for

both the under-weight and the regular-weight hogs. The policy towards the regular-weight

hogs is the same as in the Case 2a. The approach towards the under-weight hogs is the same

as in the Case 1b. We skip the discussion to avoid unnecessary repetition.
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z2t z̄2t

0 s2t
q q + z̄2t S2

t

Fulfill Hold Sell

(a) Selling Strategy for Regular-Weight Hogs

0 s1tz̄1t S1
t

Hold as Inventory Sell to OM

(b) Selling Strategy for Under-Weight Hogs

Figure 1.6: Selling Strategy for Case 2a

The critical difference between the Cases 2b and 2c is that in the former, the difference

between the contract prices and open market prices is more significant for the regular-weight

hogs and vice versa. Thus, in the former Case 2b, the farmer prioritizes regular-weight hog

sales to the meatpacker over under-weight hog sales. She sells the under-weight hogs to the

meatpacker only if an insufficient quantity of the regular-weight hogs is available. In contrast,

she prioritizes under-weight hog sales over regular-weight hog sales in the latter Case 2c.
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Figures 1.7 and 1.8 summarize the cases graphically. Also, for convenience, Table 1.4 condenses

the policy of Proposition 1.1 on the entire state space.

0 s2tq q + z̄2t S2
t

Fulfill Hold Sell

(a) Selling Strategy for Regular-Weight Hogs

0 s1tz1t z̄1t + (q − s2t )
+z1t + (q − s2t )

+ S1
t

Hold Fulfill Hold Sell

(b) Selling Strategy for Under-Weight Hogs

Figure 1.7: Selling Strategy for Case 2b

0 s2t(q − (s1t − z1t )
+)+ z̄2t + (q − (s1t − z̄1t )

+)+ S2
t

Fulfill Hold Sell

(a) Selling Strategy for Regular-Weight Hogs

0 s1tz1t z̄1t + qz1t + q S1
t

Hold Fulfill Hold Sell

(b) Selling Strategy for Under-Weight Hogs

Figure 1.8: Selling Strategy for Case 2c

An interesting sidelight of the optimal policy that we just presented is that it does not

necessarily have an easy to predict form. Classical single-item dynamic inventory policies

with fixed prices are often monotone [78]. Here, we have two items and two markets with

stochastic pricing. Moreover, one of the items – the under-weight hogs – becomes more
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Table 1.4: Overview of the Optimal Policy Structure

Case (State) Regular-Weight (Action) Under-Weight (Action)

1a Only S H → S

1b Only S H→ F →H →S

2a F →H →S H →S

2b F →H →S H→ F →H →S ⋆

2c F →H →S H→ F →H →S †

⋆ Use regular-weight hogs to fulfill contract first.
† Use under-weight hogs to fulfill contract first.

valuable when held in inventory. This setup can lead to two disjoint hold regions, which is

something that we show graphically in Figure 1.5.
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1.6 One-Period Look-Ahead Policy

In Lemmas 1.3 and 1.4, we introduce the thresholds, zit and z̄it, i = 1, 2, which happened

to be an important building block of the optimal policy of Proposition 1.1. With so many

random variables in our state space, however, identifying these thresholds – even numerically

– is complicated because of the usual explosion of problem size when optimizing over a long

horizon, T . Because the farmer must re-derive these thresholds at the beginning of each

decision period to reflect to new market conditions, executing the optimal policy in practice

would be cumbersome.

That is why in this section, we look for a sharp approximation that considers a shorter

horizon, one for which the thresholds are easier to compute. In picking the new horizon

length, we exploit the fact that all under-weight hogs grow to become regular-weight between

periods t and (t+ 1) and gain no additional lean weight beyond that. With this insight, we

solve the problem optimally from the beginning of period t to the beginning of period (t+ 2).

We then repeat the process by optimizing over the interval (t+1) to (t+3), etc. In this sense,

we are “rolling” the horizon one time period forward. In the literature, such a policy is known

as one-period look-ahead policy [76]. (Other simplification approaches are discussed in [70].)

Formally, the one-period look-ahead policy labeled with the superscript “OL" is optimal in

V OL
t (st,pt) = max

yOL
t ,zOL

t

{
vOL
t (yt, zt; st,pt) : y

1
t + y2t ≤ q, y1t + z1t ≤ s1t , y

2
t + z2t ≤ s2t

}
,

vOL
t (yt, zt; st,pt) = rt(yt, zt; st,pt) + β Et max

yt+1,zt+1

{
rt+1(yt+1, zt+1; (S

1
t+1, S

2
t+1 +

2∑
i=1

zit, P̂ t+1)

}
,

(1.6)

where rt follows Equation (1.4c), and P̂ t+1 is a price forecast (see §1.8.1).
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Proposition 1.2 (An Optimal One-Period Look-Ahead Policy). In Proposition 1.1, for

i = 1, 2 let

z1t = G−1
t+1

(
β(P̂C

t+1 + ĈP
t+1)− cHt − (1− α)pCt − cPt

β(P̂C
t+1 + ĈP

t+1)− βP̂ 2
t+1

)
, z̄it = G−1

t+1

(
β(P̂C

t+1 + ĈP
t+1)− cHt − pit

β(P̂C
t+1 + ĈP

t+1)− βP̂ 2
t+1

)
,

where Gt+1(ξ) ∈ [GII
t+1(ξ), G

I
t+1(ξ)], ξ ∈ [0, q],

GI
t+1(ξ)

.
= P

{
W 2

t+1 ≤ q − ξ
}
, and GII

t+1(ξ)
.
= P

{
W 1

t+1 +W 2
t+1 ≤ q − ξ

}
.

Above, G(·) is the shortfall distribution defined as the probability that the farmer will be

unable to deliver ξ hogs when fulfilling the meatpacking contract of size q in the next decision

period. By writing Gt+1(ξ) ∈ [GII
t+1(ξ), G

I
t+1(ξ)], we mean that the shortfall distribution

function is a mixture of GI
t+1(ξ) and GII

t+1(ξ). The mixing is required because the exact

specification of the shortfall distribution depends on how the farmer chooses to fulfill the

meatpacking contract. There are two principal methods: (1) she can use only regular-weight

hogs, or (2) she can utilize all hogs. Of course, her ultimate decision depends on which

method makes her better off based on the prevailing market conditions in the given decision

period. Therefore, when viewed from time t, the probability the farmer will short some hogs

when fulfilling the contract in period (t+1) is a mixture distribution that reflects the optimal

use of both methods.

Proposition 1.2 reveals that our one-period look-ahead policy is the same as the optimal

policy of Proposition 1.1 with closed-form expressions for the break-even thresholds zit and

z̄it, i = 1, 2. Proposition 1.1 does not actually specify the thresholds. Instead, it appeals to

Lemmas 1.3 and 1.4, which merely assert that these thresholds exist without giving a specific
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recipe for how to compute them. Having the closed-form expressions for the thresholds makes

the implementation of the optimal policy of Proposition 1.1 relatively straightforward.

The second point worth mentioning is that the closed-form thresholds in Proposition 1.2 have

an appealing interpretation. Viewed from period t, if we interpret the number of market-ready

hogs at the beginning in period (t + 1) as “demand;" the contract price plus the penalty

cost for regular-weight hogs as the “retail price;” the spot price for regular-weight hogs as

the “salvage value,” and the period-t holding cost as the “cost,” then the thresholds z1t and

z̄it resemble standard newsvendor critical fractiles. Thus, the one-period look-ahead policy

effectively reduces the complicated multi-period, non-stationary problem of Equation (1.4) to

an analytically appealing “newsvendor-like” solution.

Next, we would like to produce a meaningful comparison of the farm’s current practice (§1.4.3)

and the optimal policy. For this purpose, we use the farm’s data and publicly prices to

calibrate our model and perform numerical experiments.

1.7 Model Extensions

Our model can be implemented to other industries where multiple items are interchangeable

held as inventory. We extend our model in the following directions to adapt the environment

of different industries.

1.7.1 Endogenize the Input Decision

Even though the hog producer makes independent weans procurement decision from the

market volatility, production planners in other industries might determine the input quantity

because of shorter production lead time [13]. Let τ < T denote the production lead time
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representing the number of periods from the input decision to the selling decision. The farm

should decide how many weans to order denoted by ut at the beginning of period t at price

ct, and we add ct to the price vector P t. The procured weans will be market-ready at period

t+ τ , so the supply is prepared for the sales at that time. We assume uncertain proportional

yield ratios for different weights of hogs. Let γ1
t (resp. γ2

t ) denote the proportion of weans that

grow to be under(regular)-weight hogs at time t. They follow a joint distribution F(γ1
t , γ

2
t ) in

the space (0, 1)2 and we have γ1
t + γ2

t ∈ (0, 1). Both yield rations depend on the season and

weather conditions. A common knowledge is that the yield ratios are higher is winter, but

lower is summer. Therefore, we can endogenize the physical randomness by using γ1
t ut−τ (resp.

γ2
t ut−τ ) to substitute W 1

t+τ (W 2
t+τ ) in the original model. We also need to track the supply

decision log during the lead time in the state, which can be characterized by a (τ − 1)-vector,

ut = (ut−τ+1, · · · , ut−1) like [13]. The input decision is also related to the market volatility.

We use subscription t|τ to represent the time t’s forecast for the market price at t+ τ , e.g.,

P̂ t|τ is the time t’s price forecast τ periods forward. The dynamic program can be re-written

as follows:

Vt(st,ut,pt) = max
ut,yt,zt

{
vt(ut,yt, zt; st,ut,pt) : y

1
t + y2t ≤ q, y1t + z1t ≤ s1t , y

2
t + z2t ≤ s2t

}
,

(1.7a)

vt(ut,yt, zt; st,ut,pt) = rt(ut,yt, zt; st,pt) + β EtVt+1(St+1,ut+1,P t+1), t = 1, 2, . . . , T

(1.7b)

rt(ut,yt, zt; st,pt) = pCt
(
y2t + (1− α) y1t

)
+

2∑
i=1

pit
(
sit − yit − zit

)
−

2∑
i=1

cHt z
i
t − cPt

(
q − y1t − y2t

)
− ctut,

(1.7c)

s.t. S1
t = γ1

t ut−τ , S
2
t = γ2

t ut−τ + z1t−1 + z2t−1. (1.7d)

Note that the one-period reward function is independent of the supply history vector.
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Lemma 1.5 (Concavity). The value function vt(ut,yt, zt; ·) is jointly concave in (ut,yt, zt)

for all t = 1, 2, . . . , T .

Proof. We have proved that vt is concave in (yt, zt) in Lemma 1.2. So, we only need to show

that vt is also concave in ut by backward induction. For t = T , the concavity holds since

vT = rT for any (uT ,yT , zT ), which is linear in uT with the first-order derivative −ct. For

any other t, we have the value function’s second-order partial derivative with regard to ut as

follows,

∂2vt
∂u2

t

= β
∂2EtVt+1

∂u2
t

= βτ ∂
2EtVt+τ

∂u2
t

≤ 0,

since ∂2vt+τ

∂u2
t

≤ 0 and the concavity preserves in expectation and maximization.

Proposition 1.3 (The Optimal Policy with Supply Decision). The supply decision u∗
t is the

solution of the following FOC,

βτ ∂EtVt+τ (St+τ ,ut+τ ,P t+τ )

∂ut

− ct = 0, (1.8)

where the first term is the discounted margin of a wean τ periods later.

1. Let p2t > pCt + cPt , t = 1, 2, · · · , T

(a) If p1t > (1− α)pCt + cPt , the optimal solution is y1t = y2t = 0, z1t = s1t ∧ z̄1t , z2t = 0,

and ut = u∗
t .

(b) Otherwise, the optimal solution is y1t = (s1t − z1t )
+ ∧ q, z1t = (s1t − q)+ ∧ z̄1t , y2t = 0,

z2t = 0, and ut = u∗
t .

2. Let p2t ≤ pCt + cPt , t = 1, 2, · · · , T .
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(a) If p1t > (1− α)pCt + cPt , the optimal solution is y1t = 0, z1t = s1t ∧ z̄1t , y2t = s2t ∧ q,

z2t = (s2t − q)+ ∧ z̄2t , and ut = u∗
t .

(b) else if 0 ≤ (1 − α)pCt + cPt − p1t ≤ pCt + cPt − p2t , the optimal solution is y1t =

(s1t − z1t )
+ ∧ (q − s2t )

+, z1t = (s1t − y1t )
+ ∧ z̄1t , y2t = s2t ∧ q, z2t = (s2t − q)+ ∧ z̄2t , and

ut = u∗
t .

(c) else, the optimal solution is y1t = (s1t − z1t )
+ ∧ q, z1t = (s1t − q)+ ∧ z̄1t , y2t =

s2t ∧ (q − (s1t − z1t )
+)+, z2t = (s2t − y2t )

+ ∧ z̄2t , and ut = u∗
t .

The future margin of a wean consists of two parts: 1) the lump-sum reward at period t+ τ

and 2) the effect on the remaining horizon after that. Even though it is intractable because

of 2), we can interpret some insights from 1) since it is the main component of the future

value. The future margin of a wean can be estimated by the future market prices. But the

coefficients are not deterministic since the optimal supply decision interacts with the finishing

decisions yt+τ and zt+τ . However, according to Proposition 1.1, the finishing decision is

divided into five different cases, and each of them have different effects on the supply decision.

So, we summarize the coefficients of future market prices on the marginal value of a wean

in Table 1.5 and 1.6. We cannot obtain the closed form of the margin because they contain

the holding stock thresholds generated by Proposition 1.1. Therefore, we propose a τ -period

look-ahead policy to find the supply decision effectively based on the forecast prices P̂ t|τ .

Let F1
t (·) and F2

t (·) denote the marginal cdf of γ1
t and γ2

t , respectively, then we summarize

the τ -period look-ahead policy in the following Proposition 1.4.

Proposition 1.4 (An Optimal τ -Period Look-Ahead Policy). For any t = 1, · · · , T − τ , the

optimal procurement quantity for weans u∗
t is the solution to the following equation,

u∗
t =

q

Γ2
t+τ

−1
(

ct+
∑τ−1

l=0 ĉHt+l−βτ p̂2t+τ

βτ p̂Ct+τ−βτ p̂2t+τ

) , (1.9)
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Table 1.5: Coefficients of Future Prices on Marginal Value of A Wean

Case (State) pCt+τ p1t+τ p2t+τ

1a 0 0, γ1t+τ γ2t+τ

1b 0, (1− α)γ1t+τ −γ1t+τ , 0, γ
1
t+τ γ2t+τ

2a 0, γ2t+τ 0, γ1t+τ 0, γ2t+τ

2b 0 → (1− α)γ1t+τ + γ2t+τ 0, γ1t+τ , γ
1
t+τ + γ2t+τ 0, γ2t+τ

2c 0, αγ1t+τ , (1− α)γ1t+τ + γ2t+τ , γ
2
t+τ −γ1t+τ , 0, γ

1
t+τ 0, γ2t+τ , γ

1
t+τ + γ2t+τ

Table 1.6: Coefficients of Future Costs on Marginal Value of A Wean

Case (State) cHt+τ cPt+τ

1a −γ1t+τ , 0 0
1b −γ1t+τ , 0 0, γ1t+τ

2a −γ1t+τ ,−γ2t+τ ,−γ1t+τ − γ2t+τ , 0 0,γ2t+τ

2b −γ1t+τ − γ2t+τ ,−γ1t+τ ,−γ2t+τ , 0 0 → γ1t+τ + γ2t+τ

2c −γ1t+τ − γ2t+τ ,−2γ1t+τ − γ2t+τ ,−γ1t+τ ,−γ2t+τ , 0 0, γ1t+τ + γ2t+τ , γ
2
t+τ

where Γ2
t+τ (ξ) := E[γ|γ ≤ ξ], represents the truncated expectation of the yield proportion for

regular weight hogs.

1.7.2 An Extension to Infinite Horizon

In this subsection, we extend our model to an infinite horizon. We follow the fashion of [69],

which investigated a nonstationary period review inventory problem with a infinite horizon.

The following Proposition 1.5 shows the sufficient condition such that the optimal structural

policy preserves for the infinite horizon extension.

Proposition 1.5. The probability that hog producer holds REGULAR weight hogs approaches

to zero, i.e., limT→∞
1
T

∑T
t=1 Pw{z̄2t > 0} → 0, is sufficient to guarantee that the policies

uniquely satisfy the infinite horizon analogues of Proposition 1.1.

41



A sufficient condition of for the preservation of optimal policy to the infinite horizon is that

hog producer never hold the regular weight hogs. The reason is that only the regular weight

pool contains hogs from previous period, whereas the under-weight pool only has hogs newly

become market ready this period. If the the hog producer does not hold regular weight hogs,

the hogs stay at the finishing stage for at most two weeks, and thus, the optimal policy, which

has the “one-period lookahead" fashion will not be influenced by long-stay hogs.

It is not an unrealistic assumption because holding regular weight hogs does not add any

value to the product. Compared with holding under weight hogs, which can be raised to

regular weight and gaining extra market price, holding a regular weight hog creates the same

option value but loses more opportunity profit in the current period. It is not the best option

for the hog producer as long as she has excessive under-weight hogs that can be stored for

future use. Therefore, we can conclude that our model can be extended to infinite horizon in

practice.

1.8 Empirical Study for The Maschhoffs

1.8.1 OTC Price Fit

In this section, we use a regression model to estimate the implied distribution of the price

vector P t of §1.4.1, which will allow us to take expectations in (1.4) and (1.6).

Figure 1.9 provides us an overview of the steps when fitting OTC prices. The model we use

is a seasonal autoregressive (AR) moving average (MA) model with exogenous regressors,

denoted as VARMAX(p, q)× (P,Q)m model, where p is the number of AR terms, q is the

number of MA terms, P is the number of seasonal autoregressive (SAR) terms, Q is the

number of seasonal moving average (SMA) terms, m is the number of periods in a season (for
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Figure 1.9: Logic Flow of Fitting OTC Price

ARIMA model details, see [86] and [110]. For more details of model calibration, see [50] and

[31], which also use ARIMA model framework to simulate prices). Our model specification is

VARMAX(1, 1)× (0, 1)52 formulated as follows,5

(I − ϕ1B)P t = ϵ0 + (I + θ1B))(I +Θ1B
52)ϵt +ψ1Π̂

O

t +ψ2Π̂
M

t +ψ3Π̂
F

t , (1.10)

where ϵt is an i.i.d. normal vector with zero mean and a covariance matrix of Σϵ.

Note the “ ˆ" symbol above the factor price vectors Π̂
O

t , Π̂
M

t , and Π̂
F

t .

Forecasting current period’s OTC price requires knowing the current period’s factor price.

We address this issue by forecasting the factor prices ΠO
t , ΠM

t , and ΠF
t using a standard

VARIMA(1,1,1) model and feeding the forecasts, Π̂
O

t , Π̂
M

t , and Π̂
F

t , into the model (1.10).

(For additional details, see Appendix A.2.)

In Equation (1.10), the coefficients we need to estimate from data are the AR coefficients

(ϕ1), the vector of constants (ϵ0), the MA coefficients (θ1), the seasonal coefficients (Θ1), and

the vectors (ψ1, ψ2, and ψ3), which link OTC prices to factor prices (see A.2.1 for additional

details).
5See Appendix A.2 for additional details.
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Table 1.7 gives an overview of the estimated parameters. Table 1.7 indicates that the factor

prices are significant at the 5% level.

Table 1.7: Parameter Estimates for OTC Prices Model VARMAX(1,1)× (0, 1)52

Dep. Var.
Parameter

PC
t P 1

t P 2
t CH

t CP
t

ϵ0 14.617∗∗∗ −34.846∗∗ −8.940 1.037∗ −0.089

(4.957) (14.511) (9.613) (0.547) (0.096)

ϕ1 0.165∗∗∗ 0.225∗ −0.183∗∗ 0.806∗∗∗ −0.183∗∗∗

(0.096) (0.122) (0.106) (0.176) (0.106)

θ1 0.358∗∗∗ 0.342∗) 0.454∗∗∗ −0.253 0.454∗∗∗

(0.096) (0.122) (0.106) (0.176) (0.106)

Θ1 0.110 0.006 −0.027 0.026 −0.027

(0.166) (0.183) (0.184) (0.223) (0.184)

ψ1 0.876∗∗∗ 2.207∗∗∗ 2.284∗∗∗ 0.005∗∗ 0.023∗∗∗

(0.085) (0.332) (0.159) (0.003) (0.002)

ψ2 0.673∗∗∗ 0.471∗ 0.328∗∗ −0.007∗ 0.003∗∗
(0.074) (0.244) (0.144) (0.004) (0.001)

ψ3 0.237 1.101∗∗∗ 0.191 0.001 0.002

(0.159) (0.292) (0.257) (0.009) (0.003)

Note: Standard errors are given in parentheses under coefficients. *
indicates p-value at the 10% level; ** at the 5% level; and *** at the
1% level.

We evaluate the fitness of our time-series model using the following two criteria:

(1) The model’s residuals should be normally distributed with a mean of zero. We use

Royston’s multivariate normality test and the Chi-square quantile-quantile (Q-Q) plot

to check this.

(2) There should be no autocorrelation in the residuals. We check for auto-correlation

function (ACF) as per [49]. The ACF= 1 indicates a perfect (positive) correlation,

whereas ACF= 0 indicates no autocorrelation.
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Evidence 5c: QQ Plot Residuals of ARIMAX(1,0,1) (0,0,1) with Forecast Factor Price (Model ARIMA(1,1,1))

Figure 1.10: QQ Plot of Residuals of VARIMAX(1,0,1)× (0, 0, 1) with Forecast Factor Price
Using ARIMA(1,1,1) Model

We include the corresponding Q-Q plots and ACF plots in Figures 1.10 and 1.11. All indicated

that the model passes based on the fitness criteria outlined above.

Two points deserve a discussion regarding our choice of the VARIMAX model. First, the

exogenous regressors play an essential role in the estimation of the OTC prices. Without them,

the model would reduce to a standard VARIMA model for which, as per Figure 1.12, the

ACFs of some residuals are not within the required confidence bounds. Thus, the VARIMA

model alone is inadequate to explain our data.

Second, if we tried to fit OTC prices by only regressing on factor prices, the model would

fail to capture the seasonal and autoregressive nature of our data. We illustrate this point

graphically in Figures 1.13 and 1.14.
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Evidence 5b: ACF of Residuals of OTC Prices of Model ARIMAX(1,0,1) (0,0,1) with Forecast X (Model ARIMA(1,1,1))

Figure 1.11: Sample ACF of Residuals of OTC Prices Using ARIMAX(1,0,1)× (0, 0, 1)52
Model with Forecast Factor Prices Using VARIMA(1,1,1) Model.
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52

Figure 1.12: ACF for the Residuals of OTC Prices ( (VARIMA(1, 0, 1)× (0, 0, 1)52)
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Figure 1.13: OTC Prices in the Time Horizon.

1.8.2 Policy Performance

Based on the data of the previous section, we now use the following inputs to perform a

numerical comparison of the policies presented earlier in the paper. Our data inputs are:

• The contract size (q) is 98,107 hogs/week.

• W 1
t and W 2

t follows normal distributions with weekly means of 62,906 and 28,906 and

standard deviations 9,551.4 and 7,839.2 (§§1.3.1).

• OTC prices are governed by Equation (1.10) of §§1.8.1.

• The discount factors α and β are 15.4% and 2% respectively.

With these inputs, we run 10,000 simulations over a 100-week horizon to compare the following

policies:

47



-0.5

0

0.5

1
S

am
pl

e 
A

ut
oc

or
re

la
tio

n
Sample Autocorrelation Function

0 20 40 60 80 100
Lag

Pt
C

Confidence Bounds

-0.5

0

0.5

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 20 40 60 80 100
Lag

Pt
1

Confidence Bounds

-0.5

0

0.5

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 20 40 60 80 100
Lag

Pt
2

Confidence Bounds

-0.5

0

0.5

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 20 40 60 80 100
Lag

C t
H

Confidence Bounds

-0.5

0

0.5

1

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Sample Autocorrelation Function

0 20 40 60 80 100
Lag

C t
P

Confidence Bounds

Evidence 0b: ACF of OTC Prices

Figure 1.14: ACF of OTC Prices in the Time Horizon.

• The existing always fulfill policy (AF) of §1.4.3

• The optimal policy (OP) of §§1.5

• One-period look-ahead policy (OLNV) of §1.6

• τ -period look-ahead policy (τ -LNV) of §§1.7

Figure 1.15 presents the profit for each policy graphically. Table 1.8 benchmarks each heuristic

policy against the optimal policy, OP. (Although in §1.6, we argue that the OP is not trivial

compute, here we exploit the farm’s assumed short 100-week operating horizon to gain

numerical tractability.)

Our calibrated numerical study’s central observation is that the optimal policy represents a

substantial improvement over the existing practice (25.89% on average). At the same time,

48



10 20 30 40 50 60 70 80 90 100

Time Horizon (T)

0

1

2

3

4

5

6

A
cc

um
ul

at
ed

 P
ro

fit

108

-LNV
OLNV
AF
OP

Figure 1.15: Performance of Heuristics with Endogenous Supply

the optimal policy outperforms the one-period look-ahead policy by as little as 1.76%. This

performance is noteworthy because the one-period look-ahead is relatively easy to implement

and delivers a significant improvement over the farm’s existing practice.

From the managerial point of view, the most significant factor behind the optimal policy’s

improvement over the existing practice is the treatment of the under-weight hogs. Currently,

the farm uses the under-weight hogs to either fulfill meatpacking contract or even sell them

on the open market (see §1.4.3). As we explain in our discussion of Lemmas 1.3 and 1.4,

the optimal strategy is to keep some of these under-weight hogs on the farm until the next

decision period to capitalize on their inevitable weight and price gains.
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Table 1.8: Performance of Heuristic Policies

Change† τ -LNV OLNV AF

Average⋆ 9.33% 10.69% 22.77%

† ∆η .
=

V ∗
0 (s0,p0)− V η

0 (s0,p0)

V ∗
0 (s0,p0)

, where V ∗
0 (s0,p0) and

V η
0 (s0,p0) denote the total expected profit over the planning

horizon with benchmark policy (OP) and a policy η.
⋆ For each heuristic policy, “Average" denotes the average per-

centage profit loss in all numerical instances.

1.9 Conclusion

Our paper investigates a challenging weekly operations-sales planning problem at the wean-

to-finish hog farm (farms raising larger-sized pigs close to market-ready weight, typically

23-26 weeks old). 23- to 26-week old hogs are combined into pools of under-weight and

regular-weight hogs that can be used to either fulfill fixed quantity long-term contracts with

food producers or be sold on the open market. The farmer can use either the regular-weight

or under-weight hogs to fulfill the food producer contract, although the under-weight hogs

fetch a lower price. Pork producers can essentially pick the best time to sell because they have

the flexibilities to hold hogs and let them continue to feed instead of selling them, although

the decision to hold means they incur additional feeding costs. While the hogs feed, they gain

weight. Under-weight (regular-weight) hogs gain lean weight (fat). A rise in lean weight leads

to a rise in the economic value of the hog. The research questions are what hogs to sell and

when. To the best of our knowledge, this is the first paper that addresses dynamic multi-item

inventory and selling policy in contractual and spot markets under-supply uncertainties,

stochastic costs, and both markets governed by stochastic prices.
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Currently, the producer (the most prominent family-owned US hog farmer, The Maschhoffs)

uses an always fulfill (AF) policy. The spirit of the current practice is that the long-term

contract has the utmost priority, and the regular-weight hogs are used to fulfill the contract.

The under-weight hogs are mostly there to account for shortages in the contract obligations,

and if in excess, they are sold in the open market. We improve the AF policy by viewing

the farm’s problem as a dynamic, multi-item inventory model with stochastic supply and

prices and answering the research question using a conventional dynamic programming

formulation to derive an optimal policy structure. The optimal policy is non-monotone with

four thresholds. The thresholds characterize action switching for the hogs (under- or regular-

weight hogs as reflected by the threshold) from holding to selling to the open market or from

holding to fulfilling the contract depending on market prices. All thresholds are conceptually

explained through the marginal value comparison of holding, fulfilling the contract, or selling

to the spot market. The major drawback of directly applying the optimal policy is that it is

difficult to calculate the theoretically optimal thresholds. To overcome the computational

difficulties in identifying the thresholds, we also derive a one-period look-ahead heuristic

based on the optimal policy’s structure and thresholds with a newsvendor-like interpretation.

Calibrated numerical experiments reveal that the optimal policy substantially improves the

existing practice (25.89% on average). At the same time, the optimal policy outperforms the

one-period look-ahead policy by as little as 1.76%. This performance is noteworthy because

the one-period look-ahead algorithm preserves the optimal policy structure, is relatively

easy to calculate the needed thresholds, and delivers a significant improvement over the

farm’s existing practice. The success of the proposed solution (policy structure and heuristic

thresholds) is attributed to recognizing the value of holding under-weights hogs and effectively

hedging supply uncertainty and future prices – an insight missed in the planning actions of

the current practice.
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Chapter 2

A New Class of Revenue Management

Problems with Overbooking and

No-Shows: Shoring up Trust between

Shippers and Carriers in Maritime

Container Shipping

In the airline industry, the practice of overbooking has been a celebrated operational tool that

has lead to revenue gains exceeding hundreds of millions of dollars when implemented correctly.

By contrast, in the container shipping industry, the story of overbooking is filled with tales

of chronic mistrust between shippers and carriers. Specifically, loose and unenforceable

contracting practices have led to a failed market where shippers constantly renege on their

agreement to produce containers as promised, and as a result, carriers overbook too frequently

52



in an effort to hedge against this no-show behavior. The cost of such behaviors has been

estimated to be in the range of $30-40 billion annually, which highlights the glaring need for

a remedy to this issue.

In this paper, we propose and study a deposit-based booking system that draws inspiration

from current practices that have been shown to be successful in mitigating no-show behavior

and overbooking in the container shipping industry. Specifically, we consider a reservation

system where inquiring shippers book cargo space using a customized deposit. The carrier,

upon accepting the shipper’s booking request, matches the shipper’s deposit with a deposit

of their own of equal size. If either party reneges on the agreement, the defaulting party loses

their deposit to the more trustworthy party. However, if both parties uphold their side of the

deal, the deposits are returned in full to both sides. Under this booking mechanism, we study

the carrier’s sequential online booking problem, which gives rise to a new class of revenue

management problems with overbooking and no-show behavior that share only superficial

commonalities with existing frameworks. Our main algorithmic finding is the development of

a simple and easy to implement booking policy, which we show to be 1
6
-competitive against

a clairvoyant benchmark that knows the full sequence of deposits. Additionally, in certain

settings that are likely to arise in practice, we maintain that this policy rewards reliable

shippers by guaranteeing them a service slot if their booking request is accepted.

2.1 Introduction

The field of revenue management is no stranger to the practice of overbooking, where

airlines [47], hotels [71], hospital clinics [33] and the like adopt booking policies that hedge

against the prospect of cancellations and no-shows by accepting more reservations than they

have physical capacity to serve. Indeed, there is a rich and diverse history of research on this
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topic that dates back over 60 years, beginning with the seminal works of [97], [80] and [81],

and extending to the more modern-day takes of [92], [37], and [35], to name a few. While

each of these previous works has its own distinguishing features, at their core, they are all

fueled by the following fundamental trade-off that is inherent to the practice of overbooking:

book too few reservations and there will be unused capacity, but book too many reservations

and customers will either have to be turned away or rescheduled, and then compensated

for this inconvenience. The ability of airlines, in particular, to find a booking limit “sweet

spot” has led to considerable improvements in their bottom line. [87] reports that American

Airlines estimates that 15 percent of seats on sold-out flights would be unused if it were not

for overbooking, which equates to what would be around $225 million6 in lost revenue.

Maritime container shipping and its pain points. A lesser-studied and intriguing

application of overbooking has been steadily evolving in maritime container shipping, which

is the service of transporting goods by means of truck-sized intermodal containers via cargo

ships. The Twenty-foot Equivalent Unit (TEU), whose name was derived from the dimensions

of a 20 foot standardized shipping container, is the standard unit of measurement used to

determine cargo capacity for container ships. The big players in this industry are container

shipping companies like Maersk Line, China Ocean Shipping Company (COSCO), and Orient

Overseas Container Line (OOCL), who offer regular service on fixed routes and schedules to

many multi-national companies (e.g. Apple and Walmart). The container shipping industry

as a whole accounts for approximately 60 percent of all seaborn trade, which equates to a

$14 trillion valuations. 7

To initiate the discussion surrounding how overbooking and no-show behavior have shaped the

maritime container shipper industry, we begin with a high-level description of its sequential
6All dollar figures are in USD.
7https://www.statista.com/topics/1367/container-shipping/#dossierKeyfigures
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booking problem. Abstracting away from the finer details for the moment, we first note

that each carrier’s liner (ship) naturally has a fixed number of TEUs that it can transport.

We henceforth refer to the available capacity on a liner as service slots, i.e., a service slot

is the physical space needed to transport a single container or TEU. Shippers in need of

transport for their cargo send booking requests to a carrier, who can either accept or reject

this request. For each accepted request, the carrier sets aside one of its available service slots

for use by the shipper, who agrees to deliver its cargo, ready for transport, on a specific date.

For reasons that will be made clear shortly, the carriers experience relatively high no-show

and cancellation rates among shippers, which forces them to accept excessive bookings in

relation to their available shipping capacity. Unlike the airline industry, the result of such

overbooking practices has not been financial success, but rather, has resulted in a downward

competitive cycle that has caused profit losses for carriers, and supply chain inefficiencies for

shippers. There are two central, and thus far unmentioned, features of the carrier-shipper

booking process that are the culprit for the pain points caused by overbooking and no-show

behavior. First, unlike airline passengers who pay for their ticket upon booking, shippers are

only required to make a payment to the carrier once their cargo is loaded on the ship, or even

after the shipment has been delivered. Second, a long history of loose contracting practices

have essentially made any agreed upon no-show or overbooking penalties unenforceable by

either party. As a result of these two features, shippers readily abandon bookings because

they have found cheaper rates (on the spot market, for example) or faster delivery with a

different carrier. In response, carriers can often pledge double the number of their available

TEUs to shippers in anticipation of these cancellations. Then, if overbooking ensues, carriers

can freely choose to transport the cargo of the shippers whose agreed upon rates were highest,

and “roll” the remaining cargo, which is the industry term for cargo that has been rescheduled

due to overbooking. [67] concisely summarizes the catastrophic effects these practices have

had on maritime container shipping:
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“At its heart, the system is driven by uncertainty: shippers face no penalty for
booking a certain volume of cargo on a ship, and then failing to send it; and
carriers face little retribution for leaving containers on the dock that they have
committed to shipping. The two behaviors, and the apparent disregard for the
impact on the other party, fuels an unwillingness to take steps to change a system
that clearly hurts both parties in the long run. Carriers end up running ships
with plenty of empty space, and shippers have to scramble to make alternative
arrangements to get their cargo to its destination on time when containers are
left on the dock.”

Echoing this notion, Tom Smart, vice president of MOL (America), noted that between 17

and 52 percent of promised cargo never materializes, saying “There is no penalty for this

fall down...I just have to manage it.” [66]. According to [89], the overall effects of no-show

shippers and rolled cargo amounts to a staggering $30-40 billion annually, which highlights

the glaring need for a remedy to this issue.

Solution efforts: past and present. As one would naturally suspect, there have been

multiple attempts to fix the overbooking and no-show issues that have plagued the container

shipping industry for many years. In what follows, we summarize the most notable efforts,

and discuss their efficacy with regards to shoring up trust between shippers and carriers.

• Penalty fees: In 2011, Maersk Line added two-sided fees to their contracts with shippers,

which included monetary penalties for both no-shows and rolled cargo. These attempts

proved unsuccessful, as there was no third party system to enforce the fees when shipping

agreements were broken by either party. Later, in 2016, Hapag-Lloyd announced a $40

booking cancellation fee that was met with push back from shippers who questioned

the lack of penalties on the carrier side for rolled cargo [11].

• A blockchain-based approach: More recently, in 2018, Hong-Kong-based start-up 300cu-

bits proposed a blockchain-based approach to better enforce contracts between liners
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and shippers, which are often times agreed upon just by email or verbal affirmations.

To do so, they created TEU tokens (a play on the container unit of measurement),

as well as an Etherium-based ecosystem to facilitate the use of their digital currency.

The company launched an Initial Coin Offering (ICO) during April and May, 2018,

and raised over $1.4 million in total. They subsequently released one million TEU

token into the ecosystem, whose intended use was for deposits by both carriers and

shippers that would serve to dissuade reneging by either party. More specifically, each

booking request issued by shippers was to be accompanied by a TEU token deposit.

If the carrier accepted the given booking, they would match the shipper’s deposit via

their own TEU token deposit of equal magnitude, with all of the details secured within

an Etherium-based smart contract. These blockchain-enabled smart contracts were

automatically enforced based on the outcome of the agreement, thus eliminating the

need for third-party banks and the possibility of contract breaches. If both shipper and

carrier lived up to their side of the agreement, then both would receive their deposit

back in full. However, if either party reneged, then their deposit would be lost to the

more trustworthy party,

In late 2019, 300cubits shut down its TEU token deposit system due to a lack of

transaction volume, citing a “lack of clarity in regulation regimes surrounding digital

currencies” as the reason. Nonetheless, they note that their two-sided deposit-based

booking mechanism was generally successful across the relatively small number of

transaction supervised by the 300cubits platform.8

• A digital matching platform: Founded in 2014, the New York Shipping Exchange

(NYSHEX) was created to restore trust between shippers and carriers via two-way

digital contracts, which are governed by NYSHEX through a handbook of rules created
8https://www.300cubits.tech/wp-content/uploads/2019/09/Booking_Deposit_Module_Announcement_20190930.pdf
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by a committee of shippers and carriers. Using NYSHEX’s digital platform, inquir-

ing shippers can negotiate contracts with shippers that are intended to provide more

predictable (albeit not necessarily lower) rates than the spot market, with built in

negotiable penalty fees for no-shows or cancellation on the shippers side, and cargo

rolling on the carriers side. NYSHEX initially experienced slow growth due the fact that

most shippers are rooted in their old ways. However, through 2019 they experienced

steady growth, and also reported that 96.4% of its contracts were fulfilled [91].

Research agenda. Motivated by the relative success of 300cubits and NYSHEK in mit-

igating no-shows and cargo rolling, we present a theoretical examination of the extent to

which two-sided customized contracts between shippers and carriers have the potential to

mitigate these two pain points of the industry. Delaying a full description until Section 2.1.1,

we consider a booking mechanism that combines the honesty inducing token-based deposit

system of 300cubits with the flexibility of NYSHEX’s customizable contracts. Our intent is

not to model the exact practices of any particular company, but instead to distill the essential

elements of their booking problem and key contracting practices into a framework from which

insights can be drawn. To achieve this goal, we focus on a carrier’s sequential online decision

problem regarding whether to accept or reject each incoming booking request, and ask the

following research questions:

1. Can we develop simple and easy-to-implement booking policies for the carrier that

come with robust performance guarantees?

2. Do the proposed policies encourage and reward (i.e., not roll the cargo of) reliable

shippers, deemed to be those that make a strong commitment to deliver cargo?
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2.1.1 Problem Formulation

We consider a cargo reservation system that has a finite collection of available service slots on

one of its liners. To set the stage for an eventual formal description of our booking problem,

we first provide a high-level account of how we model the process through which inquiring

shippers acquire service slots. We concurrently supplement this discussion with an informal

description of how the liner earns profit throughout this booking process.

We consider a finite horizon booking window, over which potential shippers arrive sequentially,

each interested in acquiring one of the available service slots provided by the liner. Upon

arrival, each shipper offers a deposit to secure a slot, from which the liner infers a show-up

probability, i.e., the likelihood that the given shipper will need the service slot come time

for the carrier’s liner to depart. There are many observable factors influencing this need,

e.g., the magnitude of their deposit relative to the spot market price, historical reliability

of the shipper, freight route origin/destination, type of product to be shipped, time of the

year etc . . . , from which accurate forecasting models can be built. [74] and [109] develop

such forecasting models for predicting no-show and cancellation rates in the airline and

container shipping industries. After observing each shipper’s deposit and corresponding

show-up probability, the liner must make an irrevocable decision regarding whether to accept

or reject the shipper’s offer. The deposits of the accepted offers are frozen by a third escrow

system (potentially through a smart contract) until the end of the booking window, while

rejected shippers leave the system. We do not impose any limits on the number of deposits

that the liner can accept, which as explained at the end of this section, is necessary for the

development of any policy that achieves a non-trivial competitive ratio.

At the end of the booking window, each shipper whose offer was accepted either shows up to

claim a slot or reneges according to its respective show-up probability. For each no-show,
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the liner keeps the deposit of the corresponding shipper. Among the shippers who show

up to claim a slot, the liner allocates the available slots to the shippers whose deposits are

largest. We refer to this process as the “Deposit-Ordered” (DO) slot allocation mechanism,

which, as discussed at the end of Section 2.2.2, is in fact the profit-optimal way for the liner

to assign its service slots slots if more shippers show-up than there are slots. Any shipper

that receives a slot gets its deposit back, and pays the service fee for use of the service slot.

On the other hand, shippers who show up but do not receive a slot get their deposit back,

along with a reimbursement equal to their deposit. This reimbursement can be viewed as

an overbooking penalty paid by the liner. The liner’s goal is to design an online policy that

governs the accept/reject decision for each arriving shipper so as to maximize its expected

profit. In what follows, we first provide more details regarding how the show-probabilities

linked to each deposit should be interpreted, and then proceed to formalize each ingredient

of the liner’s booking problem.

Preliminaries. We let m ∈ Z+ denote the number of service slots available to the liner.

We consider a T ∈ Z+ period booking window, where during each period t ∈ [T ], a single

shipper arrives with probability 1.9 Abusing notation slightly we index the shippers through

[T ], i.e., shipper t ∈ [T ] is the shipper who arrived in period t. The shipper arriving in period

t is characterized by a “deposit tuple” (dt, pt), where dt is the offered deposit and pt is the

estimated show-up probability. Furthermore, we let Y = {Yt}t∈[T ], where Yt ∼ Bernoulli(pt)

represents the random variable capturing whether or not shipper t shows up at the end of

the horizon. We assume that the shippers’ offered deposits are capped at the service fee,

which in turn allows us to normalize the service fee to 1, while also assuming that each

deposit dt ∈ [0, 1]. Since the carrier must match the deposit of each accepted shipper, it is

natural to place a cap on the maximal deposit allowed so as not to tie up too much of the
9We model the arrival of shippers using a Bernoulli arrival process merely for ease of notation, noting that

it is not difficult to see that all of our results go though for an arbitrary sequential arrival process.
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carrier’s cash in deposits. 10 Beyond this assumption, we place no further restrictions on

the sequence of observed deposit tuples, and hence our results are agnostic to the particular

model that the liner uses to estimate the show-up probabilities (i.e., it could be a blackbox

machine learning model). Formally, we assume that the sequence of observed deposit tuples

is chosen adversarially from the set S = {(d1, pt), . . . , (dT , pT ) : (dt, pt) ∈ [0, 1]2, T ∈ Z+},

which naturally gives way to the most general and most challenging version of the liner’s

sequential booking problem.

Summary of key events. With this notation in-hand, we proceed to formalize the sequence

of events that characterize our problem of interest. For the remainder of the paper, we work

under an arbitrary fixed sequence of deposit tuples (d1, pt), . . . , (dT , pT ) ∈ S.

1. At the start of the first period, the liner opens m service slots.

2. In period t ∈ [T ], the shipper associated with deposit tuple (dt, pt) arrives, and the

liner must decide to accept or reject the shipper. After observing the full deposit

sequence, let Aπ ⊆ [T ] denote the shippers whose deposit was accepted under an

arbitrary accept/reject policy π.

3. In period T + 1 (at the end of the booking window), the liner observes {Yt}t∈Aπ , i.e.

which shippers show up to claim a slot. Let Tshow = {t ∈ Aπ : Yt = 1} denote the set of

shippers whose deposit was accepted, and who showed up to claim a slot.

4. The liner allocates a service slots according to the DO allocation mechanism; shippers

t ∈ Tshow whose deposit is among the m largest across {dt}t∈Tshow
receive a service slot.

The liner’s profit from each shipper t ∈ Aπ falls into one of the following three cases.
10The rate for a single TEU can range from $2,000-20,000
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• Case 1 - no-shows: For each shipper t ∈ Aπ \ Tshow, the liner keeps the shipper’s

deposit, and hence earns a profit of dt.

• Case 2 - show + slot: For each shipper t ∈ Tshow that receives a slot, the liner

earns the service fee of 1.

• Case 3 - show + no slot: For each shipper t ∈ Tshow that does not receive a slot,

the liner pays a reimbursement of dt.

The liner’s profit function. It turns out that our future analysis will only require a

formal account of the liner’s profit for a fixed acceptance set A ⊆ [T ]. For this purpose, let

ρ : [T ] → [T ] denote a bijection that maps each shipper t ∈ [T ] to its relative rank among all

T deposits, where we use the convention that smaller rankings correspond to larger deposits.

In other words, shipper t ∈ [T ] has the ρ(t)-th largest deposit among {dt}t∈[T ], where ties can

be broken arbitrarily. Furthermore, let Rt(A, Y ;m) denote the random profit earned from

shipper t ∈ A, given that there are m available slots. The following claim, whose proof can

be found in Appendix B.1, provides an explicit expression for computing the expected profit

earned from shipper t ∈ A.

Claim 2.1. For acceptance set A ⊆ [T ], shipper t ∈ A, and m ∈ Z+ we have

E [Rt(A, Y ;m)] = dt · (1− 2pt) + Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt)) ,

where the expectation is taken with respect to {Yt}t∈A.

Letting R(A;m) denote the total expected profit that the liner derives from acceptance

set A when there are m available slots, it is straightforward to see that R(A;m) =

E[
∑

t∈A Rt(A, Y ;m)]. When viewed in its explicit form, the liner’s profit function eluci-

dates the new technical hurdles that arise in relation to the liner’s sequential booking problem.
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Most notably, in our setting, the total overbooking penalty is a function of the specific

shippers whose cargo is rolled, rather than just the number of shippers who must be turned

away, as is typically the case in standard overbooking models [35, 99].

The competitive ratio. Let OPT = maxA⊆[T ] R(A;m) denote the best case profit garnered

by a clairvoyant who has full access to the sequence of deposit tuples (d1, p1), . . . , (dT , pT ).

The dependence of OPT on m is not made explicit since this relationship is not important

for future analysis. We note that OPT is clearly an upper bound on the best-case expected

profit earned by the liner, since the liner’s policy must make the accept/reject decisions in an

online fashion. We say that any such online policy π, leading to acceptance set Aπ ⊆ [T ], is

α-competitive if R(Aπ;m)/OPT ≥ α, for some α ∈ [0, 1]. Since we work under an arbitrary

sequence of deposit tuples, an α-competitive policy can be understood to garner an expected

profit of at least α ·OPT for any sequence of deposit tuples chosen from S. We conclude this

section by providing a simple two-period setting, which demonstrates that if we impose any

sort of booking limit, then one cannot develop general policies with a non-zero competitive

ratio. This example motivates our assumption that there are no limits on the number of

deposits that the liner can accept.

Example 2.1. Consider a setting with T = 2 and m = 1. Furthermore, we assume that the

liner cannot overbook, and thus it can only accept a single deposit. For arbitrarily small ϵ > 0,

let the first period deposit tuple be (d1, p1) = (ϵ, ϵ). If the liner chooses a policy that accepts

this deposit offer, then we assume that the second period deposit tuple is (d2, p2) = (1, 1). In

this case, the liner earns an expected profit of ϵ+(1− ϵ) · ϵ, while OPT = 1, which is achieved

by rejecting the first period offer, and accepting the second period offer. If, on the hand, the

liner rejects the first period deposit offer, then we assume that the second period deposit

tuple is (d2, p2) = (0, 0). In this case, the liner earns nothing, while OPT = ϵ + (1 − ϵ) · ϵ,
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since a clairvoyant would accept the first offer. In the former scenario, we get a competitive

ratio of O(ϵ), and in the latter scenario, we get a competitive ratio of 0.

2.1.2 Contributions

From an algorithmic perspective, our main result centers around the development of perhaps

the simplest booking policy imaginable, in that it requires essentially no computation to

implement. We refer to this policy as the “Threshold One-Half” (TOH) policy. Delaying a

formal description of the this policy until Section 2.2, we note that one particularly intriguing

feature of the TOH policy is that it reserves the m service slots for so-called reliable shippers,

deemed to be those with show-up probabilities that exceed 1
2
. We ultimately show that

the TOH policy is 1
6
-competitive through an amalgam of simple claims from which we can

(i) easily analyze the worst-case deposit tuple sequence for the TOH policy and (ii) find

overlap between the decisions made the TOH policy and the optimal booking policy. In

Section 2.2.5, we present an extensive array of computation experiments, in which the TOH

policy is benchmarked against the optimal clairvoyant policy using a handful of performance

metrics. Quite remarkably, we find that the TOH policy far exceeds its worst-case guarantee

of 1
6
·OPT, earning, on average, near optimal profits across all test cases. Furthermore, with

regards the secondary performance metrics, we observe that, on average, the TOH matches

the optimal policy in terms of its usage capacity (i.e., fraction of the m slots allocated), while

rolling slightly less cargo.

From a managerial perspective, we note that in settings where higher deposits imply higher

show-up probabilities, the TOH policy has appealing structure. Such settings arise in practice

when each shipper’s show-up likelihood is highly influenced by the spot market price, i.e., the

shipper reneges only if the spot market price dips to a level that makes it more profitable for

the shipper to back out of their agreement and acquire its TEUs through the spot market.
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In this case, higher deposits naturally beget high show-probabilities, since bigger swings in

the spot market are needed to offset higher deposits. In this case, reliable customers will

have the highest deposit among all those accepted, since they will be the only shippers with

show-up probabilities exceeding 1
2
. Furthermore, as we have yet to reveal, the TOH policy

accepts at most m reliable customers, and so any reliable shipper who shows up to claim a

service slot will be allocated one, which also implies that only unreliable shippers will ever

have their cargo rolled. In sum, the TOH policy is simple and easy to implement, comes with

robust worst case performance guarantees, and it rewards honest and reliable shippers by

guaranteeing them a service slot if their booking request is accepted, while only rolling the

cargo of shippers who cannot make a strong commitment to use of the carrier’s service.

2.2 The Threshold One-Half Booking Policy

The entirety of what follows, up to and including Section 2.2.4, is devoted to formalizing the

TOH policy and showing that it is 1
6
-competitive. Section 2.2.5 then details a collection of

numerical experiments aimed at measuring the efficacy of the TOH policy via a handful of

performance metrics. All proofs are located in Appendix B.1.

Reliable and unreliable shippers. The TOH policy will critically depend on the following

partitioning of the shippers. Specifically, we label all shippers t ∈ [T ] with show-up probability

pt ≥ 1
2

as “reliable” (abbreviated as “rel” throughout), and any shipper t ∈ [T ] with show-

probability pt <
1
2

as “unreliable” (abbreviated throughout as “unrel”). Furthermore, let

Trel = {t ∈ [T ] : pt ≥ 1
2
} and Tunrel = [T ] \ Trel respectively denote the sets of reliable and
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unreliable shippers for our fixed deposit sequence (d1, p1), . . . , (dT , pT ). Finally, we let

R∗
rel = max

A⊆Trel

R(A;m)

R∗
unrel = max

A⊆Tunrel

R(A;m)

respectively denote the maximum expected profit that can be extracted from reliable and

unreliable shippers by a clairvoyant that has full access to the deposit tuple sequence. Both

R∗
rel and R∗

unrel depend on m, however, once again, making this relationship explicit serves

no purpose in our future analysis.

Main theorem. Surprisingly, this exceedingly simple and intuitive policy can be shown to

be Ω(1)-competitive, as stated in the following theorem. We devote the remainder of this

section to establishing this result.

Theorem 2.1. For any m ∈ Z+, we have that

R(ATOH;m) ≥ 1

6
·OPT.

The above theorem not only constitutes what we feel is a meaningful addition to the extensive

literature concerning the development of overbooking policies in classical revenue management

settings, but also complements the growing body of work related to the now-famous prophet

inequality in optimal stopping [58, 82]. To the best of our knowledge, only [32] considers a

version of this classical optimal stopping problem with aspects of overbooking, however, the

notions of overbooking in this earlier work only mildly resemble those considered here.
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2.2.1 High-Level Outline

We go-about proving Theorem 2.1 through a sequence of three steps, which are summarized

below.

[58, 82]. To the best of our knowledge, only [32] considers a version of this classical optimal

stopping problem with aspects of overbooking, however, the notions of overbooking in this

earlier work only mildly resemble those considered here.

Step 1: The Reliable-First slot allocation mechanism (Section 2.2.2). In this first

step, we consider an alternative slot allocation mechanism in lieu of the DO slot allocation

mechanism that assigns the slots to the shippers with the largest deposits. Specifically,

we consider a mechanism that first gives away the available slots to the reliable shippers,

irrespective of their deposit sizes, before then allocating slots to unreliable shippers in

decreasing order of deposit size. We aptly refer to this alternative mechanism as the the

Reliable-First (RF) slot allocation mechanism, and show that under the RF mechanism,

the expected profit of the liner is no larger than that earned under the DO slot allocation

mechanism, yet, its dynamics turn out to be simpler to analyze.

Step 2: Competing against R∗
rel (Section 2.2.3). Recalling that ATOH is the acceptance

set returned by the TOH policy, in this second step, we prove that R(ATOH;m) ≥ 1
4
· R∗

rel.

We do so by first showing that the profit contribution of unreliable shippers is always non-

negative, and hence in an effort to simplify the analysis, we can focus exclusively on the

reliable shippers, and show that R(ATOH ∩ Trel;m) ≥ 1
4
· R∗

rel. This latter bound is then

established by relating the worst case profit of ATOH ∩ Trel to a simple upper bound on R∗
rel.
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Step 3: Competing against R∗
unrel (Section 2.2.4). In this third step, we show that

R(ATOH;m) ≥ 1
2
· R∗

unrel. The key insight with regards to establishing this bound is showing

that, if the TOH policy were to retroactively reject all reliable shippers that it had accepted,

then from just the unreliable shippers alone, it would garner an expected profit of R∗
unrel. In

reality, however, the TOH policy may in fact accept up to m reliable shippers, which “steal

away” profit from the unreliable shippers by potentially claiming service slots. Fortunately,

we are able to show that this potential profit loss is minimal, bounding it in such a way that

leads to the aforementioned performance guarantee that we seek in this step.

The final steps. In what follows, we show that the two performance bounds derived in

Steps 2 and 3, namely R(ATOH;m) ≥ 1
4
· R∗

rel and R(ATOH;m) ≥ 1
2
· R∗

unrel, are all that is

needed to prove Theorem 2.1, Having established these bounds, we see that

R(ATOH;m)

OPT
≥ max

{
1
4
· R∗

rel,
1
2
· R∗

unrel

}
R∗

rel +R∗
unrel

≥ min
R∗

rel,R
∗
unrel≥0

max
{

1
4
· R∗

rel,
1
2
· R∗

unrel

}
R∗

rel +R∗
unrel

=
1

6
,

where the first inequality follows from Claim 2.2 presented below, and the final equality

follows by noting that the minimum is achieved when R∗
unrel =

1
2
· R∗

rel. Consequently, in the

worst case, the TOH policy earns a 1
6
-th fraction of OPT, as is stated in Theorem 2.1.

Claim 2.2. R∗
rel +R∗

unrel ≥ OPT.

2.2.2 Step 1: The Reliable-First slot allocation mechanism

The expected profit function R(A;m) is defined with respect to the DO slot allocation

mechanism in which the liner assigns the available slots to the shippers that show up, and
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have the largest deposits. In this section, we detail an alternative slot allocation mechanism,

referred to as the “Reliable-First” (RF) slot allocation mechanism, which we detail in full

shortly. On the one hand, we show that the RF mechanism garners strictly worse profit than

the DO mechanism, but on the other hand, its use dramatically simplifies our subsequent

analysis.

The RF mechanism. First, we note that it is only necessary for us to define the RF

mechanism in relation to acceptance sets that arise from the TOH policy, which accept at

most m reliable customers. This alternative slot allocation mechanism works as follows.

• The slots are first allocated to the reliable shippers who show up, again noting that

under the TOH policy there can be at most m.

• The remaining slots are then allocated to the unreliable shippers who show up according

to the DO mechanism, i.e., in decreasing order of deposit size.

The RF profit function. Under the newly defined RF slot allocation mechanism, let

R̂t(ATOH, Y ;m) denote the random profit earned from shipper t ∈ ATOH. Furthermore, let

R̂(ATOH;m) = E[
∑

t∈ATOH
R̂t(ATOH, Y ;m)] denote the expected profit earned by the TOH

policy under the RF slot allocation mechanism. The following claim, whose proof can be

found in Appendix B.1, is the analogue of Claim 2.1, adapted to fit the RF mechanism.

Claim 2.3. For shipper t ∈ ATOH, we have

E
[
R̂t(ATOH, Y ;m)

]
= pt + (1− pt) · dt
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if t ∈ Trel. On the other hand, if t ∈ Tunrel, we have

E
[
R̂t(ATOH, Y ;m)

]
= dt · (1− 2pt) + Pr

 ∑
τ∈ATOH∩Trel

Yτ +
∑

τ∈Tunrel:
ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt)) ,

where all expectations are taken with respect to {Yt}t∈ATOH
.

To conclude Step 1, we present the following lemma, which states that the expected profit

earned by the TOH policy is never increased by adopting the RF mechanism. We note that

it is not difficult to adapt the proof of Lemma 2.1 to show that there is in fact no alternative

slot allocation mechanism that can outperform the DO mechanism in terms of profit, however

this stronger result is not needed to prove Theorem 2.1.

Lemma 2.1. R(ATOH;m) ≥ R̂(ATOH;m)

2.2.3 Step 2: Competing against R∗
rel

In this section, we establish our first of two lower bounds on the profit earned by the TOH

policy. Namely, we show that R(ATOH;m) ≥ 1
4
· R∗

rel via the following two lemmas.

Lemma 2.2. R(ATOH;m) ≥ 1
2
· |ATOH ∩ Trel|.

Lemma 2.3. R∗
rel ≤ min{|Trel|, 2m}.

We establish Lemma 2.2 by focusing on the RF slot allocation mechanism, where reliable

shippers are prioritized. Under the TOH policy, the number of accepted reliable shippers is

|ATOH ∩ Trel|, who, by definition, must all have show-up probability at least 1
2
. Consequently,

under the RF mechanism, the expected profit earned from the reliable shippers alone is at

least 1
2
· |ATOH ∩ Trel|. From here, the result is finalized by showing that one can ignore
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the unreliable shippers at no profit loss, which can be deduced from simple arguments that

consider the expression for E[Rt(ATOH, Y ;m)] given in Claim 2.1 when pt <
1
2
. Lemma 2.3,

which is the more surprising of the two, provides an upper bound on the optimal profit earned

from reliable shippers by a clairvoyant who has full access to the deposit sequence. The

proof of this result begins with the explicit expression for R∗
rel given in Claim 2.1, and then

proceeds to establish a sequence of upper bounds on this optimal profit that successively

lead to simpler and simpler expressions, culminating in the final bound, which involves only

infinite sums of binomial random variables all with success probabilities of 1
2
. From here, we

finalize the proof of Lemma 2.3 by proving one final bound on these infinite sums of binomial

random variables.

We conclude by noting that Lemmas 2.2 and 2.3 can easily be combined to show the

desired bound of R(ATOH;m) ≥ 1
4
· R∗

rel. To see this, observe that if |Trel| ≤ m, then

|ATOH ∩ Trel| = |Trel|, since the TOH policy accepts the first m reliable shippers. As such, in

this case, we get that R(ATOH;m) ≥ 1
2
· |Trel| ≥ 1

2
· R∗

rel. On the other hand, if |Trel| > m,

then |ATOH ∩ Trel| = m, and we have that R(ATOH;m) ≥ 1
2
·m ≥ 1

4
· R∗

rel.

2.2.4 Step 3: Competing against R∗
unrel

In this section, we show how our TOH policy competes against R∗
unrel = maxA⊆Tunrel

R(A;m);

the optimal expected profit that can be derived from the unreliable shippers alone. To do so,

we will heavily rely on the following dynamic-programming-based approach through which

the liner’s profit can be computed under the RF slot allocation mechanism. This alternative

recursive way to compute the liner’s profit provides a simpler template for proving the various

results of this section.
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The recursive profit function. For ease of notation in the remainder of this section, we

assume the following re-indexing of each acceptance set A ⊆ [T ]. Namely, the unreliable

shippers t ∈ A ∩ Tunrel are given indices 1, . . . , |A ∩ Tunrel| in decreasing order of their

respective deposit sizes (breaking ties arbitrarily), while the reliable shippers t ∈ A ∩ Trel

can be arbitrarily assigned indices |A ∩ Tunrel|, . . . , |A|. Given this re-indexing, we propose a

dynamic program that can be used to compute the liner’s expected profit when the acceptance

set consists exclusively of unreliable shippers.

For an arbitrary unreliable acceptance set A ⊆ Tunrel, we introduce value functions V (t, k;A),

which represent the expected profit garnered from shippers indexed t, . . . , |A| given that

shippers 1, . . . , t− 1 consumed m− k slots, under acceptance set A. The value functions are

valid under either of the proposed slot allocation mechanisms, since both the RF mechanism

and the true mechanisms act identically when the acceptance set consists only of unreliable

shippers. Formally, the recursion can be expressed as

V (t, k;A) = (1− pt) · (dt + V (t+ 1, k;A)) +


pt · (1 + V (t+ 1, k − 1;A)) , if k > 0

pt · (−dt + V (t+ 1, 0;A)) , if k = 0,

(2.1)

with base cases V (|A|+ 1, ·;A) = 0. The above recursion can be interpreted as follows. If

shipper t ∈ A is a no-show, which occurs with probability 1− pt, then the liner collects the

shipper’s deposit of dt, and we move to considering shipper t+ 1, still with k slots remaining.

If, on the other hand, shipper t shows, which happens with probability pt, then we must

consider two cases depending on whether k is no-zero. If k > 0, then the shipper will acquire

a slot, since the recursion processes the shippers from highest to lowest deposit. As such,

the liner collects the service fee and we move to shipper t+ 1 with one fewer slot. If k = 0,
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there are no remaining slots, so in this case, the liner must pay a reimbursement of dt. The

following claim, formalizes the above discussion.

Claim 2.4. For any unreliable acceptance set A ⊆ Tunrel, shipper t ∈ A and k ∈ [m]0, we

have

E

 |A|∑
τ=t

Rτ (A, Y ; k)

 = V (t, k;A),

where the expectation is with respect to {Yτ}τ∈{t,t+1,...,|A|}

Properties of the value functions. Below, we present two claims regarding the newly

developed value functions presented in (2.1). The first shows that the value functions are

always non-negative, while the second provides a universal upper bound on the marginal

value of a single slot.

Claim 2.5. For any acceptance set A ⊆ Tunrel, shipper t ∈ A, and k ∈ [m]0, 11 we have

V (t, k;A) ≥ 0.

Claim 2.6. For any acceptance set A ⊆ Tunrel, shipper t ∈ A, and k ∈ [m]0, we have

V (t, k;A)− V (t, k − 1;A) ≤ 1 + dt.

The above claim is instrumental in establishing the following lemma, which states that if all

shippers are unreliable, then it is optimal to accept each one. We will critically rely on this

lemma for the development of the performance bound that we seek in this section.

Lemma 2.4. Recalling that R∗
unrel = maxA⊆Tunrel

R(A;m), we have

V (1,m;Tunrel) = R∗
unrel.

11[m]0 = {0, 1, . . . ,m}
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The performance bound. To finalize the proof of Theorem 2.1, we show the second

performance bound for the TOH policy, which is formally provided in the following lemma.

Lemma 2.5. Recalling that R∗
unrel = maxA⊆Tunrel

R(A;m), we have

R(ATOH;m) ≥ 1

2
· R∗

unrel.

We prove the above lemma by using the intuition provided in the summary of Step 3 given

in Section 2.2.1. Namely, via Lemma 2.4, we know that if the TOH policy were modified

so that it accepted no reliable shippers, then it would earn an expected profit of precisely

R∗
unrel. However, in order to compete against R∗

rel, the TOH needs to accept up to m reliable

shippers. More specifically, the liner extracts profit from the min{m, |Trel|} reliable shippers

accepted by the TOH policy, but in turn, these shippers diminish the total profit contribution

from the accepted unreliable shippers by consuming available slots. The key to establishing

Lemma 2.5, is to show that the profit gain from the accepted reliable shippers “makes up”, in

a sufficient way, for the profit they draw away from the accepted set of unreliable shippers.

2.2.5 Numerical Experiments

In this section, we present the details of an extensive set of numerical experiments that were

conducted to demonstrate the practical potential of the TOH policy, and in particular, show

that its performance far exceeds its worst case theoretical guarantees.

Instance generator. We generate instances of the liner’s booking problem with T ∈

{10, 20} periods and m ∈ {1, 3, 5} service slots. We note that there is nothing fundamentally

easier about these “smaller” instances. In fact, it is likely most difficult to compete against

OPT when m is small, since in this case, the effects of overbooking kick-in quickly, and it is
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these effects that make the booking problem difficult. We generate the period t ∈ [T ] deposit

using one of the three distribution:

• Uni: The deposit dt in uniformly sampled from the interval [0, 1].

• High-Dep: We generate dt from the distribution

f(dt) =


2dt, if dt ∈ [0, 1]

0, o.w.,

which captures setting where higher deposits are more likely.

• Low-Dep: We generate dt from the distribution

f(dt) =


2− 2dt, if dt ∈ [0, 1]

0, o.w.,

which captures setting where lower deposits are more likely.

Additionally, we consider the following three show-up probability functions, which we use to

map a deposit to its corresponding show-up probability.

• Rand: The show-probability pt is sampled from the interval [0, 1].

• Concave-Inc: The show probability is modeled as the following increasing concave

function of the deposit pt(dt) = log(1 + dt)/ log(2).

• Convex-Inc: The show probability is modeled as the following increasing convex function

of the deposit pt(dt) = d2t .
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A single test case is characterized by a parameter configuration (T,m,D,P) ∈ {10, 20} ×

{1, 3, 5}×{Uni, High-Dep, Low-Dep}×{Rand, Concave-Inc, Convex-Inc}, where D signifies

our choice for the manner in which we generate the deposit in each period and P is the given

show-up probability function. For each of the 54 test cases, we generate 10 streams of deposit

tuples accordingly.

Performance metrics and results. For each of the 540 problem instances generated as

described above, we carry out the TOH policy, and concurrently also compute the optimal

clairvoyant acceptance set A∗ = argmaxA⊆[T ] R(A;m) via brute force enumeration over all

acceptance sets. Additionally, for both ATOH and A∗, we use 10,000 trials of Monte Carlo

simulation to estimate the expected fraction of the m service slots ultimately allocated to

shippers, and the expected number of shippers whose cargo gets rolled. First and foremost,

the results of our experiments reveal that the TOH policy garners an expected profit that is,

on average, within 5% of OPT. Furthermore, averaged over all test cases, the TOH policy

allocates 90% of the m service slots, which is only 1% lower than the average usage percentage

of A∗. Finally, we see that the TOH policy rolls only 1.18 shippers on average, which is

approximately 10% lower than the expected number of rolled shippers under A∗. A more

fine-grained picture of our results are presented in Appendix B.2.

2.3 Concluding Remarks

We conclude this paper by offering numerous directions for future research, which concern

both the specific online booking problem we have considered, as well as various practical

extensions.

Improving the competitive ratio. One question for future work that arises naturally is

whether more sophisticated techniques can be applied to achieve a competitive ratio that
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exceeds 1
6

in the current setting that we study. Along these lines, one could pursue the

development of policies with improved competitive ratios under more structured instances of

our problem. For example, can the the performance of the TOH policy (or other policies)

be improved when the show-probabilities are determined by one of the functions outlined in

Section 2.2.5?

Multi-slot booking requests. In practice, inquiring shippers can request multiple service

slots from a carrier. In the current framework, we can capture multi-slot requests by assuming

that the shipper offers a separate deposit for each slot it is interested in. An intriguing

direction for future work could extend our framework to allow shippers to place a single

deposit to simultaneously secure multiple slots. Moreover, given such a model, it is natural to

wonder whether one can continue to show that simple booking policies have the potential to

be Ω(1)-competitive. A further extension of this multi-slot booking problem could make use

of the following feature of NYSHEK’s digital platform. Namely, within NYSHEK’s digital

platform, if a shipper has booked 100 TEUs, but realizes it only needs 80, then it can sell

back the unused 20 TEUs to other shippers. Incorporating this “sell back” feature within a

multi-slot extension of our original framework could represent a fruitful direction for future

work.

Dynamic pricing of service slots. Another practical extension of our work would be

to allow the carrier to dynamically price the service slots in each period. In this case, the

posted prices take the place of the normalized service fee, and could also influence the arrival

process of the shippers.
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Chapter 3

Blockchain-Enabled Deep-Tier Supply

Chain Finance

For many supply chains, deep-tier suppliers, due to their small sizes and lack of access to

capital, are most vulnerable to disruptions. We study the use of advance payment (AP) as a

financing instrument in a multitier supply chain to mitigate the supply disruption risk and

compare the traditional system (with limited visibility) with the blockchain-enabled system

(with perfect visibility). The main goal of this paper is to shed light on how blockchain

adoption impacts agents’ operational and financial decisions as well as profit levels in a

multitier supply chain. Traditionally, because of the limited visibility in the deep-tiers,

powerful downstream manufacturers’ financing schemes offered to their immediate upstream

suppliers are not effective in instilling capital into the deep-tiers. Advancements in blockchain

technology improve the supply chain visibility and enable the manufacturer to better devise

deep-tier financing to improve supply chain resilience. We develop a three-tier supply chain

model and take a game-theoretic approach to compare how blockchain-enabled deep-tier

financing schemes affect a financially constrained supply chain’s optimal risk-mitigation and

78



financial strategies. We find that although improved visibility via blockchain adoption can

help the manufacturer make informed supply chain financing decision, whether it can benefit

all supply chain members depends on the financing schemes in use. Blockchain-enabled

delegate financing increases risk-mitigation investments and benefits all three tiers of the

supply chain only when the tier-2 is severely capital-constrained with the working capital

below a threshold. Because delegate financing endows the intermediary tier-1 supplier with a

leverage over the manufacturer, the inefficiency inhibits an all-win outcome when the tier-2

is not severely capital-constrained. Blockchain-enabled cross-tier direct financing exhibits a

compelling performance as it always leads to win-win-win outcomes (and thus ubiquitously

implementable) regardless of the supplier’s working capital profile. Our insights help firms

assess opportunities and challenges associated with enhancing supply chain visibility via

blockchain adoption.

3.1 Introduction

Many global supply chains share the characteristic of large, powerful brands supplied by

multiple tiers of suppliers, many of whom are small and medium-sized enterprises (SMEs)

who are capital strapped and lack access to capital markets. Those SMEs are vulnerable

to disruptions of all sorts: production stoppage due to quality issues, input material/labor

shortages, and natural disasters. Their ability to recover from those disruptions and provide

reliable supply to downstream buyers is largely dependent on the resource they can draw, i.e.,

their working capital. A buyer typically only has a direct relationship with the tier-1 supplier

and has limited visibility (visibility barrier) of the deep-tiers in its supply chain [65]. Due to

the lack of visibility into deep-tier supply chains and related transactions, downstream buyers

have limited information about the financial status of deep-tier suppliers and thus cannot

optimally devise cross-tier direct financing strategies. Therefore, downstream buyers-initiated
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supply chain financing (SCF) schemes are limited to helping immediate upstream suppliers,

and the buyers at the best hope their tier-1 suppliers can in turn help the tier-2 supplier

through SCF. Successful implementation of deep-tier SCF requires the collaboration of many

parties in the supply chain. Such multilateral collaboration has been challenging because (i)

tier-1 suppliers are reluctant to share their upstream suppliers’ information with downstream

buyers for fear of eroding their margins; (ii) tier-2 suppliers are not comfortable sharing

sensitive financial information (e.g., bank account balance in our setting) due to concerns

over both security and privacy, as well as the asymmetry in monetizing data in an equitable

manner.

Recent advancement of blockchain technology has propelled a growth of blockchain platforms

aimed at improving the information flow and financial flow in supply chains. The key

advantage of blockchain technology is that it can prevent information leakage to unintended

parties while allowing supply chain participants (e.g., downstream buyers) to verify transaction

attributes (e.g., deep-tier supplier’s working capital level). This is achieved by combining a

distributed ledger with zero-knowledge proof cryptography, which allows an agent to verify

that some piece of information is true (e.g., supplier’s bank account balance), without full

access to all background information (e.g., supplier identity and associated detailed transaction

records). For example, Skuchain has developed patented “Zero Knowledge Collaboration"

technology that enables a company’s data remaining encrypted to the parties.12 Meanwhile,

supply chain firms are still able to plan and collaborate with one another as though they

had full information about one another even when that sensitive information stays hidden.

With Skuchain’s platform, algorithms (e.g., smart contract) can be applied to data on the

distributed blockchain ledger without requiring that data be revealed to any party.
12https://www.skuchain.com/zk-collaboration/
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Those third-party FinTech firms verify the data accuracy uploaded onto the blockchain and

ensure privacy-preserving data sharing within supply chains. For more technical details,

we refer the reader to a white paper published by the World Economic Forum on how to

protect supply chain data on the blockchain using zero-knowledge and other technologies [34].

In addition, blockchain technology can also help reduce paperwork and facilitate safer and

easier sharing of necessary supply chain transaction information. This improved information

sharing makes it feasible for the supply chain to adopt a wide range of financing instruments,

including the advance payment (AP) scheme, the focus of this paper [38].

Given these advantages of blockchain technology, industry pioneers have been exploring its

applications in deep-tier SCF. Samsung Electronics is a recent example, who has established

a KRW 500 billion ($450 million) fund to enable tier-1 suppliers to borrow the money they

need to pay the tier-2 suppliers (a form of delegate financing, the focus of §3.5). The fund

is to be created with Hana Bank, Shinhan Bank, and KB Kookmin Bank, according to the

Korean business news website Pulse [90]. The new arrangements allow tier-1 suppliers to

borrow a sum of money equal to their monthly payment to a tier-2 supplier. The money can

be borrowed interest-free for up to a year, extendable to two years. The scheme is intended

to enable the tier-1 suppliers to make payment to tier-2 suppliers within 30 days of delivery

receipt at no financing cost to tier-1 suppliers.

One further solution was announced by Foxconn, one of the largest electronics manufacturers

and an important supplier of Apple. Foxconn launched a Blockchain-powered system aimed

at providing much-needed working capital directly to small upstream suppliers [62] (i.e.,

direct financing as we discuss in §3.6). Foxconn’s supply chain consists of many tiers, where

a considerable number of upstream suppliers, especially, tier-2 and above, are SMEs. They

face severe capital constraints and lack the credit history to take bank loans, leading to their

vulnerability to various business disruptions (i.e., natural disasters, machine failure, delayed
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payment from customers, etc). For big downstream manufacturers like Foxconn, ensuring the

financial health of all players in its supply chain is critical to minimizing disruptions to their

supply chains. The new system intends to reach all suppliers in Foxconn’s network and offers

viable financial support to needed parties.

Motivated by the above practical observations, we propose a deep-tier supply chain finance

model focusing on the aspect of blockchain technology that enables visibility into the financial

status of the deep-tier supplier. We start with the case with limited visibility and then

examine the impacts of blockchain-enabled perfect visibility. We ask the following three main

research questions in a multitier supply chain: (i) What are the optimal structures of SCF

contracts and corresponding risk-mitigation measures without cross-tier visibility? (ii) How

does the blockchain-enabled cross-tier visibility impact the SCF and risk-mitigation decisions?

Can visibility benefit all supply chain members? (iii) Which type of blockchain-enabled

deep-tier financing, delegate financing versus direct financing, can create a higher value for

the supply chain?

We consider a three-tier supply chain with one downstream manufacturer, one tier-1 supplier,

and one tier-2 supplier. The tier-2 supplier is an unreliable SME with fixed production

capacity, and is subject to business disruptions (ranging from natural disasters to production

line breakdowns and delayed customer payments). However, the tier-2 supplier’s reliability

(probability of successful production and delivery) can be improved through production

investment – a form of proactive risk-mitigation measure, which drives the tier-2’s need

for capital. Unfortunately, the tier-2 supplier, operating in an environment with only

rudimentary banking systems, lacks the credit history required to seek bank loans and has to

rely on financing arrangements from supply chain partners. The credit-worthy tier-1 supplier,

although is also capital-constrained, can secure loans from the bank for working capital

needs, or by accepting the manufacturer’s SCF arrangement, i.e., the advance payment (AP)
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contract that specifies the wholesale price and the prepayment amount. The tier-1 supplier

has an emergency sourcing channel (at a higher cost) in case the tier-2 supplier fails to deliver

– a form of reactive risk-mitigation measure. Our analysis yields three main sets of insights,

which we summarize as follows.

First, under traditional deep-tier financing (without blockchain), the manufacturer’s AP

contract offer will be accepted by the tier-1 supplier only if the tier-2 supplier is severely

capital-constrained (i.e., working capital level lower than a threshold); otherwise, the tier-

1 supplier will take bank financing (BF). The manufacturer, with only the probability

distribution information about the tier-2 supplier’s working capital, cannot precisely predict

the tier-1’s financing decision in response to her AP contract offer. We show that in this case

although the manufacturer can directly control the tier-1’s reactive risk-mitigation decision

(via setting wholesale price), she is unaware of how effective her AP contract is in helping

improve tier-2’s proactive risk-mitigation investment. Thus, the coordination of the two

risk-mitigation measures suffers from the limited cross-tier visibility.

Second, improved visibility via blockchain allows the manufacturer to correctly anticipate

the suppliers’ response to her offer. However, her ability to influence the suppliers’ risk

mitigation effort is affected by the type of financing scheme in use, because different financing

schemes imply different incentives on supply chain members. We find that delegate financing

(e.g., the Samsung example) where the manufacturer delegates her financial support to the

tier-2 supplier via the tier-1 supplier can benefit all three parties only when the tier-2 is

severely capital-constrained, and blockchain will be adopted in this case. This is because the

manufacturer with limited deep-tier visibility will make an AP contract offer targeting an

“average” tier-2 supplier and a severely capital-constrained tier-2 will end up not receiving

sufficient resources and under-investing in proactive risk mitigation. Gaining visibility allows

the manufacturer to correct her offer and improve the supply chain reliability significantly to
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benefit all supply chain members. However, the manufacturer’s correction for not severely

constrained tier-2 can result in reducing her support for one risk-mitigation and at least one

supply chain member receiving less support than that in the limited visibility case; blockchain

will be rejected in this case.

Cross-tier direct financing (e.g., Foxconn’s blockchain platform) where the manufacturer skips

the intermediary tier-1 and finances the tier-2 directly delivers a compelling performance: it

always leads to win-win-win outcomes (and thus ubiquitously implementable) regardless of

the supplier’s working capital profile. The fundamental reason behind this powerful result

is that the wholesale price and the AP interest rate under direct financing play distinct

roles. Specifically, the AP interest rate plays the role of incentivizing the tier-2 to make a

(manufacturer’s) desired level of reliability investment. The wholesale price, on the other

hand, plays the role of affecting the tier-1’s reactive risk-mitigation decision and deciding the

profit division between the manufacturer and the tier-1. By contrast, the roles of wholesale

price and AP interest rate under delegate financing cannot be completely decoupled, because

the tier-1’s incentive to offer AP contract to the tier-2 is affected by both the manufacturer

offered wholesale price and AP interest rate. The manufacturer always needs to adjust both

contract parameters to indirectly influence the proactive risk-mitigation investment. Finally,

comparing cross-tier direct financing and delegate financing, we show that the former allows

the manufacturer to improve the coordination of proactive and reactive risk-mitigation better

than the latter, and the manufacturer can adjust the wholesale price of direct financing to

make all three parties better-off than delegate financing.

The remainder of this paper is organized as follows. We position our paper in the literature

in Section 3.2. We describe our model setups and assumptions in Section 3.3. In Section

3.4, we present a benchmark case of the deep-tier SCF without blockchain and analyze the

interaction among three tiers of participants with limited visibility. In Section 3.5, we analyze
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the blockchain-enabled delegate financing (with perfect visibility) and discuss the profit

changes for each supply chain member. We extend the model by allowing the cross-tier direct

financing in Section 3.6. We conclude with a summary of main insights and discussions of

future research in Section 3.7. Proofs of all results and supplemental materials are provided

in the appendix.

3.2 Literature Review

Broadly speaking, our research builds on the supplier disruption management literature

and supply chain finance literature. The supplier disruption management literature mainly

studies firms’ sourcing strategies and supplier competition in the presence of supply risks,

e.g., [2, 6, 12, 18, 60, 96]. By contrast, we focus on financing strategies, instead of sourcing

strategies, to mitigate supplier’s disruption risk. The second is the supply chain finance

literature (mostly, trade credit), e.g., [16, 17, 18, 45, 53, 54, 107, 108]. Closest to our

research is the literature stream focusing on managing and financing capital-constrained

suppliers, e.g., [26, 29, 30, 52], in particular, pre-shipment financing schemes (e.g., purchase

order financing, buyer direct/intermediated financing, advance payment, etc) [79, 101]. [95]

attempt to understand the relative efficiency of purchase order financing and buyer direct

financing under the supplier’s endogenous effort and the manufacturer’s private information.

[41] find that in a consignment selling environment with debt seniority choice, buyer direct

financing weakly improves the expected payoffs of both the retailer and the supplier. Our

paper complements the aforementioned works by serving as the first attempt to model the

financing problem in a multitier (three-tier) supply chain and to examine the implications of

blockchain-enabled supply chain visibility for related financing strategies.
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Our model of deep-tier SCF without blockchain technology differentiates from the above

works in that the buyer does not have the visibility of the tier-2 suppliers (and thus their

working capital level). Our paper adds value to the aforementioned literature by focusing

on: (i) the type of supply disruption risk that can be improved via capital investment; and

(ii) the visibility issues in a multitier supply chain setting, and we highlight the optimally

designed advance payment contracts play a crucial role for the profitability of multiple tiers

in the supply chain.

Lastly, our paper contributes to the emerging literature stream on the economics of blockchain

technology, e.g., [22, 23, 24, 43, 77, 85, 88, 93, 100, 105]. We refer the reader to [3] for a

review of operations management implications of blockchain technology, and to [51] for a

discussion of FinTech innovations for supply chains. [19] show how the proposed blockchain-

enabled verifiability of physical goods transactions can be leveraged by high-quality firms to

signal their operational capabilities through their upstream inventory orders, thereby finance

their supply chain operations more efficiently. [20] and [36] study entrepreneurial financing

problems in initial coin offerings (ICOs) where crypto-tokens are issued on existing blockchain

platforms. [25] and [28] study the value of blockchain-enabled traceability in various supply

chain settings. Different from the above studies and motivated by rising blockchain adoption

cases in supply chain finance, we focus on financing activities within a multitier supply chain

and quantify the value of blockchain-enabled visibility (of the deep-tier supplier’s financial

status) in such a setting.

3.3 Model Framework

A stylized three-tier supply chain consists of one downstream manufacturer M (she), one tier-1

supplier S1 (he), and one tier-2 supplier S2 (it). The tier-2 supplier has a fixed production
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capacity (normalized to 1) that is subject to supply disruption. Let P(y) ∈ [0, 1) denote the

production reliability if the proactive risk mitigation investment is y.

Visible

Visible

Tier-2 Supplier (𝑆!) 𝜃!

Tier-1 Supplier (𝑆") 𝜃"

Tier-0 Manufacturer (M) ∞

E

Emergency Source

𝑒

(𝑤, 𝑟#)

(𝑣, 𝑟$)

cash flow
goods flow

𝑟%

Figure 3.1: The Three-tier Supply Chain Structure

Figure 3.1 illustrates the structure of the three-tier supply chain. We assume the tier-1

supplier’s procurement price v is exogenous, e.g., [1, 83]. This assumption reflects the fact

that the supplier at this level tends to offer more standard/commoditized goods, where the

prices are typically determined by the market and thus remain fixed over a period of time.

The tier-1 supplier can reactively mitigate the tier-2’s delivery-failure risk via an alternative

emergency source E that can provide immediate and reliable supply but at cost e, v < e < 1,

e.g., [95]. Let θ1 and θ2 denote the working capital of the tier-1 and the tier-2 suppliers,

respectively. The tier-1 supplier has access to the capital market via short-term bank loans.

The actual bank loan interest rate is based on the standard competitive pricing equation

(the risk-free interest rate is normalized to 0). However, the tier-2 lacks the credit record to

take bank loans or operates in an environment of rudimentary banking systems where credit

systems are not well established and SMEs are underserved. The manufacturer in our model

has sufficient capital, e.g., [41, 101]. Our main results and insights continue to hold when

the manufacturer is also capital-constrained but can take loans from a competitive capital

market. Assuming the tier-2 and the downstream supply chain players have unequal access

to the capital market allows us to focus on the challenge faced by the deep-tier supplier.

87



We normalize the manufacturer’s unit retail price to 1 and assume a constant demand (also

normalized to 1); both are common assumptions in the supply disruption literature, e.g., [94,

95].

In order to improve the overall supply chain reliability, a downstream buyer (resp., the

manufacturer, the tier-1) is willing to offer financial help to its immediate upstream supplier

(resp., tier-1, tier-2) via advance payment (AP). That is, a buyer can prepay a proportion

of the invoice right after placing an order to its immediate supplier (at time 0) to improve

the latter’s cash position. After the product is delivered, the supplier in return will pay an

associated interest at the regular payment time (at time 2). We summarize the sequence of

events as follows with the detailed timeline in Figure 3.2.

(1) At Time 0: The manufacturer proposes a tier-0 AP contract (w, rm) with wholesale

price w and AP interest rate rm. The tier-1 supplier can (i) accept the entire contract,

(ii) only accept the wholesale price contract, or (iii) reject the contract (no business

transaction for all three parties). If the tier-1 supplier accepts the entire contract

and requests the AP amount Bm ≥ 0, the manufacturer prepays Bm and will pay

(w − (1 + rm)Bm) (resp., 0) upon tier-1’s successful delivery (resp., delivery failure).

The tier-0 AP is also referred to as manufacturer financing (MF). If only accepting the

wholesale price contract, the tier-1 will decide whether to take a bank loan, which is

referred to as bank financing (BF). Note that the AP contract does not restrict the

tier-1 supplier from taking bank loans. However, our results from Proposition 3.1 imply

that it is never optimal for the tier-1 supplier to use dual financing.

Next, the tier-1 supplier offers the tier-1 AP contract (v, rs) to the tier-2 supplier. The

tier-2 supplier either accepts or rejects the contract. If it accepts the AP contract, it

can request an AP, Bs, from tier-1 to bring its working capital to θ2 +Bs. The tier-2
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supplier then decides its reliability investment, y, and y ≤ (θ2 +Bs). Both tier-0 and

tier-1 AP interest rates should be non-negative, i.e., rm, rs ≥ 0, otherwise, the borrower

can earn free money from AP.

(2) At Time 1: The tier-2 production uncertainty is realized. If the tier-2 fails to deliver

order, the tier-1 supplier needs to decide whether to use emergency source E to fulfill the

manufacturer’s order; if needed, the tier-1 can use (risk-free) BF to fund his emergency

sourcing.

(3) At Time 2: If the tier-2 supplier successfully delivers the order, the tier-1 supplier

will receive the corresponding payment from the manufacturer and then use it to pay

to the tier-2 supplier. If the tier-2 supplier fails to deliver, it will receive no payment

from the tier-1 supplier (under wholesale contract) or repay advanced payment and

interest (1 + rs)Bs to the tier-1 supplier to the largest extent possible (under the AP

contract). If the tier-1 supplier invokes emergency source E at time 1, he will receive

corresponding payment from the manufacturer (under wholesale contract) or repay

advanced payment and interest (1 + rm)Bm to the manufacturer to the largest extent

possible (under the AP contract). Under BF, the tier-1 must repay the bank loan to

the largest extent possible.

(1) M: tier-0 AP contract (w, rm)

(2) S1: financing choice (BF vs. MF)
(3) S1: tier-1 AP contract (v, rs)

(4) S2: production investment y

(Production Period) (Payment Period)

(1) S2: disruption risk realized
(2) S1: emergency sourcing or not
(3) S1: additional financing if needed

(1) Payment transfer
(2) AP repayment (if any)
(3) Bank repayment (if any)

Time 2Time 1Time 0

Figure 3.2: Sequence of Events in Deep-Tier Financing
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3.4 Traditional Deep-Tier Financing with Limited Visi-

bility

This section investigates the benchmark case of a traditional SCF system (without blockchain)

where each tier of the supply chain has perfect information of its direct supplier’s financial

condition but imperfect information of its deep-tier supplier. Specifically, we assume that

the manufacturer (resp. the tier-1) knows the tier-1’s (tier-2’s) working capital level, but the

manufacturer only knows that the tier-2 supplier’s working capital θ2 follows a probability

distribution (details to be specified in §3.4.3). The adjacent-tier visibility assumption

is plausible and commonly accepted in the SCF literature because trading partners can

often derive the capital level of their direct suppliers or customers by analyzing historical

transactions, e.g., [53, 54, 55]. The cross-tier visibility, however, is hard to obtain due to the

lack of access to non-trading partners’ transaction data.

We derive the subgame perfect equilibrium using backward induction. We start with the

tier-2 supplier’s production investment decision (§3.4.1), whose best response function will

feed into the tier-1 supplier’s AP contract design and the risk-mitigation decision (§3.4.2).

Finally, we characterize the manufacturer’s AP contract design (§3.4.3).

3.4.1 Tier-2 Supplier’s Problem

We first examine the tier-2 supplier’s reliability investment decision without capital constraint:

maxy≥0P(y)v − y. Because P(y) is concavely increasing in y, there exists a unique optimal

tier-2 investment level c, which is derived from vP ′(c) = 1. Note that c is the maximal

amount of capital the tier-2 supplier is willing to invest in reliability improvement without
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capital constraint. The subsequent analysis will focus on the more interesting case where the

tier-2 is in need of capital to improve its reliability, i.e., θ2 ∈ [0, c).

Given the tier-1 supplier’s AP contract offer (v, rs), the tier-2 supplier has two decisions:

(i) whether to accept the tier-1’s AP contract, and (ii) how much to invest in improving

production reliability. The tier-2’s decisions can be formulated as π2 = max{π2r, π2a}, where

π2r and π2a respectively represent the tier-2’s expected terminal cash level by rejecting and

accepting the tier-1’s AP offer. Specifically, if the tier-2 supplier rejects the AP contract, it

cannot invest more than θ2 into reliability improvement. The tier-2 supplier receives payment

v from the tier-1 supplier upon the successful delivery, and zero otherwise. Hence, π2r is

expressed as: π2r = max0≤y≤θ2 P(y)v + θ2 − y.

If the tier-2 supplier accepts the AP contract, then, because of the positive AP interest rate,

the tier-2 would request the AP amount that it will indeed use for reliability investment,

i.e., Bs = (y − θ2)
+. Hence, π2a is expressed as: π2a = maxy>θ2 P(y)[v − (1 + rs)(y − θ2)]

+.

It is straightforward that π2r is concave and increases in investment level y ∈ [0, θ2] since

θ2 < c, whereas π2a is concave in y and achieves the maximum at z∗(rs|θ2), which solves the

first-order condition (FOC):

P ′(y)[v − (1 + rs)(y − θ2)]− P(y)(1 + rs) = 0. (3.1)

The interior optimal investment level z∗(rs|θ2) balances the marginal revenue increase from

improved production reliability and the marginal cost of AP interest, and it decreases in rs

but increases in θ2. Note that it is possible to have z∗(rs|θ2) > c, which holds if and only if

rs <
1

c−θ2+P(c)v
− 1. That means when the tier-1 supplier offers a relatively low AP interest

rate, the tier-2 supplier is willing to invest more than that without capital constraint, by

taking advantage of the limited liability (downside protection).
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Lemma 3.1. Given the tier-1 AP interest rate rs > 0, the tier-2 supplier’s optimal investment

level is y∗(rs|θ2) = max{z∗(rs|θ2), θ2}, and the corresponding AP amount is B∗
s = y∗(rs|θ2)−

θ2.

Lemma 3.1 shows that the tier-2 supplier accepts the AP if its working capital is below

threshold z∗(rs|θ2), otherwise it self-finances its production investment. Given θ2, the

threshold z∗(rs|θ2) decreases in the tier-1 AP interest rate rs. Hence, the tier-1 supplier can

indirectly use rs to influence the tier-2 supplier’s investment decision and thus the production

reliability.

3.4.2 Tier-1 Supplier’s Problem

Anticipating the tier-2 supplier’s best response to the tier-1 AP contract (Lemma 3.1), the

tier-1 supplier needs to decide: At time 0, (i) his financing strategy, i.e., whether to accept

the tier-0 AP contract (w, rm) or use BF; (ii) his tier-1 AP contract offered (v, rs) to the

tier-2; at time 1, (iii) whether to use the reactive risk mitigation E if a disruption happens.

We use the following tie-breaking rules: If the tier-1 supplier is indifferent between MF and

BF, MF is used.

Following backward induction, we start with decision (iii), the time-1 reactive risk mitigation

decision. The tier-1’s optimal policy is straightforward: Use E as long as the tier-0 wholesale

price is greater than the emergency sourcing cost, i.e., w ≥ e. Notice that when the tier-1

supplier falls short of capital for emergency sourcing, he will borrow from the bank as needed

at the risk-free rate 0 (because full repayment is guaranteed with the tier-1’s wholesale

revenue w). For conciseness, we denote the high wholesale price (i.e., w ≥ e) case as the

“proactive+reactive risk mitigation (PR) case", and the low wholesale price case as the pure
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“proactive risk mitigation (P) case". We use superscript I ∈ {P,PR} to represent the two

cases respectively.

Under BF, decision (ii) is to decide the optimal tier-1 AP interest rate rs to offer to the tier-2

supplier and the bank loan amount. Since any excessive borrowing will generate extra financial

cost, the tier-1 supplier should borrow a loan just enough to cover tier-2’s advancement

payment requirement Bs (recall that the tier-1 will borrow from the bank for emergency

sourcing if such a need arises at time 1). Hence, Bb := (B∗
s − θ1)

+ = (y∗(rs|θ2)− θ2 − θ1)
+ ,

where y∗(rs|θ2) is the tier-2’s best-response reliability investment level. The bank interest

rate rb on loan amount Bb is obtained from the competitive lending equation.

The tier-1 supplier’s time-2 terminal cash level is the accumulation of his initial capital

level θ1, the borrowing amount Bb, and the realized operational profit (w − v) or (w − e)+,

subtract the time-0 AP to the tier-2 B∗
s , the time-2 bank loan repayment (1 + rb)Bb, and

plus the tier-2’s repayment (1 + rs)B
∗
s if she succeeds in production. Let π̃b

1S (resp., π̃b
1F )

denote his terminal cash level when the tier-2 supplier succeeds (resp., fails) to deliver

under BF. Then, we have π̃b
1S = [θ1 + Bb + (w − v) − B∗

s − (1 + rb)Bb + (1 + rs)B
∗
s ]

+,

π̃b
1F = [θ1 +Bb + (w − e)+ −B∗

s − (1 + rb)Bb]
+.

According to Lemma 3.1, for any θ2, FOC (3.1) defines a one-to-one mapping between

z∗(rs|θ2) and rs, and y∗(rs|θ2) = max{z∗(rs|θ2), θ2}. Hence, there is a one-to-one mapping

between rs ∈
[
0, P

′(θ2)
P(θ2)

v − 1
]

and tier-2 supplier’s investment decision y ∈ [θ2, z
∗(0|θ2)). The

tier-1 supplier’s interest rate decision rs can be equivalently formulated as the tier-1 supplier

deciding the tier-2 supplier’s investment decision y, and we denote rs = z∗−1(y|θ2) where

y ≥ θ2. Then the tier-1 supplier’s problem can be formulated as follows,

max
y≥θ2

πb
1(y|w) = P(y)π̃b

1S + (1− P(y))π̃b
1F . (3.2)

93



We now include the MF as a financing option for the tier-1 supplier in addition to BF. We

first consider the tier-1’s AP contract offer rs and the risk-mitigation decision under MF, and

then compare his expected payoffs between the two types of financing to decide his optimal

financing policy. The tier-1 supplier’s time-1 risk-mitigation decision should follow the same

policy as that under BF: Use E if and only if w ≥ e. This is because taking AP from the

manufacturer at time 0 for emergency sourcing that may or may not happen at time 1 is

more costly than taking a risk-free bank loan time 0 as needed. The tier-1’s AP interest rate

decision rs, similar to the treatment under BF, can be equivalently formulated as deciding

the tier-2 supplier’s investment level y, which is formulated below:

max
y≥θ2

πm
1 (y|w, rm) = P(y)π̃m

1S + (1− P(y))π̃m
1F , (3.3)

where π̃m
1S (resp., π̃m

1F ) denote his terminal cash level when the tier-2 supplier succeeds (resp.,

fails) to deliver under BF, which take following forms, π̃m
1S = [θ1 +Bm + (w − v)−B∗

s − (1 +

rm)Bm + (1 + rs)B
∗
s ]

+, π̃m
1F = [θ1 +Bm + (w − e)+ −B∗

s − (1 + rm)Bm]
+.

Let yb∗(w|θ2, e) and ym∗(w|θ2, e) denote the optimal target investment level of the tier-1

under BF and MF solving problem (3.2) and (3.3), respectively. We can show that they

exist and each of them is unique (details in the appendix). The tier-1 supplier joins in the

business and accepts at least the wholesale price only when the optimal terminal cash level is

greater than the reservation option, i.e., rejecting to get zero profit, for any θ2 ∈ [0, c). We

should have πb
1(y

b∗(w|θ2, e)|w) ≥ θ1, ∀θ2 ∈ [0, c). It leads to a necessary condition that the

manufacturer has to offer a wholesale price high enough to guarantee the tier-1 supplier’s

positive profit, i.e., w ≥ w, where w := v + yb∗(c|0, e) > v. As the financing issue with

capital-constrained suppliers is the focus of this paper, we will focus on the case where the
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two suppliers’ total working capital is constrained to the extent that θ1 + θ2 ≤ yb∗(w|c, e),

where yb∗(w|c, e) > c by monotonicity. Let θmax
1 := yb∗(w|c, e)− c denote the upper bound of

the tier-1 supplier’s working capital, we only consider the suppliers’ working capital space

(θ1, θ2) ∈ W := [0, θmax
1 ]× [0, c) in the remainder of the paper.

At time 0, the tier-1 supplier compares his expected maximal terminal cash level under MF

and BF, i.e., πb∗
1 (w) and πm∗

1 (w, rm), to decide his optimal financing policy. Essentially, the

tier-1 supplier’s financing choice boils down to a price competition between two financing

schemes. Note that MF and BF have different interest rate pricing mechanisms: a constant

interest rate in MF, whereas a variable rate in BF based on the competitive lending equation.

It implies that a higher working capital level at the tier-2 results in a lower BF interest rate

and increases the attractiveness of BF to the tier-1. Proposition 3.1 characterizes the tier-1

financing choice based upon the tier-2 supplier’s working capital θ2.

Proposition 3.1. For any w ≥ w and rm > 0, there exists a unique threshold θ̄2(w, rm) ≥ 0,

such that the tier-1 supplier prefers MF if and only if θ2 ≤ θ̄2(w, rm). Moreover, the threshold

θ̄2(w, rm) decreases in w and rm.

For notation convenience, we simply denote θ̄2(w, rm) as θ̄2, and refer to it as the BF threshold

of the tier-2 working capital level. Proposition 3.1 states that the tier-1 supplier uses MF

only when the tier-2 supplier is severely capital-constrained. The reason is that the actual

bank loan interest rate, rb = 1
P(y)

− 1 (from the competitive lending equation), decreases in

the tier-2 supplier’s working capital. When θ2 > θ̄2, the bank loan interest rate falls below

rm. It is intuitive that the financing threshold θ̄2(w, rm) decreases in rm – MF becomes

less appealing when its interest rate rm increases. Interestingly, θ̄2(w, rm) decreases in the

wholesale price w. This is because increasing w increases the tier-1’s incentive to help the

tier-2 invest in reliability; a more reliable supply chain enjoys a lower BF interest rate and

favors BF more. Lastly, we also find that the dual financing strategy is never optimal. This
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is because the financial costs of BF and MF is not convexly increasing in the borrow amount.

Separately borrowing from two financiers induces a higher total cost, and thus, dual financing

with two lenders is always dominated by sole financing.

3.4.3 Manufacturer’s Problem

Anticipating the tier-1 supplier’s time-1 risk-mitigation decision rule and time-0 financing

decision rule (Proposition 3.1), the manufacturer decides her wholesale price w and AP interest

rate rm to maximize her expected payoff. To model the manufacturer’s limited visibility into

the tier-2 supplier, we assume the manufacturer does not have precise information about

tier-2’s working capital level θ2 and assigns a probability distribution F (θ2) over [0, c).

Let π̃kI
0S (resp., π̃kI

0F ) denote the manufacturer’s time-2 payoff when the tier-1 supplier adopts

financing scheme k ∈ {b,m} and risk-mitigation decision I ∈ {P,PR} and the tier-2 supplier

succeeds (resp., fails) delivery. We summarize π̃kI
0S and π̃kI

0F in Table 3.1. Specifically, if the

tier-2 supplier successfully delivers the order, the manufacturer earns a selling profit of 1− w

and an AP interest payment rmBm from the tier-1 if the latter chooses MF. If the tier-2

supplier fails to deliver, then the manufacturer will not earn the selling profit of 1− w unless

the tier-1 resorts to emergency sourcing. If the tier-1 takes MF, then the manufacturer incurs

advance payment Bm but only receives a late payment min{(1 + rm)Bm, w − e} if tier-1

resorts to the emergency source.

Table 3.1: Manufacturer’s Time-2 Payoff π̃kI
0S and π̃kI

0F (Note Bm = (y − θ1 − θ2)
+)

Scenario Probability
BF (k = b) MF (k = m)

P : w < e PR : w ≥ e P : w < e PR : w ≥ e

S (Success) P(y) 1− w 1− w 1− w + rmBm 1− w + rmBm

F (Failure) 1− P(y) 0 1− w −Bm 1− w −Bm +min{(1 + rm)Bm, w − e}
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If the manufacturer knows the working capital profile (θ1, θ2), she can precisely anticipate

the tier-1’s financing-decision response, k, to her AP contract (w, rm) offering. Her expected

payoff can be represented by:

πkI
0 (w, rm|e, θ1, θ2) = P(yk∗)π̃kI

0S(w, rm|e, θ1, θ2) + (1− P(yk∗))π̃kI
0F (w, rm|e, θ1, θ2), (3.4)

where k = m if θ2 ≤ θ̄2, and k = b if θ2 > θ̄2 (by Proposition 3.1), and I = P if ŵ < e

and I = PR if ŵ ≥ e. However, the manufacturer, with only the probability distribution

information about θ2, cannot precisely predict the tier-1’s financing decision in response to her

AP contract offer (w, rm). We assume the manufacturer takes expectation of πkI
0 (w, rm|e, θ1, θ2)

over the probability distribution of θ2. Hence, her expected payoff is given by:

πI
0(w, rm|e, θ1) = Eθ2

[
πmI
0 (w, rm|e, θ1, θ2) · 1{θ2≤θ̄2} + πbI

0 (w, rm|e, θ1, θ2) · 1{θ2>θ̄2}
]
, I ∈ {P,PR}.

(3.5)

The manufacturer sets (w, rm) to maximize her expected payoff. Although the manufacturer

cannot predict the tier-1 supplier’s financing decision and AP interest rate rs to the tier-2

supplier (both decisions would require knowledge about the tier-2 working capital level θ2),

she can precisely influence the tier-1’s time-1 risk-mitigation decision. Theorem 3.1 identifies

the threshold of e and characterizes the optimal tier-0 AP contract.

Theorem 3.1. There exists a unique threshold ē(θ1), such that the manufacturer’s optimal

tier-0 AP contract (w∗, r∗m) takes the following form:

(w∗, r∗m) =


(e, rPRm ), if e ≤ ē(θ1);

(wP, rPm), if e > ē(θ1).

(3.6)
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Theorem 3.1 identifies a threshold ē(θ1) for the emergency sourcing cost e, below which E is

relatively cheap and the manufacturer will offer a AP contract (e, rPRm ) to incorporate the

reactive risk-mitigation measure in case of the tier-2’s disruption. The intuition for w∗ = e

in the “proactive+reactive" risk mitigation case is that once the reactive measure providing

perfect reliability is used, continuing to increase the wholesale price to improve the proactive

measure is unnecessary under both BF and MF. Corollary 3.1 presents the sensitivity analysis

of the optimal tier-0 AP contract parameters.

Corollary 3.1. (i) wP < ē(θ1). wP and rPm are independent of e, but decrease in θ1.

(ii) rPRm increases in e and decreases in θ1.

(iii) ē(θ1) decreases in θ1.

Corollary 3.1(i) and (ii) show that contract terms decrease in the tier-1 supplier’s working

capital. This is because when the tier-1 supplier is less capital-constrained, the wholesale

price’s positive effect on stimulating the tier-1 supplier to improve the reliability (by reducing

the tier-1 AP interest rate) decreases. In this case, the manufacturer prefers a lower wholesale

price. As for the interest rate of MF, a less capital-constrained tier-1 supplier is less risky

since he is willing to increase the financing of the tier-2 supplier. As a result, the manufacturer

offers a lower interest rate. Corollary 3.1(iii) implies that as the tier-1’s capital level increases

the manufacturer is less willing to match the wholesale price to e to induce emergency

sourcing. This is because the manufacturer expects the tier-1 to use his own capital as AP to

the tier-2 to help improve reliability and the resulting more reliable supply chain has less

need for reactive risk mitigation.

If we feed the equilibrium characterized by Theorem 3.1 to Proposition 3.1, we can depict the

equilibrium financing arrangement and risk-mitigation strategy in the (e, θ2) space (depicted in

Figure 3.3). The manufacturer encourages reactive risk mitigation when emergency sourcing

98



Emergency Cost (e)
0.4 0.5 0.6 0.7 0.8 0.9 1

T
ie

r-
2 

Su
pp

lie
r's

 I
ni

tia
l W

or
ki

ng
 C

ap
ita

l (
3

2)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

MF+PR

BF+PR

MF+P

BF+P

θ2 = θ̄2(w
P, rPm)θ

2 =
θ̄
2 (e, r PRm )
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Figure 3.3: (Color Online) Tier-1 Supplier’s Financing and Emergency Sourcing Regions

is not too costly. In this case, the manufacturer matches the wholesale price to the emergency

sourcing cost to incentivize the reactive risk mitigation, but at the same time raises the interest

rate to reduce the echelon’s incentive of the proactive risk mitigation. The manufacturer will

switch to the pure proactive risk-mitigation strategy when the emergency source exceeds

threshold ē(θ1). Combined with tier-1’s financing decision of accepting MF when the tier-2 is

severely capital-constrained (θ2 < θ̄2), each of the risk-mitigation region is further divided into

MF and BF regions. A more interesting finding is that the threshold θ̄2 (above which BF is

used) decreases in the emergency sourcing cost when the “proactive+reactive" risk mitigation

is used. The reason is that as the emergency sourcing cost increases in this region, the

manufacturer has to invest more to maintain the reactive risk mitigation (i.e., the wholesale

price increases), which in turn reduces the manufacturer’s incentive of using proactive risk

mitigation. As a result, the manufacturer is willing to help finance the supply chain only

when the tier-2 supplier is severely capital-constrained.
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3.5 Blockchain-Enabled Delegate Financing

In this section, we discuss the deep-tier financing case where blockchain technology is adopted

for improving supply chain visibility. Deep-tier financing via blockchain technology can provide

an immutable, censorship-resistant, single source of truth for all supply chain transactions,

thus producing a desired level of transparency into the working capital flow at all tiers of

the supply chain. In addition, the privacy-preserving mechanism of blockchain enables that

business-sensitive information is selectively shared and verified immutably on-chain, making

it feasible for multilateral collaboration. In the example of blockchain-based Marco Polo

Network, all supply chain transactions, and steps are stored on a digital ledger and processed

on the Marco Polo Platform, which is directly integrated with the supplier’s ERP and the

supplier’s bank to guarantee real-time visibility of working capital finance.13 For technical

details of such implementation, we refer the readers to a FinTech company, Plaid, which

provides lenders with access to borrowers’ bank data to make informed loan decisions via its

Asset API.14

In our model setup, blockchain technology enables the manufacturer to gain necessary

visibility of the tier-2’s financial status (working capital level θ2) even without direct business

transactions. As a result, the manufacturer can precisely predict the tier-1’s response

(financing choice and AP interest rate offered to the tier-2) to her tier-0 AP contract, and

thus can more effectively delegate her financial support to the tier-1 supplier to alleviate the

tier-2’s capital constraint and thus mitigate the supply disruption risk. Given blockchain’s

powerful technical potential and opportunities for deep-tier supply chain financing, two

important questions must be addressed: (1) Whether is it in the best interest of a supply

chain participant to adopt blockchain? The answer to this question is dependent on the answer
13https://www.marcopolonetwork.com/working-capital-finance/
14https://plaid.com/docs/assets/
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to the second question; (2) Whether and how to adjust supply chain contracts to incentivize

blockchain adoption? Supply chain visibility can be achieved via blockchain adoption when

all parties agree to adopt blockchain. This section studies voluntary blockchain adoption

that facilitates delegate financing, under which the downstream supply chain members take

advantage of their dominance status relative to their respective upstream suppliers and push

blockchain adoption by offering a new AP contract for blockchain adoption while honoring

their exiting AP contract offer for no blockchain adoption. We also consider the model where

the manufacturer requires mandatory blockchain adoption in the supply chain. Interested

readers can refer to Appendix C for more detailed discussions.

Next, we introduce the model setup for delegate financing and use ·̂ to denote the corresponding

notations. The sequence of events is described as follows. First, the manufacturer offers a

two-menu tier-0 AP contract consisting of a “blockchain menu” and a “traditional menu.” If the

tier-1 agrees to adopt blockchain, the “blockchain menu,” denoted by (ŵ1(θ1, θ2), r̂
1
m(θ1, θ2)),

will be implemented based on the tier-2’s working capital level θ2 revealed by the blockchain

(note that θ1 is known to the manufacturer regardless of the blockchain adoption). Essentially,

the blockchain menu is a smart contract that specifies the contract term contingent on the

tier-2 working capital level and can be automatically implemented once blockchain is adopted

in the supply chain. If the tier-1 chooses not to adopt blockchain, the manufacturer honors

the “traditional menu,” and implements the equilibrium of §3.4 (i.e., (w∗, r∗m)) which is a

function of θ1 (because θ2 is not revealed in this case). Second, if the tier-1 agrees to adopt

blockchain, he offers a two-menu tier-1 AP contract, a “blockchain menu” (denoted by r̂1s(θ2))

and a “traditional menu” (r∗s(θ2), the equilibrium offer in §3.4). The “blockchain menu” menu

must be more attractive than the “traditional menu” to the tier-2 to ensure the tier-2’s

voluntary adoption of blockchain. Note that the tier-1 knows θ2 without blockchain. If the

tier-1 decides not to adopt blockchain, he will offer one menu, the same one as in §3.4 to the

101



tier-2. Lastly, the tier-2 supplier responds to the tier-1’s contract offer by the blockchain

adoption choice and the reliability investment decision (same analysis as in §3.4).

We formulate the above supply chain interaction as a sequential Stackelberg game and solve

it through backward induction.

3.5.1 Tier-2 and Tier-1’s Problem

Given a tier-1 AP contract, the tier-2’s reliability investment decision is the same as what we

have characterized in Lemma 3.1. When two tier-1 AP contracts, r∗s) and r̂1s , are presented,

the tier-2 will choose the one with a lower interest rate. Given a tier-0 AP contract, (ŵ1
m, r̂

1
m)

or (w∗
m, r

∗
m), the tier-1’s problem is similar to that in §3.4.2. A small difference is that if the

tier-1 agrees to adopt blockchain, he will fulfill his commitment to the manufacturer that the

tier-2 will adopt blockchain by offering the tier-2 a blockchain menu with an AP interest rate

strictly lower than that of the traditional menu, i.e., r̂1s < r∗s , to steer the tier-2 to choose

blockchain adoption.

Let π̂∗
i (w

∗, r∗m, θ1, θ2) and π̂∗
i (ŵ

1, r̂1m, θ1, θ2) represent the tier-i’s maximal profits if reject-

ing and accepting blockchain adoption, respectively, i = 0, 1. We assume that the tier-i

supplier will adopt blockchain if and only if the blockchain brings a higher profit, i.e.,

π̂∗
i (ŵ

1, r̂1m, θ1, θ2) > π̂∗
i (w

∗, r∗m, θ1, θ2), i = 1, 2.

3.5.2 Manufacturer’s Problem

From the manufacturer’s perspective, the fundamental incentive for her to adopt blockchain

is that the blockchain-revealed tier-2 working capital θ2 enables her to efficiently influence the

tier-1 and tier-2 suppliers’ risk-mitigation practice and improve her profit. Hence, blockchain

adoption requires strict win-win-win for all three parties. Whether this ambitious goal can be
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achieved for each supply chain working capital profile (θ1, θ2) is unclear. The manufacturer

needs to solve the following problem for any given (θ1, θ2) to identify (1) the parameter region

where blockchain-enabled delegate financing is viable, and (2) the blockchain menu that

enables the adoption.

max
ŵ1,r̂1m

π̂0(ŵ
1, r̂1m|e, θ1, θ2) (3.7)

s.t. π̂∗
i (ŵ

1, r̂1m, θ1, θ2) > π∗
i (w

∗, r∗m, θ1, θ2),∀i = 0, 1, 2. (3.8)

The manufacturer, with perfect visibility of the tier-2’s working capital level θ2, is able to pre-

dict (i) the tier-1’s bank loan interest rate r̂∗b (w
1, θ2) under BF (equivalently, ŷb∗(w1, θ2)) and

(ii) the tier-1 AP interest rate to the tier-2 supplier r̂∗s under MF (equivalently, ŷm∗(w1, r1m, θ1, θ2)).

Consequently, the expected payoff that the manufacturer optimizes is (3.4), which we repeat

below:

π̂kI
0 (ŵ1, r̂1m|e, θ1, θ2) = P(ŷk∗)π̂kI

0S(ŵ
1, r̂1m|e, θ1, θ2) + (1− P(ŷk∗))π̂kI

0F (ŵ
1, r̂1m|e, θ1, θ2), (3.9)

with additional participation constraints as specified in (3.8), where k = m if θ2 ≤ θ̄2(ŵ
1, r̂1m)

and k = b if θ2 > θ̄2(ŵ
1, r̂1m), and I = P if ŵ < e and I = PR if ŵ ≥ e.

3.5.3 Equilibrium Characterization

We present the optimal blockchain menu that the manufacturer should offer and contracts

and conditions under which the tier-1 and tier-2 suppliers accept the blockchain menu in

Theorem 3.2 (see Figure 3.4 for illustration).

Theorem 3.2. (i) The optimal blockchain menu takes the following form: for any given

θ1, there exists a threshold of the tier-2’s working capital ¯̂θ2(θ1|e) ∈ [0, c) such that for
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θ2 ≤ ¯̂
θ2(θ1|e),

(ŵ1∗, r̂1∗m ) =


(
e, r̂1PR∗m

)
, if e ≤ ¯̂e(θ1, θ2);(

ŵ1P∗, r̂1P∗m

)
, otherwise,

(3.10)

for θ2 >
¯̂
θ2(θ1|e),

(ŵ1∗, r̂1∗m ) = (w∗, r∗m), (3.11)

where ¯̂e(θ1, θ2) is the threshold of the emergency sourcing cost below which the reactive

risk-mitigation measure is implemented. Moreover, r̂1I∗m = ∞, I ∈ {P,PR} if θ1 ≤ θ̄1(θ2),

indicating BF is adopted.

(ii) The tier-1 and tier-2 suppliers adopt the blockchain menu if and only if θ2 ≤ ¯̂
θ2(θ1|e).

The key result of Theorem 3.2 is that the blockchain can be adopted only when the tier-2

is severely capital-constrained with the working capital below a threshold ¯̂
θ2(θ1|e). The

shaded area in Figure 3.4 represents the blockchain adoption region in the (θ1, θ2) space,

where subregion Ω1,b (resp. Ω1,m) is where the tier-1’s takes BF (resp. MF) in equilibrium.

Ω1,b ∪ Ω1,m is the region the visibility of the tier-2 working capital level θ2 enables the

manufacturer to tailor the tier-0 AP contract to improve the supply chain reliability through

a more efficient proactive and reactive risk-mitigation combination and the at the same time

increase profit for each supply chain member. However, when the tier-2 is not severely capital-

constrained (θ2 >
¯̂
θ2(θ1|e)), the information of θ2 cannot help the manufacturer achieve

reliability improvement and profit improvement for all simultaneously through delegate

financing. The unshaded area in Figure 3.4 represents (θ1, θ2) settings where the supply chain

will not adopt blockchain and will use the traditional menu; subregion Ω0,b (resp. Ω0,m) is

where the tier-1’s takes BF (resp. MF) in equilibrium.
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(b) With Blockchain

Figure 3.4: (Color Online) Divisions of Working Capital Space for Blockchain Adoption,
Financing Choice, And Risk Mitigation

Table 3.2: Impact of Blockchain Adoption on Supply Chain in Different Regions

Regions Wholesale Price Tier-0 Interest Rate Risk-Mitigation Measures

Ω1,b ŵ1∗ ≥ w∗ (↑) r̂1∗m > r∗b ≥ r∗m (↑) P ↑, PR ↑
Ω1,m ŵ1∗ ≥ w∗ (↑) r̂1∗m ≤ r∗b (↑,→, ↓) P ↑, PR ↑

Note: “→", “↑", and “↓" represent “same", “increase", and “decrease" compared with the benchmark case in
§3.4.

To see the driving forces behind these results, we start by examining how the manufacturer

adjusts her AP contract offering to optimally utilize the blockchain-enabled visibility in the

blockchain adoption region. Table 3.2 presents a comparison between the blockchain menu

(ŵ1, r̂1) and the traditional menu (w∗
m, r

∗
m) and the resulting risk-mitigating measures in the

blockchain adoption region. In Region Ω1,b, where both tiers of suppliers are severely capital-

constrained (θ2 ≤ ¯̂
θ2, θ1 ≤ θ̄1(θ2)), the manufacturer finds delegate financing an expensive

means to help improve the tier-2’s reliability. She will set the tier-0 AP interest rate r̂1∗m to be

above the anticipated bank interest rate r̂∗b to let the tier-1 rely on BF to finance tier-1 AP

offering to improve the tier-2’s reliability. To ensure that the bank’s interest rate is reasonably
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low and the tier-1 has sufficient incentive to offer an attractive AP rate r̂1∗s , the manufacturer

sets wholesale price ŵ1∗
m to be above that of the traditional menu, w∗

m. In Region Ω1,m, where

the tier-2 is severely capital-constrained but the tier-1 is not, the manufacturer it economical

to use her delegate financing to influence the proactive risk-mitigation investment. Although

the manufacturer will offer a tier-0 AP rate r̂1∗m lower than the anticipated bank rate r̂∗b , r̂1∗m

is not necessarily lower than the traditional menu’s tier-0 AP rate r∗m. This because the

manufacturer will also set wholesale price ŵ1∗ to be higher than traditional menu’s w∗ to

incentivize the tier-1 to offer an attractive tier-1 AP rate r̂1∗s to the tier-2.

In both Ω1,b and Ω1,m, the blockchain menu offers a wholesale price higher than that of

the traditional menu to help improve the proactive risk mitigation. However, whether the

increased wholesale price is sufficiently high to support the reactive risk mitigation depends

on the comparison of the emergency sourcing cost e and threshold ˆ̄e(θ1, θ2). The visibility of

θ2 enables the manufacturer to revise the threshold from ē(θ1) that depends on the tier-1’s

capital level to ˆ̄e(θ1, θ2) that depends on both suppliers’ capital levels. Corollary 3.2 below

states that the threshold decreases as a supplier’s working capital increases, because more

capital can support more reliability investment and hence a less need for emergency sourcing.

More interestingly, Corollary 3.2 also confirms that reactive risk mitigation also expands in

the blockchain adoption region, i.e., ¯̂e(θ1, θ2) > ē(θ1).

Corollary 3.2. In Ω1,b ∪ Ω1,m, ¯̂e(θ1, θ2) decreases in θ1 and θ2 and ¯̂e(θ1, θ2) > ē(θ1).

Next, let us discuss the reason that blockchain will not be adopted when the tier-2’s working

capital is not severely constrained, i.e., when θ2 > ˆ̄θ2. In this case, the traditional menu

(w∗, r∗m) sets the proactive and reactive risk-mitigation to such levels that the manufacturer

finds the only way to adjust the risk-mitigation combination to improve her profit will require

a blockchain menu with a lower wholesale price and a higher AP interest rate than those of

the traditional menu. Such adjustments will result in a lower profit for the tier-1. Essentially,
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without blockchain, the visibility barrier limits the manufacturer’s ability to influence the

supply chain risk-mitigation decisions and leaves the tier-1 in more control of such decisions

to maximize his profit. Voluntary blockchain adoption protects the existing profit allocation

within the supply chain. When the tier-2’s working capital is not severely constrained,

any delegate financing based on revealed θ2 would leave at least one supply chain party

worse-off than that without blockchain. In such a case, the manufacturer would simply offer

a blockchain menu identical to the traditional menu (w∗, r∗m), which leads to the tier-1’s

rejection of blockchain adoption.

In summary, improved visibility via the blockchain-enabled information channel can benefit

all three parties by allowing the manufacturer to deploy improved reactive and proactive

risk mitigation measures with full supply chain information. However, this is only achieved

when the tier-2’s working capital is severely constrained (Regions Ω1,b and Ω1,m of Figure

3.4). Such limitation is mainly driven by the intermediation of the tier-1 under delegate

financing. Luckily, as we will show in the next section, the power of blockchain technology

can be further enhanced if the blockchain can provide a direct financing channel from the

manufacturer to the tier-2.

3.6 Blockchain-Enabled Cross-Tier Direct Financing

Blockchain’s privacy-preserving connection and information sharing open up opportunities

for financial transactions between supply chain members that are not immediate buyers and

sellers. Cross-tier direct financing is one such practice facilitated by Foxconn’s blockchain

platform. Under cross-tier direct financing, the manufacturer knows that the tier-2 supplier’s

working capital level θ2 can extend a loan offer to the tier-2 directly without offering an AP

contract to tier-1 to finance tier-2 supplier indirectly. This section first studies cross-tier direct
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financing (§§3.6.1-3.6.2), and then compare it with the blockchain-enabled (adjacent-tier)

delegate financing (§3.6.3). Hereafter, for brevity, we use the notation ·̌ to represent this case.

The sequence of events is as follows. At time 0, the manufacturer offers two menus of

contracts to the tier-1, a traditional menu and a blockchain menu. The traditional menu

offers the same contract derived by §3.4. Under the blockchain menu, the manufacturer

offers cross-tier AP contract with interest rate ř2m(θ1, θ2) to the tier-2 and a simple wholesale

price contract w̌(θ1, θ2) to the tier-1, because the tier-2 supplier no longer needs a tier-1 AP

contract to finance its reliability investment.15 The tier-1 will choose the menu that gives him

a higher profit. If the tier-1 agrees to adopt blockchain, the cross-tier direct financing contract

(w̌(θ1, θ2), ř
2
m(θ1, θ2) will be executed as a smart contract, and the tier-1 will offer wholesale

price contract v to the tier-2. If the tier-1 rejects blockchain adoption, the manufacturer will

have no direct access to the tier-2 and the supply chain operates under the traditional menu,

the same way as that in §3.4.

3.6.1 Tier-2 and Tier-1’s Problem

The tier-2’s reliability investment decision logic under direct financing is the same as that

under delegate financing that is characterized by Lemma 3.1. That is, its optimal investment

level is determined by the interest rate it receives, regardless it is offered by the manufacturer

or the tier-1. The tier-2 always prefers the offer with a lower interest rate.

The tie-1’s expected profit under direct financing with only wholesale price (w̌1) is,

π̌I
1(w̌

1|ř2m, θ1, θ2) = P(y)(w̌1 − v) + (1− P(y))(w̌1 − e)+, (3.12)
15We have checked the financing competition between the manufacturer and tier-1 and found the manufac-

turer always wins because her capital cost is lower.
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where the second term represents that the tier-1 will invoke emergency sourcing upon tier-2’s

delivery failure if w̌1 ≥ e.

Let π̌∗
i (w

∗, r∗m, θ1, θ2) and π̌∗
i (w̌

1, ř1m, θ1, θ2) represent the tier-i’s maximal profits if reject-

ing and accepting blockchain adoption, respectively, i = 0, 1. We assume that the tier-i

supplier will adopt blockchain if and only if the blockchain brings a higher profit, i.e.,

π̌∗
i (w̌

1, ř1m, θ1, θ2) > π̌∗
i (w

∗, r∗m, θ1, θ2), i = 1, 2.

3.6.2 Manufacturer’s Problem under Cross-Tier Direct Financing

We first present the manufacturer’s profit function under cross-tier direct financing. Let π̌I
0S

and π̌I
0F denote the manufacturer’s profit with tier-2’s delivery success and failure, respectively,

for I = P,PR; and their expressions are summarized in Table 3.3.

Table 3.3: Manufacturer’s Payoff under Cross-Tier Direct Financing (B̌m = (y − θ2)
+)

Scenario Probability
Cross-Tier Direct Financing

P : w̌1 < e PR : w̌1 ≥ e

S P(y̌) 1− w̌1 + ř2mB̌m 1− w̌1 + ř2mB̌m

F 1− P(y̌) −B̌s 1− w̌1 −Bm

The main difference between direct financing (Table 3.3) and delegate financing (Table 3.1)

is that the manufacturer’s financial payoff under direct financing comes from the tier-2

whereas her financial payoff under delegate financing comes from the tier-1. Let π̌I
0 denote

the manufacturer’s expected payoff under direct financing. The supply chain’s adoption of

the blockchain-enabled cross-tier direct financing requires a strict win-win-win outcome for

all three parties. Thus, the manufacturer needs to solve the following problem for any given

(θ1, θ2) to identify both the parameter region and the optimal blockchain menu that enable
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the adoption:

max
w̌1,ř1m

π̌I
0(w̌

1, ř2m|θ1, θ2, e) = P(y̌)π̌I
0S + (1− P(y̌))π̌I

0F (3.13)

s.t. π̂∗
i (w̌

1, ř2m, θ1, θ2) > π∗
i (w

∗, r∗m, θ1, θ2),∀i = 0, 1, 2. (3.14)

Theorem 3.3. (i) The optimal blockchain menu for cross-tier direct financing takes the

following form: There exists a threshold ¯̌e(θ2) decreasing in θ2, such that

(a) the manufacturer offers a loan interest rate ř2∗m (θ2) ≤ r∗s to the tier-2;

(b) the manufacturer offers the following wholesale price to the tier-1:

w̌1∗ = ¯̌w1(θ1, θ2) ≤ w∗ if e > ¯̌e(θ2); w̌1∗ = e, otherwise, where ¯̌e(θ2) ≤ ¯̂e(θ1, θ2).

(ii) The tier-1 and tier-2 will always adopt the blockchain menu.

(iii) The tier-2 reliability investment under the blockchain menu is higher than that under

the traditional menu, y̌∗(θ2) ≥ y∗(θ2).

Theorem 3.3 presents a compelling case for blockchain-enabled cross-tier direct financing:

it always results in win-win-win outcomes. The fundamental reason behind this powerful

result is that the wholesale price and the AP interest rate under direct financing play distinct

roles. Specifically, the AP interest rate r̂2∗m plays the role of incentivizing the tier-2 to make a

(manufacturer’s) desired level of reliability investment. Once ř2∗m is set, the tier-2’s reliability

investment level is determined. The wholesale price w̌1∗, on the other hand, plays the role of

affecting the tier-1’s reactive risk-mitigation decision and deciding the profit division between

the manufacturer and the tier-1. By contrast, the roles of wholesale price and AP interest

rate under delegate financing cannot be completely decoupled, because the tier-1’s incentive

to offer AP contract to the tier-2 is affected by both the manufacturer offered wholesale price
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and AP interest rate. The manufacturer always needs to adjust both contract parameters to

indirectly influence the proactive risk-mitigation investment.

Theorem 3.3 (i)(a) and (iii) state that the manufacturer will offer an AP rate ř2∗m strictly lower

than that under the traditional menu to induce the tier-2 to invest more in reliability. Two

reasons contribute to this result: (i) unlike the tier-1 who has to borrow to finance the tier-2,

the manufacturer has ample capital to finance the tier-2, and (ii) the manufacturer under

direct financing no longer needs to raise the wholesale price to incentivize the tier-1 to help the

tier-2, her profit margin from receiving a successful tier-2’s delivery is higher (see discussion

below). Theorem 3.3 (i)(b) states that the manufacturer will support reactive risk-mitigation

by setting w̌1∗ = e when emergency sourcing cost e is below the threshold ¯̌e; otherwise, she

will set the wholesale price below that of the traditional menu. The tier-1 is willing to accept

a wholesale price lower than that of the traditional menu because he no longer holds the

responsibility of financing the tier-2 and saves financing cost. The emergency sourcing cost

threshold ¯̌e depends on the tier-2’s working capital θ2, suggesting that direct-financing reveals

the fundamental economic factor that decides the supply chain risk-mitigation measures is

the tier-2’s working capital level: it drives both the optimal proactive risk-mitigation level

y̌ and the conditions for supporting reactive risk mitigation. Intuitively, the higher is the

tier-2’s working capital, the less is the manufacturer willing to support reactive risk mitigation.

Thus, based on θ2, the manufacturer can devise the most efficient risk-mitigation strategy to

increase the supply chain total profit and use wholesale price to allocate sufficient profit to

the tier-1 (the party she by passes) to ensure the latter’s blockchain adoption.
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3.6.3 Discussion: Can Cross-Tier Direct Financing Dominate Dele-

gate Financing?

Theorem 3.3 suggests that cross-tier direct financing is more powerful than direct financing

to convince the supply chain to adopt blockchain: cross-tier direct financing can bring

win-win-win outcomes in (θ1, θ2) region where delegate financing cannot. A natural question

arises: suppose the supply chain already adopted blockchain and operated under delegate

financing, will the supply chain have an incentive to switch to cross-tier direct financing?

Theorem 3.4 compares the supply chain members’ profits between the two financing schemes

(see illustration in Figure 3.5).

Theorem 3.4. From delegate financing to direct financing:

(i) The manufacturer and the tier-2 supplier are weakly better-off;

(ii) The tier-1 supplier is worse-off in regions Ω1,b and Ω1,m.

Theorem 3.4 states that the tier-1 is the only party in the supply chain who will be against

the switch from delegate financing to direct financing when the tier-2 is severely capital-

constrained (in Region Ω1,b∪Ω1,m). Recall in the discussion of Theorem 3.2, Region Ω1,b∪Ω1,m

is where the manufacturer will raise the wholesale price to the tier-1 so that the latter would

provide attractive AP contract to tier-2. This is the region where delegate financing gives the

tier-1 significant lever over the manufacturer. Discussion of Theorem 3.3 shows that under

delegate financing, the tier-1 has little lever over the manufacturer; the manufacturer can

offer the lowest possible wholesale price enough to make the tier-1 slightly better-off than

no-blockchain. Therefore, even though direct financing can improve both the manufacturer’s

and the tier-2’s profits, the tier-1 will resist the switch from delegate financing to direct

financing.
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perfect visibility leads to lower wholesale price ŵ⇤ and lower interest rate r̂⇤m (resp., higher bank

loan interest rate r̂⇤b ) under MF (resp., under BF). Moreover, we find for the tier-1 supplier, the

wholesale price change is the main driving-force when both contract term moving to the same

direction. Therefore, Lemma 3 implies that the tier-1 supplier is better-o↵ (resp., worse-o↵) with

blockchain adoption in subregion (1) (resp., subregion (2)) of Region I and Region II (see Figure

4).

Lemma 3. Given (✓1, e), there exists ✓�2 (e,✓1)2 [0, c) such that

(i) if w⇤(✓1, e) < e,

(a) For ✓1 � ✓̄1, (w⇤, r⇤m) = (ŵ⇤, r̂⇤m)|✓2=✓⌧2
, w⇤  ŵ⇤, r⇤m < r̂⇤m for ✓2 2 [0,✓�2 ), and w⇤ � ŵ⇤,

r⇤m > r̂⇤m for ✓2 2 (✓�2 , c). Moreover, ✓�2 < ✓̄2.

(b) For ✓1 < ✓̄1, w⇤ = ŵ⇤|✓2=✓⌧2
, w⇤  ŵ⇤, r⇤b � r̂⇤b for ✓2 2 [0,✓�2 ), and w⇤ � ŵ⇤, r⇤b  r̂⇤b for

✓2 2 (✓�2 , c);

(ii) if w⇤(✓1, e) = e (and ŵ⇤ = e for some ✓2), ✓
�
2 (e,✓1) = ¯̂e�1(e|✓1), which is an inverse function

of ¯̂e with regard to ✓2.

Table 2 Impact of Blockchain Adoption on Supply Chain Performances in Di↵erent Regions

Regions Wholesale Price Tier-0 Interest Rate Risk-Mitigation Measures

�1,b ŵ1⇤ �w⇤ r̂1⇤
m > r⇤b P� or �, R �

�1,m ŵ1⇤ �w⇤ r̂1⇤
m  r⇤b P �, R �

Note: “+”, “�”, and “+/�” represent the “positive”, “negative”, and “indeterminate” impacts.

Table 3 Impact of Blockchain Adoption on Supply Chain Performances in Di↵erent Regions

Regions M ’s Profit S1’s Profit S2’s Profit Chain’s Profit

�1,b §6�§5>§4 §5�§6�§4 §6�§5�§4 §6�§5>§4

�1,m §6�§5>§4 §5�§6�§4 §6�§5>§4 §6�§5>§4

�0,b ��0,m §6>§5=§4 §6�§5=§4 §6>§5=§4 §6>§5=§4

Note: “+”, “�”, and “+/�” represent the “positive”, “negative”, and “indeterminate” impacts.

The implications of changes in the tier-0 AP contract for the tier-1’s AP interest rate rs to

the tier-2 supplier is straightforward. The tier-1 supplier will increase (resp., decrease) rs when

his own loan interest rate increases (resp., decreases), regardless of whether he finances from the

bank or the manufacturer. Consequently, perfect visibility increases (resp., decreases) proactive risk

mitigation if the tier-1’s loan interest rate deceases (resp., increases) (see the last column of Table

EC.2). Because the tier-2 supplier’s expected payo↵ increases in its reliability investment level, it

is better-o↵ with blockchain adoption in Region I(1) and Region 1(2) and worse-o↵ in Region I(2)
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price to incentivize the tier-1 source from the emergency channel and to guarantee the incentive

compatibility. The manufacturer would like to increases both reactive and proactive risk mitigation

measures, but allocate more to the reactive measure. If the tier-1 is less capital-constrained with

the working capital above ✓̄1(✓2), (i.e., Region ⌦1,m), the manufacturer is willing to o↵er SCF to

the tier-1 with competitive interest rate. She will also increase both risk-mitigation measures, but

focus more on the proactive measure.

The manufacturer can achieve the desired response from the echelon by changing the tier-0

contract in these two regions. She will raise the wholesale price to increase the tier-1’s incentive

for risk mitigation, which has two-folded implications. First, increasing w (weakly) increases the

reactive risk mitigation. Second, how increasing w a↵ects the tier-1’s incentive for proactive risk

mitigation depends on which financing source the tier-1 uses. Under BF (Region ⌦1,b), the bank

asks for a relatively expensive interest rate since both tiers are severely capital constraint. It

o↵sets the tier-1’s increase of AP induced by the wholesale price increasing. So, the proactive

risk mitigation measure will not have significant improvement in this region. Under MF (Region

⌦1,m), increasing w is accompanied with a competitive manufacturer’s interest rate, which in turn

decreases the tier-1 AP interest rate and increases the tier-2’s reliability investment. In this region,

both risk-mitigation measures improve.

Equation (10) in Theorem 2 suggests that the manufacturer’s AP contract o↵ering shares a

similar structure as in Theorem 1, which critically depends on the value of the emergency sourcing

cost e. However, blockchain-enabled visibility into the tier-2 working capital level allows the man-

ufacturer to fine-tune her AP contract o↵er, notably in two places. First, the emergency sourcing

cost threshold ¯̂e(✓1,✓2) is contingent on both ✓1 and ✓2, whereas the counterpart threshold ē(✓1)

Figure 5 (Color Online) Divisions of Working Capital Space for Blockchain Adoption and Financing Choice

Under Delegate Financing

price to incentivize the tier-1 source from the emergency channel and to guarantee the incentive

compatibility. The manufacturer would like to increases both reactive and proactive risk mitigation

measures, but allocate more to the reactive measure. If the tier-1 is less capital-constrained with

the working capital above ✓̄1(✓2), (i.e., Region ⌦1,m), the manufacturer is willing to o↵er SCF to

the tier-1 with competitive interest rate. She will also increase both risk-mitigation measures, but

focus more on the proactive measure.

The manufacturer can achieve the desired response from the echelon by changing the tier-0

contract in these two regions. She will raise the wholesale price to increase the tier-1’s incentive

for risk mitigation, which has two-folded implications. First, increasing w (weakly) increases the

reactive risk mitigation. Second, how increasing w a↵ects the tier-1’s incentive for proactive risk

20 Dong, Qiu and Xu: Blockchain-Enabled Deep-Tier Supply Chain Finance

perfect visibility leads to lower wholesale price ŵ⇤ and lower interest rate r̂⇤m (resp., higher bank

loan interest rate r̂⇤b ) under MF (resp., under BF). Moreover, we find for the tier-1 supplier, the

wholesale price change is the main driving-force when both contract term moving to the same

direction. Therefore, Lemma 3 implies that the tier-1 supplier is better-o↵ (resp., worse-o↵) with

blockchain adoption in subregion (1) (resp., subregion (2)) of Region I and Region II (see Figure

4).

Lemma 3. Given (✓1, e), there exists ✓⌧2 (e,✓1)2 [0, c) such that

(i) if w⇤(✓1, e) < e,

(a) For ✓1 � ✓̄1, (w⇤, r⇤m) = (ŵ⇤, r̂⇤m)|✓2=✓⌧2
, w⇤  ŵ⇤, r⇤m < r̂⇤m for ✓2 2 [0,✓⌧2 ), and w⇤ � ŵ⇤,

r⇤m > r̂⇤m for ✓2 2 (✓⌧2 , c). Moreover, ✓⌧2 < ✓̄2.

(b) For ✓1 < ✓̄1, w⇤ = ŵ⇤|✓2=✓⌧2
, w⇤  ŵ⇤, r⇤b � r̂⇤b for ✓2 2 [0,✓⌧2 ), and w⇤ � ŵ⇤, r⇤b  r̂⇤b for

✓2 2 (✓⌧2 , c);

(ii) if w⇤(✓1, e) = e (and ŵ⇤ = e for some ✓2), ✓
⌧
2 (e,✓1) = ¯̂e�1(e|✓1), which is an inverse function

of ¯̂e with regard to ✓2.

Table 2 Impact of Blockchain Adoption on Supply Chain Performances in Di↵erent Regions

Regions Wholesale Price Tier-0 Interest Rate Risk-Mitigation Measures

⌦1,b ŵ1⇤ �w⇤ (") r̂1⇤
m > r⇤b � r⇤m (") P! (when IC of S2 is binding) or ", R "

⌦1,m ŵ1⇤ �w⇤ (") r̂1⇤
m  r⇤b (",!,#) P ", R "

Note: “!”, and “"”, and “#” represent the “keep the same”, “increasing”, and “decreasing” from the benchmark

scenario.

Table 3 Impact of Blockchain Adoption on Supply Chain Performances in Di↵erent Regions

Regions M ’s Profit S1’s Profit S2’s Profit Chain’s Profit

⌦1,b [⌦1,m §6�§5 §5�§6 §6�§5 §6�§5

⌦0,b [⌦0,m §6>§5 §6�§5 §6>§5 §6>§5

Note: “+”, “�”, and “+/�” represent the “positive”, “negative”, and “indeterminate” impacts.

The implications of changes in the tier-0 AP contract for the tier-1’s AP interest rate rs to

the tier-2 supplier is straightforward. The tier-1 supplier will increase (resp., decrease) rs when

his own loan interest rate increases (resp., decreases), regardless of whether he finances from the

bank or the manufacturer. Consequently, perfect visibility increases (resp., decreases) proactive risk

mitigation if the tier-1’s loan interest rate deceases (resp., increases) (see the last column of Table

EC.2). Because the tier-2 supplier’s expected payo↵ increases in its reliability investment level, it

is better-o↵ with blockchain adoption in Region I(1) and Region 1(2) and worse-o↵ in Region I(2)

Figure 3.5: (Color Online) Division of Working Capital Space in Equilibrium and Profit
Comparisons

Convincing the tier-1 to switch to direct financing would require some supply chain member(s)

to give up part of their profit to compensate the tier-1’s loss due to relinquishing his leverage

in the supply chain. Theorem 3.5 shows that direct financing is flexible enough to facilitate

such profit transfer.

Theorem 3.5. Under cross-tier direct financing with any (θ1, θ2, e), there exists a wholesale

price threshold ¯̌w1∗′(θ1, θ2) ≥ ¯̌w1∗(θ1, θ2) such that when the manufacturer offers ¯̌w1∗′, all three

parties are weakly better-off compared to delegate financing.

Compared to delegate financing, direct financing improves the supply chain reliability sig-

nificantly. The decoupling of the roles of wholesale price and AP interest rate allows the

manufacturer to raise the wholesale price to the tier-1 to increase his profit to be higher than

his profit under delegate financing. Doing so will reduce the manufacturer’s share of the

supply chain profit but will not change the supply chain total profit.
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3.7 Conclusion

Many deep-tier suppliers, due to their small sizes and lack of access to capital, are vulnerable

to disruptions that impair their ability to fulfill supply chain orders. Downstream buyer-lead

financing schemes such as advance payment (AP) intended to help the deep-tiers improve

operational reliability are often ineffective because of the lack of visibility into the deep-tier’s

real needs for capital. Recent advancement in blockchain technology (e.g., zero-knowledge

proof cryptography) has made secure, privacy-protection information sharing across the

supply chain possible and propelled the development of blockchain-enabled supply chain

financing based on deep-tier visibility. This paper studies how blockchain-enabled visibility

affects the supply chain risk-mitigation effort.

For a serial three-tier supply chain, we compare three types of deep-tier AP financing

schemes: traditional financing with limited visibility, blockchain-enabled delegate financing,

and blockchain-enabled cross-tier direct financing. We first reveal that limited deep-tier

visibility hampers the downstream manufacturer’s ability to provide appropriate financial

incentives to support the right mix of proactive and reactive risk-mitigation deployment. The

manufacturer’s limited visibility empowers the intermediary supply chain member, the tier-1

supplier in our model, to have more influence over the supply chain risk-mitigation decision.

Next, we show that although blockchain adoption offers the manufacturer the needed visibility

to address the above inefficiency, the solution scope and achievable efficiency level vary by

the adopted deep-tier financing scheme. Delegate financing can bring win-win-win outcomes

to all supply chain members (compared to the traditional financing) only when the tier-2

supplier is severely capital-constrained. This is because the lack of visibility of the severe

capital constraint results in risk-mitigation under-investment, and visibility calls for increased

manufacturer’s investment that benefits everyone in the supply chain. However, supply chains
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with less-capital-constrained tier-2 suppliers will reject blockchain adoption, because the

revealed visibility will suggest a re-balancing of the proactive and reactive risk-mitigation

mix (e.g., more for one measure and less for the other measure) that result in a lower profit

for some members of the supply chain.

Cross-tier direct financing, on the other hand, offers a more efficient approach to act upon

the revealed deep-tier information and brings win-win-win outcomes for all scenarios of

supplier working capital. This is because direct financing allows the manufacturer’s instilled

capital to be fully utilized by the tier-2 and significantly increases the supply chain proactive

risk-mitigation investment whereas under delegate financing (with or without blockchain) the

tier-1 offers a more expensive financing to the tier-2. Moreover, the manufacturer can use

the wholesale price to adjust the profit distribution between her and the tier-1 supplier, the

ability that she does not have under delegate financing where the wholesale price and AP

interest rate must be used jointly to incentivize the tier-1 supplier. Finally, we show that if

the manufacturer is willing to give up some of her profit share to the tier-1 supplier, direct

financing can bring Pareto improvement over delegate financing.

Our research can be extended in several directions to address other open questions regarding

deep-tier SCF. First, our work demonstrates research opportunities to integrate different

SCF tools with the blockchain technology. Various SCF tools, such as factoring and reverse

factoring, could be incorporated as possible future research venues. Second, this paper

assumes that only tier-2 faces disruption risks. It will be interesting to explore how SCF

tools help improve risk-mitigation investment when multiple tiers of suppliers face disruption

risks. Finally, it will be interesting to explore other application potentials of blockchain

technology in addition to our current focus on enabling cross-tier supply chain visibility. For

example, blockchain adoption could help resolve the trust and commitment issues in various

SCF activities.
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Appendix A

Managing Operations of a Hog Farm

Facing Volatile Markets: Inventory and

Selling Strategies
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A.1 Summary of Key Notations

Table A1: Key Notations and Expressions

Category Expression Description

Global q Committed quantity for each period.
α Price discount for under-weight hogs 0 ≤ α ≤ 1.

Physical State S1
t s1t ∈ R+, the number of under-weight hogs in Pool 1 at period t,

0 ≤ t ≤ T .
S2
t S2

t ∈ R+, the number of regular-weight hogs in Pool 2 at period t,
0 ≤ t ≤ T .

Exo. Info.

P 1
t OM price when hogs are under-weight.

P 2
t OM price when hogs are regular-weight, p2t > p1t .

PC
t Contract price determined on the week of delivery.

CH
t Holding cost, including the cost of yardage, feeding cost, labor cost

etc.
CP

t Penalty cost for the contractual shortage.
Πt Πt = [ΠO

t ,Π
M
t ,ΠF

t ]
′ are the factor prices in each market: OM, MM,

and FM.

Random Path W 1
t The number of refilled hogs in under-weight pool, which is distributed

according to F 1
t .

W 2
t The number of refilled hogs regular-weight pool, which is distributed

according to F 2
t .

Action
x1
t The amount of under-weight hogs sold to the OM.

x2
t The amount of regular-weight hogs sold to the OM.

yt The amount of contractual shortage fulfilled by under-weight hogs.
zt The amount of under-weight hogs held to the next period.

A.2 Data Calibration

A.2.1 Factor Prices

The factor price vector, Πt
.
= [ΠO

t ,Π
M
t ,ΠF

t ]
′, consists of livestock and pork prices, ΠO

t and

ΠM
t , and prices of agricultural foodstuff used to produce animal feed, ΠF

t . Both the Chicago
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Mercantile Exchange and USDA (United States Department of Agriculture) [104] publish

them.

The livestock price, ΠO
t , is the daily negotiated average net price of hogs in the spot market as

reported in the National Daily Slaughtered Swine Report (LM_HG201 from [102])16, where

the net price is the total amount paid by a packer to a producer per hundred pounds. It

is the price at which the slaughterhouse sells to the downstream packers. The pork price,

ΠM
t , is obtained from the National Daily Negotiated Pork Report (LM_PK602). We use the

carcass cutout value from the report (measured per carcass hundred pounds) as the meat

market price.

The fodder market price is obtained using the corn and soybean meal prices reported in

SJ_GR850 and GX_GR117 reports from USDA. The former reports the 8-week corn price

determined each Friday as the average of all daily reported high and low bids or offers per

bushel for Corn, US Number 2 Yellow, Omaha location. The last reports the 8-week soybean

meal price determined each Friday as the average of all daily reported high and low bids or

offers per ton for 48% Soybean Meal Rail, Decatur location. We standardize these two prices’

measure unit to per pound and sum them up as one fodder price for our analysis.

We obtain the weekly factor prices to match the farm’s decision epoch by taking the average

of the available daily prices in a week.

A.2.2 Fitting OTC Prices

In this section, we fit the OTC price evolution using a time-series model.
16The report excludes Saturdays and Sundays and six holidays (New Year’s Day, Memorial Day, Indepen-

dence Day, Labor Day, Thanksgiving Day, and Christmas Day).
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The most general vector Auto-Regressive Integrated Moving Average model, i.e., VARIMA(p, d, q)×

(P,D,Q)m, where p is the order (number of time lags) of the autoregressive model, d is the

degree of differencing (the number of times the data have had past values subtracted), q is

the order of the moving-average model; m refers to the number of periods in each season, and

the uppercase (P,D,Q) refer to the autoregressive, differencing, and moving average terms

for the seasonal part of the ARIMA model [86, 110].

The vector of OTC prices, P t = [PC
t , P 1

t , P 2
t , CH

t , CP
t ]

′, evolves according to the following

seasonal VARIMA(p, d, q)× (P,D,Q)m (vector-ARIMA) model:

(
I −

P∑
i=1

ΦiB
i·m

)(
I −

p∑
j=1

ϕjB
j

)
(1−Bm)D(1−B)dP t

= ϵ0 + δt +ΨΠt +

(
I +

Q∑
i=1

ΘiB
i·m

)(
I +

q∑
j=1

θjB
j

)
ϵt, (A1)

where
(
I −∑P

i=1ΦiB
i·m
)

are the seasonal autoregressive components of order P , with a

(5 × 5) identity matrix I, and a (5 × 5) coefficient matrix Φi;
(
I −∑p

j=1ϕjB
j
)

are the

ordinary autoregressive components of order p, with (5 × 5) coefficient matrix ϕj; Bτ is

the back-shift operator with time lag τ , so that BτP t = P t−τ ; ϵ0 is a five-dimensional

constant vector; δt represents a vector of linear time trend; Πt represents a vector of factor

prices (e.g., pork and fodder prices on the open market); Ψ is the coefficient matrix of

exogenous regressors;
(
I +

∑Q
i=1ΘiB

i·m
)

are the seasonal moving average components of

order Q, with (5 × 5) coefficient matrix Θi;
(
I +

∑q
j=1 θjB

j
)

are the ordinary moving

average components of order q, with (5 × 5) coefficient matrix θj; and ϵt is a sequence of

five-dimensional independently and identically distributed (iid) multivariate normal random

noises with mean zero and covariance matrix Σϵ
17.

17We will fit the distribution using our data later.
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A.2.3 Fitting Factor Prices

As mentioned in §1.8.1, we need to forecast the factor price first in order to forecast OTC

prices. In this section, we estimate the model for factor prices evolution.

We find that the best fit model for factor prices is VARIMA(1,1,1). Specifically,

(I − ϕ1B)(Πt+1 −Πt) = ϵ0 + (I + θ1B)ϵt+1, (A2)

where et+1 follows a three-dimensional independent and identically distributed normal distri-

bution with mean zero and covariance matrix Σe. In Equation (A2), the coefficients we need

to estimate from data are the AR coefficients (ϕ1), the vector of constants (ϵ0), and the MA

coefficients (θ1).

The estimated model (A2) has the following parameters summarized in Table A2. ACF for

the residuals of factor prices model is shown in Figure A1. From Figure A1, we find that the

residuals are stationary given that ACF of the residuals is within confidence bounds.

Table A2: Estimation of of Factor Prices Using Model VARIMA(1,1,1)

Dep. Var.
Regressor

ΠO
t ΠM

t ΠF
t

ϵ0 −0.050 −0.137 0.002

(0.361) (0.277) (0.010)

θ1 0.621∗∗∗ 0.367∗∗ 0.889∗∗∗

(0.089) (0.162) (0.135)

ϕ1 0.525∗∗∗ 0.398∗∗ −0.701∗∗∗

(0.097) (0.184) (0.185)

Note: Standard errors are given in parenthe-
ses under coefficients. * indicates p-value at
the 10% level; ** at the 5% level; and ***, at
the 1% level.
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Evidence 4b: ACF of the Residuals of Factor Prices Model ARIMA(1,1,1)

Figure A1: ACF of the Residuals of Factor Prices Using VARIMA(1,1,1) Model.

A.3 Proofs

We present the proofs of the Lemmas and Propositions in Appendix A.3. Proof of Lemma

1.2:

Proof. The proof follows that of [46]. In particular, we use an inductive argument to show

that Vt(st,pt) is concave in st for each pt and that vt(yt, zt; st,pt) is concave in (yt,zt) for

each (st, pt), t = 1, 2, . . . , T .

In the last period, the action-state pair function vT (yT , zT ; sT ,pT ) = rT (yT , zT ; sT ,pt) is

linear, which is concave in (yT ,xT ) for any state (sT ,pT ). Since the conditions of concavity

preservation under maximization of [75] hold at the last period, we find that the value function

VT (sT ,pT ) is concave in sT for each pT .

Now, suppose at period t+ 1, t = 1, · · · , T − 1, the value function Vt+1 is concave in st+1 for

each pt+1 and the action-state pair function vt+1 is concave in the action at+1 for any state
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st+1. Then at period t, the action-state pair function can be rewritten as follows,

vt(yt, zt; st,pt)

= pCt
(
y2t + (1− α) y1t

)
+

2∑
i=1

pit
(
sit − yit − zit

)
−

2∑
i=1

cHt zit − cPt
(
q − y1t − y2t

)+
+β EtVt+1

([
W 1

t+1,W
2
t+1 + z1t + z2t

]
,P t+1

)
.

The first line is the linear combination of (yt, zt), which is concave. The second line is also

concave because concavity preserves under expectation.

To prove concavity of the value function Vt(st,pt), we also need to check the conditions of

concavity preservation under maximization of [75]. 1) Given the the state (st,pt), the feasible

action space is {(yt, zt)|yt + zt ≤ st}, which is a convex set. 2) For any st, the feasible set is

nonempty because yt = zt = 0 is always a feasible action. Hence, the conditions hold and

Vt(st,pt) is concave in st for any pt, which completes the proof.

Proof of Lemma 1.3:

Proof. From Lemma 1.2, the value function vt(yt, zt; ·) is concave in zt, ∂EtVt+1

∂zit
, i = 1, 2

is decreasing in zit, hence there exist an upper bound and a lower bound. In addition,

from equations 1.5a and 1.5b, ∂EtVt+1

∂zit
∈ [pH

t+1
, p̄Ht+1], i = 1, 2. z1t exists if (1 − α)pCt + cPt ∈

[pH
t+1

− cHt , p̄
H
t+1− cHt ]; else if (1−α)pCt + cPt < βpH

t+1
− cHt , then the firm holds all under-weight

hogs, i.e., z1t = ∞; else if (1− α)pCt + cPt > βp̄Ht+1 − cHt , then z1t = 0. Note that z2t = 0 from

Assumption 1.1.

Proof of Lemma 1.4:
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Proof. Analogous to the proof of Lemma 1.3, the value function vt(yt, zt; ·) is concave in

zt from Lemma 1.2, hence ∂EtVt+1

∂zit
, i = 1, 2 is decreasing in zit, hence there exist an upper

bound and a lower bound. From equations 1.5a and 1.5b, ∂EtVt+1

∂zit
∈ [pH

t+1
, p̄Ht+1], i = 1, 2.

If p2t < βp̄Ht+1 − cHt , there exists z̄2t ; If p2t ≥ βp̄Ht+1 − cHt , then z̄2t = 0. z̄1t exists if p1t ∈[
βpH

t+1
− cHt , βp̄

H
t+1 − cHt

]
; else if p1t < βpH

t+1
− cHt , then z̄1t = ∞. Else if p1t > βp̄Ht+1− cHt , then

z̄1t = 0. Note that, if (1− α)pCt + cPt > p1t , z̄1t > z1t ; if (1− α)pCt + cPt < p1t , z̄1t < z1t .

Proof of Proposition 1.1:

Proof. For the notational convenience, let zt := [z1t , z
2
t ] define the quantity vector of two

types of hogs holding to the next period at any period t, i.e., zit = sit − xi
t − yit, i = 1, 2. Then

the sub-problem at any period t = 1, · · · , T − 1 can be formulated as follows,

Vt(st,pt) = max
yt,xt,zt

pCt
(
y2t + (1− α) y1t

)
+

2∑
i=1

pit x
i
t −

2∑
i=1

cHt z
i
t − cPt

(
q − y1t − y2t

)
+β EtVt+1

([
w1

t+1, w
2
t+1 +

2∑
i=1

(
sit − xi

t − yit
)]

,pt+1

)
,

s.t. xt + yt + zt = st,

y1t + y2t ≤ q,

xt,yt, zt ≥ 0.

Lemma A.1 (Optimal Policy of the Last Period). At the last period T , the optimal end-up

strategy is,

1. when the open market dominates p2T > pCT + cPT , 1) if p1T > (1− α)pCT + cPT , the optimal

strategy is y1T
∗
= y2T

∗
= 0, x1

T
∗
= s1T , and x2

T
∗
= s2T . 2) Otherwise, the optimal strategy

is y1T
∗
= s1T ∧ q, x1

T
∗
= (s1t − q)+, y2T

∗
= 0, and x2

T
∗
= s2T .
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2. when the contract market dominates pCT + cPT ≥ p2T , 1) if p1T > (1 − α)pCT + cPT , the

optimal strategy is y1T
∗
= 0, x1

T
∗
= s1T , y2T

∗
= s2T ∧ q, and x2

T
∗
= (s2T − q)+. 2) Else if

0 ≤ (1− α)pCT + cPT − p1T ≤ pCT + cPT − p2T , the optimal solution is y1T
∗
= s1T ∧ (q − s2T )

+,

x1
T
∗
= s1T − y1T

∗, y2T
∗
= s2T ∧ q, and x2

T
∗
= (s2T − q)+. 3) Else, the optimal strategy is

y1T
∗
= s1T ∧ q, x1

T
∗
= (s1T − q)+, y2T

∗
= s2T ∧ (q − s1T )

+, and x2
T
∗
= (s2T − y2T

∗
)+.

𝛀𝟏

𝛀𝟐

𝛀𝟑

𝛀𝟒𝛀𝟓

Figure A2: (Color Online) Optimal Decisions for the Last Period

Figure A2 provides insights for the optimal policy of the last period numerically using the

data from the Maschhoffs. We normalized the factor prices to the unit of per hog, i.e., the

fodder price πF represents each hog’s feeding cost. The price range for the open market is

from $38 to $89 per hundred pounds, the price range for the pork market is from $60 to $105

per hundred pounds, and the price range for the fodder market is from $21 to $26 per bush.

Each region denotes the decision area (corresponding to optimal decisions summarized in

Table 1.4) for the hog farm depending on the factor prices. Regions 4 is more commonly

observed, meaning that the decision maker will use the regular-weight hogs to fulfill the

contract first, then use the under-weight hogs at most of the time. Under this region, only
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excess hogs sold to the open market. As is shown in region 5, the decision maker will use the

under-weight hog to fulfill the contract first when the pork market and the fodder market

price are relatively low. Region 5 expands when the open market price increases. Note that

the decision maker is more likely to sell the hogs to the open market only under the extreme

case where the open market price is very high. Both types of hogs will go to the open market

when three prices are very high. These five regions reflect the current practice where the hog

farm does not consider the value of holding.

Lemma A.1 can be proved as follows. Since there is no benefit for holding, the last period

sub-problem is formulated as follows,

max
yT ,xT

rT (yt, zt; st,pt),

s.t. xT + yT = sT ,

y1T + y2T ≤ q,

xT ,yT ≥ 0.

By introducing Lagrangian multipliers to each constraint, the Lagrangian function denoted

by LT : R4 × R7 → R for the problem shown above takes the following form,

LT (xT ,yT ,λT ) : = pCT
(
y2T + (1− α) y1T

)
+

2∑
i=1

piT xi
T − cPT

(
q − y1T − y2T

)
+ λ0(s

1
T − x1

T − y1T )

+λ1(s
2
T − x2

T − y2T ) + λ2(q − y1T − y2T ) + λ3x
1
T + λ4x

2
T + λ5y

1
T + λ6y

2
T .

where λT = [λ0
T , λ

1
T , λ

2
T , λ

3
T , λ

4
T , λ

5
T , λ

6
T ] is the Lagrangian multiplier vector. It is easy to verify

that the objective function rT is jointly concave in (xT , yT ) and the constraints are linear, we

can find the KKT conditions are sufficient and necessary for the optimal solution as follows.

∂LT

∂x1T
= p1T − λ0 + λ3 = 0, (A3a)
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∂LT

∂x2T
= p2T − λ1 + λ4 = 0, (A3b)

∂LT

∂y1T
= (1− α)pCT + cPT − λ0 − λ2 + λ5 = 0, (A3c)

∂LT

∂y2T
= pCT + cPT − λ1 − λ2 + λ6 = 0, (A3d)

∂LT

∂λ0
= s1T − x1T − y1T = 0, (A3e)

∂LT

∂λ1
= s2T − x2T − y2T = 0, (A3f)

∂LT

∂λ2
= q − y1T − y2T ≥ 0, λ2 ≥ 0, λ2(q − y1T − y2T ) = 0 (A3g)

∂LT

∂λ3
= x1T ≥ 0, λ3 ≥ 0, λ3x

1
T = 0 (A3h)

∂LT

∂λ4
= x2T ≥ 0, λ4 ≥ 0, λ4x

2
T = 0 (A3i)

∂LT

∂λ5
= y1T ≥ 0, λ5 ≥ 0, λ5y

1
T = 0 (A3j)

∂LT

∂λ6
= y2T ≥ 0, λ6 ≥ 0, λ6y

2
T = 0. (A3k)

We then discussing different cases indicated by the complementary slackness where each

Lagrangian multiplier is zero or strongly positive.

From Equations (A3a) and (A3c), and Equations (A3b) and (A3d) we have λ2 + λ4 − λ6 =

pCT + cPT − p2T , and λ2 + λ3 − λ5 = (1− α)pCT + cPT − p1T .

Case 1a: If λ2 + λ4 − λ6 = pCT + cPT − p2T < 0, λ2 + λ3 − λ5 = (1− α)pCT + cPt − p1t < 0, we

have λ5 > 0 and λ6 > 0, hence, y1T
∗
= y2T

∗
= 0. From Equations (A3e) and (A3f), x1

T
∗
= s1T ,

and x2
T
∗
= s2T .

Case 1b: If λ2 + λ4 − λ6 = pCT + cPT − p2T < 0, λ2 + λ3 − λ5 = (1− α)pCT + cPT − p1T > 0, we

have λ6 > 0, hence, y2T
∗
= 0, and x2

T
∗
= s2T . Since p1T < (1− α)pCT + cPT , selling to contract

will be more lucrative, hence, y1T
∗
= s1T ∧ q, x1

T
∗
= (s1t − q)+.
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Case 2a: If λ2 + λ4 − λ6 = pCT + cPT − p2T > 0, λ2 + λ3 − λ5 = (1− α)pCT + cPT − p1T < 0, we

have λ5 > 0, hence, y1T
∗
= 0, x1

T
∗
= s1T . Since pCT + cPT > p2T , i.e., it is more lucrative to sell

regular-weight hogs to contracts, hence, we have y2T
∗
= s2T ∧ q, and x2

T
∗
= (s2T − q)+.

Case 2b: If 0 ≤ (1−α)pCT + cPT − p1T ≤ pCT + cPT − p2T , the marginal value for a regular-weight

hog to fulfill the contract is higher than that for a under-weight one. Hence, fulfilling the

contract using regular-weight hogs first will be more profitable. Therefore, the optimal

solution is y2T
∗
= s2T ∧ q, and x2

T
∗
= (s2T − q)+, y1T

∗
= s1T ∧ (q − s2T )

+, x1
T
∗
= s1T − y1T

∗.

Case 2c: If 0 ≤ pCT + cPT − p2T ≤ (1− α)pCT + cPT − p1T , the marginal value for a under-weight

hog to fulfill the contract is higher than that for a regular-weight one. Hence, fulfilling the

contract using under-weight hogs first will be more profitable. Therefore, the optimal solution

is y1T
∗
= s1T ∧ q, x1

T
∗
= (s1T − q)+, y2T

∗
= s2T ∧ (q − s1T )

+, and x2
T
∗
= (s2T − y2T

∗
)+. We finished

the proof.

Step 1: Preservation

From the Proof of Lemma 1.2, the following statements hold.

1. Vt([w
1
t , w

2
t + z1t−1 + z2t−1],pt) is concave in zt−1.

2. vt(xt,yt, zt; st,pt) is concave in (xt, yt, zt) for each given (st,pt).

Step 2: Attainment

Let Lt : R6 × R9 → R denote the Lagrangian, which is defined by:

Lt(xt,yt, zt,λ) : = vt(st,pt;yt,xt) + λ0

(
s1t − (x1

t + y1t + z1t )
)
+ λ1

(
s2t − (x2

t + y2t + z2t )
)

+λ2

(
q − (y1t + y2t )

)
+ λ3

(
s1t − (x1

t + y1t )
)
+ λ4

(
s2t − (x2

t + y2t )
)
+ λ5x

1
t

+λ6x
2
t + λ7y

1
t + λ8y

2
t ,
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where λ ∈ R9 is the Lagrangian multiplier vector. From Step 1, we know that vt(st,pt;xt,yt)

is concave in (xt, yt, zt) for given (st,pt), Vt+1 is concave in zt. Since the constraints are

linear, we can find the optimal solutions by applying sufficient and necessary KKT conditions.

Hence, we proceed to find solutions (xt,yt, zt,λ) to the following set of equations:

∂L

∂x1t
(xt,yt, zt,λ) = p1t − λ0 − λ3 + λ5 = 0, (A4a)

∂L

∂x2t
(xt,yt, zt,λ) = p2t − λ1 − λ4 + λ6 = 0, (A4b)

∂L

∂y1t
(xt,yt, zt,λ) = (1− α)pCt ++cPt − λ0 − λ2 − λ3 + λ7 = 0, (A4c)

∂L

∂y2t
(xt,yt, zt,λ) = pCt + cPt − λ1 − λ2 − λ4 + λ8 = 0, (A4d)

∂L

∂z1t
(xt,yt, zt,λ) = −cHt +

∂EtVt+1

∂z1t
− λ0 = 0, (A4e)

∂L

∂z2t
(xt,yt, zt,λ) = −cHt +

∂EtVt+1

∂z2t
− λ1 = 0, (A4f)

∂L

∂λ0
(xt,yt, zt,λ) = s1t − (x1t + y1t + z1t ) = 0, (A4g)

∂L

∂λ1
(xt,yt, zt,λ) = s2t − (x2t + y2t + z2t ) = 0, (A4h)

∂L

∂λ2
(xt,yt, zt,λ) = q − (y1t + y2t ) ≥ 0, λ2 ≥ 0, λ2

[
q − (y1t + y2t )

]
= 0, (A4i)

∂L

∂λ3
(xt,yt, zt,λ) = s1t − (x1t + y1t ) ≥ 0, λ3 ≥ 0, λ3

[
s1t − (x1t + y1t )

]
= 0, (A4j)

∂L

∂λ4
(xt,yt, zt,λ) = s2t − (x2t + y2t ) ≥ 0, λ4 ≥ 0, λ4

[
s2t − (x2t + y2t )

]
= 0, (A4k)

∂L

∂λ5
(xt,yt, zt,λ) = x1t ≥ 0, λ5 ≥ 0, λ5x

1
t = 0, (A4l)

∂L

∂λ6
(xt,yt, zt,λ) = x2t ≥ 0, λ6 ≥ 0, λ6x

2
t = 0, (A4m)

∂L

∂λ7
(xt,yt, zt,λ) = y1t ≥ 0, λ7 ≥ 0, λ7y

1
t = 0, (A4n)

∂L

∂λ8
(xt,yt, zt,λ) = y2t ≥ 0, λ8 ≥ 0, λ8y

2
t = 0. (A4o)
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From Equations (A4b) and (A4f) we know that −λ4 + λ6 = −cHt − p2t +
∂EtVt+1

∂z2t
, and let the

solution to the equation denote as z̄2t . Since ∂EtVt+1

∂z2t
∈
[
pH
t+1

, p̄Ht+1

]
(proved later), z̄2t exists iff

p2t < p̄Ht+1 − cHt ; if p2t > p̄Ht+1 − cHt , z̄2t = 0;

From Equations (A4d) and (A4f) we know that −λ2 − λ4 + λ8 = −cHt − pCt − cPt + ∂EtVt+1

∂z2t
,

and let the solution to the equation denote as z2t . Since ∂EtVt+1

∂z1t
∈
[
pH
t+1

, p̄Ht+1

]
, z2t = 0 if

cHt + pCt + cPt > p̄Ht+1;

From Equations (A4a) and (A4e) we know that −λ3+λ5 = −cHt −p1t+
∂Vt+1

∂Etz1t
, and let the solution

to the equation denote as z̄1t . Since ∂EtVt+1

∂z1t
∈ [pH

t+1
, p̄Ht+1], z̄1t exists if p1t ∈ [pH

t+1
−cHt , p̄

H
t+1−cHt ];

else if p1t < (pH
t+1

− cHt ) ∧ (p̄Ht+1 − cHt ), z̄1t = ∞; else if p1t > (pH
t+1

− cHt ) ∨ (p̄Ht+1 − cHt ), z̄1t = 0;

From Equations (A4c) and (A4e) we know that −λ2−λ3+λ7 = −cHt −(1−α)pCt −cPt +
∂EtVt+1

∂z1t
,

and let the solution to the equation denote as z1t . Since ∂EtVt+1

∂z1t
∈ [pH

t+1
, p̄Ht+1], z1t exists from

Lemma 1.4.

From Equations (A4a) and (A4c), and Equations (A4b) and (A4d) we have λ6 + λ2 − λ8 =

pCt + cPt − p2t , and λ5 + λ2 − λ7 = (1− α)pCt + cPt − p1t .

Case 1a: If λ6 + λ2 − λ8 = pCt + cPt − p2t < 0, λ5 + λ2 − λ7 = (1−α)pCt + cPt − p1t < 0. In this

case, p2t > pCt + cPt , from Lemma 1.4, z̄2t = 0. Since λ7 > 0 and λ8 > 0, we have y1t = y2t = 0.

Therefore, x2
t = s2t . Since p1t > (1 − α)pCt + cPt , zt = z̄1t , we have x1

t = (s1t − z̄1t )
+. Other

parameters can be obtained accordingly. See Figure 1.4 for illustration.

Case 1b: If λ6 + λ2 − λ8 = pCt + cPt − p2t < 0, λ5 + λ2 − λ7 = (1 − α)pCt + cPt − p1t > 0.

In this case p2t > pCt + cPt , hence z̄2t = 0, x2
t = s2t . We still have λ8 > 0, hence, y2t = 0.

Since 1− α)pCt + cPt > p1t , which means the marginal value of selling an under-weight hog to

comtracts profits more than selling them to OM, then there exist z̄1t and z1t , y1t = (s1t −z1t )
+∧q,
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x1
t = (s1t − z̄1t − q)+, y2t = 0. Other parameters can be solved accordingly. See Figure 1.5 for

illustration.

Case 2a: If λ6 + λ2 − λ8 = pCt + cPt − p2t > 0, λ5 + λ2 − λ7 = (1− α)pCt + cPt − p1t < 0. In

this case p2t < pCt + cPt , there exists z̄2t . Hence, y2t = s2t ∧ q, and x2
t = (s2t − q − z̄2)+. Since

λ7 > 0, we have y1t = 0, x1
t = (s1t − z̄1t )

+. Other parameters can be solved accordingly. See

Figure 1.6 for illustration.

Case 2b: If 0 ≤ (1 − α)pCt + cPt − p1t ≤ pCt + cPt − p2t , this means the marginal value

difference between fulfilling the contract and selling to the OM for a regular-weight hog is

greater than that of an under-weight hog. Moreover, after rearranging the terms, we have

0 ≤ (1−α)pCt + cPt + p2t ≤ pCt + cPt + p1t , this means using one regular-weight hog to fulfill the

contract and one under-weight hog to sell to the open market is more profitable than using

one under-weight hog to sell to the contract and one regular-weight hog to sell on the open

market. Therefore, the farm will use the regular-weight hog to fulfill the contract first, then

the under-weight hog (if there is a contractual shortfall.) Since pCt + cPt > p2t , there exists

z̄2t , so y2t = s2t ∧ q, and x2
t = (s2t − q − z̄2t )

+. Since p1t ≤ (1− α)pCt + cPt , there exist z̄1t , z
1
t , so

y1t = (s1t − z1t )
+ ∧ (q− s2t )

+, x1
t = (s1t − y1t − z̄1t )

+.Other parameters can be solved accordingly.

See Figure 1.7 for illustration.

Case 2c: If 0 ≤ pCt + cPt − p2t ≤ (1 − α)pCt + cPt − p1t , this means the marginal value

difference between fulfilling the contract and selling to the OM for an under-weight hog is

greater than that of an regular-weight hog. Moreover, after rearranging the terms, we have

0 ≤ pCt + cPt + p1t ≤ (1 − α)pCt + cPt + p2t , this means using one under-weight hog to fulfill

the contract and one under-weight hog to sell to the open market is more profitable than

using one regular-weight hog to sell to the contract and one regular-weight hog to sell on the

open market. Therefore, the farm will use the under-weight hog to fulfill the contract first,
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then the regular-weight hog (if there is a contractual shortfall.) Since pCt + cPt > p2t , there

exists z̄2t , so y2t = s2t ∧ (q− (s1t − z1t )
+)+, and x2

t = (s2t − y2t − z̄2t )
+. Since p1t ≤ (1−α)pCt + cPt ,

there exist z̄1t , z1t , so y1t = (s1t − z1t )
+ ∧ q, x1

t = (s1t − q− z̄1t )
+. Other parameters can be solved

accordingly. See Figure 1.8 for illustration.

Therefore, by Step 1 (preservation) and Step 2 (attainment), we complete the proof.

Proof of Proposition 1.2:

Proof. We formulate a two-period subproblem. The second stage is to maximize the second

period expected profit given the forecast P̂ t+1,

max
y,z

Et

[
P̂C
t+1(y

2 + (1− α)y1) +
2∑

i=1

P̂ i
t+1(S

i
t+1 − yi − zi)−

2∑
i=1

ĈH
t+1z

i − ĈP
t+1(q − y1 − y2)

]

s.t. yi + zi ≤ Si
t+1 ∀i = 1, 2

y1 + y2 ≤ q.

We then summarize the optimal solution, the value function, and the marginal revenue of a

unit of stock as follows for each cases:

• Case 1a: The optimal solution set is, yi = zi = 0, the value function is,
∑2

i=1 P̂
i
t+1S

i
t+1−

ĈP
t+1q, and ∂Et[Vt+1]

∂S2
t+1

= P̂ 2
t+1.

• Case 1b: The optimal solution set is, y1 = S1
t+1 ∧ q, y2 = zi = 0, the value function is,

P̂C
t+1(1−α)(S1

t+1∧q)+ P̂ 1
t+1(S

1
t+1−q)++ P̂ 2

t+1S
2
t+1−ĈP

t+1(q−S1
t+1)

+, and ∂Et[Vt+1]

∂S2
t+1

= P̂ 2
t+1.

• Case 2a: The optimal solution set is, y2 = S2
t+1 ∧ q, y1 = zi = 0, the value function

is, P̂C
t+1(S

2
t+1 ∧ q) + P̂ 2

t+1(S
2
t+1 − q)+ + P̂ 1

t+1S
1
t+1 − ĈP

t+1(q − S2
t+1)

+, and ∂Et[Vt+1]

∂S2
t+1

=

1{S2
t+1<q}(P̂

C
t+1 + ĈP

t+1) + 1{S2
t+1≥q}P̂

2
t+1.
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• Case 2b: The optimal solution set is, y1 = S1
t+1 ∧ (q − S2

t+1)
+, y2 = S2

t+1 ∧ q, zi = 0,

the value function is, P̂C
t+1[(S

2
t+1 ∧ q) + (1− α)(S1

t+1 ∧ (q − S2
t+1)

+)] + P̂ 2
t+1(S

2
t+1 − q)+ +

P̂ 1
t+1[S

1
t+1− (q−S2

t+1)
+]+− ĈP

t+1(q−S1
t+1−S2

t+1)
+, and ∂Et[Vt+1]

∂S2
t+1

= 1{S1
t+1+S2

t+1<q}(P̂
C
t+1+

ĈP
t+1) + 1{S2

t+1<q≤S1
t+1+S2

t+1}(αP̂
C
t+1 + P̂ 1

t+1) + 1{S2
t+1≥q}P̂

2
t+1.

• Case 2c: The optimal solution set is, y1 = S1
t+1 ∧ q, y2 = S2

t+1 ∧ (q − S1
t+1)

+, zi = 0,

the value function is, P̂C
t+1[(S

2
t+1 ∧ (q − S1

t+1)
+) + (1− α)(S1

t+1 ∧ q)] + P̂ 1
t+1(S

1
t+1 − q)+ +

P̂ 2
t+1[S

2
t+1− (q−S1

t+1)
+]+− ĈP

t+1(q−S1
t+1−S2

t+1)
+, and ∂Et[Vt+1]

∂S2
t+1

= 1{S1
t+1+S2

t+1<q}(P̂
C
t+1+

ĈP
t+1) + 1{S2

t+1≥q}P̂
2
t+1.

Combined with the first period-problem, we have that yOL
t and zOL

t have the same forms

revealed in Proposition 1.1. And the break-even thresholds have following cases,

• If the forecast price of next period P̂ t+1 is realized in Case 1a and 1b, the farmer sells

regular-weight hogs to OM. No need hold for shortage, and we have β(P̂C
t+1 + ĈP

t+1)−

cHt − (1− α)pCt − cPt ≤ 0 and β(P̂C
t+1 + ĈP

t+1)− cHt − pit ≤ 0. Then zit = z̄it = 0.

• If the forecast price of next period P̂ t+1 is realized in Case 2a, we have Gt+1(ξ) = GI
t+1.

• If the forecast price of next period P̂ t+1 is realized in Case 2b, we have z1t and z̄it solve

the following FOCs respectively,

Pw(W
1
t +W 2

t < q − z)β(P̂C
t+1 + ĈP

t+1) + Pw(W
2
t < q − z ≤ W 1

t +W 2
t )β(αP̂

C
t+1 + P̂ 1

t+1)

+Pw(W
2
t ≥ q − z)βP̂ 2

t+1 = cHt + (1− α)pCt + cPt ,

Pw(W
1
t +W 2

t < q − z)β(P̂C
t+1 + ĈP

t+1) + Pw(W
2
t < q − z ≤ W 1

t +W 2
t )β(αP̂

C
t+1 + P̂ 1

t+1)

+Pw(W
2
t ≥ q − z)βP̂ 2

t+1 = cHt + pit,

Therefore GII
t+1 ≤ Gt+1(ξ) ≤ GI

t+1.
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• If the forecast price of next period P̂ t+1 is realized in Case 2c, we have Gt+1(ξ) = GII
t+1.

Proof of Proposition 1.3:

Proof. By Lemma 1.5, the optimal supply decision exists and unique when the FOC holds.

We have the the value function’s first-order partial derivative with regard to ut as follows,

∂vt
∂ut

= β
∂EtVt+1(St+1,ut+1,P t+1)

∂ut

− ct = βτ ∂EtVt+τ (St+τ ,ut+τ ,P t+τ )

∂ut

− ct.

We find that without the expectation of the t + τ based on the forecast from the current

period, the first-order partial derivative of the value function is as follows,

∂Vt+τ (St+τ ,ut+τ ,P t+τ )

∂ut

= [(1− α)pCt+τ + cPt+τ − p1t+τ ]▽ut y
1
t+τ + (pCt+τ + cPt+τ − p2t+τ )▽ut y

2
t+τ

−
2∑

i=1

(pit+τ + cHt+τ )▽ut z
i
t+τ +

2∑
i=1

pit+τγ
i
t+τ + β

∂Et+τVt+τ+1(St+τ+1,ut+τ+1,P t+τ+1)

∂ut

,(A5)

where ▽ab =
∂b
∂a

for any notations of a and b. It is intractable because the last term causes

the “curse of dimensionality".

Proof of Proposition 1.5:

Proof. We introduce the new subscript xt,T to the variables, which represents the t-th period in

a T -period time horizon. Note that the problem with T → ∞ is the infinite horizon analogue

of the original problem. The logic of this proof follows the fashion of [69]. We first show some

important structural properties of the original problem including the montonicities of value
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functions, marginal values, and inventory/selling policies. Then we prove the asymptotic

convergence of those functions and parameters. Last but not least, we check the conditions

such that the optimal structural policy preserves in the infinite horizon.

Step 1: Structural properties of a finite horizon T ∈ Z∗.

We keep the value function (on states ) as Vt,T (st,T ,pt,T ), and decompose (rearrange) actions

and states in the objective function (1.4b) by introducing the profit function on actions as

follows

Kt,T (yt,T , zt,T |pt,T ) = pCt,T
(
y2t,T + (1− α) y1t,T

)
−

2∑
i=1

pit,T
(
yit,T + zit,T

)
−

2∑
i=1

cHt,T z
i
t,T

−cPt,T
(
q − y1t,T − y2t,T

)
+ β Et,TVt+1,T (St+1,T ,P t+1,T ). (A6)

The dynamic program (1.4) can be rewritten as

Vt,T (st,T ,pt,T ) = max
yt,T ,zt,T

Kt,T (yt,T , zt,T |pt,T ) +
2∑

i=1

pit,T s
i
t,T , (A7a)

s.t. y1t,T + y2t,T ≤ q, (A7b)

yit,T + zit,T ≤ sit,T , for any i = 1, 2. (A7c)

Note that formally this is a special case of the cash-balance model; thus, we can establish by

backward induction the following group of results.

1. Kt,T (yt,T , zt,T |pt,T ) is monotone in yt,T with the direction depending on pt,T (see

Proposition 1.1 for details), and concave in zt,T .
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2. The optimal stock level for the under weight hogs is

z1∗t,T =



s1t,T , s1t,T < z1t,T

z1t,T , z1t,T ≤ s1t,T < z1t,T + y1∗t,T

s1t,T − y1∗t,T , z1t,T + y1∗t,T ≤ s1t,T < z̄1t,T + y1∗t,T

z̄1t,T , s1t,T ≥ z̄1t,T + y1∗t,T

where y1∗t,T differs in 5 cases, and z1t,T , z̄1t,T are determined implicitly as solutions to

∂Kt,T

∂z1t,T
= (1− α)pCt,T + cPt,T − p1t,T ,

∂Kt,T

∂z1t,T
= 0.

3. The optimal stock level for the regular weight hogs is

z2∗t,T =


0, s2t,T = y2∗t,T

s2t,T − y2∗t,T , y2∗t,T ≤ s2t,T < z̄2t,T + y2∗t,T

z̄2t,T , s2t,T ≥ z̄2t,T + y2∗t,T

where y2∗t,T differs in 5 cases, and z̄2t,T is determined implicitly as the solution to

∂Kt,T

∂z2t,T
= 0.
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4. Vt,T (st,T |pt,T ) is concave in st,T since the marginal value of yield decreases, taking the

following forms, respectively for under and regular weight hogs,

∂Vt,T

∂s1t,T
=



∂Kt,T (s
1
t,T )

∂z1t,T
+ p1t,T , s1t,T < z1t,T

(1− α)pCt,T + cPt,T , z1t,T ≤ s1t,T < z1t,T + y1∗t,T

∂Kt,T (s
1
t,T − y1∗t,T )

∂z1t,T
+ p1t,T , z1t,T + y1∗t,T ≤ s1t,T < z̄1t,T + y1∗t,T

p1t,T , s1t,T ≥ z̄1t,T + y1∗t,T

∂Vt,T

∂s2t,T
=



pCt,T + cPt,T , s2t,T = y2∗t,T

∂Kt,T (s
2
t,T − y2∗t,T )

∂z2t,T
+ p2t,T , y2∗t,T ≤ s2t,T < z̄2t,T + y2∗t,T

p2t,T , s2t,T ≥ z̄2t,T + y2∗t,T

Note that 4 establishes the necessary “nesting" policy.
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Recall that all inventory will become regular weight next period, the future marginal value of

holding an under-weight or regular weight hog is the same,

∂Kt,T

∂z2t,T

= −pit,T − cHt,T + β

[∫ y2∗t+1,T−z1t,T−z2t,T

0

pCt+1,T + cPt+1,TdF
2
t+1,T (w

2)

+

∫ z2∗t+1,T+y2∗t+1,T−z1t,T−z2t,T

y2∗t+1,T−z1t,T−z2t,T

∂Vt,T (S
2
t+1,T − y2t+1,T )

∂s2t+1,T

dF 2
t+1,T (w

2)

+

∫ ∞

z2∗t+1,T+y2∗t+1,T−z1t,T−z2t,T

p2t+1,TdF
2
t+1,T (w

2)

]
= −pit,T − cHt,T + β[(pCt+1,T + cPt+1,T )F

2
t+1,T (y

2∗
t+1,T − z1t,T − z2t,T )

+p2t+1,T F̄
2
t+1,T (z

2∗
t+1,T + y2∗t+1,T − z1t,T − z2t,T )

+

∫ z2∗t+1,T+y2∗t+1,T−z1t,T−z2t,T

y2∗t+1,T−z1t,T−z2t,T

∂Vt,T (S
2
t+1,T − y2t+1,T )

∂s2t+1,T

+ p2t+1,TdF
2
t+1,T (w

2)

]
.

Let pFt,T := (pCt,T + cPt,T ), pSt,T := p2t,T , and ∆pt,T := pFt,T − pSt,T , representing the option value

of the regular weight hogs from the long term contract, from the open market, and their

gap, then the pFt,T ≤ pSt,T will lead to a trivial case where the hog producer will not fulfill the

contract and the marginal value easily converges. We only discuss the non-trivial case with

pFt,T > pSt,T where the marginal value of holding is bounded by following inequalities

−pit,T − cHt,T + β[Etp
S
t+1,T + Et∆pt+1,TF

2
t+1,T (y

2∗
t+1,T − z1t,T − z2t,T )] ≤

∂Kt,T

∂z2t,T

≤ −pit,T − cHt,T + β[Etp
S
t+1,T + Et∆pt+1,TF

2
t+1,T (z

2∗
t+1,T + y2∗t+1,T − z1t,T − z2t,T )] (A8)

Follow the proof from [69], we can obtain the monotonicity results which establish the existence

of attainable upper and lower limits on the policy and cost functions. (The shorthand ∂Vt,T

∂s2t,T
↑

is used to mean “the function ∂Kt,T

∂z2t,T
is everywhere (weakly) decreased." F 2

t,T ↑ means “the
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distribution is replaced by one which is stochastically larger." All results remain true if all

arrows are inverted.)

Lemma A.2. For any T ∈ Z∗ and t = 1, · · · , T ,

1. ∂Vt+j,T

∂s2t+j,T
↑⇒ ∂Kt,T

∂zit,T
↑, z̄it,T ↑, z1t,T ↑, ∂Vt,T

∂s2t,T
↑.

2. F 2
t+j,T ↑⇒ ∂Kt,T

∂zit,T
↑, z̄it,T ↑, z1t,T ↑, ∂Vt,T

∂s2t,T
↑.

3. ∂Kt+j,T

∂zit+j,T
↑⇒ z̄it,T ↑, z1t,T ↑, ∂Vt−1,T

∂s2t−1,T
↑, ∂Kt−1,T

∂zit−1,T
↑.

For convenience, call the corresponding terminal conditions F and S, respectively, that is

∂V F
T,T

∂s2T,T
= pFT,T , and

∂V S
T,T

∂s2T,T
= pST,T .

Lemma A.3. For any admissible ending condition whatever,

1.
∂V S

t,T

∂s2t,T
≤ ∂Vt,T

∂s2t,T
≤ ∂V F

t,T

∂s2t,T
;

2.
∂KS

t,T

∂z2t,T
≤ ∂Kt,T

∂z2t,T
≤ ∂KF

t,T

∂z2t,T
;

3. z̄iSt,T ≤ z̄it,T ≤ z̄iFt,T for any i = 1, 2;

4. z1St,T ≤ z1t,T ≤ z1Ft,T .

Step 2: Preliminary convergence results. We derive preliminary convergence results in

preparation for developing the infinite horizon model. First, we obtain that the “fulfilling"

[146]



and “selling" case of the problesm are themselves nested as T increases. If t ≤ T ,

∂KS
t,T+1(z)

∂zit,T+1

≥ ∂KS
t,T (z)

∂zit,T
∀i = 1, 2;

z̄iSt,T+1 ≥ z̄iSt,T ∀i = 1, 2; z1St,T+1 ≥ z1St,T
∂V S

t,T+1(s
2)

∂s2t,T+1

≥ ∂V S
t,T (s

2)

∂s2t,T
;

And these results hold for the “fulfilling" scenario with all inequalities reversed. Next, we

obtained that any “selling" case bounds any “fulfilling" case, that is, for any T1, T2,

∂KS
t,T1

(z)

∂zit,T1

≤ ∂KF
t,T2

(z)

∂zit,T2

∀i = 1, 2;

z̄iSt,T1
≤ z̄iFt,T2

∀i = 1, 2; z1St,T1
≤ z1Ft,T2

∂V S
t,T1

(s2)

∂s2t,T1

≤ ∂V F
t,T2

(s2)

∂s2t,T2

;

Since a uniformly bounded montonic sequence of functions possesses a limiting function, we

define

lim
T→∞

∂KS
t,T (z)

∂z1t,T
=

∂KS
t (z)

∂z1t

and so forth. Then combining the two results above, the limiting functions may also be seen

to be nested as in

Lemma A.4. For any T > t,

1.
∂KS

t,T

∂zit,T
≤ ∂KS

t

∂zit
≤ ∂KF

t

∂zit
≤ ∂KF

t,T

∂zit,T
for any i = 1, 2;

2.
∂V S

t,T

∂s2t,T
≤ ∂V S

t

∂s2t
≤ ∂V F

t

∂s2t
≤ ∂V F

t,T

∂s2t,T
;

3. z̄iSt,T ≤ z̄iSt ≤ z̄iFt ≤ z̄iFt,T for any i = 1, 2;
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4. z1St,T ≤ z1St ≤ z1Ft ≤ z1Ft,T .

Step 3: The infinite horizon model.

The final step examines conditions under which the infinite horizon problem is well defined.

We show in particular that if the selling and fulfilling cases converge to each other as the

horizon increases, then there is a unique set of solutions to the infinite horizon equation. We

define

∆
∂Kt

∂zit
≡ ∂KF

t

∂zit
− ∂KS

t

∂zit
,

and ∆∂Vt

∂s2t
, ∆z̄it, ∆z1t , similarly, and all ≥ 0. Then, we have

Lemma A.5. 1. 0 ≤ ∆∂Vt

∂s2t
≤ ∆∂Kt

∂zit
;

2. 0 ≤ ∆∂Kt

∂zit
=
∫ z̄2t+1+y2∗t+1−z1t−z2t
y2∗t+1−z1t−z2t

∂Gt+1(yt+1,z
1
t+1,s

2
t+1−y2t+1)

∂z2t+1
dF 2

t+1(w
2);

3. 0 ≤ ∆z̄it =
∂2rt
(∂zit)

2

∂Gt(yt,z̄
1
t ,z̄

2
t )

∂zit
= 0;

4. 0 ≤ ∆z1t =
∂2rt
(∂zit)

2

∂Gt(yt,z
1
t ,0)

∂z1t
= 0,

Therefore, we can obtain the same marginal value functions as finite horizon as long as z̄t2 = 0

for any t.
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Appendix B

New Class of Revenue Management

Problems with Overbooking and

No-Shows: Shoring up Trust between

Shippers and Carriers in Maritime

Container Shipping
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B.1 Proofs

Proof of Claim 2.1

To begin, we have

E [Rt(A, Y ;m)]

= E

Rt(A, Y ;m)

∣∣∣∣∣∣
∑

τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m


+E

Rt(A, Y ;m)

∣∣∣∣∣∣
∑

τ∈A:ρ(τ)<ρ(t)

Yτ ≥ m

 · Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ ≥ m


= Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · (pt + (1− pt) · dt)

+Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ ≥ m

 · (−ptdt + (1− pt) · dt) .

To understand the above equality, note that if
∑

τ∈A:ρ(τ)<ρ(t) Yτ < m, then if shipper t shows

up, it will be among the m largest deposits across those corresponding to shippers who show

up. Shipper t shows up with probability pt, in which case it is allocated a slot and hence pays

the service fee of 1. If shipper t is a no-show, which occurs with probability 1− pt, then the

liner keeps its deposit of dt. On the other hand, in the event that
∑

τ∈A:ρ(τ)<ρ(t) Yτ ≥ m, all

available slots will have already been allocated to higher ranked shippers. As such, if shipper

t shows up, the liner must pay a reimbursement of dt. If shipper t is a no-show, we are once

again in the case where the liner keeps its deposit.

[150]



From here, observing that

Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ ≥ m

 = 1− Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 ,

we get

E [Rt(A, Y ;m)]

= Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · (pt + (1− pt) · dt)

+

1− Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · (−ptdt + (1− pt) · dt)

= Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · pt −

1− Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · ptdt + (1− pt) · dt

= dt · (1− 2pt) + Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt)) ,

where the two equalities follow by basic algebraic manipulations.

B.1.1 Proof of Claim 2.2

To begin, define

A∗ = argmax
A⊆[T ]

R(A;m)

A∗
rel = argmax

A⊆Trel

R(A;m) (B1)

A∗
unrel = argmax

A⊆Tunrel

R(A;m) (B2)
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to respectively denote the optimal acceptance sets with regards to the full set of shippers,

just the reliable shippers, and just the unreliable shippers. We have

R∗
rel +R∗

unrel = E

∑
t∈A∗

rel

Rt(A∗
rel, Y ;m)

+ E

 ∑
t∈A∗

unrel

Rt(A∗
unrel, Y ;m)


≥ E

[ ∑
t∈A∗∩Trel

Rt(A∗ ∩ Trel, Y ;m)

]
+ E

[ ∑
t∈A∗∩Tunrel

Rt(A∗ ∩ Tunrel, Y ;m)

]

≥ E

[ ∑
t∈A∗∩Trel

Rt(A∗, Y ;m)

]
+ E

[ ∑
t∈A∗∩Tunrel

Rt(A∗, Y ;m)

]

= E

[∑
t∈A∗

Rt(A∗, Y ;m)

]
= OPT.

The first inequality follows from observing that A∗ ∩ Trel and A∗ ∩ Tunrel are feasible to prob-

lems (B1) and (B2) respectively. The second inequality follows from an iterative application

of the following claim.

Claim B.1. For any acceptance set A ⊂ [T ] and shippers t ∈ A and t+ ∈ [T ] \ A, we have

E [Rt(A, Y ;m)] ≥ E
[
Rt(A ∪ {t+}, Y ;m)

]
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Proof. Using the expression provide in Claim 2.1 for the expected profit garnered from shipper

t, we have

E
[
Rt(A ∪ {t+}, Y ;m)

]
= dt · (1− 2pt) + Pr

 ∑
τ∈A∪{t+}:ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt))

= dt · (1− 2pt) + Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ + 1ρ(t+)<ρ(t) · Yt+ < m

 · (pt · (1 + dt))

≤ dt · (1− 2pt) + Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt))

= E [Rt(A, Y ;m)] ,

where the lone inequality follows since we clearly have that

Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ + 1ρ(t+)<ρ(t) · Yt+ < m

 ≤ Pr

 ∑
τ∈A:ρ(τ)<ρ(t)

Yτ < m

 .

Proof of Claim 2.3

We consider the two cases outlined in the claim statement, which consider whether t ∈ ATOH

is reliable or unreliable.

• If t ∈ Trel, then we begin by recalling that our TOH policy accepts at most m reliable

shippers. Moreover, since the RF mechanism prioritizes the reliable shippers in terms of

slot allocation, shipper t is guaranteed to get a slot if it shows up. Hence we have that

E
[
R̂t(ATOH, Y ;m)

]
= pt + (1− pt) · dt.
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• Next, we consider the other scenario in which t ∈ Tunrel. Recall that our TOH policy

accepts all unreliable shippers, and so ATOH ∩ Tunrel = Tunrel. As such, following much

of the same logic as the proof of Claim 2.1, we have

E
[
R̂t(ATOH, Y ;m)

]

= Pr

 ∑
τ∈ATOH∩Trel

Yτ +
∑

τ∈Tunrel:
ρ(τ)<ρ(t)

Yτ < m

 · (pt + (1− pt) · dt)

+

1− Pr

 ∑
τ∈ATOH∩Trel

Yτ +
∑

τ∈Tunrel:
ρ(τ)<ρ(t)

Yτ < m


 · (−ptdt + (1− pt) · dt)

= dt · (1− 2pt) + Pr

 ∑
τ∈ATOH∩Trel

Yτ +
∑

τ∈Tunrel:
ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt)) .

Proof of Lemma 2.1

We prove the lemma by arguing that under an arbitrary realization of {Yt}t∈ATOH
, the

expected profit earned by the RF mechanism is no larger than that earned by the DO

mechanism. For this arbitrary realization of the show-ups, let Tshow = {t ∈ ATOH : Yt = 1}

and Tnoshow = ATOH\Tshow. Clearly, from all shippers t ∈ Tnoshow, both mechanisms garner the

same profit of dt. Furthermore, both mechanisms allocate min{|Tshow|,m} slots. Consequently,

the only difference in terms of the profit earned under the two mechanism arises from the

(|Tshow|−m)+ shippers who showed up, but did not receive a slot. In this case, recall that the

liner must reimburse each shipper’s deposit. It is easy to see that the total reimbursement

owed by the liner is minimized under the DO mechanism due to the fact that the slots are

first given away to the shippers with the largest deposits.
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Proof of Lemma 2.2

We set about showing that R̂(ATOH;m) ≥ 1
2
· |ATOH ∩ Trel|, which is enough to establish the

lemma due Lemma 2.1, which states that R(ATOH;m) ≥ R̂(ATOH;m). To do so, we first

prove the following intermediate claim, which states that the unreliable shippers contribute

non-negative profit towards R̂(ATOH;m). The proof of this claim can be found at the end of

this section.

Claim B.2. R̂(ATOH;m) ≥ R̂(ATOH ∩ Trel;m)

From Claim B.2, we see that

R̂(ATOH;m) ≥ R̂(ATOH ∩ Trel;m)

=
∑

t∈ATOH∩Trel

pt + (1− pt) · dt

≥ 1

2
· |ATOH ∩ Trel|.

The first equality follows from Claim 2.3, while the final inequality results from observing

that, for any reliable shipper, the expression pt + (1 − pt) · dt is minimized at pt =
1
2

and

dt = 0.

Proof of Claim B.2. First, note that for any unreliable shipper t ∈ Tunrel, we have

E
[
R̂t(ATOH, Y ;m)

]
= dt · (1− 2pt) + Pr

 ∑
τ∈ATOH∩Trel

Yτ +
∑

τ∈Tunrel:
ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt))

≥ dt · (1− 2pt)

≥ 0.
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The equality follows from Claim 2.3, and the second inequality follows from the fact that

pt <
1
2

for unreliable shippers. From here, we have

R̂(ATOH;m) = E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

]
+ E

[ ∑
t∈Tunrel

R̂t(ATOH, Y ;m)

]

≥ E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

]
= R̂(ATOH ∩ Trel;m),

where the second equality follows from noting that, under the RF mechanism, the profit of

the reliable shippers is unaffected by whether or not the unreliable shippers show up.

Proof of Lemma 2.3

Let A∗
rel = argmaxA⊆Trel

R(A;m), and note that

R∗
rel = R(A∗

rel;m)

= E

∑
t∈A∗

rel

Rt(A∗
rel, Y ;m)


=

∑
t∈A∗

rel

dt · (1− 2pt)︸ ︷︷ ︸
≤0, since pt≥ 1

2

+Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt))


≤

∑
t∈A∗

rel

Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Yτ < m

 · (pt · (1 + dt) + dt · (1− 2pt))

=
∑
t∈A∗

rel

Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Yτ < m

 · (pt + dt − ptdt)︸ ︷︷ ︸
≤1 for any dt,pt∈[0,1]

≤
∑
t∈A∗

rel

Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Yτ < m


︸ ︷︷ ︸

(term 1)

.
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We now establish both upper bounds.

• First, we establish that R∗
rel ≤ |Trel|, by noting that

(term 1) =
∑
t∈A∗

rel

Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Yτ < m

 ≤ |A∗
rel| ≤ |Trel|.

• The second and more complex bound of R∗
rel ≤ 2m is established next. We have

(term 1) =
∑
t∈A∗

rel

Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Yτ < m


≤

∑
t∈A∗

rel

Pr

 ∑
τ∈A∗

rel:ρ(τ)<ρ(t)

Bernoulli(1/2) < m


=

|A∗
rel|−1∑
n=0

Pr [Binomial(n, 1/2) < m]

≤
∞∑
n=0

Pr [Binomial(n, 1/2) < m]

=
m−1∑
k=0

∞∑
n=k

Pr [Binomial(n, 1/2) = k]

= 2m.

The first inequality comes from observation that Pr
[∑

τ∈A∗
rel:ρ(τ)<ρ(t) Yτ < m

]
is maxi-

mized when Yτ ∼ Bernoulli(1/2), as this is the smallest show-up probability for any

reliable shipper. The final inequality uses the following claim, whose proof is found at

the end of this section.

Claim B.3. For any k ∈ Z+, we have

∞∑
n=k

Pr [Binomial(n, 1/2) = k] = 2.
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Proof of Claim B.3. Observe that

∞∑
n=k

Pr [Binomial(n, 1/2) = k] =
∞∑
n=k

(
n

k

)
·
(
1

2

)n

=

(
1

2

)k

·
(

∞∑
n=k

(
n

k

)
·
(
1

2

)n−k
)

=

(
1

2

)k

·
(

∞∑
n=k

(
n

n− k

)
·
(
1

2

)n−k
)

=

(
1

2

)k

·
(

∞∑
n=k

(−1)n−k ·
(−k − 1

n− k

)
·
(
1

2

)n−k
)

=

(
1

2

)k

·
(

∞∑
ℓ=0

(−1)ℓ ·
(−k − 1

ℓ

)
·
(
1

2

)ℓ
)

(letting ℓ = n− k)

=

(
1

2

)k

·
(

∞∑
ℓ=0

(−k − 1

ℓ

)
·
(
−1

2

)ℓ
)

=

(
1

2

)k

·
(
1− 1

2

)−k−1

= 2.

The fourth equality uses the identity
(
n
k

)
= (−1)k ·

(
k−n−1

k

)
([59]), while the second to last

equality uses the identity
∑∞

k=0

(
n
k

)
· xk = (1 + x)n.
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Proof of Claim 2.4

We prove the result via induction over t. The base case of t = |A|+ 1 holds trivially, since

V (|A|+ 1, ·;A) = 0. Moving to the general case of t ≤ |A|, we have

E

 |A|∑
τ=t

Rτ (A, Y ; k)


= E

 |A|∑
τ=t

Rτ (A, Y ; k)

∣∣∣∣∣∣ Yt = 1

 · Pr [Yt = 1] + E

 |A|∑
τ=t

Rτ (A, Y ; k)

∣∣∣∣∣∣ Yt = 0

 · Pr [Yt = 0]

= E

Rt(A, Y ; k) +

|A|∑
τ=t+1

Rτ

(
A, Y ; (k − 1)+

) ∣∣∣∣∣∣ Yt = 1

 · pt +

E

Rt(A, Y ; k) +

|A|∑
τ=t+1

Rτ (A, Y ; k)

∣∣∣∣∣∣ Yt = 0

 · (1− pt)

=
(
E [Rt(A, Y ; k) | Yt = 1] + V (t+ 1, (k − 1)+ ;A)

)
· pt +

(E [Rt(A, Y ; k) | Yt = 0] + V (t+ 1, k;A)) · (1− pt), (B3)

where the final equality follows by the induction hypothesis. From here, we consider two

cases bases on whether k is non-zero:

• If k = 0, and hence there are no remaining service slots, we have E[Rt(A, Y ; k) | Yt =

1] = −dt and E[Rt(A, Y ; k) | Yt = 0] = dt. Consequently, we get

(B3) = (−dt + V (t+ 1, 0;A)) · pt + (dt + V (t+ 1, 0;A)) · (1− pt)

= V (t, 0;A).
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• If k > 0, we have E[Rt(A, Y ; k) | Yt = 1] = 1 and E[Rt(A, Y ; k) | Yt = 0] = dt, and so

(B3) = (1 + V (t+ 1, k − 1;A)) · pt + (dt + V (t+ 1, 0;A)) · (1− pt)

= V (t, k;A).

Proof of Claim 2.5

We establish that V (t, k;A) ≥ 0 via induction over t. The base case of t = |A| + 1 holds

trivially, since V (|A|+ 1, ·;A) = 0. Next, we move to showing the result for general t ≤ |A|,

which is established by considering two cases based on whether k is non-zero.

• If k = 0, then from (2.1), we have

V (t, 0;A) = dt · (1− 2pt) + V (t+ 1, 0;A)

≥ V (t+ 1, 0;A)

≥ 0,

The first inequality follows from the fact that pt < 1
2

for unreliable shippers, while the

second inequality uses the induction hypothesis.

• If k > 0, then from (2.1), we have

V (t, k;A) = (1− pt) · (dt + V (t+ 1, k;A)) + pt · (1 + V (t+ 1, k − 1;A))

≥ 0,

where the inequality follows by the induction hypothesis, along with the fact that

dt, pt ∈ [0, 1].
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Proof of Claim 2.6

We establish that V (t, k;A)− V (t, k − 1;A) ≤ 1 + dt via induction over t. The base case of

t = |A|+ 1 again holds trivially, since V (|A|+ 1, ·;A) = 0. Next, we move to showing the

result for general t ≤ |A|, which is established by considering the following two cases.

• If k = 1, then via (2.1) we have that

V (t, 1;A)− V (t, 0;A) = pt · (1 + dt) + pt · (V (t+ 1, 0;A)− V (t+ 1, 0;A)) +

(1− pt) · (V (t+ 1, 1;A)− V (t+ 1, 0;A))

= pt · (1 + dt) + (1− pt) · (V (t+ 1, 1;A)− V (t+ 1, 0;A))

≤ pt · (1 + dt) + (1− pt) · (1 + dt+1)

≤ 1 + dt,

where the second to last inequality uses the induction hypothesis, and the last inequality

uses the fact that the shippers are index in decreasing order of deposit size.

• If k > 1, then via (2.1) we have that

V (t, k;A)− V (t, k − 1;A) = pt · (V (t+ 1, k − 1;A)− V (t+ 1, k − 2;A)) +

(1− pt) · (V (t+ 1, 1;A)− V (t+ 1, 0;A))

≤ pt · (1 + dt+1) + (1− pt) · (1 + dt+1)

= 1 + dt+1

≤ 1 + dt.
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Proof of Lemma 2.4

To begin, we note that for any unreliable acceptance set A ⊆ Tunrel, we have that V (1,m;A) =

R(A;m) by Claim 2.4, and hence we can alternatively express R∗
unrel as R∗

unrel = maxA⊆Tunrel
V (1,m;A).

As such, to prove the lemma, it is sufficient to prove that V (1,m;Tunrel) ≥ V (1,m;A) for any

A ⊆ Tunrel. To do so, we assume by way of contradiction that there exists A∗ ⊂ Tunrel satisfy-

ing V (1,m;A∗) > V (1,m;Tunrel), and use the following claim to establish the contradiction,

whose proof is presented below.

Claim B.4. For any A ⊂ Tunrel, shipper t ∈ A, k ∈ [m]0 we have

V (t, k;A ∪ {t+}) ≥ V (t, k;A).

for arbitrary shipper t+ ∈ Tunrel \ A.

Before proving the claim, we note that as a direct consequence, we can iteratively add the

shippers t+ ∈ Tunrel \ A∗ to A∗ until the latter set becomes Tunrel, and our expected profit

can only improve. Consequently we get that V (1,m;Tunrel) ≥ V (1,m;A∗), which gives the

intended contradiction.

Proof of Claim B.4. We prove the result via induction over t ∈ A. To begin, we

assume without loss of generality that deposit dt+ is sandwiched by the deposits of shippers

t∗, t∗ + 1 ∈ [|A|+ 1]. In other words, the ordering of the deposits satisfies

d1 ≥ . . . ≥ dt∗ ≥ dt+ ≥ dt∗+1 ≥ . . . ≥ d|A|+1 = −∞,

where shipper |A|+ 1 represents a dummy shipper with a deposit of negative infinity. Our

base cases for the induction argument will be all shippers t ∈ {t∗, t∗ + 1, . . . , |A|+ 1}. For
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shippers t ∈ {t∗ + 1, . . . , |A|+ 1}, we clearly have that V (t, k;A ∪ {t+}) = V (t, k;A), since

shipper t+ will not appear in any of these value functions. Next, we consider the remaining

base case of t = t∗, where for ease of notation, we let A+ = A ∪ {t+}. We have

V (t∗, k;A) = (1− pt) · (dt + V (t∗ + 1, k;A)) +


pt · (1 + V (t∗ + 1, k − 1;A)) , if k > 0

pt · (−dt + V (t∗ + 1, 0;A)) , if k = 0,

and

V (t∗, k;A+) = (1− pt) ·
(
dt + V (t+, k;A+)

)
+


pt · (1 + V (t+, k − 1;A+)) , if k > 0

pt · (−dt + V (t+, 0;A+)) , if k = 0.

Hence, comparing the above recursions, we see that establishing V (t, k;A+) ≥ V (t∗, k;A)

requires just showing that V (t+, k;A+) ≥ V (t∗ + 1, k;A) for any k ∈ [m]0:

• If k = 0, we have that

V (t+, 0;A+) = dt+ · (1− 2pt+) + V
(
t∗ + 1, 0;A+

)
≥ V

(
t∗ + 1, 0;A+

)
= V (t∗ + 1, 0;A)

,

where the inequality follows since pt+ < 1
2
, and the last equality uses the induction

hypothesis for t ∈ {t∗ + 1, . . . , |A|+ 1}.
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• If k > 0, we have that

V (t+, 0;A+) = pt+ + dt+ · (1− pt+) + V
(
t∗ + 1, k;A+

)
−

pt+ ·
(
V
(
t∗ + 1, k;A+

)
− V

(
t∗ + 1, k − 1;A+

))
≥ pt+ + dt+ · (1− pt+)− pt+ · (1 + dt∗+1) + V

(
t∗ + 1, k;A+

)
= dt+ · (1− pt+)− pt+dt∗+1︸ ︷︷ ︸

≥0 since dt+≥dt∗+1,pt+< 1
2

+V
(
t∗ + 1, k;A+

)
≥ V

(
t∗ + 1, k;A+

)
= V (t∗ + 1, k;A) ,

where the first inequality uses Claim 2.6, and the last equality uses the induction

hypothesis for t ∈ {t∗ + 1, . . . , |A|+ 1}.

We now prove the result for t ∈ {1, . . . , t∗ − 1}, having just established that V (t, k;A+) ≥

V (t, k;A) for t ∈ {t∗, t∗ + 1, . . . , |A|+ 1}. To do so, we consider two cases based on whether

k is non-zero.

• If k = 0, then from (2.1), we have

V (t, 0;A+) = dt · (1− 2pt) + V (t+ 1, 0;A+)

≥ dt · (1− 2pt) + V (t+ 1, 0;A)

= V (t+ 1, 0;A).

The inequality follows from the induction hypothesis.
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• If k > 0, then from (2.1), we have

V (t, k;A+) = (1− pt) ·
(
dt + V (t+ 1, k;A+)

)
+ pt ·

(
1 + V (t+ 1, k − 1;A+)

)
≥ (1− pt) · (dt + V (t+ 1, k;A)) + pt · (1 + V (t+ 1, k − 1;A))

= V (t, k;A)

where the inequality follows by the induction hypothesis.
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Proof of Lemma 2.5

For ease of notation, we use Yrel =
∑

τ∈ATOH∩Trel
Yτ to denote the random number of slots

consumed by the reliable shippers under the RF mechanism. Next, we have

R(ATOH;m) ≥ R̂(ATOH;m)

=

|ATOH∩Trel|∑
k=0

Pr [Yrel = k] ·
(
E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

]

+E

[ ∑
t∈Tunrel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

])

=

|ATOH∩Trel|∑
k=0

Pr [Yrel = k] ·
(
E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

]

+E

[ ∑
t∈Tunrel

R̂t(Tunrel, Y ;m− k)

])

=

|ATOH∩Trel|∑
k=0

Pr [Yrel = k] ·
(
E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

]

+V (1,m− k;Tunrel)

)
(by Claim 2.4)

≥
|ATOH∩Trel|∑

k=0

Pr [Yrel = k] · (k + V (1,m− k;Tunrel))︸ ︷︷ ︸
(term i)

The second equality follows from the observation that, under the RF mechanism, we have

E

[ ∑
t∈Tunrel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

]
= E

[ ∑
t∈Tunrel

R̂t(Tunrel, Y ;m− k)

]
,
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since the profit earned from unreliable shippers is only affected by the number of slots taken

by the reliable shippers. The second inequality use the fact that

E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

]
≥ k, (B4)

since in the event that Yrel = k, the liner is assured to give away k slots, and then earn

additional profit from the no-shows. From here, we have that

(term i) ≥
|ATOH∩Trel|∑

k=0

Pr [Yrel = k] · (k + V (1,m;Tunrel)− 2k)

= V (1,m;Tunrel)−
|ATOH∩Trel|∑

k=0

Pr [Yrel = k] · k

≥ V (1,m;Tunrel)− R̂(ATOH;m)

≥ V (1,m;Tunrel)−R(ATOH;m)

= R∗
unrel −R(ATOH;m) (by Lemma 2.4).

The first inequality follows from a simple iterative application of Claim 2.6, with the additional

observation that 1 + dt ≤ 2, since dt ∈ [0, 1]. The second inequality follows because

R̂(ATOH;m) = E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

]

+

|ATOH∩Trel|∑
k=0

Pr [Yrel = k] · V (1,m− k;Tunrel)

≥ E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

]
(by Claim 2.5)

=

|ATOH∩Trel|∑
k=0

Pr [Yrel = k] ·
(
E

[ ∑
t∈ATOH∩Trel

R̂t(ATOH, Y ;m)

∣∣∣∣∣ Yrel = k

]

≥
|ATOH∩Trel|∑

k=0

Pr [Yrel = k] · k (by (B4)).
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B.2 Results of Numerical Experiments

Tables B1a, B1b, B1c show the results of our experiments, broken down by test case. In

each table, the fourth column gives the percent optimality gap of the TOH policy, measured

as 100 × OPT−R(ATOH;m)
OPT

, averaged over the 10 instances generated for each test case. The

fifth and sixth column show the expected fraction of the m slots allocated to shippers

under the two policies, while columns seven and eight offer the expected number of rolled

shippers across the two policies. When digesting these results, it is important to recall

Lemma 2.4, which states that the TOH is optimal if all shippers are unreliable. This fact

explains why the smallest optimality gaps arise for the test cases with D = Low-Dep and

P ∈ {Concave-Inc, Convex-Inc}, since in these cases, low deposits are most likely and they

lead to lower show-up probabilities. Finally, we note that our results persist across the test

cases where P = Rand, and hence the TOH performs equally well on all three metrics without

the assumption that the show-up probabilities are increasing in the deposit size.
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Avg. % Usage Avg. rolled
T m P Avg. % Gap ATOH A∗ ATOH A∗

10 1 Concave-Inc 7.56 0.92 0.95 1.02 1.28
10 3 Concave-Inc 6.13 0.91 0.94 0.69 0.99
10 5 Concave-Inc 9.78 0.80 0.91 0.16 0.66
10 1 Convex-Inc 5.23 0.95 0.89 1.16 0.93
10 3 Convex-Inc 5.14 0.85 0.89 0.52 0.63
10 5 Convex-Inc 0 0.63 0.63 0.06 0.06
10 1 Rand 2.86 0.90 0.95 0.81 1.17
10 3 Rand 6.43 0.91 0.95 0.83 1.22
10 5 Rand 3.32 0.90 0.93 0.46 0.79
20 1 Concave-Inc 8.18 0.96 0.97 1.70 1.86
20 3 Concave-Inc 6.29 0.97 0.97 1.70 1.89
20 5 Concave-Inc 5.29 0.96 0.97 1.51 1.81
20 1 Convex-Inc 6.18 0.99 0.97 2.45 1.97
20 3 Convex-Inc 5.43 0.96 0.94 1.63 1.41
20 5 Convex-Inc 3.46 0.95 0.93 1.18 1.06
20 1 Rand 5.36 0.98 0.98 2.30 2.21
20 3 Rand 5.63 0.98 0.97 2.23 2.09
20 5 Rand 4.13 0.96 0.98 1.63 2.26

(a) Instances with D = Uni
Avg. % Usage Avg. rolled

T m P Avg. % Gap ATOH A∗ ATOH A∗

10 1 Concave-Inc 12.94 0.87 0.94 0.67 0.99
10 3 Concave-Inc 7.04 0.91 0.95 0.54 1.03
10 5 Concave-Inc 9.61 0.86 0.95 0.22 0.74
10 1 Convex-Inc 6.86 0.91 0.93 1.02 1.11
10 3 Convex-Inc 4.07 0.91 0.92 0.71 0.79
10 5 Convex-Inc 2.54 0.85 0.87 0.30 0.37
10 1 Rand 8.25 0.92 0.93 0.83 1.05
10 3 Rand 6.43 0.91 0.94 0.71 1.00
10 5 Rand 3.53 0.84 0.88 0.31 0.52
20 1 Concave-Inc 10.86 0.95 0.96 1.16 1.50
20 3 Concave-Inc 11.56 0.93 0.96 1.00 1.38
20 5 Concave-Inc 9.69 0.93 0.96 0.63 1.39
20 1 Convex-Inc 7.36 0.99 0.97 2.55 2.07
20 3 Convex-Inc 7.75 0.98 0.96 2.01 1.72
20 5 Convex-Inc 7.70 0.96 0.95 1.55 1.42
20 1 Rand 5.67 0.98 0.97 2.33 2.13
20 3 Rand 7.68 0.98 0.96 1.97 1.71
20 5 Rand 5.21 0.96 0.97 1.81 1.77

(b) Instances with D = High-Dep
Avg. % Usage Avg. rolled

T m P Avg. % Gap ATOH A∗ ATOH A∗

10 1 Rand 3.73 0.93 0.95 1.43 1.47
10 3 Rand 0.23 0.87 0.87 0.72 0.78
10 5 Rand 0.53 0.73 0.73 0.20 0.24
10 1 Concave-Inc 1.64 0.84 0.83 0.65 0.66
10 3 Concave-Inc 0 0.48 0.48 0.05 0.05
10 5 Concave-Inc 0 0.37 0.37 0 0
10 1 Convex-Inc 6.63 0.93 0.96 0.88 1.27
10 3 Convex-Inc 4.13 0.92 0.95 0.79 1.32
10 5 Convex-Inc 0.01 0.85 0.85 0.36 0.44
20 1 Rand 2.65 0.99 0.99 3.27 3.21
20 3 Rand 3.41 0.99 0.98 2.80 2.64
20 5 Rand 2.09 0.97 0.98 1.92 2.25
20 1 Concave-Inc 1.19 0.96 0.96 2.07 1.96
20 3 Concave-Inc 0 0.83 0.83 0.69 0.69
20 5 Concave-Inc 0 0.68 0.68 0.15 0.15
20 1 Convex-Inc 4.31 0.99 0.99 2.29 2.49
20 3 Convex-Inc 4.92 0.99 0.99 2.19 2.62
20 5 Convex-Inc 5.35 0.95 0.99 1.16 2.33

(c) Instances with D = Low-Dep

Table B1: Average performance of the TOH policy.
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Appendix C

Blockchain-Enabled Deep-Tier Supply

Chain Finance
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C.1 Supplemental Materials

C.1.1 Summary of Notations

To keep track of the different components in our model, we summarize the notations throughout

the paper in Table C1.

Table C1: Summary of Model Notations

Parameters
c the maximal amount of capital the tier-2 supplier is willing to invest in production.
v exogenous unit procurement price for tier-1.
e exogenous unit procurement cost of the tier-1 supplier for emergency product.
θ2 working capital of tier-2 supplier S2, i = 1, 2.
F the CDF of θ2.
θ1 working capital of the tier-1 supplier S1.

Decisions
w unit tier-0 wholesale price proposed by the manufacturer.
rm the tier-0 AP interest rate charged by the manufacturer.
rs the tier-1 AP interest rate charged by the tier-1 supplier.
rb actual interest rate of bank loan.
y tier-2 supplier’s investment level in production.
Bs AP amount the tier-2 supplier borrowed from the tier-1 supplier.
Bm AP amount the tier-1 supplier borrowed from the manufacturer.

Derived
P(·) reliability function on the invested capital.
π0 expected payoff of the manufacturer at time 2
π1 expected payoff of the tier-1 supplier at time 2
π2 expected payoff of the tier-2 supplier at time 2
θ̄2 financing threshold of the tier-2 supplier’s working capital
ē emergency sourcing threshold of the emergency sourcing cost
¯̂
θ2 contract threshold of the tier-2 supplier’s working capital
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C.1.2 Summary of Modeling Assumptions

We summarize additional standard assumptions in our model.

(A1) All three players in the deep-tier supply chain are risk-neutral, i.e., they maximize the

expected pay-off.

(A2) The capital market is perfect to the tier-1 supplier, (no taxes, transaction costs, and

bankruptcy costs); all bank loans are competitively priced (perfectly competitive banking

sector).

(A3) The tier-1 supplier is credit-worthy and will repay the loan obligations (if any) to the

extent possible, whereas the tier-2 supplier are not.

(A4) We use the following tie-breaking rules: If the tier-1 supplier is indifferent between

manufacturer and bank financing, he uses MF.

C.1.3 Additional Results for §3.4

Lemma C.1. Given any θ2 ∈ [0, c) and θ1 ≥ 0, the optimal tier-1 AP interest rate is

r∗s = z∗−1(yb∗(w|θ2, e), θ2), where yb∗(w|θ2, e) is the tier-2 investment level that solves the

FOC of (3.2).

(i) r∗s is independent of θ1 but decreases in the tier-0 wholesale price (bounded by emergency

sourcing cost, same below);

(ii) yb∗(w|θ2, e) is independent of θ1 but increases in the tier-0 wholesale price.

(iii) πb∗
1 (w) := πb

1(y
b∗(w|θ2, e)|w) increases in the tier-0 wholesale price.

Lemma C.1 reveals that in the competitive capital market environment, whether the tier-1

supplier is capital-constrained does not influence the operation decision, that is, the tier-1
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supplier offers an AP interest rate to the tier-2 supplier to stimulate the same investment

level yb∗(w|θ2, e) as if there is no capital constraint. This investment level is independent

of the tier-1 supplier’s working capital because borrowing from the bank induces a risk-free

expected interest rate. Using his own capital and borrowing from the bank have the same

financial cost. We find yb∗(w|θ2, e) > θ2 always holds, so the tier-2 supplier must borrow from

the tier-1 supplier to improve the reliability. If the tier-1 supplier needs to borrow from the

bank, i.e., y > θ1 + θ2, it immediately follows from competitive lending equation that the

bank loan interest rate on B∗
b = yb∗ − θ1 − θ2 is r∗b =

1
P(yb∗) − 1.

Lemma C.1(i)-(iii) reveal the monotonocities of r∗s , yb∗(w|θ2, e), and πb∗
1 (w). The reason

that yb∗(w|θ2, e) increases in θ2 is that a less capital-constrained tier-2 supplier has a low

bankruptcy risk, which reduces the cost that the tier-1 supplier offers an AP. The reason

that yb∗(w|θ2, e) increases in the tier-0 wholesale price is two-fold. In the P case, where the

tier-1 does not use E, increasing w increases the tier-1’s margin when the tier-2’s production

succeeds, hence increases the tier-1’s investment in reliability. In the PR case, where the tier-1

uses E when the tier-2 fails, increasing the emergency sourcing cost decreases the tier-1’s

margin when the tier-2’s production fails, hence increases the tier-1’s incentive for proactive

risk mitigation.

The tier-1 supplier joins in the business and accepts at least the wholesale price only when

the optimal terminal cash level is greater than the reservation option, i.e., rejecting to get

zero profit, for any θ2 ∈ [0, c). We should have πb
1(y

b∗(w|θ2, e)|w) ≥ θ1, ∀θ2 ∈ [0, c). It leads

to a necessary condition that the manufacturer has to offer a wholesale price high enough

to guarantee the tier-1 supplier’s positive profit, i.e., w ≥ w, where w := v + yb∗(c|0, e) > v.

As the financing issue with capital-constrained suppliers is the focus of this paper, we will

focus on the case where the two suppliers’ total working capital is constrained to the extent

that θ1 + θ2 ≤ yb∗(w|c, e), where yb∗(w|c, e) > c by monotonicity. Let θmax
1 := yb∗(w|c, e)− c

[173]



denote the upper bound of the tier-1 supplier’s working capital, we only consider the suppliers’

working capital space (θ1, θ2) ∈ W := [0, θmax
1 ]× [0, c) in the remainder of the paper.

Lemma C.2. The tier-1 supplier’s optimal AP interest rate is r∗s = z∗−1(max{ym∗, θ1 +

θ2}, θ2), where ym∗ is the tier-2 investment level that solves the FOC of (3.3).

(i) ym∗ := ym∗(w, rm|θ1, θ2, e) increases in w, θ1, and θ2, but decreases in rm.

(ii) r∗s decreases in w, θ1, and θ2;

(iii) πm∗
1 (w, rm) := πm

1 (y
m∗|w, rm) increases in w, but decreases in rm.

Lemma C.2 characterizes the optimal tier-1 AP interest rate r∗s . By comparing Lemmas C.1

and C.2, we find the optimal decisions have different structures under BF and MF. Under

BF, the tier-1 supplier has a single optimum yb∗(w|θ2, e) no matter what is the echelon’s

capital. Under MF, it bears a similar structure as in Lemma 3.1, namely, whether the tier-1

supplier would use financing depends on the relationship between the echelon working capital

level θ1 + θ2 and the optimal investment level ym∗. If the echelon is wealthy enough to cover

the target investment ym∗, no financing happens, and the tier-1 supplier uses as much as

the echelon capital to the production until yb∗(w|θ2, e). We also find that yb∗(w|θ2, e) is

independent of θ1, whereas ym∗(w, rm|θ1, θ2, e) increases in θ1.

C.2 Delegate Financing with Mandatory Blockchain Adop-

tion

Figure C1a plots the trajectory of the optimal tier-0 AP contract (w∗, r∗m) as emergency

sourcing cost e increases. The solid trajectory line, (e, rPm), moving from lower-left to upper-

right, corresponds to e increasing from w to ē(θ1); the solid point, (wP, rPm), corresponds
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Figure C1: (Color Online) Trajectory of the Optimal Tier-0 AP Contract (as e increases
from v to 1)

e > ē(θ1). At e = ē(θ1), the manufacturer is indifferent between using E (by offering (e, rPm))

and not using E (by offering (wP, rPm)). The fact that (wP, rPm) < (ē(θ1), r
P
m(ē(θ1))) reflects

the trade-off between using a high wholesale price (w∗ = e) to guarantee a perfect reliability

from emergency sourcing and using a low interest rate (rPm) to encourage tier-2 production

reliability investment. The implications of the optimal tier-0 AP contract (w∗, r∗m) for the

tier-1 supplier’s financing and risk-mitigation decisions (Proposition 3.1) are illustrated in

Figure 3.4b in the parameter space of (e, θ2).

Figure C1b plots the trajectory of the optimal tier-0 AP contract (ŵ∗, r̂∗m) as emergency

sourcing cost e increases and for θ2 ∈ [0, c). The shaded band, (e, r̂PR), moving from lower-left

to upper-right, corresponds to e increasing from v to ¯̂e(θ1, θ2), with the top (resp., bottom)

boundary of the band corresponding to θ2 = 0 (resp., θ2 = c). The red line, (ŵP∗, r̂P∗m ), moving

from up to down, corresponds to θ2 : 0 → c. Overlaying the optimal tier-0 AP contract

(w∗, r∗m) trajectory without blockchain (from Figure C1a), we see how the limited visibility

can lead the manufacturer to offer over-priced or under-priced AP contracts compared to

that with perfect visibility.
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To investigate the impact of the blockchain on performance measures of the supply chain, we

incorporate a customized bundle of decisions for each region in Proposition C.1, i.e., (w∗)

vs. (ŵ∗) for Region I, (w∗, r∗m) vs. (ŵ∗, r̂∗m) for Region II, (w∗, r∗m) vs. (ŵ∗, r̂∗b ) for Region III,

and (w∗, r∗b ) vs. (ŵ∗, r̂∗m) for Region IV. Next, we compare (w∗, r∗m) and (ŵ∗, r̂∗m), r∗s and r̂∗s

(equivalently, y∗s and ŷ∗s).

Recall the visibility difference with and without blockchain, we define following expected

equity functions at time 1 on the visible information for different parties. Without blockchain,

the manufacturer’s expected payoff at the equilibrium is defined as π∗
m(θ1), whereas with

blockchain it is defined as π̂1∗
0 (θ1, θ2). For other parties, there is no information asymmetry

between two different scenarios, and let π∗
1(θ1, θ2) and π̂∗

1(θ1, θ2) denote the tier-1 supplier’s

expected cash at time 1 without and with blockchain, while π∗
2(θ1, θ2) and π̂∗

2(θ1, θ2) denote

the tier-2 supplier’s expected cash at time 1 without and with blockchain.

We further compare the corresponding equilibrium outcomes in different scenarios i.e., com-

paring π∗
i (·|e, θ2, θ1) with π̂∗

i (·|e, θ2, θ1), i ∈ {0, 1, 2}, to understand the impact of blockchain

adoption in deep-tier SCF problem. The tier-2 supplier’s expected payoff increases in its equi-

librium investment level, but decreases in the AP interest rate offered by the tier-1 supplier,

rs. The tier-1 supplier’s expected payoff increases in the wholesale price but decreases in the

interest rate of tier-0 AP contract, and but the wholesale price is the main driving-force.

C.2.1 Manufacturer’s Problem

We start with the manufacturer’s interest rate decision r̂m. By Proposition 3.1, the manufac-

turer faces two choices: (i) issue a cheaper MF than BF to make the tier-1 supplier takes

MF; (ii) issue a more expensive MF than BF to make the tier-1 supplier takes BF. A quick

study of the manufacturer’s time-2 payoff (Table 3.1) reveals that for any given wholesale
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price w, the manufacturer is indifferent for any r̂m ∈ (r∗b (w, θ2),∞), because in this case

the tier-1’s takes the bank loan with interest rate r∗b (w, θ2) and the manufacturer’s expected

operational payoff and financial payoff are not affected by her interest rate r̂m. For exposition

convenience, assume that when the manufacturer prefers the tier-1 supplier to use BF she

offers r̂m = ∞. The following lemma characterizes the manufacturer’s optimal interest rate

r̂∗m for any given wholesale price.

Theorem C.1. Given the working capital profile (θ1, θ2) observed via blockchain, there exists

a threshold ¯̂e(θ1, θ2), such that the optimal tier-0 AP contract (ŵ∗, r̂∗m) takes the following

form:

(ŵ∗, r̂∗m) =


(
e, r̂PR∗(e|e, θ2, θ1)

)
, if e ≤ ¯̂e(θ1, θ2);(

ŵP∗, r̂P∗(ŵP∗|e, θ2, θ1)
)
, otherwise.

(C1)

Theorem C.1 suggests that the manufacturer’s AP contract offering shares a similar decision

protocol as in Theorem 3.1, which critically depends on the value of the emergency sourcing

cost e. Blockchain-enabled visibility into the tier-2 working capital level, however, allows

the manufacturer to fine-tune her AP contract offer, notably in two places. First, the

emergency sourcing cost threshold ¯̂e(θ1, θ2) is contingent on both θ1 and θ2, whereas the

counterpart threshold ē(θ1) (Theorem 3.1) without blockchain independent of θ2. This can

be directly observed by comparing the two plots in Figure C2, which further indicates that

¯̂e(θ1, θ2) decreases in θ2, implying that when the tier-2 supplier is more capital-constrained,

the manufacturer would rely more on the emergency sourcing as the production reliability

improvement becomes less effective (more discussion follows in Corollary 3.2). Second, as

Lemma 3.1 elucidated, the manufacturer precisely decides when she should let the bank

finance the tier-1 (by offering r̂∗m > r∗b ) and when she should finance the tier-1 (by offering
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r̂∗m ≤ r∗b ) to instill more capital into the tier-2. Corollary 3.2 presents the sensitivity analysis

of the optimal tier-0 AP contract parameters with respect to θ1 and θ2.
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Figure C2: (Color Online) Tier-1 Supplier’s Financing and Emergency Sourcing Regions with
Mandatory Blockchain Adoption

Corollary 3.2 shows that θ1 and θ2 have the same directional effect on the manufacturer’s

optimal contract offering. This is because, from the manufacturer’s perspective, it is the total

working capital θ1 + θ2 between the tier-1 and tier-2 suppliers that determines the potential

resource for proactive risk mitigation. Increasing either θ1 and θ2 will (weakly) increase the

reliability investment (Lemmas C.1 and C.2) and decrease the tier-1 and tier-2 suppliers’

bankruptcy risk. The manufacturer can lower wholesale price ŵ∗ to incentivize the tier-1 and

lower interest rate r̂∗m to increase her financing to a less risky supply chain (Corollary 3.2(ii)).

For the same reason, she is less likely to use proactive risk mitigation (Corollary 3.2(i)).
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C.2.2 The Impact of Blockchain-Enabled Visibility with Mandatory

Blockchain

In this section, we compare the supply chain performances with and without blockchain

adoption. We start with the manufacturer. For the no-blockchain case, let π∗
m(e, θ1, θ2) ≡

πkI
0 (w∗, r∗m|e, θ1, θ2), where πkI

0 (w∗, r∗m|e, θ1, θ2) is as defined in (3.4). Thus, π∗
m(θ1, θ2) rep-

resents the manufacturer’s actual expected profit by offering (w∗, r∗m) without blockchain.

It is straightforward to establish that the manufacturer is better-off with blockchain, i.e.,

π∗
m(e, θ1, θ2) ≤ π̂1∗

0 (e, θ1, θ2). This is because the manufacturer’s decision based on imperfect

information (probability distribution of θ2) is intended to optimize (3.5), an estimation of

the expected profit (3.4); this decision can never outperform her decision based on accurate

information (exact value of θ2) that optimizes the expected profit (3.4).

To compare the tier-1 supplier’s performance with and without blockchain, we first recognize

that blockchain adoption may result in changes in the tier-1’s optimal financing choice. Recall

that for the no-blockchain case, Proposition 3.1 establishes a tier-2 working capital threshold

θ̄2(w, rm) such that the tier-1 supplier chooses MF if and only if θ2 < θ̄2(w, rm). For the

blockchain case, Lemma C.3 establishes a tier-1 supplier working capital threshold θ̄1(θ2) such

that the tier-1 chooses MF if and only if θ1 ≥ θ̄1(θ2). We can divide the (θ1, θ2) space into

four regions based on the impact of blockchain adoption on the tier-1 supplier’s equilibrium

financing choice.

For notation convenience, we denote θ̄1(ŵ∗, θ2), θ̄2(w∗, r∗m), r∗b (ŵ∗, r̂∗m) as θ̄1, θ̄2, r̂∗b , respectively.

Table C2 summarizes the equilibrium contract terms comparison (proof is provided in

Appendix) and Figure C3 summarizes supply chain members’ profit comparison without

blockchain and with blockchain for Regions I-IV. We will build insights for the comparisons
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starting with Region I and Region II, where blockchain adoption does not change the tier-

1 supplier’s financing choice. Because the tier-1’s expected profit under BF increases in

wholesale price w (Lemma C.1(iii)) and his expected profit under MF increases w and

decreases in rm (Lemma C.2(iii)), we need to understand how blockchain adoption affects

those contract parameters at equilibrium – compare w∗ and ŵ∗ in Region I and III and

compare (w∗, r∗m) and (ŵ∗, r̂∗m) in Region II.

Table C2: Equilibrium Contract Terms Comparison in Regions I-IV

Decisions Tier-0 Wholesale Price BF/MF Interest Rate Tier-1 Interest Rate Tier-2 Investment Level

Region I(1) ŵ∗ ≥ w∗ r̂∗b ≤ r∗b r̂∗s ≤ r∗s ŷ∗ ≥ y∗

Region I(2) ŵ∗ ≤ w∗ r̂∗b ≥ r∗b r̂∗s ≥ r∗s ŷ∗ ≤ y∗

Region II(1) ŵ∗ ≥ w∗ r̂∗m ≥ r∗m r̂∗s ≥ r∗s ŷ∗ ≤ y∗

Region II(2) ŵ∗ ≤ w∗ r̂∗m ≤ r∗m r̂∗s ≤ r∗s ŷ∗ ≥ y∗

Region III(1) ŵ∗ ≥ w∗ r̂∗b ≤ r∗m or r̂∗b > r∗m r̂∗s ≤ r∗s or r̂∗s > r∗s ŷ∗ ≤ y∗ or ŷ∗ > y∗

Region III(2) ŵ∗ ≤ w∗ r̂∗b ≥ r∗m r̂∗s ≥ r∗s ŷ∗ ≤ y∗

Region IV ŵ∗ ≤ w∗ r̂∗m ≤ r∗b or r̂∗m > r∗b r̂∗b ≤ r∗m or r̂∗b > r∗m ŷ∗ ≤ y∗ or ŷ∗ > y∗

Note: For ŵ∗ ≥ w∗, equality holds when e ≤ ē(θ1); For ŵ∗ ≤ w∗, equality holds when e ≤ ¯̂e(θ1, θ2)
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(i) if w⇤(✓1, e) < e,

(a) For ✓1 � ✓̄1, (w⇤, r⇤m) = (ŵ⇤, r̂⇤m)|✓2=✓⌧2
, w⇤  ŵ⇤, r⇤m < r̂⇤m for ✓2 2 [0,✓⌧2 ), and w⇤ � ŵ⇤,

r⇤m > r̂⇤m for ✓2 2 (✓⌧2 , c). Moreover, ✓⌧2 < ✓̄2.

(b) For ✓1 < ✓̄1, w⇤ = ŵ⇤|✓2=✓⌧2
, w⇤  ŵ⇤, r⇤b � r̂⇤b for ✓2 2 [0,✓⌧2 ), and w⇤ � ŵ⇤, r⇤b  r̂⇤b for

✓2 2 (✓⌧2 , c);

(ii) if w⇤(✓1, e) = e (and ŵ⇤ = e for some ✓2), ✓
⌧
2 (e,✓1) = ¯̂e�1(e|✓1), which is an inverse function

of ¯̂e with regard to ✓2.
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Figure 4 (Color Online) Division of Working Capital Space and Changes in Financing Choice

Table 2 Equilibrium Contract Terms Comparison in Regions I-IV

Decisions Tier-0 Wholesale Price BF/MF Interest Rate Tier-1 Interest Rate Tier-2 Investment Level

Region I(1) ŵ⇤ �w⇤ r̂⇤b  r⇤b r̂⇤s  r⇤s ŷ⇤ � y⇤

Region I(2) ŵ⇤ w⇤ r̂⇤b � r⇤b r̂⇤s � r⇤s ŷ⇤  y⇤

Region II(1) ŵ⇤ �w⇤ r̂⇤m � r⇤m r̂⇤s � r⇤s ŷ⇤  y⇤

Region II(2) ŵ⇤ w⇤ r̂⇤m  r⇤m r̂⇤s  r⇤s ŷ⇤ � y⇤

Region III(1) ŵ⇤ �w⇤ r̂⇤b  r⇤m or r̂⇤b > r⇤m r̂⇤s  r⇤s or r̂⇤s > r⇤s ŷ⇤  y⇤ or ŷ⇤ > y⇤

Region III(2) ŵ⇤ w⇤ r̂⇤b � r⇤m r̂⇤s � r⇤s ŷ⇤  y⇤

Region IV ŵ⇤ w⇤ r̂⇤m  r⇤b or r̂⇤m > r⇤b r̂⇤b  r⇤m or r̂⇤b > r⇤m ŷ⇤  y⇤ or ŷ⇤ > y⇤

Note: For ŵ⇤ �w⇤, equality holds when e ē(✓1); For ŵ⇤ w⇤, equality holds when e ¯̂e(✓1,✓2)

The implications of changes in the tier-0 AP contract for the tier-1’s AP interest rate rs to the

tier-2 supplier is straightforward. The tier-1 supplier will increase (resp., decrease) rs when his own

loan interest rate increases (resp., decreases), regardless of whether he finances from the bank or

22 Dong, Qiu and Xu: Blockchain-Enabled Deep-Tier Supply Chain Finance

Table 3 Impact of Blockchain Adoption on Supply Chain Performances in Di↵erent Regions

Decisions M ’s Profit S1’s Profit S2’s Profit Chain’s Profit

Region I(1) + + + +

Region I(2) & III(2) + � � �
Region II(1) + + � +/�
Region II(2) + � + +/�
Region III(1) + + +/� +

Region IV + � +/� +/�
Note: “+”, “�”, and “+/�” represent the “positive”, “negative”, and “indeterminate” impacts.

Figure 5 Impact of Blockchain Adoption on Risk Mitigation When the Finance Choice Keeps the Same

the manufacturer. Consequently, perfect visibility increases (resp., decreases) production reliability

investment if the tier-1’s loan interest rate deceases (resp., increases) (see the last column of Table

2). Because the tier-2 supplier’s expected payo↵ increases in its reliability investment level, it is

better-o↵ with blockchain adoption in Region I(1) and Region 1(2) and worse-o↵ in Region I(2)

and Region II(1) (see Table 3). In both Region I and II, the blockchain adoption preserves the

financing choice, but the manufacturer adjust the contract terms based upon the observed tier-2

information. We summarize the impact of blockchain adoption on manufacturer’s risk mitigation

incentives in Region I and II as Figure 5.

In those regions, tier-1 supplier’s profits are driven by the wholesale price o↵ered by manufac-

turer: the profit decreases if the wholesale price decreases. How the manufacturer adjusts wholesale

price depends on the value of ✓2. Recall that without visibility, the manufacturer’s decision is equiv-

alent to targeting a specific ✓⌧2 . This value divides each region into two subregions, one subregion

has ✓2 higher than ✓⌧2 and the other subregion is below ✓⌧2 .

When the manufacturer finds the actual ✓2 is lower than this value (subregions I(1) and II(1)), the

manufacturer realizes the she did not provide su�cient incentive for risk mitigation under limited

visibility. She will raise the wholesale price to increase the tier-1’s incentive for risk mitigation,

which has two-folded implications. First, increasing w (weakly) increases the use of E. Second,

Figure C3: (Color Online) Division of Working Capital Space and Impact of Blockchain
Adoption
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Recall that without blockchain the manufacturer sets her contract (w∗, r∗m) based on her

probability distribution assessment of the tier-2’s working capital θ2. Lemma C.4 shows that

the manufacturer, after gaining perfect visibility of θ2, when committed to MF (resp., BF), if

seeing the tier-2’s working capital θ2 =
¯̂
θ2(θ1, e) (represented by the dashed line in Figure

C3), would offer the exact same contract as she would without perfect visibility. That is,

(w∗, r∗m) = (ŵ∗, r̂∗m)|θ2=¯̂
θ2

if the manufacturer commits to MF (θ1 ≥ θ̄1), w∗ = ŵ∗|
θ2=

¯̂
θ2

if the

manufacturer commits to BF (θ1 < θ̄1). Because ŵ∗ and r̂∗m decreases in θ2 (Corollary 3.2),
¯̂
θ2(θ1, e) divides Region I and Region II each into two subregions (as presented in Figure C3

and Table C2). In subregion (1) where θ2 ∈ [0,
¯̂
θ2), perfect visibility leads to higher wholesale

price ŵ∗ and higher interest rate r̂∗m (resp., lower bank loan interest rate r̂∗b ) under MF (resp.,

under BF). In subregion (2) where θ2 ∈ (
¯̂
θ2, c), perfect visibility leads to lower wholesale

price ŵ∗ and lower interest rate r̂∗m (resp., higher bank loan interest rate r̂∗b ) under MF (resp.,

under BF). Moreover, we find for the tier-1 supplier, the wholesale price change is the main

driving-force when both contract term moving to the same direction. Therefore, Lemma C.4

implies that the tier-1 supplier is better-off (resp., worse-off) with blockchain adoption in

subregion (1) (resp., subregion (2)) of Region I and Region II (see Figure C3).

The implications of changes in the tier-0 AP contract for the tier-1’s AP interest rate rs

to the tier-2 supplier is straightforward. The tier-1 supplier will increase (resp., decrease)

rs when his own loan interest rate increases (resp., decreases), regardless of whether he

finances from the bank or the manufacturer. Consequently, perfect visibility increases (resp.,

decreases) proactive risk mitigation if the tier-1’s loan interest rate deceases (resp., increases)

(see the last column of Table C2). Because the tier-2 supplier’s expected payoff increases in

its reliability investment level, it is better-off with blockchain adoption in Region I(1) and

Region 1(2) and worse-off in Region I(2) and Region II(1) (see Figure C3). In both Region I

and II, the blockchain adoption preserves the financing choice, but the manufacturer adjust
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High 𝜃! 𝑤∗ ↓

Reduce incentive for 
risk mitigation

BF: 𝑟#∗ ↑⇒ 𝑟$∗ ↑⇒ 𝑦∗ ↓

MF: 𝑟%∗ ↓⇒ 𝑟$∗ ↓⇒ 𝑦∗ ↑

Less use of E

S1 S2 Region

I(2) lose-lose

II(2) lose-win

Low 𝜃! 𝑤∗ ↑

Increase incentive for 
risk mitigation

BF: 𝑟#∗ ↓⇒ 𝑟$∗ ↓⇒ 𝑦∗ ↑

MF: 𝑟%∗ ↑⇒ 𝑟$∗ ↑⇒ 𝑦∗ ↓

More use of E

I(1) win-win

II(1) win-lose

Figure C4: Impact of Blockchain Adoption on Risk Mitigation When the Finance Choice
Keeps the Same

the contract terms based upon the observed tier-2 information. We summarize the impact of

blockchain adoption on manufacturer’s risk mitigation incentives in Region I and II as Figure

C4.

In those regions, tier-1 supplier’s profits are driven by the wholesale price offered by manufac-

turer: the profit decreases if the wholesale price decreases. How the manufacturer adjusts

wholesale price depends on the value of θ2. Recall that without visibility, the manufacturer’s

decision is equivalent to targeting a specific ¯̂
θ2. This value divides each region into two

subregions, one subregion has θ2 higher than ¯̂
θ2 and the other subregion is below ¯̂

θ2.

When the manufacturer finds the actual θ2 is lower than this value (subregions I(1) and II(1)),

the manufacturer realizes the she did not provide sufficient incentive for risk mitigation under

limited visibility. She will raise the wholesale price to increase the tier-1’s incentive for risk

mitigation, which has two-folded implications. First, increasing w (weakly) increases the

reactive risk mitigation. Second, how increasing w affects the tier-1’s incentive for proactive

risk mitigation depends on which financing source the tier-1 uses. Under BF (Region I(1),

increasing w decreases the bank’s loan interest rate, which, in turn decreases tier-1 interest

rate offer to tier-2, and increases reliability investment. This subregion increases both reactive

and proactive risk mitigations. Under MF (Region II(1)), increasing w is accompanied by
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High 𝜃! + 𝜃" 𝑤∗ ↓

Reduce incentive for 
risk mitigation

BF → MF: 𝑟$∗ ↓> 𝑟%∗ ⇒ 𝑟&∗ ↑⇒ 𝑦∗ ↓

BF → MF: 𝑟$∗ ↓≤ 𝑟%∗ ⇒ 𝑟&∗ ↓⇒ 𝑦∗ ↑

Less use of E

S1 S2 Region

IV lose-lose

IV lose-win

Low 𝜃! + 𝜃"

𝑤∗ ↑
Low 𝜃" : increase risk mitigation

MF → BF: 𝑟%∗ ↓> 𝑟$∗ ⇒ 𝑟&∗ ↑⇒ 𝑦∗ ↓

MF → BF: 𝑟%∗ ↓≤ 𝑟$∗ ⇒ 𝑟&∗ ↓⇒ 𝑦∗ ↑

More use of E

III(1) win-lose

III(1) win-win

𝑤∗ ↓High 𝜃": reduce risk 

mitigation MF → BF: 𝑟%∗ ↑> 𝑟$∗ ⇒ 𝑟&∗ ↑⇒ 𝑦∗ ↓
Less use of E

III(2) lose-lose

Figure C5: Impact of Blockchain Adoption on Risk Mitigation When the Financing Choice
Changes

increasing manufacturer’s interest rate, which in turn increases the tier-1 interest rate, and

decrease tier-2’s reliability investment. In this sub-region, the tier-1 increase uses of E but

decreases reliability investment.

If θ2 turns out to be high (subregion I(2) and II(2)), then the manufacturer finds she over-

incentivizes the risk-mitigation effort under limited visibility. She will reduce that incentive

by reducing wholesale price, which reduces the reactive risk mitigation and the tier-1 will be

worse-off. If the tier-1 uses BF, reducing of w translates into increasing bank interest rate

which reduces proactive risk mitigation, and tier-2 is worse-off as well. In this region, the

tier-1 both use less of E and invest less on reliability improvement. If tier-1 uses the MF,

reducing w is accompanied by reducing rm, which increases tier-2’s reliability investment. In

this region, the tier-1 reduces the reactive but increase proactive risk mitigation.

In both Region III and IV, the blockchain adoption changes the financing choice. We

summarize the impact of blockchain adoption on manufacturer’s risk mitigation incentives in

these regions as Figure C5.
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Region IV shows that the manufacturer, after observing an echelon that is not capital-

constrained visibility, will adjust her AP contract offer to induce the tier-1 supplier to switch

from BF to MF. Lemma C.4(i) states that ¯̂
θ2 < θ̄2. It implies that in Region IV, switching

the tier-1 from BF to MF is achieved by the manufacturer’s lowering her wholesale price

and interest rate, i.e., ŵ∗ ≤ w∗, r̂∗m ≤ r∗m. Had the tier-1 supplier chosen MF at (w∗, r∗m)

without blockchain, he would find himself worse-off after blockchain adoption because his

expected payoff under MF decreases in the wholesale price, and the reactive risk mitigation

reduces. However, the change of financing price from BF to MF is not determined even

though the manufacturer offers a cheaper interest rate. Thus, blockchain adoption’s impact

on the proactive risk mitigation is indeterminate.

In Region III, the manufacturer, after observing a severely capital-constrained echelon, will

adjust her AP contract offer to induce the tier-1 supplier to switch from MF to BF. Unlike

Region IV, this region is divided into two subregions by ¯̂
θ2, implying that the manufacturer

will set r̂∗m = ∞ to induce the tier-1 supplier to choose BF, but will increase wholesale

price (ŵ∗ ≥ w∗) in Region III(1) where θ2 <
¯̂
θ2, and decrease wholesale price (ŵ∗ ≤ w∗)

in Region III(2) where θ2 >
¯̂
θ2. Using the reasoning similar to that for Region IV, the

tier-1 supplier is worse-off with blockchain adoption in Region III(2): had the tier-1 supplier

chosen BF at (w∗, r∗m) without blockchain, he would find himself worse-off after blockchain

adoption because of the wholesale price decrease. The fact that the tier-1 chooses MF over

BF without blockchain suggests that he earns a higher profit under MF and will be worse-off

with blockchain adoption. Moreover, the manufacturer’s interest rate without blockchain, r∗m,

is lower than the bank loan interest rate r∗b (w
∗), and the wholesale price decrease leads to a

higher bank loan interest rate r̂∗b (w
∗). Consequently, the proactive risk mitigation decreases

and the tier-2 supplier is worse-off with blockchain adoption in Region III(2) (see Figure C3).
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The use of the reactive risk mitigation is determined by the threshold of emergency sourcing

cost, i.e., ē(θ1) without blockchain and ¯̂e(θ1, θ2) with blockchain. If the manufacturer observes

a more severely capital-constrained tier-2 supplier (e.g., θ2 ≤ θτ2) than her expectation without

visibility, she will increase the emergency cost threshold based on Corollary 3.2(i) that the

threshold decreases in θ2. The intuition behind is that if the blockchain incentivizes the

manufacturer to offer a higher wholesale price because the tier-2 supplier is capital-constrained

and not reliable, it will encourage the tier-1 supplier to use the emergency source more to

mitigate the disruption risk reactively.

As we discussed above, improved visibility always benefits the manufacturer, who can

incentivize both reactive and proactive risk mitigation with full supply chain information.

This result is consistent with practical observations that it is the downstream powerful

manufacturer who advocates (and even requires) the adoption of such blockchain platform

for deep-tier financing (e.g., Foxconn and Samsung examples mentioned earlier). However,

the manufacturer’s gain can be at the cost of the tier-1, the tier-2, and even the entire supply

chain. The tier-1 supplier is worse-off when the tier-2 supplier is less capital-constrained,

because the manufacturer uses the information to adjust her AP contract offer to lower

the wholesale price offered to the tier-1 relying more on tier-2’s own capital for reliability

investment. For this reason, the tier-2 supplier can be worse-off when it is not severely

capital-constrained. When the tier-2 is severely capital-constrained but the tier-1 is not, the

tier-2 supplier can be worse-off because the manufacturer raises her interest rate to the tier-1

supplier to cope with the tier-2 bankruptcy risk.

The “win-win-win" situation happens in Region I(1) (as highlighted in Figure C3) where

the tier-1 supplier is severely capital-constrained but the tier-2 supplier’s working capital

falls into a certain medium range. Recall that in Region I(1), blockchain adoption would not

change the tier-1 supplier’s financing choice (keep using BF). Under BF, perfect visibility
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leads to higher wholesale price ŵ∗ and lower bank loan interest rate r̂∗b , thus benefits the

tier-1 supplier, who in turn would decrease his AP interest rate offered to the tier-2 and thus

benefits the tier-2 as well. Such virtuous cycle would easily collapse if either the tier-1 or the

tier-2 supplier becomes less capital-constrained.

What drive the total supply chain profit are the two risk-mitigation measures: proactive

(reliability investment) and reactive (use of E). When the reliability investment increases

and the supply chain is more likely to use E when tier-2 production fails, the supply chain

benefits. Region I(1) is one such region. However, in Region I(2), Region III(2), and Region

IV, reliability and use of emergency sourcing reduce, and the supply chain is worse-off.

C.3 Proofs of Statements

We present all the proofs of the Lemmas, Propositions, and Theorems of Chapter 3 in this

Appendix.

Proof of Lemma 3.1:

Proof. The first-order derivatives of π2r and π2a in the investment level y are:

∂π2r

∂y
= P ′(y)v − 1 ≥ 0, and

∂π2a

∂y
= P ′(y)[v − (1 + rs)(y − θ2)]− P(y)(1 + rs),

since y ≤ c and P ′(c)v − 1 = 0. The second-order derivatives of π2a in the investment level y

is:
∂2π2a

∂y2
= P ′′(y)[v − (1 + rs)(y − θ2)]− 2P ′(y)(1 + rs) < 0,
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since P ′′(y) < 0 and P ′(y) > 0. Hence π2 is increasing in the first segment and concave in

the second segment. We can show that π2 is unimodal by the continuity at y = θ2. Let

z∗(rs|θ2) solving P ′(y)[v − (1 + rs)(y − θ2)]− P(y)(1 + rs) = 0 denote the optimum of the

second segment. Since π2 is continuous and ∂π2r

∂y
> ∂π2a

∂y
at y = θ2, the optimal investment

level y∗ = θ2 if z∗(rs|θ2) < θ2, but y∗ = z∗(rs|θ2) otherwise.

Proof of Proposition 3.1:

Proof. We first proof Lemma C.1 and Lemma C.2 in Appendix B.3. When y ≤ θ1 + θ2, the

tier-1 supplier’s problem can be formulated as follows for any k:

max
y≤θ1+θ2

πk
1(rs|w, rm) = P(y)[w − v + (1 + rs)(y − θ2)] + θ1 + θ2 − y + (1− P(y))(w − e)+.

We have the first-order derivative of π1 in y as:

∂π1

∂y
= P ′(y)min(w, e) + P(y)∂yrs(y − θ2)− 1,

And the second-order derivative is,

∂π1

∂y
= P ′′(y)min(w, e) + P(y)∂yrs + P ′(y)∂yrs(y − θ2)− P(y)∂2

y2rs < 0,

Hence π1 is concave in y. Let yb∗ denote the solution of the following FOC,

P ′(y)min(w, e) + P(y)(y − θ2)∂yrs − 1 = 0, (C2)

We have yb∗ is the interior maximizer under no-financing.
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When y > θ1 + θ2, the tier-1 supplier’s problem can be formulated as follows for any k :

πk
1(rs|w, rk) =
P(y)[w − v + (1 + rs)(y − θ2)] + (1− P(y))(w − e)+, if k = b;

P(y)[w − v + (1 + rs)Bs − (1 + rm)Bm] + (1− P(y))(w − e− (1 + rm)Bm)
+, if k = m.

The first-order derivatives of πb
1 and πm

1 in y are:

∂πb
1

∂y
= P ′(y)min(w, e) + P(y)(y − θ2)

∂rs
∂y

− 1,

∂πm
1

∂y
= P ′(y)[w − (1 + rm)(y − θ1 − θ2)] + P(y)

[
(y − θ2)

∂rs
∂y

− (1 + rm)

]
.

The corresponding second-order derivatives are both negative. Hence, πb
1 and πm

1 are concave

in y. The FOC of the BF case is the same as the no financing case, i.e., equation (C2). Let

ym∗ denote the solution of the following FOC for MF,

P ′(y) [w − (1 + rm)(y − θ1 − θ2)] + P(y) [(y − θ2)∂yrs − (1 + rm)] = 0. (C3)

The optimal tier-1 interest rate and the tier-2 supplier’s response solving (KF) and P ′(y)[v −

(1 + rs)(y − θ2)] − P(y)(1 + rs) = 0 for k = b,m. Since ∂πb
1

∂y
≥ ∂πm

1

∂y
, we have that fixing

(θ1, θ2, w, rm), yb ≥ ym.

To prove Proposition 3.1, we need to show that rm ≤ r∗b is the sufficient and necessary

condition of πm
1 (y

m∗|w, rm) ≥ πb
1(y

b∗|w, rm).

• Sufficiency: By rm ≤ r∗b , we have πb
1(y

b∗|w, rm) ≤ πm
1 (y

b∗|w, rm) ≤ πm
1 (y

m∗|w, rm).

• Necessity: Suppose rm > r∗b , we have πm
1 (ym∗|w, rm) < πm

1 (ym∗|w, r∗b ) = πb
1(y

m∗|w, r∗b ) ≤

πb
1(y

b∗|w, r∗b ) = πb
1(y

b∗|w, rm).
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To find the financing threshold of θ2, we compare the first-order derivatives of πb
1 and πm

1 on

θ2 as follows,

∂πb
1

∂θ2
= P ′(y)[min(w, e)− v + (1 + rs)(y − θ2)]

∂y

∂θ2

+P(y)

[
(1 + rs)

(
∂y

∂θ2
− 1

)
+ (y − θ2)

∂r2
∂θ2

)

]
> 0,

∂πm
1

∂θ2
= P ′(y)[w − v + (1 + rm)θ1 + (rs − rm)(y − θ2)]

∂y

∂θ2

+P(y)

[
(rs − rm)

(
∂y

∂θ2
− 1

)
+ (y − θ2)

∂r2
∂θ2

)

]
> 0.

We have ∂πb
1

∂θ2
≥ ∂πm

1

∂θ2
since θ1 < y − θ2, that is, the tier-1 supplier’s expected cash position

increases in the tier-2’s initial capital under both financing schemes, but faster under BF. In

order to prove the existence of the threshold, we only need to show the πb∗
1 ≤ πm∗

1 when θ2 is

small, but πb∗
1 ≥ πm∗

1 when θ2 is large.

Let θ2 = 0, the optimal investment level under BF yb∗ solves P ′(y)w+P(y)y ∂rs
∂y

= 1, which is

strictly less than c. Hence, for any rm ≤ 1
P(yb∗(0|e,e)) = rb, we have πb∗

1 ≤ πm∗
1 . Similarly, when

θ2 = c, the optimal investment level under BF is yb∗(c|v) = c. Hence, for any rm ≤ 1
P(c)

= rb,

we have πb∗
1 ≥ πm∗

1 . Therefore, for any rm ∈
[

1
P(c)

, 1
P(yb∗(0|e,e))

]
, there exists a θ̄2 ∈ [0, c) such

that πb∗
1 = πm∗

1 and πb∗
1 ≤ πm∗

1 iff θ2 ≤ θ̄2. We nominate this θ2 as θ̄2(w, rm).

The monotonicity of rm is trivial. To show the monotonicity of w is equivalent to show that

yb∗ increases in w. It can be proved by the fact that the second-order partial derivative of πb
1

with regard to y and w is, ∂2πb
1

∂y∂w
= P ′(y) > 0. Hence, yb∗ increases in w.

Proof Theorem 3.1 and Corollary 3.1:

Proof. The manufacturer’s expected payoff function of the tier-0 AP contract (w, rm), given

the tier-2 supplier with working capital θ2, takes the following forms when the tier-1 supplier
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using BF and MF, respectively.

πb
0(w, rm|e, θ1, θ2) =


P(yb∗)(1− w), if w < e;

1− w, otherwise.
(C4)

πm
0 (w, rm|e, θ1, θ2) =


P(ym∗)[1− w + (1 + rm)Bm]−Bm, if w < e;

P(ym∗)[e− w + (1 + rm)Bm] + 1− e−Bm, otherwise.
(C5)

Let πI
m denote the corresponding payoff function when the wholesale price results in case I.

Then, we have

πP
0 (w, rm|e, θ1) =

∫ θ̄2

0

P(ym∗)[1− w + (1 + rm)Bm]−BmdF (θ2) +

∫ c

θ̄2

(1− w)P(yb∗)dF (θ2);

πPR
0 (w, rm|e, θ1) =

∫ θ̄2

0

P(ym∗)[e− w + (1 + rm)Bm] + 1− e−BmdF (θ2) + (1− w)[1− F (θ̄2)].

All two cases are concave in (w, rm), since the Hessian matrix is negative-definite, but the

entire function π0(w, rm|e, θ1) is not because of discontinuity. The high price case has the

following first-order derivative,

∂πPR
0

∂w
=

∫ θ̄2

0

[
P ′(ym∗)e+ P(ym∗)(ym∗ − θ2)

∂rs
∂y

− 1

]
∂ym∗

∂w
− P(ym∗)dF (θ2)− [1− F̄ (θ2))] < 0,

since both terms is negative. Hence, the optimal wholesale price in this case is w∗ = e. We

has the following FOC for rm

∫ θ̄2

0

[P ′(ym∗)(1 + rm)Bm + P(ym∗)(1 + rm)− 1]
∂ym∗

∂rm
+ P(ym∗)BmdF (θ2) = 0, (C6)
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The low price case has following FOCs, and let (wP, rPm) denote the solution of them,

∫ θ̄2

0

[
P ′(ym∗) + P(ym∗)(ym∗ − θ2)

∂rs
∂y

− 1

]
∂ym∗

∂w
− P(ym∗)dF (θ2)

+

∫ c

θ̄2

P ′(yb∗)(1− w)
∂(yb∗)

∂w
− P(yb∗)dF (θ2) = 0, (C7)

∫ θ̄2

0

[P ′(ym∗)[1− w + (1 + rm)Bm] + P(ym∗)(1 + rm)− 1]
∂ym∗

∂rm

+P(ym∗)BmdF (θ2) + (1− w)

∫ c

θ̄2

P ′(yb∗)
∂yb∗

∂rm
dF (θ2) = 0, (C8)

By fixing w, we have rPm < rPm by comparing FOCs (C8) and (C6). Therefore, the candidate

local maximizers for the manufacturer’s expected payoff are wP and e.

We get πPR
0 (w, rm|e, θ1) > πP

0 (w, rm|e, θ1) when fixing (w, rm|e, θ1). Recall the monotonicity

of πH
m , for each of them there exists a unique emergency sourcing cost denoted by ē, such

that πH
m(e, rm|e, θ1) = πL

m(w
P, rm|e, θ1), where ē > wP.

We then prove the sensitivities (ii) - (iv).

(ii). For ē(θ1)’s monotonicity, we need to compare ∂πP
0

∂θ1
at (wP, rPm) with ∂πPR

0

∂θ1
at (e, rPm). Their

difference takes the following form,

∂πP
0 (w

P, rPm)

∂θ1
− ∂πPR

0 (e, rPm)

∂θ1
=

∫ θ̄2

0

P ′(ym∗)(1− wP)
∂ym∗

∂θ1
− P ∂wP

∂θ1
dF (θ2) > 0

Hence the manufacturer’s optimal profits intercepts faster as θ1 increases, which implies ē(θ1)

is a decreasing function.
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(iii) For wP and rPm’s sensitivity. It is trivial that they are independent of e. For the sensitivity

in θ1, we find their second order partial derivatives take the following forms,

∂2πP
0

∂w∂θ1
=∫ θ̄2

0

∂ym∗

∂θ1

{
∂ym∗

∂w

[
P ′′(ym∗) + P(ym∗)

∂rs
∂y

]
− P ′(ym∗)

[
1− ∂ym∗

∂w
(ym∗ − θ1)

]}
dF (θ2) < 0,

∂2πP
0

∂rm∂θ1
=

∫ θ̄2

0

∂ym∗

∂θ1

{
∂ym∗

∂rm
[P ′′(ym∗)[1− w + (1 + rm)Bm] + 2P ′(ym∗)(1 + rm)]

−P ′(ym∗)Bm + P(ym∗)} − P ′(1 + rm)− P(ym∗)dF (θ2) < 0.

Hence, both wP and rPm decreases in θ1. We can get similar result that rPm decreases in θ1 by

checking ∂2πPR
0

∂rm∂θ1
< 0.

Corollary 3.1 can be proved by analyzing the second order partial derivatives.

Proof of Theorem 3.2:

Proof. There are several steps to prove this Theorem.

Step 1: financing choice when blockchain is adopted.

Lemma C.3. Given (w, θ2), there exists a unique threshold θ̄1(w, θ2) such that

(i) if θ1 ≥ θ̄1(w, θ2), the optimal tier-0 interest rate r̂∗m takes the following form:

r̂∗m(w|e, θ2, θ1) =


r̂P∗m , if w < e;

r̂PR∗m , if w ≥ e;

(C9)
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(ii) otherwise, r̂∗m(w|e, θ2, θ1) = ∞.

Here, r̂I∗m solves the KKT of (3.9) with respect to r̂m with k = m, I ∈ {P,PR}; and

r̂I∗m < r∗b (w, θ2).

Proof: Given the manufacturer offers a wholesale price w to the tier-1 supplier, the manufac-

turer’s expected profit takes the following forms when the tier-1 supplier using BF and MF,

respectively:

π̂b
0(w, rm|e, θ1, θ2) =


P(yb∗)(1− w), if w < e;

P(yb∗)(e− w) + 1− e, otherwise.
(C10)

π̂m
0 (w, rm|e, θ1, θ2) =


P(ym∗)(1− w + (1 + rm)Bm)−Bm, if w < e;

P(ym∗)(e− w + (1 + rm)Bm) + 1− e−Bm, otherwise.
(C11)

where the advance payment amount Bm = (y − θ1 − θ2)
+. It is trivial that under BF, π̂b

0

is independent of rm, whereas under MF, it is concave in rm for both w < e and w ≥ e.

Hence, if the manufacturer wants the tier-1 supplier use BF, she will set rm = ∞. The KKT

conditions under MF when w < e are

λ(π̂1∗
1 − π∗

1) = 0;

µ(ŷ1∗ − y∗) = 0;

[P ′(ym∗)[1− w + (1 + rm)Bm] + P(ym∗)(1 + rm)− 1]
∂ym∗

∂rm
+ P(ym∗)Bm + λ

∂π̂1∗
1

∂rm
+ µ

∂ŷ1∗

∂rm
= 0;

[P ′(ym∗)(1 + rm)Bm + P(ym∗)(1 + rm)− 1]
∂ym∗

∂rm
+ P(ym∗)Bm + λ

∂π̂1∗
1

∂w
+ µ

∂ŷ1∗

∂w
= 0.

(C12)
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and when w ≥ e, the last equation is substituted with

[P ′(ym∗)(1 + rm)Bm + P(ym∗)(1 + rm)− 1]
∂ym∗

∂rm
+ P(ym∗)Bm = 0. (C13)

Let r̂P∗m (resp., r̂PR∗m ) denote the maximizer of when w < e (w ≥ e), which takes the solution

of KKT conditions (C12) ((C13)) with r∗b (w, θ2).

The last step is to find the optimal rm is to compare π̂b
0(w,∞|e, θ2, θ1) with π̂m

0 (w, r̂I∗m|e, θ2, θ1).

We find the former is independent of θ1, since yb∗ is independent of θ1, whereas the latter

increases in θ1. Also we have when θ1 = 0, the former is greater but when θ1 → ∞, the

latter is greater. Therefore, there exists a threshold denoted by θ̄1(θ2) such that the former

is greater when θ1 ∈ [0, θ̄1(θ2)] but the latter is greater when θ1 ∈ [θ̄1(θ2),∞]. We have θ̄

decrease in θ2 by the second-order partial derivatives w.r.t. θ1 and θ2.

Proposition C.1. From no-blockchain to blockchain adoption, in equilibrium, the tier-1

supplier:

(i) keeps using BF in Region I: {(θ1, θ2) : θ1 < θ̄1(ŵ
1∗, θ2), θ2 > θ̄2(w

∗, r1∗m )};

(ii) keeps using MF in Region II: {(θ1, θ2) : θ1 ≥ θ̄1(ŵ
1∗, θ2), θ2 ≤ θ̄2(w

1∗, r1∗m )};

(iii) switches from MF to BF in Region III: {(θ1, θ2) : θ1 < θ̄1(ŵ
1∗, θ2), θ2 ≤ θ̄2(w

1∗, r1∗m )};

(iv) switches from BF to MF in Region IV: {(θ1, θ2) : θ1 ≥ θ̄1(ŵ
1∗, θ2), θ2 > θ̄2(w

1∗, r1∗m )}.

Proof : The unique solution of KKT conditions (C12) and (C13) exists because of the concavity

on (w, rm) by testing the Hessian Matrix is negative semi-definite for both cases.

We find the manufacturer’s expected payoff is supermodular in the interest rate r̂1m and the

wholesale price ŵ1 since the second-order derivatives on (w, rm) is positive, so the interest rate

[194]



under low price case is lower, i.e., r̂P∗m < r̂PR∗m . Similar as the results we find from Theorem

3.1, whether to choose high or low wholesale price depends on the value of emergency source.

Recall the monotonicity of π̂1
0(ŵ

1, r̂1m|e, θ2, θ1), there exists a unique threshold emergency

sourcing cost denoted by ¯̂e, such that π̂1
0(e, r̂

1
m|e, θ2, θ1) = π̂1

0(ŵ
P∗, r̂1m|e, θ2, θ1), where ¯̂e > ŵP∗.

We obtain that π̂1
0(e, r̂

1
m|e, θ2, θ1) ≥ π̂1

0(ŵ
P∗, r̂1m|e, θ2, θ1) only when e ≤ ¯̂e.

We also get the following monotonicity: Since r̂b is independent of θ1, but r̂Im is decreasing in

θ1, we have θ̄2 is increases in θ1 for any I ∈ {P,PR}. Others follow the same logic as Theorem

3.1.

Step 2: when the blockchain is adopted.

Lemma C.4. For any θ1, there exists a threshold of the tier-2’s working capital θ̄N2 (θ1|e) ∈

[0, c) where N ∈ {I, II, III, IV }, such that the tier-1 adopts blockchain-enabled delegate

financing if and only if θ2 ≤ θ̄N2 . The optimal tier-0 AP contract (w∗, r∗m; ŵ
1∗, r̂1∗m ) takes the

following form:

(i) the optimal traditional menu is the same as the benchmark scenario in §3.4;

(ii) the optimal blockchain menu (ŵ1∗, r̂1∗m ) is used when θ2 ∈ [0, θ̄N2 (θ1|e)).

Proof : Before proving Theorem 3.2, we should show that there exists a ¯̂
θ2 ∈ [0, c) such

that (ŵ∗, r̂∗m) = (w∗, r∗m) (resp., ŵ∗ = w∗) at θ2 = θτ2 , ŵ∗ ≤ w∗, r̂∗m < r∗m (ŵ∗ ≤ w∗) at

θ2 ∈ (
¯̂
θ2, c), and ŵ∗ ≥ w∗, r̂∗m > r∗m (ŵ∗ ≥ w∗) at θ2 ∈ (0,

¯̂
θ2). Since the FOC without

blockchain is the expectation form of the distribution of θ2 ∈ [0, c), and the manufacturer’s

maximal payoff increases in θ2, the thresholds for ŵ∗ = w∗ and r̂∗m = r∗m is naturally exists in

[0, c). To avoid multiple definition when w∗ = e (and ŵ∗ = e for some θ2) given θ1 < θ̄1, we

define ¯̂
θ2(e, θ1) = ¯̂e−1(e|θ1), which is an inverse function of ¯̂e with regard to θ2. Therefore,

Proposition C.4(ii) naturally holds.
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We then show Proposition C.4(i). We first discuss the emergency source thresholds with

and without blockchain. Since ē(θ1) is independent of θ1 but ¯̂e(θ1, θ2) decreases in θ2, we

have for any θ1 there exists a ¯̂
θ2(θ1, ē(θ1) such that ē(θ1) = ¯̂e(θ1, θ2) at θ2 =

¯̂
θ2(θ1, ē(θ1)),

ē(θ1) < ¯̂e(θ1, θ2) when θ2 >
¯̂
θ2(θ1, ē(θ1)), and ē(θ1) > ¯̂e(θ1, θ2) when θ2 <

¯̂
θ2(θ1, ē(θ1)). In

order to prove the existence of ¯̂θ2 in the whole range of e ∈ [w, 1), we consider two cases: 1)

when e ≤ ē(θ1) so that w∗ = e, and 2) when e > ē(θ1) so that w∗ = wP.

1) e ≤ ē(θ1) implies w∗ = e and r∗m = rPm. So there is no case for ŵ∗ ≥ w∗ = e. Also we

have ŵ∗ = ŵP∗ < e and r̂ if and only if θ2 > ¯̂e−1(e|θ1), otherwise, ŵ∗ = e and r̂∗m = r̂PR∗m .

The only thing we left for 1) is to prove ¯̂
θ2 ≤ ¯̂e−1(e|θ1). We can prove it by contradiction.

Suppose θ2 > ¯̂e−1(e|θ1), it implies r̂∗m = r̂P∗m < r̂PR∗m = r∗m. It is a contradictory.

2) e > ē(θ1) implies w∗ = wP and r∗m = rPm. We have ŵ∗ = e > wP and r̂∗m = r̂PR∗m > rPm

if and only if θ2 ≤ ¯̂e−1(e|θ1). Therefore, ¯̂θ2 can only exist in the range of [¯̂e−1(e|θ1), c],

where ŵ∗ = ŵP∗ and r̂∗m = r̂P∗m . What we need to finish 2) is to show for any θ2 such

that ŵP∗ > wP, we have r̂P∗m > rPm, and vice versa. Recall that (wP, rPm) solves FOCs

(C7) and (C8), whereas (ŵP∗, r̂P∗m ) solves KKTs (C12) and (C13). For any θ2 such that

ŵP∗ > wP, we have the LHS of equations (C7) and (C8) is negative at w = ŵP∗, which

imples r̂P∗m (ŵP∗) > r̂P∗m (wP) = r̂P∗m . Similarly, we can prove for any θ2 such that ŵP∗ < wP,

we have r̂P∗m < rPm.

There is another more convenient way to prove the existence of the threshold. From the

KKT conditions (C12) and (C13), we can easily find that the Lagrangian multipliers λ and

µ increase in (θ1, θ2). Since the constraints are binding when λ∗ = 0 or µ∗ = 0, we can show

that the IC constraints of the tier-1 and tier-2 suppliers are binding when (θ1, θ2) are large

enough. Additionally, since we have when θ1 = θ2 = 0, π̂1∗
1 > π̂∗

i , and when θ1 = θ2 = c,
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π̂1∗
1 = π̂∗

i , the thresholds of θ2 as a function of θ1 that is the smallest θ2 letting at least one

constraint is binding must exist. Meanwhile, the threshold ¯̂
θ2 is decreasing in θ1.

Now we can prove Theorem 3.2 and Corollary 3.2 together. The proof for the manufacturer’s

problem (part (i)) is straightforward. By definition, for any θ2 ∈ (0, c] we have,

π̂1∗
0 (θ1, θ2) = max

w,rm
{π̂0(w, rm|e, θ2, θ1), s.t.π̂1∗

i ≥ π∗
i },

π∗
0(θ1, θ2) = π0(w

∗, r∗m|e, θ1, θ2),

where (w∗, r∗m) = argmaxw,rm

{∫ c

0
π0(w, rm|e, θ2, θ1)dF (θ2)

}
. Since the optimal solution with-

out visibility, (w∗, r∗m) is also a feasible solution with visibility, we have π̂1∗
0 (θ1, θ2) ≥ π∗

0(θ1, θ2).

We analyze the tier-2’s (part (iii)) and the tier-1’s problem (part (ii)) in order. For the tier-2

supplier, the optimal expected cash level has the following first-order derivative on the tier-1

interest rate r∗s ,

∂π∗
2

∂r∗s
= P(y)[v − (1 + rs)(y − θ2)]

∂y

∂rs
− P(y)

[
(y − θ2) + (1 + rs)

∂y

∂rs

]
= −P(y)(y − θ2) < 0.

Hence, we have that π∗
2 is decreasing in r∗s but increasing in y∗. Therefore, π̂∗

2 > π∗
2 if and

only if ŷ∗ > y∗.

For the tier-1 supplier, we need to consider BF and MF, respectively. We consider the P

case with e > ¯̂e that only the proactive risk mitigation is used (and results also preserves for

the PR case). The tier-1 supplier’s optimal expected cash level has the following first-order

derivatives on the tier-0 AP contract (w∗, r∗m),

∂π∗
1

∂w∗ = P(y) > 0, and
∂π∗

1

∂r∗m
= −P(y)(y − θ1 − θ2) < 0.
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Hence, we have that π∗
1 is increasing in w∗ but decreasing in r∗m, and the y∗ has the same

monotonicity in w∗ and r∗m since the following second-order derivatives,

∂2π∗
1

∂y∗∂w∗ = P ′(y) > 0, and
∂2π∗

1

∂y∗∂r∗m
= −P ′(y)(y − θ1 − θ2) < 0.

After obtaining the monotoninicity, we need to find the change of decision variables with the

adoption of blockchain. The second-order partial derivatives of π̂∗
0 on (ŵ∗, θ2) and (r̂∗m, θ2)

are as follows,

∂2π̂∗
0

∂ŵ∗∂θ2
= −P ′(y)

∂y

∂θ2
< 0, and

∂2π̂∗
0

∂r̂∗m∂θ2
= −P ′(y)(y − θ1 − θ2)

∂y

∂θ2
+ P(y)

(
∂y

∂θ2
− 1

)
< 0.

Hence, both ŵ∗ and r̂∗m decrease in θ2. Without blockchain, the optimal AP contract (w∗, r∗m)

is determined based on the manufacturer’s expectation on θ2. Hence we have limθ2↓0 ŵ
∗ > w∗

and limθ2↑c ŵ
∗ < w∗ and so as r̂∗m. We prove the existence of ¯̂θ2. The proof of the existence

of θ̂L1 can be shown by the fact that the ¯̂
θ2 decreases in θ1, where as θ̄2(ŵ

P∗, r̂P∗m ) increases in

θ1 since (ŵ∗, r̂∗m) decrease in θ1 but θ̄2(ŵ
P∗, r̂P∗m ) = θ̄2 decreases in (ŵ∗, r̂∗m).

Combined with the financing region revealed by Proposition C.1. We conclude the change of

optimal decisions in Table C2. Combined with the monotonicity, we trivially get that for

case I(ii), we have π̂∗
1 < π∗

1 and π̂∗
2 < π∗

2; for case I(1), we have π̂∗
1 > π∗

1 and π̂∗
2 > π∗

2. The

wholesale price and the interest rate has opposite effects on two suppliers. However, we find

the tier-1 supplier is more sensitive on the wholesale price, whereas the tier-2 supplier is more

sensitive on the interest rate. The former one can be proved by finding ∂π∗
1

∂w∗
∂w∗
∂θ2

≥ ∂π∗
1

∂r∗m

∂r∗m
∂θ2

.

The second one can be proved in two methods: 1) by finding ∂y∗

∂w∗
∂w∗
∂θ2

≤ ∂y∗

∂r∗m

∂r∗m
∂θ2

, and 2) by

directly showing ∂y∗

∂θ2
≤ 0. Therefore, for case (a)(i) & (b)(i), we have π̂∗

1 > π∗
1 but π̂∗

2 < π∗
2;

for case (a)(ii), we have π̂∗
1 < π∗

1 but π̂∗
2 > π∗

2.
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Proof of Theorem 3.3, 3.4, and 3.5:

Proof. Under cross-tier direct financing, the tier-0 AP contract offered by the manufacturer

to the tier-1 supplier will not affect the tier-2 supplier’s decision any more, that is the tier-2

supplier’s investment level y as well as the reliability is independent of w̌. Since the reliability

P(y) is independent of the wholesale price w̌, so the expected payoff decreases in w̌ in both

two segments. Hence, the candidates of optimal wholesale price that satisfies tier-1’s IC

constraint denoted by ¯̌w1 or w̌∗ = e. That means, the manufacturer squeezes all profit from

the tier-1 supplier, and the multitier SCF actually becomes a two-tier problem where the

tier-2 supplier performs the same as the original problem.

If the manufacturer does not need the perfect reliability from the reactive risk mitigation,

namely,w̌ < e, the wholesale price does not affect the total profit of the manufacturer and the

tier-1. So the manufacturer’s target investment level y̌P∗ and optimal wholesale price solves

the following KKT conditions (C14),



λ(π̌1∗
1 − π∗

1) = 0;

µ(y̌1∗ − y∗) = 0;

− P(y) > 0;

(1− w̌ + v)P ′(y) + P(y)

[
(y − θ2)

∂ř2m
∂y

− (1 + rm)

]
= 0.

(C14)

where ∂ř2m
∂y

= P ′′(y)[v−(1+ř2m)(y−θ2)−2P ′(y)(1+ř2m)]
yP(y)+P(y)

is the impact of a change in the investment level

on the tier-1 interest rate, which is negative. The investment level derived by equation (C14)

must be greater than that derived by equation (C2) and (C3) since w ≤ 1. Additionally, the

third condition shows that w̌∗ = ¯̌w1.
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If the manufacturer needs the perfect reliability from the reactive risk mitigation, namely,

w̌∗ = e, the manufacturer’s target investment level y̌PR∗ solves the same KKT conditions with

the last equation substituted by,

(1− e+ v)P ′(y) + P(y)

[
(y − θ2)

∂ř2m
∂y

− (1 + rm)

]
= 0 (C15)

The investment levels derived by equation (C14) and (C15) are greater than that derived

by equation (C2) and (C3) since 1 ≥ w. The investment level derived by equation (C2) and

(C15) is less than that derived by equation (C3). Hence, we have y̌1∗ > ŷ∗ under both cases.

We have when e = v, the value of the objective function of the second candidate is larger

than the first, and it decreases in e. While when e = 1, the first one must be larger. Hence,

there exists a threshold emergency sourcing cost denoted by ¯̌e such that the manufacturer is

indifferent between emergency sourcing or not, and sourcing outperforms only when e ≤ ¯̌e.

The relationship between ¯̌e and ¯̂e can be shown by their definition and the fact that in the P

case the investment level is greater under cross-tier direct financing than delegate finance.

Hence, we have ¯̌e ≤ ¯̂e.

We prove Theorem 3.4 for three players, respectively. For the manufacturer, we have π̌∗
0 ≥ π̂∗

0

for any w, θ1, θ2, since with cross-tier direct financing, the manufacturer also get profit from

the tier-1 financing. For the tier-1 supplier, we have π̂∗
1 ≥ π̌∗

1 = π∗
1 + ϵ since the manufacturer

squeezes all profit. For the tier-2, π̂∗
2 ≥ π̌∗

2 otherwise because of the monotonicity of π∗
2 in the

investment level y∗.

The prove of Theorem 3.5 is straightforward. Recall that changing the wholesale price will

not change the manufacturer’s interest rate to the tier-2, the tier-2’s profit will not change.

Then, the profit allocation between the manufacturer and the tier-1 depends on the wholesale
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price. The monotonicity of π̌∗
0 and π̌∗

1 in the w̌∗ shows that the manufacturer can share more

profit with the tier-1 by increasing the wholesale price. Since the total profit between the

manufacturer and the tier-1 is higher than that under delegate financing because of higher

chain’s reliability, (i.e., π̌∗
01 := π̌∗

0 + π̌∗
1 > π̂∗

0 + π̂∗
1 = π̂∗

01), where π̌∗
01 defined as the total profit

between M and S1 is fixed when ř2m is fixed. By knowing limŵ→1 π̌
∗
1 > π̌∗

01 and limŵ→v π̌
∗
1 < 0,

there must exist a threshold wholesale price denoted by ¯̌w1∗′ such that π̌∗
1 = π̂∗

1 and π̌∗
0 > π̂∗

0.

Then we can add an infinitesimal to ¯̌w1∗′ that making the tier-1 is also strictly better under

direct financing.
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