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Each year, 2.2 million pediatric head computed tomography (CT) scans are performed in the 

United States. Head trauma and craniosynostosis are two of the most common pediatric conditions 

requiring head CT scans. Head trauma is common in children and one-third of the patients that 

present to the emergency room undergoes head CT imaging. Craniosynostosis is a congenital 

disability defined by a prematurely fused cranial suture. Standard clinical care for pediatric patients 

with head trauma or craniosynostosis uses high-resolution head CT to identify cranial fractures or 

cranial sutures. Unfortunately, the ionizing radiation of CT imaging imposes a risk to patients, 

particularly pediatric patients who are vulnerable to radiation. Moreover, multiple CT scans are 

often performed during follow-up, exacerbating their cumulative risk. The National Cancer 

Institute reported that radiation exposure from multiple head CT scans will triple the risk of 

leukemia and brain cancer. Many medical centers have recently removed CT from the 

postoperative care of craniosynostosis, limiting postoperative evaluation and highlighting the  

urgent need for radiation-free imaging. Several “Black bone” magnetic resonance imaging (MRI)  

methods have been introduced as radiation-free alternatives. Despite the initially encouraging 

results, these methods have not translated into clinical practice due to several challenges, including 
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1) subjective manual image processing; 2) long acquisition time. Due to poor signal contrast 

between bone and its surrounding tissues in MR images, existing post-processing methods rely on 

extensive manual MR segmentation which is subjective, prone to noise and artifacts, hard to 

reproduce, and time-consuming. As a result, they do not meet the need for clinical diagnosis and 

have not been employed clinically. A CT scan takes tens of seconds; however, a high-resolution 

MR scan takes minutes, which may be challenging for pediatric subject compliance and limit 

clinical adoption. The overall objective of this study is to develop rapid and radiation-free 3D high-

resolution MRI methods to provide CT-equivalent information in diagnosing cranial fractures and 

cranial suture patency for pediatric patients. Two specific aims are proposed to achieve the overall 

objective. Aim 1: Develop a fully automated deep learning method to synthesize high-resolution 

pseudo-CT (pCT) of pediatric cranial bone from MR images. Aim 2: Develop a deep learning 

image reconstruction method to reduce MR acquisition time.    

Aim 1 is to address the issues of subjective manual image processing. In this aim, we developed a 

robust and fully automated deep learning method to create pCT images from MRI, which facilitates 

translating MR cranial bone imaging into clinical practice for pediatric patients. Two 3D patch-

based ResUNets were trained using paired MR and CT patches randomly selected from the whole 

head (NetWH) or in the vicinity of bone, fractures/sutures, or air (NetBA) to synthesize pCT. A 

third ResUNet was trained to generate a binary brain mask using only MRI. The pCT images from  

NetWH (pCTNetWH) in the brain area and NetBA (pCTNetBA) in the non-brain area were combined  

to generate pCTCom. A manual processing method using inverted MR images (iMR) was also 

employed for comparison. pCTCom had significantly smaller mean absolute errors (MAE) than 

pCTNetWH and pCTNetBA in the whole head. Dice Similarity Coefficient (DSC) of the segmented 

bone was significantly higher in pCTCom than in pCTNetWH, pCTNetBA, and iMR. DSC from pCTCom 
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demonstrated significantly reduced age dependence than iMR. Furthermore, pCTCom provided 

excellent suture and fracture visibility comparable to CT. 

A fast MR acquisition is highly desirable to translate novel MR cranial to clinical practice in place 

of CT. However, fast MR acquisition usually results in under-sampled data below the Nyquist rate, 

leading to artifacts and high noise. Recently, numerous deep learning MR reconstruction methods 

have been employed to mitigate artifacts and minimize noise. Despite many successes, existing 

deep learning methods have not accounted for MR k-space sampling density variations. In aim 2, 

we developed a self-supervised and physics-guided deep learning method by weighting k-space 

sampling Density in network training Loss (wkDeLo). The proposed method uses an unrolled 

network with a data consistency (DC) and a regularization (R). A forward Fourier model was used 

to transform the reconstructed image into k-space. The data consistency between the transformed 

k-space and the acquired k-space data is enforced in the DC layer. This unrolled network is 

regularized by k-space deep-learning prior using a convolution neural network.  In total, 400 radial 

spokes were acquired with an acquisition time of 5 minutes. Two disjoint k-space data sets, 

including the first 1 minute (80 radial spokes) and the remaining 4 minutes (320 radial spokes), 

were used as the network training input and target. A unique feature of our proposed method is to 

use a L1 loss weighted by k-space sampling density in an end-to-end training of the unrolled   

network. Moreover, we also reconstructed images using the same unrolled network structure but  

without accounting for the k-space sampling density variations in the loss for comparison. In other 

words, a uniform weighted k-space is used in the training loss (un-wkDeLo). Furthermore, we 

implemented a well-accepted deep learning reconstruction method, Self-Supervision via Data 

Undersampling (SSDU) as a baseline method reference. Using the images reconstructed from a 5-

min scan as the gold standard, we computed the structural similarity index measure (SSIM) and 
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peak signal-to-noise ratio (PSNR) for reconstructed images from 1-min k-space data using SSDU, 

un-wkDeLo, and wkDeLo. The SSIM and PSNR of the wkDeLo images are significantly higher 

than both SSDU and un-wkDeLo. Moreover, the wkDeLo reconstructed images have the highest 

sharpness and the least artifacts and noise. In aim 2, we have demonstrated that high quality  MR 

images at a spatial resolution of  0.6x0.6x0.8 mm3 could be achieved using only 1 min acquisition 

time. 

Finally, we evaluated the clinical utility of the proposed MR cranial bone imaging in identifying 

cranial fractures and cranial suture patency. Clinicians by consensus evaluated the MR-derived 

pCT images. Acceptable image quality was achieved in greater than 90% of all MR scans; 

diagnoses were 100% accurate in the subset of patients with acceptable image quality. We have 

demonstrated that the proposed 3D high-resolution MR cranial bone method provided CT-

equivalent images for pediatric patients with head trauma or craniosynostosis. This work will 

have a profound impact on pediatric health by providing clinicians with a rapid diagnostic tool 

without radiation safety concerns. 

                                                               

   



1 
 

 

Chapter 1: Introduction 
 

1.1   Pediatric Head Trauma and Craniosynostosis: 

Standard Clinical Imaging Paradigms 

Computed tomography (CT) scanning is a medical imaging technique that allows visualization of 

an object by acquiring from an x-ray tube and detectors that rotate around the object being 

scanned. CT scan combines a sequence of X-ray images collected from various angles around 

your body and uses computer processing to create cross-sectional images (slices) of the bones, 

blood arteries, and soft tissues within your body. CT scan images contain more information than 

standard X-rays. They are providing three-dimensional high-resolution images generating 

sophisticated three-dimensional (3D) reconstructions. CT is an important part of normal patient 

treatment for a variety of pathologies, including congenital defects, malignancies, and trauma-

related complications. In tens of seconds, state-of-the-art CT imaging produces three-

dimensional (3D) high-resolution pictures, enabling complex 3D reconstructions. Because of its 

superior capabilities in bone imaging, 3D reconstructed cranial CT images are widely utilized to 

diagnose cranial anomalies in pediatric patients. Head (cranial) computed tomography (CT) is 

the most commonly performed pediatric CT scan with around 2.2 million scans per year in the 

United States (1,2). The main issue is that ionizing radiation from CT scanning raises cancer risk. 

Children under the age of five are the most vulnerable (2-7).  The number of future radiation-

induced cancers from head CTs is expected to be 1210 each year (range 630 to 2370), with 1 in 

every 5250 head scans in children younger than 5 years resulting in a case of leukemia (2).  As 
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part of their clinical follow-up, many pediatric patients are subjected to multiple head CT scans, 

which increases the cumulative risk of radiation exposure. Based on research by Pearce et al., the 

National Cancer Institute has announced that radiation exposure from many head CT scans 

triples the risk of leukemia and brain cancer (5).  When it comes to medical imaging, the use of 

ionizing radiation must be carefully considered; clinicians are advised to follow the ALARA (As 

Low as Reasonably Achievable) principles (8). Pediatric radiologists have been focusing on 

reducing the frequency of CT scans and lowering the radiation dose each scan (9-11). 

Unfortunately, there is no suitable alternative to CT for detecting cranial anomalies. Therefore, a 

no-radiation imaging method that can provide CT-equivalent cranial bone information is 

urgently needed. 

1.2   MRI as a Safe Alternative Option for Cranial Imaging 

and its Challenges   

Magnetic Resonance Imaging (MRI) is a safe alternative to CT as it does not expose patients to 

ionizing radiation. Although MRI provides excellent soft tissue contrasts, it is clinically limited 

when it comes to evaluating bone structures. Eley and colleagues proposed the "Black Bone" 

(BB) procedure, which uses a high-resolution conventional 3D gradient echo sequence to 

distinguish bone from surrounding tissues (12).  The vanishing bone signal, which appears white 

following intensity inversion, was exploited by the BB MRI approaches.  

A Cartesian gradient echo sequence is used in this BB approach, which is sensitive to motion 

artifacts. Clinical evaluation of the BB MRI sequence in pediatric patients with cranial fractures 

found poor accuracy in the detection of linear fractures in comparison to gold standard CT 

imaging with a sensitivity of 67% and specificity of 88% (14). With a spatial resolution of 1 
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mm3, an ultrashort TE (UTE) sequence using pointwise encoding time reduction with radial 

acquisition (PETRA; Siemens, Erlangen, Germany) was recently adopted to detect skull 

fractures in pediatric patients (15). The PETRA scan had enhanced detection sensitivity (83%) 

and specificity (100%) when compared to a prior study utilizing a conventional gradient-echo 

sequence (14); however, the sensitivity of this approach was reduced to 50% in un-sedated 

patients.  

Despite the initially encouraging results, existing MR cranial bone methods have not translated 

into clinical practice due to several challenges, including 1) subjective manual image processing; 

2) long acquisition time. Due to poor signal contrast between bone and its surrounding tissues in 

MR images, existing post-processing methods rely on extensive manual MR segmentation which 

is subjective, prone to noise and artifacts, hard to reproduce, and time-consuming. As a result, 

they do not meet the need for clinical diagnosis and have not been employed clinically. A CT 

scan takes tens of seconds; however, a high-resolution MR scan takes minutes, which may be 

challenging for pediatric subject compliance and limit clinical adoption.  

1.3   Pediatric Head Trauma and Congenital 

Craniosynostosis 

Pediatric patients with cranial anomalies such as head trauma and craniosynostosis may benefit 

from 3D MR cranial bone imaging. In the pediatric population. Head trauma is common in 

children, with an estimated 1.3 million visits to the emergency department (ED) in 2007 rising to 

1.9 million in 2015 (18). A skull fracture occurs in ten to thirty percent of pediatric head traumas. 

(19) According to Burstein et al., 32 percent of patients who presented to the ED after trauma 

(falls, assaults, etc.) had head CT imaging done to check for cranial fractures and cerebral 
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bleeding.  The occurrence of a fracture at the outset may necessitate a second head CT scan to 

monitor healing (20).  After a head injury, clinicians must weigh the danger of missing a fracture 

or traumatic brain injury against the risk of ionizing radiation from CT scans 

Craniosynostosis is an uneven head shape caused by the improper early fusing of a cranial 

suture. Patients might have simple single-suture synostosis or more severe multi-suture 

synostosis, and craniosynostosis affects one in every 1700 births (21). For diagnosis, a radiologic 

examination with a head CT is required. Surgical correction improves a patient's aberrant 

appearance while also treating the negative consequences of reduced cerebral blood flow caused 

by elevated intracranial pressure on development. Preoperatively, 1 to 3 days after surgery, and 1 

year thereafter, a head CT is usually conducted. The preoperative CT is utilized to check for 

cranial dysmorphology and cranial suture patency. The purpose of a postoperative head CT is to 

evaluate the postoperative outcome, evaluate cranial defects, and schedule secondary treatments. 

A head CT scan is performed to check for fractures and cerebral bleeding in patients who have 

been injured (fell, attack, etc.).  

1.4   MR Imaging Challenges: Motion and Use of Sedation 

or General Anesthesia in Pediatric Subjects  

Patient motion can significantly reduce the quality of MR images. Since children are frequently 

less cooperative than adult patients, pediatric MR imaging is particularly plagued by motion 

artifacts (22). Repeated examinations are often performed which leads to prolonged studies and 

added cost. Moreover, the likelihood that the patient will move increases as the scan progresses. 

Sedation or general anesthesia is commonly used in pediatric patients to minimize movement in 

clinical MR exams (23). However, sedation or anesthesia is associated with risks including 
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developmental delay and cardiopulmonary complications (24-26). The U.S. Food and Drug 

Administration issued a “Drug Safety Communication” warning “that repeated or lengthy use of 

general anesthetic and sedation drugs in children younger than 3 years of age may affect the 

development of a child’s brain”. Recommendations were made to avoid sedation or delay 

elective sedation until after 3 years of age (27). Recent advances in CT imaging have reduced 

scan time to tens of seconds (30 seconds for head CT), allowing CT imaging in most children 

without sedation. A retrospective review reported that the sedation rate in head CT imaging was 

18% in patients younger than 5 years and 1% in children over 5 years (28). However, for 

pediatric head MRI, the need for sedation is much higher due to the longer scan time. The 

sedation rate in MR head imaging was approximately 60-65% in patients 1-6 years old and 32% 

for all patients under 18 years of age (24). Recent efforts have been made to reduce the need for 

sedation when performing a pediatric MRI by reducing scan time and using a multi-disciplinary 

team to coordinate imaging with the patient’s biorhythms (29). However, in a significant 

proportion of cases, sedation has to be used to obtain clinically acceptable images.  

To alleviate the motion issue in the BB and PETRA MR sequences, we implemented a Golden 

Angle stack-of-stars scan (GA) for its insensitivity to motion to scan pediatric patients without 

the use of sedation. With a constant azimuthal increment of 111.25°,  a golden section of 180, the 

GA delivers the most uniform K space coverage for any given acquisition length (17). Because 

the K-space center in GA is sampled frequently, it may be used to detect motion in GA as a 

single "point" navigator similar to a previous published approach (16).  
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1.5   Robust and Fully Automated Conversion of MR to pCT 

Images to Translate the Proposed MR Cranial Bone into 

Clinical Practice 

Generating 3D reconstructed cranial bone images from CT images is straightforward and has 

been widely accepted as the gold standard in the routine clinical assessment of head trauma and 

craniosynostosis. The CT Hounsfield units (HU) of bone is notably different from surrounding 

soft tissue. In contrast, there are significant bone/air and bone/soft tissue signal overlaps in MR 

images. Moreover, CT HU is a quantitative physical unit, consistent across patients while the 

MR signal is in arbitrary units and can vary significantly from patient to patient. As a result, it is 

challenging to reliably distinguish bone from the air or surrounding soft tissues using MRI due to 

overlapped signal intensity and high inter-subject variability. Thus far, all existing Black Bone 

analysis methods rely upon extensive manual processing by experienced operators to 

differentiate bone in the image. These methods are subjective, irreproducible, time-consuming, 

and unsuitable for routine clinical use. To be clinically applicable, 3D reconstructions are 

required within minutes of scanning. A robust and automated post-processing method to convert 

MR images to pseudo-CT (pCT) can greatly facilitate translating MR cranial bone imaging into 

clinical practice.  

Pseudo CT methods using both atlas-based and UTE-based approaches have been developed 

[30,31]. Emerging deep learning (DL) methods can incorporate multi-scale high-level abstract 

context information to generate CT-like (pseudo-CT, pCT) images from MR images in a fully 

automated way. Recently, deep learning models have significantly improved MR estimated 

pseudo-CT (32-33). Our group has developed a 3D patch-based deep learning-based method for 
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MR converted pCT images for PET/MR attenuation correction in adults using UTE, DIXON, 

and T1 weighted MRRAGE images. Pediatric patients have thinner skull bones which make 

creating a CT-looking images from the MR images more challenging. In the second chapter of 

the dissertation, we further developed and discussed these deep learning networks to convert GA 

radial vibe images to high-resolution pCT images for identifying cranial bone fractures and 

suture patency in pediatric patients with head trauma or craniosynostosis. Sutures and fractures 

are small regions and fine structures and they need to be preserved in MRI-derived pCT images.  

We developed a novel and fully automated post-processing method to convert MRI to pCT in 

pediatric patients based upon a neural network structure called ResUNet (residual U-Net) 

combining the advantages of both U-Net and residual network structures. Even though 

traditional U-Net is state of the art in multiple medical image processing applications, it requires 

fixed-sized input images (34). Our unique deep ResUNet structure offers the following benefits 

in the conversion of MRI to pCT, 1) using 3D patches as input allows ResUNet to process 

images of various sizes; 2) training samples can be randomly extracted from all the voxels inside 

the training images with inherent abundance and diversity; 3) training patches can be extracted 

from major clusters with significantly different Hounsfield Unit ranges (air/tissue/bone) in a 

balanced manner to reduce sampling bias in training; 4) adoption of U-Net like structure allows 

multi-scale high-level abstract context information to be used instead of relying on image 

intensity alone to convert MR to CT, and 5) deployment is fully automated and fast. 

We developed a ResUNet-based deep learning method with enhanced training focusing on 

sutures and fractures which are the regions of interest in generating high-resolution pCT images 

from MR images. We combined three ResUNets to generate final pCT images. Two patch-based 

ResUNets were trained using paired MR and CT patches randomly selected from the whole head 
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(NetWH) or in the vicinity of bone, fractures/sutures, or air (NetBA) to synthesize pCT. A third 

ResUNet was trained to generate a binary brain mask using only MRI. We quantitatively 

assessed the CT and pseudo-CT images using dice coefficients and mean absolute error (MAE). 

In the second chapter, we demonstrated a promising MRI-based DL approach to achieve CT-

equivalent 3D cranial bone images in pediatric subjects using a golden-angle radial (GA) MR 

scan in a robust and fully automated way to facilitate its translation to clinical use. 

 

1.6   MR Reconstruction of Severely Under-Sampled Data to 

Reduce MR Acquisition Time to Facilitate Clinical 

Translation  

Recent advances in CT imaging have reduced scan time to tens of seconds, allowing CT imaging 

in most children without sedation. In contrast, high-resolution MRI acquisition with sub-

millimeter voxel size and whole head coverage can be lengthy. Currently, the GA radial MR 

scan takes 5 minutes. Since children are less cooperative than adult patients, pediatric patients 

often move during an MR scan, leading to compromised image quality. The long acquisition 

time is challenging for pediatric patient compliance and limits clinical adoption of MR cranial 

bone imaging. A short MR acquisition results in under-sampled data below the Nyquist rate, 

leading to under-sampling artifacts and high noise (low SNR). Therefore, it is highly desirable to 

develop an imaging technique that is capable of generating high-quality images with a shorter 

acquisition time to facilitate the adoption of an MR approach  
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In order to obtain artifact-free images, Nyquist criteria need to be met. The minimum scan 

acquisition time is fixed by the amount of raw data that must meet the Nyquist criteria chosen by 

an image field of view and resolution. One approach for reducing the acquisition time is not 

collecting the full number of K space points demanded by the Nyquist Criterion which results in 

under-sampling. The Nyquist sampling requirement for our imaging protocol when 100% of the 

radial spokes required for the Nyquist limit (π/2 × matrix size) is 320*π/2≈502, Radial under-

sampling produces streaking artifacts in the image domain. Compressed sensing (CS) 

reconstruction methods have been developed to reconstruct under-sampled data to reduce scan 

time and the cost of MR acquisition (35,36). CS methods iteratively optimize a cost function that 

includes a data fidelity term and a regularization term constructed using a pre-defined prior. 

However, the prior is usually determined empirically, and the iterative-based procedures is time-

consuming to achieve a high-quality reconstruction. Recently, the deep learning approach has 

been demonstrated to significantly speed up MRI reconstruction with reduced measurements 

(37-40). Deep learning methods have been developed rapidly in the field of imaging inverse 

issues. Rather than explicitly establishing an imaging prior, the classic deep-learning strategy 

relies on training an existing network architecture, such as UNet, to invert the measurement 

operator by leveraging natural redundancies in the imaging data (41-51). It is common to first 

bring the measurements to the image domain and train the network to map the corresponding 

low-quality images to their clean target by solving an optimization problem. End-to-end learning 

can be expanded to include the measurement operator in unrolled networks. The associated 

unfolding algorithms treat regularized inversion iterations as layers of a CNN and train it end-to-

end in a supervised manner (41, 56-58). 
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In the third chapter of this dissertation,  we propsed a self-supervised and physics-guided deep 

learning method by weighting k-space sampling density in network training loss. We developed 

the method for training end-to-end unrolling networks with a weighted loss function by using the 

density function as weight. We accounted for k-space density variations of MR signal acquisition 

during the training by adding the density weights to a loss function.  

Using images reconstructed from a 5-minute MR scan as the gold standard, we compared the 

peak signal to noise ratio (PSNR) and similarity index (SSIM) for our 1-min deep learning-based 

model reconstructed images. Our deep learning-based reconstruction method is effective in 

reducing artifacts and noise, while still preserving fine details of the structures like sutures and 

fractures for pediatric patients. We developed a high-resolution MRI reconstruction method to 

reduce the MR acquisition time from 5 minutes to 1 minute. The 1-minute MR scans provide 

high-quality visualization of sutures/ fractures in craniosynostosis/trauma patients. 

Finally, in the fourth chapter, the CT and pseudo-CT images were qualitatively assessed by two 

clinicians to identify craniosynostosis or fractures from head trauma cases. We demonstrate that 

3D high-resolution cranial MR images provide CT-equivalent bone information to clinically 

identify cranial abnormalities, patent sutures, and fractures.  3D imaging of cranial structures is 

used by multiple specialties including Neurosurgery, Craniofacial Surgery, and Neuroradiology 

for diagnosis, surgical planning, and postoperative evaluation in patients with head trauma and 

craniosynostosis. The objective of this study is to assess the clinical utility of using the novel MR 

techniques outlined in this proposal to create CT-equivalent 3D MR cranial bone images without 

sedation. 
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In this study, we demonstrated a promising MR method to achieve CT-equivalent 3D cranial 

bone images in pediatric subjects. We developed a deep learning method to convert MRI images 

to pCT for pediatric patients. We developed a novel self-supervised and physics-guided MR 

reconstruction method to shorten the MR acquisition time from 5 minutes to 1 minute. We have  

demonstrated the clinical utility of the proposed MR cranial bone imaging in detecting skull 

fractures and sutures in pediatric patients. This work will have a profound impact on pediatric 

health by providing clinicians with a rapid diagnostic tool without radiation safety concerns. 
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Chapter 2: Deep learning synthesized 
pseudo-CT for MR High-Resolution 

Pediatric Cranial Bone Imaging (MR-
HiPCB) 

 
2.1   Introduction 

Head computed tomography (CT) is the most commonly performed pediatric CT scan with 

approximately 2.2 million scans per year in the United States alone to detect cranial 

abnormalities in pediatric patients (1,2). Traumatic brain injury is common in the pediatric 

population resulting in approx. 600,000 to 1.6 million Emergency Department (ED) visits per 

year (3). Burstein et al. found that 32% of patients who presented to the ED after trauma (fall, 

assaults, etc.) underwent head CT imaging (4). In children, ten to thirty percent of pediatric head 

injuries result in a cranial fracture (5). The initial presence of a fracture may require repeat head 

CT imaging to assess healing in patients seen after trauma. Craniosynostosis is the abnormal 

early fusion of a cranial suture where one or more sutures close prematurely, causing an 

irregular-shaped cranium. Craniosynostosis occurs in approximately 1 out of 1700 births (6). The 

average width of sutures ranges from 0.8±0.1 mm to 2.4±0.1 mm (7), and the width of skull 
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fracture lines may be small. CT imaging at sub-millimeter resolution is currently the method of 

choice for identifying skull fractures or evaluating craniosynostosis suture patency in pediatric 

patients (1,2). Clinicians use both 3D volumetric and surface rendered cranial bone images to 

evaluate intracranial tissues and skulls for patients with head trauma, while they primarily rely 

on 3D surface rendered cranial bone images to evaluate sutures for patients with 

craniosynostosis. 

Unfortunately, CT exposes pediatric patients to ionizing radiation and increases their risk for 

cancer, especially for children younger than five years old (8-12). In addition, repeated head CT 

scans used as part of clinical follow-up further exacerbate the risk. The National Cancer Institute 

reported that radiation exposure from multiple head CT scans significantly increases the risk of 

leukemia and brain cancer (10). Clinicians have to balance the risk of missing certain diagnostic 

information versus the risk of ionizing radiation from CT. Without exposing patients to ionizing 

radiation, magnetic resonance imaging (MRI) is a safe alternative to CT. MRI provides superior 

soft-tissue contrasts, however, MRI is clinically limited for visualizing bone structures due to the 

low signal from bones. Previously, Eley et al. developed a “Black Bone” method to assess 

cranial sutures in pediatric patients with craniosynostosis using a conventional 3D gradient-echo 

MR sequence at a spatial resolution of 0.94 x 0.94 x 2.4 mm3 (13,14). In the “Black Bone” 

method, MR shows a low signal in bone and a high signal in the soft tissue, allowing for bone 

visualization. This method showed a modest accuracy in diagnosing linear fractures in young 

patients with cranial fractures, with a sensitivity of 67% and specificity of 88% (15). More 

recently, Pointwise Encoding Time Reduction with radial Acquisition (PETRA) was 

implemented to detect skull fractures in pediatric patients at a resolution of 1 mm3 with greater 

sensitivity and specificity than the early “Black Bone” method (16). The PETRA method had an 
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overall sensitivity of 83 percent and a specificity of 100 percent; however, in the un-sedated 

patients, the sensitivity dropped to 50 percent (16). 

 

The CT Hounsfield units (HU) values for cranial bone are much higher than soft tissues and air, 

enabling easy separation of bone from its surrounding structures. In contrast, the MR signal 

intensities from air, bone, and soft tissue have significant overlap. Moreover, the MR signal is in 

arbitrary units and has large inter-subject variability, while CT HU is a quantitative physical unit 

and is consistent across patients. Thus far, all existing MR cranial bone methods rely on 

extensive manual processing by expert operators to delineate bone from the surrounding tissues 

based on MR signal intensity. Manual processing is subjective, prone to noise and artifacts, hard 

to reproduce, and time-consuming. As a result, these methods have not been widely utilized 

clinically (17).  

 

Extensive efforts have been made to derive CT-like images from MRI for PET attenuation 

correction or radiation therapy planning using atlas- or segmentation-based approaches (18-22), 

or machine learning algorithms such as random forest (23), Gaussian mixture regression (24,25), 

and deep learning (26-34). Thus far, most of the deep learning methods were developed in adults 

and were not designated to address the need to identify small bony structures such as skull 

fractures or sutures. Compared to adults, the contrast between bone and soft tissue is much 

smaller in young pediatric patients due to their thinner and less-dense skull bones, resulting in a 

more challenging problem. The objective of this study was to develop a robust and fully 

automated deep learning method to synthesize pseudo-CT (pCT) for MRI high resolution 
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pediatric cranial bone imaging (MR-HiPCB) to eliminate radiation exposure for pediatric 

patients with head trauma, craniosynostosis, or other congenital head abnormalities.  

 

 

2.2   Methods and Materials 

2.2.1   Study Cohort 

After obtaining written consents with an approved IRB from our institution, we recruited 44 

pediatric participants under 18 years old with head trauma (n=26) or for cranial suture evaluation 

(n=18).  

2.2.2   Image Acquisition 

All participants had a head CT scan as part of their clinical care. A multi-slice Siemens 

SOMATOM Definition Flash or Force CT scanner (Siemens Medical Systems, Inc., Iselin, NJ) 

was used with slice thickness ranging from 0.5mm to 1 mm and pixel spacing ranging from 0.31 

x 0.31 mm to 0.39 x 0.39 mm for all the CT images. The CT scanning parameters were 0.5 

second rotation time, 64 x 0.6 mm collimation, 220 mAs, 120 kVp, a pitch of one, and a 512 x 

512 matrix with a scan time ranging from 3.5 to 10.5 seconds. The mean and standard deviation 

of scan time was 5.3 ± 2.1 seconds. 

 

Forty-two and two participants were scanned using a 3T (Prisma or VIDA) or a 1.5T (Aera) MR 

scanner (Siemens Healthineers, Erlangen, Germany), respectively. Due to its motion robustness, 
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a Fast Low-Angle Shot (FLASH) Golden-Angle 3D stack-of-stars radial Volumetric Interpolated 

Breath-hold Examination sequence (GA-VIBE) was used to acquire MR images. Imaging 

parameters common for both 3T and 1.5T MR scans are as follows: Field of view = 192 or 220 

mm, 224 slices per slab, transverse orientation, Flip angle = 3-5°, Acquisition matrix = 320 × 

320, Voxel size = 0.6 x 0.6 x 0.8 mm or 0.69 x 0.69 x 0.8 mm, and a scan duration of 

approximately 5 minutes. Imaging parameters that were different between the 3T and 1.5T scans 

were: TR/TE = 4.84 ms/2.47 ms (3T) or 7.7 ms/4.76 ms (1.5T), Bandwidth = 410 (3T) or 280 

(1.5T) Hz/pixel, number of radial lines = 400 (3T) and 250 (1.5T). 

 

As a result of brain/head development, pediatric patients have rapid changes in cortical bone 

density, size, and tissue MR properties in the first years of their life (35,36). MR scans should be 

performed as soon as possible after the CT scans. Due to MR scanner availability and the 

patient’s schedule, we allow a time interval between CT and MR. The criteria for the allowable 

time were determined based on patients’ age and an estimated rate of fracture healing. For 

trauma participants with skull fractures, the MR scan should be acquired in less than 3 weeks of 

the clinical CT in participants younger than 6 months and less than 12 weeks for children older 

than 6 months. For trauma participants without fracture, MR should be scanned less than 6 

months after their CT. For patients with craniosynostosis or other congenital cranial bone 

abnormalities, an MR scan should be performed less than 6 months after their CT.  

 

2.2.3   Image Pre-processing 
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The k-space center sampled repeatedly in the GA-VIBE was first used as a navigator to detect 

participant motion. Subsequently, the motion-compromised stacks of spokes were excluded from 

the k-space data to minimize motion in the reconstructed MR images, similar to methods 

described previously (37-43). 

 

All the CT and MR images were interpolated to a resolution of 0.30 x 0.30 x 0.50 mm3 using 

trilinear interpolation. A Matlab-based 3-class k-means segmentation was performed to segment 

the CT head images into the air, soft tissue, and bone. Moreover, suture or fracture neighborhood 

regions are manually outlined on CT images with a 10 mm sphere “brush” using the 3D Slicer 

software (44). 

The inhomogeneity in MR images was removed using the N4 bias field correction method using 

default setting: FWHM=0.15, number of control points=4, spline order = 3, bins = 200, Wiener 

filter noise = 0.01, shrink factor = 2 (45).  

 

The level-set segmentation tool in the Computational Morphometry Toolkit (CMTK) was 

employed to generate a whole head binary mask in both the MR and CT images using the default 

settings and a threshold of 0.5 (46). In addition, the FSL Brain Extractor Tool (BET) feature was 

employed to create a brain mask (BM) from the MRI images. A fractional intensity threshold 

value of 0.5 and a threshold gradient of 0 were used. 

 

For each subject, the FMRIB’s Linear Image Registration Tool (FLIRT) in the FSL toolbox was 

employed to register MR images to CT images using a 12-parameter affine registration (full 

affine: translation, rotation, scale, and shears) with mutual information as the cost function (47). 
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CT segmented bone mask was used to assign a bone region 10 times the weight of other tissues 

to enforce a good alignment of the bone region between MR and CT. 

 

2.2.4   Manual Inverted MRI Processing (iMR) 

The bias-field corrected MR images were inverted and then masked using the head binary mask, 

resulting in high and low signal intensities for the bone and soft tissue, respectively. After the 

intensity inversion, a participant-specific global intensity threshold was manually selected to 

generate a binary bone mask using the 3D Slicer software. To further refine cranial bone 

segmentation, we manually removed small isolated regions and extra-cranial tissue. The 

manually segmented bone is referred to as the BoneiMR. Multiple manual editing tools were 

employed to construct the head/skull segmentation using the Segment Editor module in the 3D 

Slicer including thresholding, islands, scissors, and margin. It took 30 minutes to 2 hours to 

complete the manual processing for each participant using the inverted MRI (iMR) (48).  

 

2.2.5   Deep-Learning Networks for pCT  

A patch-based 3D residual U-Net (ResUNet) structure was previously developed to synthesize 

pCT from MR images for attenuation correction in PET/MR images in adult participants (34). 

ResUNet took advantage of both U-Net and residual network structures (49-51). This network 

allowed the use of multi-scale high-level context information by adopting a UNet structure and 

utilizing 3D patches to process images of different sizes. The ResUNet architecture was detailed 

in (34). In brief, the ResUNet consisted of 7 layers with both contraction and expanding paths 

similar to the conventional U-Net. ResUNet model has added extra skip connections from the 
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residual block feeding the output of one layer to the next layer in addition to the skip connections 

in the U-Net from contraction to expanding paths. The state-of-the-art U-Net deep learning method 

requires fixed-sized images as input. In addition, the recent residual network (ResNet) structure 

has proven to be necessary to train deeper network structures. Previously, novel 3D residual U-

Net (ResUNet) structure for generating pCT from MRI images for the purpose of attenuation 

correction in PET/MR imager in adult patients was developed . The neural network input uses 3D 

64*64*64 image patches and consists of 7 layers with both contraction and expanding paths as in 

the conventional U-Net. The contraction path consists of convolutional and residual blocks to 

capture the multiscale context information within the 3D input. Following each layer of the 

contraction path, the feature numbers are doubled with the size of the features is halved. Contrarily, 

the expanding path consists of deconvolutional and residual blocks with halved feature numbers 

but doubled 3D sizes after each layer. The final output of the expanding path is the estimated CT 

in the same size as the initial input. Besides the skip connections in the U-Net from contraction to 

expanding paths, ResUNet has introduced extra skip connections from the residual block feeding 

the output of one layer to the next (the lower layer in the contraction path and the upper layer in 

the expanding path). These extra skip connections ensure the information flow to tackle the 

gradient vanish problem commonly occurred in the training of deeper neural network structures. 

We adapted this ResUNet method to pediatric head images through tuning or modification of some 

network structure parameters such as the number of layers, and patch size. 

 

 

In this study, three 3D patched-based ResUNet networks were developed to synthesize high-

resolution pCT images from GA-VIBE MR images for cranial bone imaging (Figure 2.1A). 
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Block matching 3D (BM3D) filtering was applied to the CT images. While reducing the noise, 

the advanced BM3D filter preserved fine details and edge features on self-similar grouped blocks 

(52). The MR and BM3D filtered CT images were normalized by subtracting the mean intensity 

of all imaging voxels within the head mask and then dividing by their standard deviation.  

 

The first ResUNet was trained using patches randomly sampled within the whole head mask, 

which was referred to as NetWH. Since the cranial bone, sutures, and air occupy a small fraction 

of the total head volume, they were rarely represented in the NetWH training patches. In order to 

overcome this issue, the second ResUNet, which is referred to as NetBA, enriched its 

representations in its training patches. In NetBA’s training, 50%, 25%, and 25% of the patches 

were randomly placed within the bone, fracture/suture neighborhood, and air regions, 

respectively. The training inputs and targets in NetWH and NetBA were normalized 3D MR 

patches (64 x 64 x 64 voxels) and the corresponding BM3D filtered CT patches from the same 

location. The third ResUNet, which is referred to as NetBM, was trained to segment brain masks 

using MRI patches as the inputs and the FSL BET toolbox generated MR brain mask as the 

target.  

 

3T images from the 42 patients were included in the network training, validation, and testing 

using five-fold cross-validation. 42 patients were randomly separated into 5 groups, with 8 or 9 

patients in each group. The previously published ResUNet pCT network (34) trained using T1 

MPRAGE images from adult participants was used as an initial to be retrained using the 

pediatric data for both NetWH and NetBA. Each time, 28-30 patients were used for training and 

4 patients for validation, and 8 or 9 patients for testing. NetWH and NetBA weights evolved by 
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reducing the L1 loss function in mean absolute difference (MAE) between the network pCT 

output and the BM3D filtered CT patches via the Adam optimizer with a batch size of 10 and a 

learning rate was initialized at 10-3 and empirically decreased by half after every 50,000 batches.  

NetWH and NetBA were trained using 200,000 iterations with 10 patches in each iteration with a 

total of 2 million randomly sampled 3D patches. The total number of trainable parameters was 

123,984,256 for each network. The pCT MAE in NetWH and NetBA reached a steady state after 

approximately 100,000 iterations. NetBM used a similar ResUNet architecture, except the loss 

function used binary cross Entropy. 

 

In the network deployment (Figure 2.1B), the trained network was applied to 64x64x64 patches 

using moving windows with a step size of 16 pixels in each direction. In pCT calculation, we 

only used the central 32x32x32 voxels of each patch and the pCT value was assigned as the 

average of the overlapped regions from different patches. pCTNetWH and pCTNetBA were the 

outputs of NetWH or NetBA, respectively. The brain mask generated by NetBM was then used 

to combine the brain area from pCTNetWH and the non-brain area from pCTNetBA to produce the 

final combined pCT (pCTCom), as detailed in Figure 2.1B.  

 

The 3T MRI-trained NetWH, NetBA and NetBM were also directly applied to create the final 

pCTCom for the two 1.5T data sets. For bone segmentation, a threshold of 200 HU was used to 

generate a binary mask from pCT and CT images (19,29,34,53). The pCT bone segmentation 

was further refined by removing isolated small islands using Matlab.  
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The deep ResUNet framework was implemented in PyTorch 1.8.2 (54). The training and 

validation process took approximately 2 days on a computer equipped with an Intel Xeon Gold 

6216 Processor and an NVIDIA Tesla A100 graphics processing unit (GPU). During network 

deployment, it takes 3.7 ± 0.8 minutes to generate the pCT images from one network using a 

single GPU.  
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Figure 2.1. Training scheme for three ResUNet networks: Whole Head network (NetWH)  

Bone/Air Enriched network (NetBA) and brain mask network (NetBM) for brain mask 

segmentation. For the NetWH, the center voxel of patches was randomly placed within the whole 

head.  For the NetBA, the center voxel of patches was placed within the vicinity of bone, suture, 

and air regions.  For the NetBM, the center voxel of patches was randomly placed within the whole 

head to segment the brain from MR images (A). ResUNet deployment scheme.  The pCTCom output 

was created by combining the pCT outputs from both NetWH and NetBA with a brain mask (B). 

2.2.6   Accuracy Evaluations 

The accuracy of the pCT images was evaluated using the whole head MAE, and cranial bone 

MAE with the acquired CT images as the gold standard reference. A threshold of 200 HU was 

applied to CT images to segment cranial bone (BoneCT). This CT cranial bone mask was then 

applied to MR-generated pCT to compute MAE within the cranial bone regions.  

 

MAE between the pCT and the CT were computed for pCTNetWH, pCTNetBA, or pCTCom as 

𝑀𝐴𝐸 = ∑ |;<=>?<=>|
@
>AB

C
,                                                                                                     (1) 

where i is the voxel index and n is the total number of voxels in the whole head or cranial bone 

regions. 

 

Bland-Altman tests were performed to evaluate the differences between pCT and CT images in 

the whole head as well as within CT-defined cranial bone regions. 
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A threshold of 200 HU was also applied to all pCT images to segment cranial bone (BonepCT). 

DSC of the segmented bone between CT and pCTNetWH, pCTNetBA, pCTCom, or iMR was 

computed as  

DSC= D(EFCGHIJ∩EFCGIJ)
EFCGHIJLEFCGIJ

	𝑜𝑟	 D(EFCG>OP∩EFCGIJ)
EFCG>OPLEFCGIJ

		,                                                                (2)                                     

where BoneCT is the segmented bone from CT images, while BonepCT or BoneiMR is the 

segmented bone from the pCTNetWH, pCTNetBA, pCTCom, or iMR method.  

 

One-way ANOVA followed by Dunnett’s multiple comparisons test was performed to compare 

whole head MAE and cranial bone MAE of pCTNetWH, pCTNetBA, and pCTCom using GraphPad 

Prism (version 9.0.0, GraphPad Software, San Diego, California USA). One-way ANOVA 

followed by Dunnett’s multiple comparisons tests was also performed to compare Bone DSC of 

pCTNetWH, pCTNetBA, pCTCom, and iMR. Linear regressions were employed to investigate whether 

bone DSC of pCTCom or iMR were significantly dependent on age using GraphPad Prism. 

Moreover, DSC’s age dependence was compared between pCTCom and iMR using an Analysis of 

Covariance (ANCOVA).  In all statistical analyses, P < 0.05 is considered significant.  

 

2.3   Results 

The demographic information of all participants is shown in Table 2.1.  Of the 42 participants 

who had a 3T MR scan, 24 had head trauma, and 18 had cranial suture evaluation. The two 
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participants who were scanned using a 1.5T MR had head trauma. Nine patients of the total 44 

participants were sedated.  

Table 2.1. Patient demographics  

 

 

 

MR field strength 

 

3T (n=42) 1.5T (n=2) 

 

Patient groups 
Suture Evaluation 

(n = 18)  

Head Trauma  

(n = 24)  

Head Trauma  

(n=2) 

Age in years (median, IQR) 2.5 (1.5 – 7.2) 11.75 (6.6 – 15.2) 1.5 and 0.4 

Female (n, %) 4 (22%) 12 (50%) 1 (50%) 

CT to MR in days (median, IQR) 37.5 (12 - 100) 27 (18-102) 0 and 36 

Sedation (n) 7 1 1 

 

2.3.1   MAE and Bone DSC  

The whole head MAE of the pCTCom (68.01± 14.86 HU) was significantly smaller than the MAE 

of the pCTNetWH (82.58 ± 16.98 HU, P<0.0001) and pCTNetBA (91.32 ± 17.2 HU, P<0.0001) 

(Figure 2.2A). Moreover, the cranial bone MAE of the pCTCom (227.92 ± 46.88 HU) was 

significantly smaller than the MAE of the pCTNetWH (287.85 ± 59.46 HU, P<0.0001), and it was 

similar to pCTNetBA (230.20 ± 46.17 HU, ns) (Figure 2.2B).  
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Figure 2.2. Mean Absolute Error (MAE) for pCTNetWH, pCTNetBA, and  pCTCom  (A). Mean 

Absolute Error (MAE) for pCTNetWH, pCTNetBA, and pCTCom within the cranial bone mask (B). 

Dice Similarity Coefficient (DSC) box plots for manual inverted MRI (iMR), pCTNetWH, pCTNetBA, 

and pCTCom  (C). pCTCom and iMR bone DSC as a function of age for all participants (D). The 
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fitted lines from linear regression are shown for both pCTCom (𝐷𝑆𝐶 = 0.005 × 𝑎𝑔𝑒 + 0.85, 	𝑃 <

0.001)  and iMR 	(𝐷𝑆𝐶	 = 0.015 × 𝑎𝑔𝑒 + 0.56, 	𝑃 < 0.001 ). An Analysis of Covariance 

(ANCOVA) test showed that the linear regression slope of pCTCom DSC is significantly smaller 

than iMR DSC (P<0.001).  

 

Bone DSC of pCTCom (0.90 ± 0.02) was significantly higher than those of pCTNetWH (0.86 ± 0.04, 

P<0.0001), pCTNetBA (0.88 ± 0.03, P<0.0001), and iMR (0.71 ± 0.09, P<0.0001) (Figure 2.2C). 

Bone DSC of iMR showed a significant age dependence with lower DSC in participants with 

younger ages (𝐷𝑆𝐶 = 0.015 × 𝑎𝑔𝑒 + 0.56���P<0.001) (Figure 2.2D). The diminished MR 

signal contrast between bone and soft tissue in young participants may explain this finding. The 

proposed pCTCom method also had an age dependence in bone DSC (𝐷𝑆𝐶 = 0.005 × 𝑎𝑔𝑒 +

0.85����P<0.001). However, the age dependence is significantly smaller in pCTCom than in 

iMR (P < 0.001). 

 

2.3.2   Quantitative Difference between pCT and CT 

Bland Altman plots were shown in Figure 2.3 for the whole head (upper row) and cranial bone 

(lower row) between pCT (pCTNetWH, pCTNetBA, or pCTCom) and CT.  The mean and standard 

deviation of differences between pCT and CT (pCT-CT) were -13.80± 30.90 HU for pCTNetWH 

(A), -17.40± 65.80 HU for pCTNetBA (B), -6.92± 20.58 HU for pCTCom (C) in the whole head 

(upper row), and -132.39± 254.25 HU for pCTNetWH (D), -88.50± 211.66 HU for pCTNetBA (E), -

85.19± 209.34 HU for pCTCom (F) in the cranial bone regions (lower row). All pCT images, 
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including pCTNetWH, pCTNetBA, pCTCom, have lower HU than CT. pCTCom showed the smallest 

mean and standard deviation in the difference between the pCT and CT.  

 

Figure 2.3. Representative  Bland-Altman plots between CT and pCTNetWH (A and D), pCTNetBA 

(B and E), and pCTCom (C and F) within the whole head (A-C), and within the cranial bone mask 

(D-F). The red horizontal line and the dotted black horizontal lines represent the mean and  SD of 

the differences. 

 

2.3.3   Qualitative Comparisons 

Representative images from a 4.8-year-old male participant were provided in Figure 2.4. The 

skull sutures were enhanced after the BM3D filtering (Figure 2.4C) compared to the original CT 

(Figure 2.4B). pCTNetWH (Figure 2.4D) provides a more accurate pCT signal in soft tissue than 

pCTNetBA (Figure 2.4E). Compared to pCTNetWH, pCTNetBA demonstrated more distinguished 
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bony structures. pCTCom (Figure 2.4F) demonstrated accuracy in soft tissues and high visibility 

of small bony structures.  Difference maps between pCTNetWH, and CT (Figure 2.4G), pCTNetBA 

and CT (Figure 2.4H), and pCTCom and CT (Figure 2.4I) in HU were displaced. The 

corresponding surface rendered cranial bone images from the same participant were displayed in 

Figure 2.5. Similar to Figure 2.4, Figure 2.5 confirmed that pCTNetBA (Figure 2.5E) improved 

sutures visibility compared to pCTNetWH (Figure 2.5D). Since pCTCom (Figure 2.5F) uses the bone 

regions of pCTNetBA, surface rendered cranial bone looks similar between pCTCom (Figure 2.5F) 

and pCTNetBA (Figure 2.5E).  
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Figure 2.4. Representative Images from a patient (4.8-year-old, male).  The blue squares mark the 

lambdoid suture, while the red squares mark the coronal suture.  MR images (A), CT (B), BM3D 

filtered CT (C), pCTNetWH (D), pCTNetBA (E), pCTCom (F), and the corresponding difference images 

(pCTNetWH-CT) (G), (pCTNetBA-CT) (H), and (pCTCom-CT) (I) 



37 
 

 

Figure 2.5.  3D surface rendered cranial bone image from a participant (4.8-year-old, male) using 

iMR (A), CT (B), BM3D filtered CT (C), pCTNetWH (D), pCTNetBA (E), and the pCTCom (F). 

 

Example MR, pCTCom, and CT volumetric and 3D rendered cranial bone images from a 14-

years-old participant were displayed in Figure 2.6. High-resolution pCTCom generated by the 

proposed MR-HiPCB method produced similar suture visibility for the coronal and sagittal 

sutures compared to CT. Another example from a 1.8 year old participant with craniosynostosis 

was shown in Figure 2.7. Similar to CT, pCTCom demonstrated that this participant had an open 

coronal suture (Figure 2.7D, E, and F, marked by blue arrows) but a closed sagittal suture 

(Figure 2.7D, E, and F, marked by red arrows). Figure 2.8 shows an example of MRI, pCTCom, 
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and CT volumetric and 3D rendered cranial bone images from a trauma participant with fractures 

(marked by yellow arrowed and red ovals). The skull fractures can be readily identified on 

pCTCom images similar to CT. Moreover, the surface rendered cranial bone images from pCTCom 

showed much less noise than iMR (Figure 2.8D, E, and F, marked by red arrows), suggesting the 

proposed MR-HiPCB method can reduce noise. 

 

Figure 2.6. Representative volumetric MR (A), pCTCom (B), and CT (C) images from a patient (14-

year- old, female) with a suture marked in the blue square, and the corresponding 3D surface 

rendered cranial bone images of manual inverted MR images (iMR) (D), pCTCom (E), and CT (F). 

The blue and red arrows indicate the presence of the coronal and the sagittal sutures, respectively.  
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Figure 2.7. Representative MR (A), pCTCom (B), and CT (C) images from a craniosynostosis 

patient (1.8 year old, female), and the corresponding 3D surface rendered cranial bone images 

using iMR (D), pCTCom (E), and CT (F). Blue arrows indicate the presence of a coronal suture, and 

the red arrows indicate the absence of a sagittal suture.  
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Figure 2.8. Representative MR (A), pCTCom (B), and CT (C) images from a trauma patient (5.6-

year-old, male) with a fracture marked by yellow arrows, and the corresponding 3D surface 

rendered cranial bone images from iMR (D), pCTCom (E) and CT (F). A fracture is marked by a 

red circle. The proposed deep learning method reduced the noise in the pCT-rendered bone images 

(E) compared to that of the iMR image (D) (marked by red arrows).  

 

2.3.4   pCTCom at Two MR Field Strengths  

The proposed networks were trained using images acquired on 3T MR scanners. Two 

participants scanned on the 1.5T scanners were not included in the network training due to low 

SNR and slightly different image parameters. To test the feasibility of across magnetic field-



41 
 

strength application of our proposed approach, we directly applied the 3T trained networks to the 

two 1.5T image sets. In an example demonstrated in Figure 2.9, skull fractures can be readily 

distinguished (marked by yellow arrows and red ovals). The noise in the facial region in pCTCom 

(Figure 2.9E) is much less than in iMR (Figure 2.9D). For this patient, the pCTCom MAEs were 

83.61 HU and169.02 HU in the whole head and cranial bone regions, respectively.  The bone 

DSC of pCTCom and iMR were 0.84 and 0.73, respectively. For another participant scanned at 

1.5T, the pCTCom MAEs were 71.15 HU and164.41 HU in the whole head and cranial bone 

regions, respectively. The DSC of pCTCom and iMR were 0.83 and 0.65, respectively. 

 

Figure 2.9. Example MR (A), pCTCom (B), and CT (C) images from a trauma patient (1.6-year-

old, female) with fractures marked by yellow arrows, and the corresponding 3D surface rendered 

cranial bone images of iMR (D), pCTCom (E), and CT (F). A fracture is marked by a red circle. The 
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proposed MR-HiPCB reduced the noise in the surface-rendered bone images (E) compared to that 

of the iMR image (D) (marked by red arrows).  

 

2.4   Discussion and Summary 

Previously developed deep learning pCT methods have been primarily focused on generating 

pCT for adults without a need to resolve fine bony structures (26-34). To our knowledge, the 

proposed MR-HiPCB is the first method to create pCT from MRI at sub-millimeter resolution 

(0.3x0.3x0.5 mm3) to identify small bony structures for diagnosing cranial bone abnormality in 

pediatric participants with head trauma or craniosynostosis. The proposed MR-HiPCB method 

consists of three ResUNet networks to achieve high accuracy in both bones and soft tissues.  

The network structures of NetWH and NetBA are identical. The differences are the training 

samples used in training these two networks (Figure 2.1). Since bone and air regions only occupy 

a small fraction of the total head volume, their representations were enriched in NetBA to 

improve pCT in these regions at the expense of reducing performance in brain regions. We have 

demonstrated that pCTNetWH performed better in the intracranial regions, while pCTNetBA was 

more accurate in cranial bone regions. pCTCom takes advantage of these two networks by 

combining the brain regions from pCTNetWH and non-brain regions from pCTNetBA. pCTCom 

allows us to discern detail of bony structures at high resolution while maintaining overall 

accuracy. The pCTCom has the lowest MAE in the whole head. Moreover, MAE of pCTCom is 

lower than pCTNetWH, but similar to pCTNetBA within the cranial bone. The pCTCom has a 

significantly higher bone DSC than pCTNetWH, pCTNetBA, and iMR. The pCTCom demonstrated 
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similar visibility of sutures and fractures compared to CT. Moreover, it took several minutes to 

generate high-resolution pCT after the neural networks were trained. 

 

When compared to adults, young children have thinner and less dense cranial bone, resulting in 

diminishing image contrast between bone and surrounding soft tissues. Moreover, cranial bone 

density and size changes rapidly due to growth during the early years of life. The cranial bone 

volume doubles in size by the first 6 months, triples by 2.5 years of age, and is 90% complete by 

5 years of age (35,36). Despite manually choosing a participant-specific signal threshold, a signal 

intensity-based approach iMR performed poorly in segmenting bone, particularly in younger 

participants (Figure 2.2D). In contrast, MR-HiPCB used not only signal intensities but also 

multi-scale high-level context information offered by ResUNet to address these challenges. 

pCTCom improved bone segmentation across all ages with more pronounced improvement in 

young children. Notably, DSC of pCTCom was still lower in younger participants than in older 

participants. It may be explained by fewer training samples from participants younger than 5 

years old. Separate networks for different age groups can be trained independently; however, 

each network training needs a large sample size. Alternatively, general pCT networks may be 

trained using images across a wide age range followed by transfer learning to provide age-

specific networks to further improve performance (55).   

 

In this study, most participants (80%) were not sedated. We have demonstrated that high-quality 

pCT can be achieved in pediatric patients without sedation. Figure 2.9 showed that pCT 

networks trained on images from 3T scanners might be generalized to images acquired using a 
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1.5T MR scanner. Good quality pCTCom images were generated despite using the low-quality 

1.5T MR images as the input. DSC and MAE from the 1.5T pCTCom were comparable to those 

from the 3T in participants with a similar age range, supporting the feasibility of MR-HiPCB at 

1.5T. More data will be needed in the future to further examine the performance of MR-HiPCB 

at 1.5T MR scanner.  

 

Our study had several limitations. First, MR images were interpolated to match the higher spatial 

resolution of the CT images (0.30 x 0.30 x 0.50 mm3). The original lower resolution MR image 

may result in blurrier pCT images than CT. Moreover, despite using NetBA to improve estimation 

in bone, a deep learning-based approach may result in additional blurriness in the pCT images. 

Second, the MRI acquisition time (~5 minutes) is much longer than that of the CT scan (seconds), 

which may negatively impact the clinical adoption of the proposed method. Last, the choice of 

segmentation algorithm may affect DSC. We used a threshold of 200 HU to segment bone from 

the CT and all pCT images. Other bone segmentation methods, for example K-means clustering, 

might change the cranial bone masks, leading to different DSC values.  

 

The long-term goal of this study is to develop an MR-based cranial bone imaging method as a 

radiation-free alternative to CT imaging for evaluating cranial fractures and cranial suture 

patency in a clinical setting. A clinical evaluation will need to be performed to assess the clinical 

utility of the pCT images in the future. New methods to accelerate MR acquisition should also be 

developed to facilitate clinical translation.   
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In conclusion, we have developed a fast, robust, and fully automated method to synthesize 3D 

high-resolution pCT using MR images for pediatric patients. The proposed MR-HiPCB method 

is promising in providing CT-equivalent information for clinical diagnosis and post-treatment 

follow-up for pediatric patients with head trauma or craniosynostosis. This MR-HiPCB method 

may profoundly impact pediatric health by minimizing patient risks caused by ionizing radiation 

from CT imaging.  
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Chapter 3: Self-Supervised and Physics-
Guided Deep Learning MR Reconstruction: 

Weighting k-Space Sampling Density in 
Network Training Loss (wkDeLo) in an 

Unrolled Network 

 

 
3.1   Introduction 

High-resolution MRI acquisition with sub-millimeter voxel size and whole head coverage takes 

several minutes to acquire (2-4). 3D high-resolution cranial MRI is a safe alternative to CT for 

pediatric patients with cranial anomalies without ionizing radiation (5-11). The long acquisition 

time is challenging for the pediatric patient due to the high likelihood of motion for children 

young children and limits clinical adoption of MR cranial bone imaging. However, a short MRI 

acquisition cannot meet the Nyquist k-space acquisition criterion, resulting in reconstruction 

artifacts and high noise. Hence, an imaging reconstruction method to provide high-quality 

images using under-sampled data is desired to reduce MR acquisition time.  

To overcome these challenges, compressed sensing (CS) reconstruction has been employed to 

reconstruct undersampled MR data (12,13). A CS method utilizes an iterative algorithm by 

minimizing a cost function consisting of a data consistency term and prior-based regularization. 
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(14-23). However, CS becomes less effective when data is severely under-sampled (24,25). 

Furthermore, CS reconstruction is computationally time-consuming and usually necessitates 

empirical fine-tuning of regularization parameters. Emerging techniques based on fast self-

tuning show promise for principled parameter selection (26,27). More recently, deep learning 

(DL) has been explored for MR image reconstruction (28-39). Iterative-based algorithms that 

alternate between data-consistency enforcement and pre-trained convolutional neural network 

(CNN) denoisers are an alternative to the direct inversion approach (40-44). More recently, 

Model-based reconstruction with Deep Learned Priors (MoDL) combines the strength of model-

based reconstruction approaches with the power of deep learning (25,32,45-52). The network is 

made up of a combination of CNN blocks that capture information about the data set and data 

consistency (DC) blocks that promote measurement consistency. The end-to-end training 

technique gives a significant boost in performance over using pre-trained denoisers since the 

network parameters are trained for the specific task of image recovery. These methods use an 

iterative reconstruction process to solve the objective method for a set number of iterations. The 

unrolled network alternates between data consistency (DC) and regularization, with the 

regularization being done implicitly via a neural network (32,33). These unrolled networks are 

then trained end-to-end with a loss function that measures similarity to a reference image and 

parameters may differ over unrolled iterations (32,45,48) or may be shared among them 

(46,50,55). Recently, the Self-supervised learning via data under-sampling (SSDU) method is 

introduced for physics-guided deep learning reconstruction divides available kspace data into 

two disjoint sets, one of which is used in the data consistency (DC) units in the unrolled network 

and the other is used to define the loss for training. SSDU method achieved comparable results to 
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the supervised approach trained on fully sampled data, despite having only been trained on under 

sampled data.  

In many accelerated MR imaging approaches, variable density k-space samplings have been 

widely utilized. For example, k-space center are usually fully acquired as auto-calibrated signal 

(ACS) lines, while outer k-space were covered sparsely in Cartesian sampling scheme . 

Moreover, radial and spiral k-space coverage, which cover k-space center more densely than 

outer k-space, have also been widely used in MRI . However, existing DL reconstruction-based 

methods, including SSDU, have not accounted for k-space density variations in physics-guided 

deep learning MRI reconstruction.  

In this study, we developed a self-supervised and physics-guided deep learning method by 

weighting k-space sampling Density in network training Loss (wkDeLo).The goal was to 

regularize the forward Fourier model by using the weighted k-space deep learning prior with 

unrolling structure to shorten the MRI acquisition time by using a 16% Nyquist rate (1 minute) 

(an acceleration rate of 6.25). 

We have applied our proposed wkDeLo method to MR data acquired using a golden angle stack-

of-stars sequence to accelerate MR acquisition. Moreover, we have also reconstructed images 

using the same unrolled network structure but without accounting for the k-space sampling 

density variations using a uniform weighted k-space in the training loss (un-wkDeLo) for 

comparison. Furthermore, we adopted the well-accepted SSDU as a baseline method reference. 

Using the images reconstructed from a 5-min scan as the gold standard, we computed the 

structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) for 

reconstructed images from 1-min k-space data using SSDU, un-wkDeLo, and wkDeLo. 3D MR 
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cranial bone imaging were generated using images reconstructed using the SSDU, un-wkDeLo, 

and wkDeLo methods.   

3.2   MATERIALS AND METHODS 

3.2.1   Study Cohort 

St. Louis Children's Hospital pediatric patients (ages three days to 17 years old) diagnosed with 

head trauma or craniosynostosis were recruited for this study.   

3.2.2   Image Acquisition 

A 3T (Prisma or VIDA) MR scanner (Siemens Healthineers, Erlangen, Germany) was used to 

scan 32 participants. A Fast Low-Angle Shot (FLASH) Golden-Angle 3D stack-of-stars radial 

Volumetric Interpolated Breath-hold Examination sequence (GA-VIBE) was utilized to obtain 

the MR images because of its motion resilience. The following imaging characteristics was used 

TR/TE = 4.84ms/2.47 ms, field of view = 192 mm, Bandwidth = 410 Hz/pixel, 224 slices per 

slab, transverse orientation, Flip angle = 3°, acquisition matrix = 320 × 320, voxel size 0.6 x 0.6 

x 0.8 mm3 and total number of radial lines = 400 for a scan duration of 5 minutes and 4 seconds. 

3.2.3   Self-Supervised and Physics-Guided Deep Learning Reconstruction 

Using an Unrolled Network  

A physics-guided reconstruction regularized by a deep learning prior can be employed to 

reconstruct under-sampled MR k-space data. This method reconstructs images by iteratively 

minimizing a loss function as depicted below: 

 



55 
 

𝐼 = argminX ∑ ∑ YZ𝐻\,] ∙ 𝐼 − 𝐾\,]ZY
D

D
]\ + ℎ(𝐼)  (1) 

ℎ(𝐼) = λm /2‖𝐼=(𝐼 − 𝑅f(𝐼))‖1.                                 (2) 

 

where the operator𝐻\,] = 𝐹 ∙ 𝐶]	 ; F is the forward Fourier (NUFFT) operator; Cj is the coil 

sensitivity for Coil j; I is the to-be-determined image; Ki,j is the acquired k-space data for spoke i 

with coil j.  

The first term of the cost function is to ensure data consistency (DC), while the second term h(I) 

in Eq (2) is a regularization term using a convolution neural network 𝑅f(𝐼)	. 𝐼= is the transpose 

of 𝐼 and lm is the regularization coefficient that balances the tradeoff between data consistency 

and regularization. lm is learned during the training of the unrolled network. 𝑅f is a convolution 

neural network with dual-channel inputs for real and imaginary parts of the complex images. The 

complex inputs are used because noise has a zero-mean Gaussian distribution. 

The unrolled network architecture is demonstrated which consists of the DC and 𝐷f(𝐼)=I-𝑅f(𝐼) 

blocks in Fig. 3.1. During the training, the k-space data of a 400 radial spokes (5 min scan) can 

be divided into two disjoint data sets: the first 80 radial spokes (1 min) as Kinput and the 

remaining 320 spokes (4 minutes) as Ktarget .The full Nyquist sampling rate for the radial scan 

needs 502 spokes. 80 and 320 spokes correspond to 16% and 64% of the Nyquist sampling rate, 

respectively. Kinput is transformed into the spatial domain (Iinput) via an inverse Fourier transform 

H†. The complex Kinput and Iinput were then fed into the unrolled network for P iterations. IP is the 

output of the unrolled network. A Forward Fourier transform H is applied to IP to transform it to 

k-space and sampled it at the same k-space locations as Ktarget.  
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3.2.4   weighting k-Space Sampling Density in the Training Loss Function   

A L1-loss is constructed as the difference between H IP and Ktarget and then weighted by k-space 

sampling density as depicted in Equation (3).  

 

argmin  ∑ 	 ||	 Hj IP -Ktarget || W                        (3) 

where W is the weighting to account for k-space sampling density variations. Hj = S F CJ  where 

F is the forward Fourier (NUFFT) operator; Cj is the coil sensitivity for Coil j and S is the 

sampling function. Sn is normalized of S which is Sin=Si/∑ 	NSi , and then we define W with each 

elements of  Wi=1/Sni   at each sampling location I, N is the total number of radial sampling. We 

apply small weights in the low k-space and large weights in the outer k-space. This weighted L1-

loss is minimized through training.  

 

Fig 3.1.  Unfolding network structure  
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3.2.5   Network and Training Details  

The data consistency in the unrolled network was implemented with the conjugate gradient method 

for solving Equation 2, which itself was unrolled for 5 iterations (P=5 in Fig. 3.1). The neural 

network in Equation 2 was implemented using a CNN based on a ResUNet structure similar to the 

previously introduced U-RED (55,56). The learned operator blocks within U-RED (𝑅f)	share their 

weights across iterations. They are trained in an end-to-end manner by accounting for the data 

consistency layers. This CNN  consists of a layer of input and output convolution layers, and 7 

residual blocks with skip connections that facilitate information flow during network training. 

Each residual block consisted of convolutional layers, followed by a rectified linear (RELU) unit 

(55,56). All layers had a kernel size of 3 × 3 and 64 channels. This ResUNet CNN had a total of 

1,166,820 trainable parameters, which were shared across the unrolled iterations. In total we had 

32 subjects, each time 10 subjects were randomly selected for training, and 4 subjects were used 

for validation and the remaining were used for testing, 

PyTorch 1.8.2 was used to implement the deep ResUNet unrolled framework using a computer 

with an Intel Xeon Gold 6216 processor and an NVIDIA Tesla A100 graphics processing unit. 

The training and validation procedure took about two days (GPU). Using a single GPU, testing 

took less than a minute.  

3.2.6   Baseline Methods 

We compared the wkDeLo to two other DL-based reconstruction methods. To evaluate the effect 

of k-space sampling density weighted, we used the exactly same unrolling network but without 

accounting for k-space sampling density in network training Loss. In other words, a uniform 
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weighted is used in the training loss (un-wkDeLo). W is equal to the identity matrix (I) in 

Equation (3).  

We adopted and implemented the SSDU method as another baseline method. SSDU is a self-

supervised method using a deep unrolling network. Similar to the published SSDU method, we 

divided k-space MRI data into two disjoint subsets and uses one set with 32 spokes for data 

consistency layer and the other set with 48 spokes in the regularization layer (57).  

3.2.7   Cranial Bone 3D Reconstruction 

The bias-field corrected MR images were inverted and masked with the head binary mask, 

resulting in high and low signal intensities for skull bone and soft tissue, respectively. Using the 

3D Slicer software, a global intensity threshold was manually determined after the intensity 

inversion to create a 3D skull bone rendering (10,11). 

3.2.8   Performance Evaluations 

The 5-minute data (400 spokes) reconstructed using multi-coil non-uniform fast Fourier 

transformation (MCNUFFT) was used as the gold standard. The first 1-minute of MR data from 

each subject was reconstructed using the wkDeLo, un-wkDeLo, and SSDU methods. Using the 

5-min MCNUFFT scan as the gold standard, we calculated the structural similarity index 

measure (SSIM) and peak signal to noise ratio (PSNR) for the1-min wkDeLo, 1-min un-

wkDeLo, and the 1-min SSDU reconstructed images. 

One-way ANOVA followed by Dunnett’s multiple comparisons test was performed to compare 

the SSIM and PSNR for the 1-min SSDU, 1-min un-wkDeLo, and 1-min wkDeLo, using GraphPad 

Prism (version 9.0.0, GraphPad Software, San Diego, California USA). 
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3.3   Results 

MCNUFFT, SSDU, un-wkDeLo, and wkDeLo were used to reconstruct 1-minute k-space data. 

The 5-min MCNUFFT images (3.2E) were considered as the gold standard reference. 1-min 

MCNUFFT has high noise and reconstruction artifacts (Figure 3.2A), 1-min SSDU reduced 

noise and artifacts compared to 1-min MCNUFFT, but there are still visible artifacts compared to 

5-min MCNUFFT marked by the red arrow.  1-min un-wkDeLo has further reduced noise and 

artifacts but at the expense of image sharpness, resulting in less visibility of small structures 

(Figure 3.2C). The proposed wkDeLo is effective in reducing artifacts and noise, while still 

preserving fine details of the structures (Figure 3.2D). Difference images compared to the 

reference image are shown in the second row (Figure 3.2 F, G, H, and I) 
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Fig 3.2. MR images 1 min MCNUFFT (A) , 1 min SSDU (B), 1 min un-wkDeLo  (C), 1 min 

wkDeLo  (D), and 5 min MCNUFFT reconstruction for 5.6 years old trauma patient, and the 

corresponding difference images (| 1 min MCNUFFT - 5 min MCNUFFT|) (F), (|1 min SSDU- 5 

min MCNUFFT| ) (G), and (|1 min un-wkDeLo - 5 min MCNUFFT|) (H),  (|1 min wkDeLo - 5 

min MCNUFFT|) (I). The difference is x10 times.  

Similar to Figure 3.2, representative 1-min MCNUFFT (Figure 3.3,3.4A), 1-min SSDU (Figure 

3.3,3.4 B), 1-min un-wkDeLo (3.3,3.4 C), 1-min wkDeLo (3.3,3.4 D), 5 min MCNUFFT (3.3,3.4 

E)  and their difference (second row) images from a 10.1-year-old female and 16.8-year-old male 

participants were displayed in Figure 3.3 and 3.4. 1-min wkDeLo closely resembled the 5-min 

MCNUFFT images, and the difference between these two was small. The SSDU approach suffers 

from visible residual artifacts, with the un-wkDeLo and wkDeLo having fewer artifacts. The un-

wkDeLo blurred suture regions (marked in the zoomed-in region in the red rectangular). The 

wkDeLo image has improved suture visibility compared to un-wkDeLo. The wkDeLo successfully 

performs reconstruction with an acceleration rate of 6.25x at 16% Nyquist sampling rate. 
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Fig 3.3. MR images 1 min MCNUFFT (A), 1 min SSDU (B), 1 min un-wkDeLo  (C), 1 min 

wkDeLo  (D), and 5 min MCNUFFT reconstruction for 10. 1 years old trauma patient, and the 

corresponding difference images (| 1 min MCNUFFT - 5 min MCNUFFT|) (F),(|1 min SSDU- 5 

min MCNUFFT| ) (G), and (|1 min un-wkDeLo - 5 min MCNUFFT |) (H), (|1 min wkDeLo - 5 

min MCNUFFT|) (I). The difference is x10 times.  

 

Fig 3.4. MR images 1 min MCNUFFT (A) , 1 min SSDU (B), 1 min un-wkDeLo  (C), 1 min  

wkDeLo (D), and 5 min MCNUFFT reconstruction for 16.8 years old  patient, and the 



62 
 

corresponding difference images (| 1 min MCNUFFT - 5 min MCNUFFT|) (F),(|1 min SSDU- 5 

min MCNUFFT| ) (G), and (|1 min un-wkDeLo - 5 min MCNUFFT |) (H), (|1 min wkDeLo - 5 

min MCNUFFT|) (I) The difference is x10 times.  

 
Volumetric and 3D rendered cranial images from a 4.2 years old female patient with lambdoid 

and sagittal sutures (Fig 3.5), a 1.8-year-old craniosynostosis participant with an open coronal 

suture but a closed sagittal suture (Fig 3.6) are shown. The 3D rendered images were created 

from inverted MR images using 3D Slicer. High-resolution 1-min MR inverted images generated 

by our proposed method produced similar suture visibility for the coronal and sagittal sutures 

compared to 5-min MCNUFFT. 
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Fig 3.5. MR and rendered images from 1 min MCNUFFT (A, F , 1 min SSDU (B, G), 1 min un-

wkDeLo  (C, H), 1 min wkDeLo (D,I) , and 5 min MCNUFFT (E, J) reconstruction for 

craniosynostosis patient. 

 

 

Fig 3.6. MR and rendered images from 1 min MCNUFFT (A, F , 1 min SSDU (B, G), 1 min un-

wkDeLo (C, H), 1 min wkDeLo  (D,I) , and 5 min MCNUFFT (E, J) reconstruction for 

craniosynostosis patient. 

 

Figure 3.7 demonstrated an example of volumetric and 3D rendered cranial bone images from a 

trauma participant with fractures (marked by yellow arrowed and red circles). The skull fractures 

can be readily identified on 1 min wkDeLo images similar to 5 min MCNUFFT. Moreover, the 

surface rendered cranial bone images from 1 min s wkDeLo showed much less noise than 1 min 

SSDU (marked by red arrows), better suture and fracture visualization than 1 min un-wkDeLo 
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(marked in red circle), and suggesting the proposed method can reduce noise while preserving 

detailed tiny structures. 

 

 

Fig 3.7. MR and rendered images from 1 min MCNUFFT (A, F , 1 min SSDU (B, G), 1 min un-

wkDeLo  (C, H), 1 min wkDeLo  (D,I) , and 5 min MCNUFFTA (E, J) reconstruction for trauma 

patient. Fracture marked in red circle. The proposed wkDeLo  reduced the noise in the surface 

rendered bone images (I) compared to the un-wkDeLo (H) and SSDU images (G) (marked by red 

arrows).  
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Fig 3.8. PSNR and SSIM using the un-wkDeLo, SSDU and the proposed wkDeLo reconstructions. 

The SSIM and PSNR for SSIM, un-wkDeLo, and wkDeLo or all subjects were summarized in a 

box plot shown in Figure 3.8. The wkDeLo has significantly higher PSNR and SSIM than SSDU 

and un-wkDeLo (P<0.001).  

 

3.4   Discussion and Summary 

High-resolution MRI acquisition with sub-millimeter voxel size and whole head coverage may 

be lengthy. Our current Golden-angle radial MR scan has an acquisition time of 5 minutes. A 
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long scan reduces compliance in unsedated pediatric patients. However, a short MR acquisition 

results in under-sampled data, leading to artifacts and high noise. The full Nyquist sampling rate 

for the radial scan needs 502 spokes. The 5 min (400 spokes) and 1 min (80 spokes) scans 

correspond to 80% and 16% of Nyquist data, respectively. We developed an MRI reconstruction 

method using wkDeLo to reduce MR acquisition time. The MR one-minute scan can be used to 

generate high-resolution images for the application of identifying skull fractures and sutures for 

pediatric patients. The wkDeLo one-minute scan closely resembled the five minutes MRI scan in 

terms of image quality. Our results showed that the wkDeLo approach outperforms SSDU and 

un-wkDeLo, a method without accounting for k-space sampling density. Our results 

demonstrated that k-space sampling density variation should be considered in network training 

loss to achieve better MR reconstructions. wkDeLo has the highest SSIM and PSNR. Moreover, 

wkDeLo images preserve image sharpness, which allows discerning small structure. In this 

study, all MR scans were acquired using a golden angle stack-of-stars radial acquisitions. 

Compared to the k-space center, the outer k-space is sparsely covered. The weighted loss 

function compensated this k-space sampling density variations by giving more weight to high k 

space in the unrolled network training. The principle of the proposed wkDeLo method can be 

extended to other k-space sampling schemes, such as spiral or variable density Cartesian 

acquisitions.  

The conventional MCNUFFT reconstruction of a radial k-space usually applies a density 

compensation of the k-space data before regridding and Fourier transform. Despite a conceptual 

similarity, the wkDeLo is fundamentally different from the density compensation in the 

MCNUFFT approach. In MCNUFFT, k-space density weights are applied to the acquired k-
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space data directly. In contrast, the k-space density weights are only included in the unrolled 

network training loss without changing the acquired k-space data.   

Our study has a few limitations. The 100% Nyquist fully sampled data were not available in our 

study. We use 80% Nyquist rate images as an alternative good standard. Due to a lack of ground 

truth, we did not compare our results to a supervised deep learning-based method. When 

compared to the 5 minutes data, the 1 min wkDeLo images are still more blurry.  

In conclusion, we have developed a fast, robust, and fully automated method to achieve high-

resolution MR (0.6x0.6x0.8 mm3) with a 1 min acquisition time for pediatric patients. The 

proposed wkDeLo method is promising in providing high-resolution MR images for clinical 

diagnosis and post-treatment follow-up for pediatric patients with head trauma or 

craniosynostosis.  
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Chapter 4: Demonstrate that 3D High-
Resolution Cranial MR Images Provide CT-
Equivalent Bone Information to Clinically 

Identify Cranial Abnormalities, Patent 
Sutures, and Fractures 

 

4.1   Introduction 

CT scans are commonly utilized to provide high-quality three-dimensional images of the 

craniofacial skeleton for diagnosis and surgery planning. These scans expose patients to ionizing 

radiation and are linked to an increased risk of cancer (1-8). Head trauma is the most common 

indication for a CT scan (9-11). CT is also performed for evaluation of cranial dysmorphology 

and patency of cranial sutures (12-16). Although magnetic resonance imaging (MRI) is 

radiation-free, it has historically been unable to produce diagnostic-quality images of bone on a 

clinically relevant timeline. 

3D imaging of cranial structures is used by multiple specialties including Neurosurgery, 

Craniofacial Surgery, and Neuroradiology for diagnosis, surgical planning, and postoperative 

evaluation in patients with head trauma and craniosynostosis. The objective of this study was to 

assess the clinical utility of using the novel MR techniques outlined in this work to create CT-

equivalent 3D MR cranial bone images without sedation and assess the feasibility of the GA-

VIBE sequence to obtain clinically acceptable cranial bone images for evaluation of patients 

presenting with head trauma and craniosynostosis in comparison to the gold-standard CT scan.  
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To attain this objective, we tested the working hypothesis that clinicians can identify cranial 

abnormalities, patent sutures, and fractures and so eliminate the need for CT imaging in >85% of 

pediatric patients presenting for head trauma or craniosynostosis. We tested the working 

hypothesis by having two expert clinicians independently evaluate the 3D high-resolution MR 

and CT cranial images. We used their evaluations to verify the clinical utility of the 3D MR 

images and develop criteria to identify patients for whom CT imaging is unnecessary. 

We hypothesized that deploying automated motion correction protocols and using machine 

learning to generate pseudo-CT images from MRI scans produce images of pediatric patients’ 

skulls that are acceptable for clinical use.  

In pediatric MRI, head motion is a significant cause of image deterioration. To reduce movement 

during clinical MR scans, sedation is frequently employed (17,18). In MR head imaging, the 

sedation rate is reported to be between 60 and 65 percent for patients aged 1-6 and 32 percent for 

all patients under the age of 18.  By reducing scan times and utilizing a multidisciplinary team to 

time imaging with the patient's biorhythms, efforts have been made to lessen the requirement for 

sedation (19-21).  Sedation is still employed to produce clinically acceptable pictures despite 

these attempts. In order to give motion-artifact-free images without the use of anesthesia, it is 

very desirable to develop MR imaging technology. 3D rigid head motion is first detected, 

estimated, and then corrected in MR motion correction using a self-navigated MR approach. (22-

29) 

Another obstacle to the MR-based restoration of the cranial bone is the requirement to manually 

define the signal threshold in separating bone from other tissues. The creation of an operator-

independent post-processing method utilizing a typical signal intensity approach is difficult and 



75 
 

prevents its clinical application due to the weak signal contrast between bone and surrounding 

tissues in MR images. However, newly developed advanced image processing techniques, such 

as deep learning techniques, can automatically produce CT-like images from MR images (30). 

In this study, Fast Low-Angle Shot (FLASH) Golden-Angle 3D stack-of-stars radial VIBE 

sequence (GA-VIBE) was used, which is more resistant to motion.  In comparison to the gold-

standard CT scan, the goal of this study is to determine whether the GA-VIBE sequence can 

produce clinically acceptable cranial bone imaging for the evaluation of patients with 

craniosynostosis/suture evaluation or head trauma. The 5 min motion-corrected pseudo-CT 3D 

reconstructed images in comparison to CT created clinically acceptable cranial images with the 

ability to detect suture closure and excellent ability to detect cranial fractures.  

4.2   Materials and methods 

4.2.1   Study Design and Participants 

In this study, we used a Fast Low-Angle Shot (FLASH) Golden-Angle 3D stack-of-stars radial 

VIBE sequence (GA-VIBE), which is more motion-resistant than a Cartesian black bone 

acquisition. The GA-VIBE method is a radial scan that is inherently more resilient to motion  
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than the Black Bone and PETRA approaches. In a healthy pediatric participant, we compared the 

motion robustness of the GA-VIBE scan and the Black Bone scan. (Figure 4.1) 

 

Figure 4.1. MR images (left) and the corresponding cranial bone images (right) using the BB 

(Black Bone) vs GA (Golden Angle radial) scans in a pediatric participant. 

Before participant recruiting, IRB approval (#202112122) was obtained. Patients under the age 

of 18 were recruited who had a CT scan of the head as part of routine clinical treatment for head 

trauma evaluation of cranial suture patency 

MRI scans were performed within 3 weeks of the CT scan for patients under 6 months of age and 

within 12 weeks for patients older than 6 months of age with a cranial vault fracture. MRI scans 

were performed within 6 months of the CT scan in situations where there was no fracture. 

Exclusion criteria included time between CT and MRI is longer than the stated restrictions, 

having cranial operations between CT and MRI, or having a contraindication to MRI. 

 

The study design was cross-sectional.  The participant intervention was the radial MRI sequence 

that took approximately 5 minutes, either added to an already scheduled clinical MRI protocol or 

performed as a stand-alone research scan.  Exclusion criteria consisted of (1) children who had a 
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cranial procedure after the CT and before the MRI, (2) time difference between MR and CT is 

out of the defined intervals, and (3) contraindications to MRI. 

Thirty-three participants were enrolled between 2019 and 2021. Two were excluded due to 

excessive motion during the scan. Of the remaining 31 participants, 17 participants were male; 

14 were female. Participant age at MRI ranged from 19 days to 17 years old (median = 10.9 

years, interquartile range (IQR): 6.9 – 15.0). The time from CT to MRI ranged from 1 to 168 

days (median = 22 days, IQR: 17 – 53). Only 2 of the 31 participants were sedated during their 

MRI. Demographic and diagnostic details of the 31 participants are shown in Table 4.1. Three of 

these subjects were excluded from the deep learning implementation since they had thick CT 

slices. The subjects with a spatial resolution of 2 mm were excluded from deep learning training 

and testing. 
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Table 4.1. Patient demographics and imaging data for trauma patients 

Subject 

Age at 
MRI 

(years) Sex 

CT to 
MRI 

(days) 
Sedated 

MRI 

MRI 
Scanner 
Strength Cranial Fractures on CT 

1 1.6 F 1 Yes 1.5T 
depressed frontal and non-displaced 

parietal/temporal fractures 
2 0.1 M 1 No 3T parietal fracture, non-displaced 
3 6.5 M 8 No 3T None 
4 10.9 F 22 No 3T frontal fracture, non-displaced 
5 10.9 M 4 Yes 3T None 
6 3.6 F 18 No 3T None 
7 8.6 F 168 No 3T None 
8 16.8 F 102 No 3T None 
9 14.0 M 110 No 3T None 
10 6.8 F 153 No 3T None 
11 7.1 M 103 No 3T None 
12 16.4 F 144 No 3T None 
13 12.6 M 9 No  3T None 
14 4.2 M 62 No 3T occipital fracture, non-displaced 
15 5.0 F 17 No 3T occipital fracture, non-displaced 
16 14.6 F 70 No  3T None 
17 16.2 M 38 No 3T None 
18 15.4 M 22 No 3T None 
19 7.8 F 23 No 3T None 
20 5.6 F 24 No  3T frontal fracture, non-displaced 
21 9.9 M 26 No 3T None 
22 17.1 M 14 No 3T None 
23 14.6 M 21 No 3T None 
24 10.2 F 22 No  3T None 
25 8.6 M 30 No 3T None 
26 8.4 M 33 No 1.5T parietal fracture, non-displaced 
27 15.8 M 15 No 3T None 
28 13.7 M 44 No  3T None 
29 15.9 F 20 No 3T None 
30 16.1 M 18 No 3T None 
31 14.4 F 19 No 3T occipital fracture, non-displaced 
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Table 4.2. Patient demographics and imaging data  

Patient # Sex 
Age at 
MRI 

(years) 

Days after 
CT Sedated MRI Diagnosis 

1 M 4.8 190 Yes Arachnoid cysts 
2 M 0.8 5 Yes Encephalocele 
3 M 1.4 101 No Hydrocephaly 
4 M 0.1 9 No Sagittal synostosis  
5 M 1.6 12 No Sagittal and bi-lambdoid synostosis  
6 M 1.8 12 Yes Sagittal synostosis  
7 F 2.7 193 Yes Metopic synostosis  
8 F 9.2 47 Yes Frontonasal dysplasia 
9 M 1.5 56 No Sagittal synostosis  
10 M 7.6 14 No Crouzon syndrome 
11 F 8.9 0 No Crouzon syndrome 
12 M 5 27              Yes Sagittal synostosis 
13 F 1.1 75 Yes Sagittal synostosis 
14 M 0.5 18 No Shunt evaluation  
15 M 2.5 90 No Shunt evaluation 

 

For the non-trauma category, 15 participants were recruited. MR scans could not be obtained on 

two candidates, a 16-month-old and a 3-year-old, due to poor patient compliance for an 

unsedated MRI. The GA-VIBE sequence was used on 15 participants. Age at MRI in these nine 

participants ranged from 3 weeks to 9 years (median age of 1.6 years). Median time after CT was 

47 days (range: 5 – 193). None of the patients were sedated for CT whereas seven of the fifteen 

MR scans were performed under sedation per routine clinical care. Eight of the subjects had 
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diagnoses of craniosynostosis. Demographic and diagnostic details of the 15 participants are 

shown in Table 4.2 

4.2.2    Image Acquisition 

CT scans were collected using conventional clinical pediatric imaging techniques (Siemens 

Somatom Definition Flash or Force CT). Slice thickness ranged from 0.6mm to 1mm, with in-

plane resolution ranging from 0.31mm to 0.39mm. Other settings included a 0.5-second rotation 

period, collimation of 64 x 0.6, 220 mAs, a pitch of 1, and a 512 × 512 matrix. Reconstructions 

of soft tissue and bone kernels were carried out.  

To acquire high-resolution MR images, a spoiled gradient-echo Golden-Angle 3D stack-of-stars 

radial VIBE sequence (GA-VIBE) was used (Siemens 3T Prisma, 3T Vida, or 1.5T Aera). This 

GA-VIBE sequence is a hybrid radial sequence with in-plane radial k-space coverage and slice-

direction Cartesian coverage.  For both the 3T and 1.5T scans, the imaging parameters of the 

GA-VIBE were FOV = 192 or 220 mm2 depending on the head size, 224 slices, transverse 

orientation, a slice partial Fourier factor of 5/8, a flip angle of 3 to 5 degrees, a 320 x 320 

acquisition matrix, resulting in a voxel size of 0.6-0.7 x 0.6-0.7 x 0.8 mm3 and a scan duration of 

The following criteria distinguished the 3T and 1.5T scans: TR/TE = 4.84/2.47ms (3T) vs. 

7.7/4.76ms (1.5T), bandwidth 410 or 411 Hz/pixel (3T) vs. 280 Hz/pixel (1.5T), and the number 

of radial lines = 400 (3T) vs. 250 (1.5T) (1.5T). Bone has a low signal intensity in the GA-VIBE 

images, making it seem black. The GA-VIBE protocol was created to improve the contrast 

between bone and surrounding soft tissues by employing proton density weighting (low flip 

angle) and an in-phase echo time to preserve fat signal. Prior to performing a multi-coil non-

uniform fast Fourier transform image reconstruction, motion-corrupted radial k-space lines were 

manually censored. 
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4.2.3    Motion Correction  

A stack-of-stars radial acquisition scheme was utilized. A motion curve was extracted via a novel 

detection scheme that is simplistic and robust to inter-participant variations. The stationary 

frames of the acquisition were identified based on the curve and were combined into a motion-

corrected, high-resolution image by using a forward-modeled reconstruction scheme (31-47). 

4.2.4   Deep Learning-Based pCT  

3D Golden-Angle stack-of-stars MRIs were obtained from 43 pediatric participants. Two patch-

based ResUNets were trained using paired MR and CT patches randomly selected from the 

whole head (NetWH) or in the vicinity of bone, fractures/sutures, or air (NetBA) to synthesize 

pCT (30). A third ResUNet was trained to generate a binary brain mask using only MRI. The 

pCT images from NetWH (pCTNetWH) in the brain area and NetBA (pCTNetBA) in the non-brain 

area were combined to generate pCTCom. A bias field correction is used to correct for spatial 

signal variations in MR images using the N4iTK algorithm (48).  Each patient’s MR was 

registered to their own CT images to match the spatial orientation and image resolution at 

0.3x0.3x0.5 mm3 using an FSL affine registration (49). A level-set method was used to generate 

a mask to include only the head (cranial) region of the subject (50). Block matching 3D (BM3D) 

filtering was applied to the CT images to perform edge preserved smoothing and enhance suture 

representations.  

Two different 3D patched-based ResUNet models were developed and combined to generate the 

final pCT from MR images (Figure 1). Both of the ResUnet models were trained using 3D MR 

image 64×64×64 patches where the central voxel determines the patch placement in the 3D 

volume. 
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The first model used patches selected randomly from the whole head (Whole Head model).  The 

Whole Head ResUNet model utilized over one million partially overlapping 3D patches to 

increase the number of model training samples. Fractured bone and suture are the objects of 

interest or regions of interest (ROI), but they only occupy a small fraction of the total imaging 

volume.  These ROIs are rarely represented in ResUNet training if the training patches are 

randomly selected over the whole image volume. To address this issue, we enhanced the 

representation of fractured bone and suture regions by manually segmenting these ROIs from CT 

as one independent class to ensure their presence in the training sample patches. (Bone/Air 

Enriched Model).  

Enrolled patients had a 5-minute research MRI with automatic motion correction and pseudo-CT 

image processing, with the previously obtained CT scan acting as the control. An attending 

craniofacial plastic surgeon and a senior plastic surgery resident reviewed the MRI and CT 

scans. Depending on the cause for the scan, 1) the presence of a skull fracture or 2) cranial suture 

patency were noted first on the research MRI and then on the clinical CT. 

4.2.5   Clinical Evaluations  

Clinicians were given the participant's medical history and the purpose of imaging. Clinicians 

used RadiAnt DICOM viewer software Version 2020.2 (Medixant, Pozna, Poland) to view the 

slice-by-slice volumetric images and 3D surface renderings. Clinicians were able to change 

brightness and contrast, apply a sharpening filter if necessary, and switch orientation using 

multiplanar reconstruction after importing the DICOMs.  

Clinicians assessed each participant's MR scans together, blind to the CT and diagnosis, and 

achieved an agreement on the position and kind of any cranial fractures.  
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The AO CMF guidelines were used to classify the fractures.  Motion or noise artifacts in the 

pCT/CT images that obscure the areas of interest resulted in the need for additional imaging and 

therefore have unacceptable image quality. The presence or absence of the following structures 

was recorded. For craniosynostosis: the 6 primary cranial sutures: are sagittal, metopic, right and 

left lambdoid, and right and left coronal. For head trauma: cranial vault fractures: The AO 

cranial vault classification system was used to classify location (frontal bone, parietal bone, 

sphenoid bone, temporal bone, occipital bone), fracture line (single or multiple), and 

displacement (non-displaced, displaced but not depressed or depressed) (52).  

In addition, using a 5-point Likert scale, the clinicians were asked to rate the image quality for 

clinical diagnosis and whether an additional scan was required. "The image quality allows for 

clinical diagnosis of bone fractures," for example. 1) Agree, 2) Strongly agree, 3) Neither agree 

nor disagree, 4) Disagree, 5) Strongly disagree. Following the MRI assessment, the clinicians 

immediately went over the same participant's CT scan, grading image quality, the necessity for 

additional imaging, and the detection and classification of any cranial fractures. Clinicians were 

asked to rate the appropriateness of MR images for clinical diagnosis on a 4-point scale after 

reviewing both CT and MR images for a participant (inadequate, sufficient, good, and excellent). 

Excel 2013 was used to collect responses and generate descriptive statistics (Microsoft, 

Redmond, WA). Fisher's exact test was used to compare image quality responses across 

modalities in R. (Version 4.0.3, R Core Team, 2020). Statistical significance was established to 

be p<0.05. 
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4.3   Results 

A total of 15 patients underwent imaging to evaluate suture patency, and 28 patients underwent 

CT and MRI for evaluation of head trauma. Acceptability for clinical use was graded as 

“Excellent” for 81% of the MRIs, “Good” for 14%, and “Sufficient” for 5%. 

 For head cranial suture patency, there was concordance between MRI and CT in 15 (100%) 

patients. All scans were acceptable for clinical use.  Figure 4.2 depicts sample 3D rendered 

images for suture evaluation. Figure 4.2 demonstrates CT and pCT images created from MRI of 

four patients, Patient one was 5 years old and diagnosed with arachnoid cysts and lambdoid 

sutures on the back of the head, patient two was 19 months old with sagittal synostosis, patient 

three was 9 months with Dandy-walker syndrome, and patient four is 18 months, post-repair of 

sagittal synostosis. The proposed deep learning ResUNet models generated pCT images that 

closely resemble the gold-standard CT images. 
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Figure 4.2. (pCT (A,C,E,G) and CT (B,D,F,H) 3D-reconstruction of images created from MRI of 

four patients, Patient one was 5 years old and diagnosed with arachnoid cysts and lambdoid sutures 

marked in red arrows (A,B), patient two was 19 months old with sagittal synostosis (C,D), patient 

three was 9 months with Dandy-walker syndrome (E,F), and patient four was 18 months, post-

repair of sagittal synostosis (G,H).  

 

 

For head trauma, there was concordance between MRI and CT in 27 (96%). For the discordant 

patient with head trauma, there were about 8 weeks between the CT performed at the time of 

injury and the research MRI scan, which showed radiographic healing. 6 out of 28 patients had 

one or more skull fractures, according to CT imaging. MRI identified 6 fractures in 5 patients.  

The strength of agreement differed slightly but not significantly between CT and MRI: clinicians 

strongly agreed that imaging was acceptable on 28 CT’s and 25 MRI’s (p = 0.705) (Table 3). 

Figures 4.3 and 4.4 demonstrate sample volumetric slices and 3D representations of CT and pCT 

images created from MRI of two people who sustained fractures. Overall, the sensitivity and 

specificity of fracture identification by MRI were 100% when compared to gold-standard CT. 

Furthermore, there were no differences in the classification of fracture type or location between 

CT and MRI.  
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Figure 4.3. 1.6 years old, multiple bone fractures. Arrows indicate fracture. CT axial volumetric 

sample (A). CT 3D-reconstruction (B, C). pCT axial volumetric sample (D) and pCT 3D-

reconstruction (E, F). 
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Figure 4.4. 14 years old, occipital bone fracture. Arrows indicate a fracture.  CT axial volumetric 

sample (A). CT 3D-reconstruction (C).  pCT axial volumetric sample (B) and pCT 3D-

reconstruction (D). 

 

 

4.4   Discussion and Summary 

Automated machine learning-generated MRI images of the pediatric skull were acceptable for 

clinical use and offer a high level of diagnostic accuracy when compared to standard CT scans. 

Motion-corrected, machine learning-processed MRI images are acceptable for clinical use and 

have high diagnostic accuracy without exposure to ionizing radiation. 

Magnetic Resonance Imaging (MRI) can be considered a safe alternative to CT because MRI 

does not expose patients to ionizing radiation. However, MRI imaging is clinically limited for 
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visualizing bone structures but provides greater soft tissue details. Eley et al. proposed a “Black 

Bone” (BB) protocol by using an MR 3D gradient echo sequence. Inverting the MRI image 

intensities caused the dark bone signal intensities to become bright and the bright soft tissue 

intensities to become dark to allow the bone to be more easily visualized (53-56). However, 

Black Bone MR imaging methods are not common because of suboptimal osseous/soft tissue 

contrast, motion artifacts in non-sedated patients, and manual post-processing steps by an 

operator which limits the capability MRI to produce CT quality 3D reconstructed images  

Without sedation, both the PETRA sequence and gradient-echo "black bone" demonstrated low 

accuracy in the detection of non-displaced fractures.  Due to its non-Cartesian acquisition 

pattern, the proposed GA-VIBE approach is fundamentally less sensitive to motion and 

maximizes picture contrast between bone and the surrounding soft tissue. On children under the 

age of six who presented with traumatic brain injury, Lindberg and colleagues used a GRE 

sequence and T2 images (9). Impressively, they were able to complete unsedated MRI scans on 

99% of their subjects, and they discovered five persons who had severe brain injuries that CT 

imaging had missed. Six of the eight non-depressed skull fractures were overlooked by MRI, 

though. In our case series, cranial vault fractures and sutures on participants who weren't sedated 

could all be appropriately identified by clinicians utilizing MRI (60,61).  

Although the sensitivity and specificity of MR imaging to fractures were 100% in our small 

sample, the reviewers felt one of the MRI images was unacceptable for clinical diagnosis due to 

severe motion artifacts. 

The GA-VIBE sequence is a promising MRI method to achieve CT-like 3D cranial bone images 

in pediatric subjects. It is also inherently more resistant to motion than the Black Bone sequence. 
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We demonstrated that 3D-reconstructed high-resolution MR images can serve as a viable 

alternative to CT cranial images in a large patient cohort, enhanced MR image quality through 

motion correction, and automatically created CT-like images using MR images. By reducing 

radiation and possibly sedation-related patient hazards, the suggested technique will have a 

significant influence on pediatric health. 
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Chapter 5: Summary and Future Work 
5.1 Summary 

Head trauma is common in the pediatric population resulting in emergency cases. 

Craniosynostosis is the abnormal early fusion of a cranial suture, causing an irregular-shaped 

cranium. 3D high-resolution head CT scans are commonly used in these pediatric patients to 

identify skull fractures and sutures. However, CT exposes pediatric patients to ionizing radiation 

and increases the risk of cancer. MRI is a safe alternative to CT, as it does not expose patients to 

ionizing radiation. Current manual processing is time-consuming and unsuitable for clinical use. 

We developed a fully automated deep learning method to generate high-resolution pseudo-CT 

images from MRI. In this dissertation, we developed a robust and fully automated deep learning 

method to create pCT images from MR images, which facilitates translating MR cranial bone 

imaging into clinical practice for pediatric patients. The DL methods demonstrated that CT-

equivalent 3D cranial bone images from pediatric subjects using a GA MR scan can be used to 

identify skull fractures and sutures. 

A high-resolution MRI capable of resolving the detail of bony structures at sub-millimeter 

resolution is desired. A short MR acquisition results in under-sampled k-space data below the 

Nyquist rate, leading to artifacts and high noise. In this work, we developed a high-resolution 

reconstruction deep-learning method to reduce the MR acquisition time from 5 minutes to 1 

minute. We achieved high-resolution MR (0.6 x 0.6 x 0.8 mm3) with a one-minute acquisition 

time. 

 The 1-minute MR scans provide high-quality visualization of sutures/ fractures in 

craniosynostosis/trauma patients. The MR one-minute scan can be used to identify skull fractures 
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and sutures. The proposed deep learning one-minute scan closely resembled the 5-minute MRI 

scan in terms of image quality. Our results showed that our deep learning approach outperformed 

the conventional CS and SSDU approach. High-resolution 1-minute acquired MR images can 

provide CT-like images for clinical diagnostic evaluation for craniosynostosis and trauma 

patients. 

We demonstrated that clinicians can identify cranial abnormalities, patent sutures, and fractures 

from MRI so CT imaging is unnecessary for >90% of pediatric patients presenting with head 

trauma or craniosynostosis 

We developed a robust and fast 3D high-resolution MRI to provide cranial bone imaging in 

pediatric patients evaluated for head trauma or craniosynostosis. By reducing patient risks related 

to ionizing radiation, this project will have a significant influence on pediatric health. Future 

testing of the suggested method can be done in a multi-center trial. Though the techniques 

established in this research can be applied to assess bone in other regions of the body, this project 

is focused on minimizing the number of head CT scans in pediatric patients. 

5.2   Future Work 

5.2.1   Increase the sample size of the study and train different models for 

different age ranges  

Deep learning networks can be improved by using more image data from a greater number of 

participants across a wide age range in the training.  More patients are being enrolled into this 

ongoing study. With new patients’ data added to the study, we can increase the number of 
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patches used to train the network, which will improve the training process and the network’s 

parameter estimation. 

In the future, as recruiting more patients study population will consist of 182 children (age 0 to 

18) evaluated at SLCH for head trauma or craniosynostosis (n=121 and 61, respectively, based 

on clinical volume). In a pilot study, we enrolled 40 pediatric participants for an unsedated MR 

scan. We were able to obtain >=1-minute MR data from 88% of these pediatric participants, 

without physical constraints and with help from child life specialists. We expect a similar 

success rate in acquiring data in this study, so we will have usable data from n=160 (182*88%) 

participants . Historical data on the presentation for synostosis and head trauma at our institution 

suggests that approximately 40% of patients will be infants less than 6 months old, 36% will be 6 

months to 5 years old, and the remainder (24%) between 5 and 18 years old.  

The pediatric patients in this study have an age span of 0 to 18 years. Young pediatric patients, 

particularly infants (0-6 months) undergo rapid brain/head development. The cranium doubles in 

size in the first 6 months of life, triples by 2.5 years, and is 90% completed by age 5(1). The 

development of a diploic space and increase of calvarial thickness occurs at around 2-5 years of 

age (2). Tissue density, contrast, and size of the cortical bone and soft tissue may change rapidly 

during the first years of life Cortical bone density and size and tissue MR properties will change 

rapidly during this age span. These age-dependent MR and CT imaging signal changes may 

impose a challenge in generalizing the trained ResUNet across all ages. In our study, we propose 

to perform a balanced sampling across all ages to account for this signal age dependence. If it 

does not fully account for this age effect, we will either derive longitudinal image contrast 

changes through image registration to the atlas and further normalize images with this contrast 

according to the age; or 2) train different neural networks for different ages.Training multiple 
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networks specifically for different age groups is possible but may suffer from a small sample size 

in each network training. In this study, we propose a general network first trained on the full 

cohort age range followed by transfer training based on the pre-trained general network for 

specific age ranges: 0-6 months, 6 months-5 years, and>5 years old (3).  

5.2.2   Develop a 3D Bayesian ResUNet to estimate pseudo-CT (pCT) and 

uncertainty maps and determine the extent to which we can confidently identify 

cranial suture patency, and fractures via CT-equivalent bone 3D high-

resolution cranial MR images 

 

The Bayesian deep learning framework can estimate both the aleatoric and epistemic 

uncertainties by replacing the deterministic network’s weight parameters with a probability 

distribution (4). The aleatoric uncertainty is due to data-inherent uncertainty (reflecting the noise 

inside the data), and it can’t be resolved by including more samples. Aleatoric uncertainty is 

estimated as another output of the Bayesian ResUNet besides pCT. The Bayesian ResUNet 

includes aleatoric uncertainty (𝜎) in the loss function as either Gaussian or Laplacian prior. For 

Gaussian prior, (𝑝(𝑦|𝑥) = m
n√Dp

𝑒?(q(r)?s)t/Dnt), the loss function is− log 𝑝(𝑦\|𝑥\) ∝

m
Dnt

‖𝑦\ − 𝑓(𝑥\)‖D +
m
D
𝑙𝑜𝑔(𝜎D), while for Laplacian prior, the loss function is − log 𝑝(𝑦\|𝑥\) ∝

√D
n
‖𝑦\ − 𝑓(𝑥\)‖ + log	(𝜎). To obtain epistemic uncertainty, the Bayesian framework employs 

Monte Carlo dropout as a Bayesian inference approximation. Random dropouts are performed 

during both training and testing. During testing, Bayesian ResUNet generates numerous pCTs 

using random dropout for the same input. The epistemic uncertainty is then computed as the 
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variance of these pCTs (5,6). The total uncertainty is computed as the summation of the aleatoric 

and epistemic uncertainty.  

Clinicians have high confidence in what they see with a confidence map included for their 

evaluation.  Both high confidence and high accuracy are desired for clinical evaluation.  The goal 

is to find out the confidence level and accuracy based on synostosis and/or fracture at different 

ages.  If there are CT/MR image problems the clinician’s confidence would be lower which 

would affect the accuracy.   

 

5.2.3   Generate 1 min motion-corrected pCTs  

In this dissertation, we developed a fully automated method to create 5 min pCT images. 

Furthermore, we reduced the MRI acquisition time from 5 minutes to 1 minute. We determined 

the clinical utility of the 5 min motion-corrected pCT images. A future study will create pCT 

images using 1-minute MRI data and evaluate their clinical utility by physicians. Based on 

clinicians' medical training using clinical CT for diagnosis, our clinical team of three reviewers 

will use each subject’s pCT and uncertainty map to make a consensus evaluation to categorize 

pCT images as “acceptable” or “not acceptable” for clinical use. If the region of clinical interest, 

e.g. a cranial fracture or cranial suture, has high uncertainty, clinicians will thus become aware of 

potentially decreased diagnostic ability. The goal is to exclude as few scans as possible while 

retaining 100% diagnostic accuracy in the sub-group of patients who have “acceptable for 

clinical use” pCT images. We hypothesize that pCT images will be rated as “acceptable for 

clinical use” in >=90% of completed MR scans. In our preliminary studies after implementation 

of a consensus evaluation, to mimic the clinical standard of care, clinicians achieved 100% 

diagnostic sensitivity and 100% specificity on all MR images found to be acceptable 
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5.2.4   Introducing new evaluation matrices for more accurate evaluation 

Currently Dice Coefficient and MAE are two main accuracy measurements to compare the 

quality of final pCT with CT images. However, these two quantitative metrics do not directly 

evaluate cranial bone fractures and suture patency.  Introducing accuracy metrics more focused 

on suture and fracture regions might be necessary for clinical evaluation. Fréchet Distance (FD) 

is a measure of similarity between two 3D curves by accounting for the location and order of 

points on the curve (10). 3DSlicer is used to manually trace fractures and sutures as 3D curves on 

CT, pCT, and manual MR segmentation images. FD will be computed between pCT and CT, and 

between manual MR segmentation and CT to evaluate whether the outlined fractures and sutures 

using pCT or manual MR segmentation match with those identified using the CT. A smaller FD 

indicates a better match.  We expect that pCT provides higher DC and smaller FD than manual 

MR segmentation.  
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