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Abstract 

Development of the Assessment of Clinical Prediction Model Transportability (APT) Checklist 

by 

Sean C. Yu 
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Clinical Prediction Models (CPM) have long been used for Clinical Decision Support (CDS) 

initially based on simple clinical scoring systems, and increasingly based on complex machine 

learning models relying on large-scale Electronic Health Record (EHR) data. External 

implementation – or the application of CPMs on sites where it was not originally developed – is 

valuable as it reduces the need for redundant de novo CPM development, enables CPM usage by 

low resource organizations, facilitates external validation studies, and encourages collaborative 

development of CPMs. Further, adoption of externally developed CPMs has been facilitated by 

ongoing interoperability efforts in standards, policy, and tools. However, naïve implementations 

of external CPMs are prone to failure due to the incompatibilities between the environments of 

the development and implementation sites. Although prior research has described methods for 

estimating the external validity of predictive models, quantifying dataset shift, updating models, 

as well as numerous CPM-specific frameworks for guiding the development, evaluation, 

reporting, and systematic reviews of CPMs, there are no frameworks for assessing the 

compatibility between a CPM and the target environment. This dissertation addresses this critical 



xiv 

 

gap by proposing a novel CPM transportability checklist for guiding the adoption of externally 

developed CPMs. 

To guide the development of the checklist, four extant CPM-relevant frameworks (TRIPOD, 

CHARMS, PROBAST, and GRASP) were reviewed and synthesized, thereby identifying the key 

domains of CPMs. Then, four individual studies were conducted, each identifying, assessing the 

impact of, and/or proposing solutions for the disparity between CPM and environment in those 

domains. The first two studies target disparities in features, with the first characterizing the non-

generalizability impact of a particular class of commonly used, EHR-idiosyncratic features. The 

second study was conducted to identify and propose a solution for the semantic discrepancy in 

features across sites caused by the insufficient coverage of EHR data by standards. The third 

study focused on the prediction target of CPMs, identifying significant heterogeneity in disease 

understanding, phenotyping algorithms, and cohort characteristics of the same clinical condition. 

In the fourth study investigating CPM evaluation, the gap between typical CPM evaluation 

design and expected implemented behavior was identified, and a novel evaluative framework 

was proposed to bridge that gap. Finally, the APT checklist was developed using the synthesis of 

the aforementioned CPM frameworks as the foundation, enriched through the incorporation of 

innovations and findings from these four conducted studies. While rigorous meta-evaluation 

remains, the APT checklist shows promise as a tool for assessing CPM transportability thereby 

reducing the risk of failure of externally implemented CPMs. 

The key contributions to informatics include: the discovery of healthcare process (HCP) 

variables as a driver of CPM non-transportability, the fragility of clinical phenotyping used to 

identify CPM targets, a novel classification system and meta-heuristics for an aspect of EHR 

data previously lacking in standards, a novel CPM evaluation design termed the pseudo-
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prospective trial, and the APT checklist. Overall, this work contributes to the body of biomedical 

informatics literature guiding the success of informatics interventions. 
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Chapter 1. Introduction 

1.1. General Background 

1.1.1. Clinical Prediction Models 

Clinical Prediction Models (CPM) use covariates to derive a risk score for individual patients 

that can be used to guide clinical decision-making. Based on the resultant score, healthcare 

providers may decide to pursue additional testing, or provide/withhold therapy.1  This type of 

clinical decision support (CDS) has long been used in clinical practice – for instance, a 

commonly used illness severity score for predicting clinical deterioration in the intensive care 

unit (ICU) setting – Acute Physiology And Chronic Health Evaluation II (APACHE II) – was 

developed in 1985 (Figure 1).2  
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Figure 1. APACHE II 

The Acute Physiology And Chronic Health Evaluation (APACHE) II is a relatively simple, expert/heuristic-derived 

clinical scoring system intended for use in the ICU for assessment of disease severity and risk stratification, 

validated by its ability to predict in-hospital mortality. 

 

Recently, there has been a massive proliferation of CPMs due to the opportune confluence of 

three factors: 1) policy resulting in vast availability of clinical data; 2) free and accessible 

software facilitating the development of CPMs; and 3) availability of cheap compute. First, the 

Health Information Technology for Economic and Clinical Health (HITECH) act of 2009 

accelerated the adoption of electronic health record (EHR) software and as a result, massively 

expanded the availability of clinical data for research.3 Around the same time in 2012, a deep 

convolutional neural network called AlexNet achieved dramatic improvement on the ImageNet 

image classification challenge, triggering widespread excitement and optimism regarding 
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Artificial Intelligence (AI) and Machine Learning (ML), resulting in the proliferation of free, 

easy-to-use, and publicly available software facilitating the development of CPMs.4 Meanwhile, 

computing power continued to get cheaper and easier to access. Combined, the availability of 

dense clinical data, inexpensive computing power, and AI/ML software resulted in a dramatic 

surge of clinical prediction model development efforts (Figure 2).5 

 

 

Figure 2. Causes of CPM Proliferation 

The wide availability of clinical data, AI/ML software, and cheap compute has facilitated the development of CPMs, 

resulting in a massive proliferation of CPMs. 

 

 

As a result, there are over 400 CPMs for chronic obstructive pulmonary disease outcomes, over 

350 for cardiovascular disease risk, and over 200 for diagnosis and prognosis for a disease as 

recent as Coronavirus Disease 2019 (COVID-19) already by early 2020.6-8 The overwhelming 

number of CPMs, many of which were designed for identical tasks, represents an enormously 

wasteful duplication of efforts.5 Moreover, most of these models – many of which ostensibly 

outperform traditional scoring systems – are not evaluated externally, fewer are implemented 

into clinical practice, and fewer yet are adopted by organizations wherein the models were not 

originally developed.9, 10 
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1.1.2. External Implementation or Adoption of CPMs 

The capacity to implement CPMs externally, or conversely, to implement externally developed 

CPMs (called adoption hereon), can directly contribute to the de-duplication of CPM 

development efforts by reducing the need for de novo development at each study site (Figure 

3).5 Further, external implementation or adoption of CPMs enable low-resource organizations to 

participate in the usage of CPMs, facilitate external validation studies, and overall, encourage the 

collaborative development of CPMs. In sum, external implementation or adoption has these 

numerous, impactful benefits but has been scarcely done for several reasons, a major one of 

which is the lack or insufficiency of health IT interoperability.11 

 

Figure 3. External Implementation or Adoption of CPMs  

The Learning Health System (LHS) paradigm as introduced by the Institute of Medicine suggests that modern health 

systems should learn from data generated from their own practice to inform practice – i.e., train CPMs using EHR 

data to inform CDS. External implementation or adoption refers to the application of the CPM on an external site in 

which the CPM was not originally developed. 

 

 

The inability or difficulty of differing health IT systems to exchange information has historically 

hampered external implementation or adoption of CPMs.12 However, ongoing efforts in policy, 
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standards, and tools increasingly facilitate external implementation or adoption of CPMs. 

Notably, the final rule for the 21st Century Cures Act require certified health IT to publish APIs 

using the HL7 Fast Healthcare Interoperability Resource (FHIR) standard. At the same time, 

Substitutable Medical Apps, Reusable Technologies (SMART) was developed as a FHIR-based 

application platform.13 As a result, there are already site and EHR-agnostic CPM-based risk 

calculation applications hosted on SMART that can be adopted by any capable organization.14 

Maturation and adoption of interoperability standards and technology has and continues to 

improve the capacity of organizations to implement externally developed CPM, which 

increasingly presents as a competitive option to internal, de novo development. 

Unfortunately, however, naïve external implementation or adoption of CPMs can result in 

significantly degraded performance.15-17 Infamously, the Epic Sepsis Model was found to have 

an area under the receiver operating characteristic curve of 0.63 when tested externally compared 

to the interquartile range of 0.76 – 0.83 reported by the model developers.18 

The causes of performance loss on external validation are extensive wide-ranging, some of 

which are well-known and well-studied – notably, the difference in population or case mix. For 

instance, the significant physiological difference between adult and pediatric populations results 

in the inefficacy of clinical scoring systems designed for adults in pediatric populations without 

critical modifications.19, 20 Broadly, other considerations for CPM transportability include the 

technological capacity to faithfully reproduce the model, the human and financial resources to 

dedicate to the effort, the cultural willingness of the adopting organization to engage with the 

CPM, ethical and legal concerns surrounding the reliance of CPM-guided CDS, and how the 

technology will be integrated within the existing clinical workflow.21-24 These general concerns 

overlap significantly with the discipline of technology acceptance and implementation science, 
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in-depth discussions of which are out of scope for this dissertation.25, 26 Specific to statistical 

modeling however, is the assessment of their ability to provide accurate results or predictions for 

an unseen population, or the study of model generalizability or transportability.27 

1.1.3. Generalizability 

A critical barrier to successful external implementation or adoption of CPMs is the problem of 

model non-generalizability, which has been studied not just in the context of CPMs but in the 

larger context of statistical learning or machine learning. Because prediction models are almost 

always intended to be deployed for samples they were not trained on – it’s not useful to predict 

yesterday’s weather – estimating or retaining high model performance on unforeseen samples is 

of critical importance and has received significant attention. What follows is a brief description 

of the types of inquiries in the domain of prediction model generalizability. 

To structure the conversation on model generalizability, there have been developments in the 

conceptual frameworks of generalizability, including better defining and organizing concepts and 

terms regarding generalizability. One such type of study focuses on the types of generalizability 

or validity.27 For example, Streyerberg first divides validity into internal and external, the latter 

of which is synonymous with generalizability or transportability, which can be further divided 

into temporal or geographic.28 In the machine learning literature, the difference between training 

data and data seen during production has been termed data distribution drift or shift, which can 

be divided several categories including covariate shift, label shift, etc.29 Further, there has been 

CPM specific literature investigating the categories and examples of dataset shift, as well as 

strategies for recognition and mitigation.30 



7 

 

There’s also a branch of study developing and testing methods for estimating the performance of 

the model on unseen, out-of-sample samples. The most well-known of these approaches is cross-

validation, a re-sampling procedure akin to bootstrap in which a subset of the data is used to train 

the model and the remaining subset is used to test the model, and this process is repeated on 

different subsets of train and test data.31 Methodological augmentations to cross-validation arose 

from investigations into temporality resulting in (rolling) temporal cross-validation, into data 

leakage resulting in patient as opposed to record-level splitting to avoid “identity confounding,” 

and into subgroup performance resulting in internal-external cross-validation (IECV).32-34 

Monitoring and detecting non-generalizability post-deployment is especially important in the 

case of gradual temporal data drift. As such, there have been methods developed and compared 

on not just the identification of changes in the data, but also, if those identified changes have a 

meaningfully negative impact on performance.35 In the field of biomedical informatics, specific 

to CPMs, there have been frameworks proposed to detect, for example, calibration drift over 

time.36 

Once drift is detected and has been found to significantly degrade model performance, models 

can be updated to reduce performance loss. These updating methods fall under the discipline of 

domain adaptation or transfer learning and range from full re-training if there is sufficient target 

domain data and resources; or fine-tuning in the case of neural networks where only the 

parameters of the last few layers are trained; to simple linear recalibration.37-40  

These model updating methods are reactive in that they require encountering data from the 

unforeseen domain and potentially experiencing model failure for some time before the need for 

updating is discovered. In response, recently, there has been a burgeoning field of study on 

proactive methods that aim to develop shift-stable or shift-resistant models.41, 42 
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1.1.4. Frameworks for CPMs 

In parallel, there have been numerous frameworks proposed for guiding the reporting, systematic 

review, and comparative evaluation of CPMs. The Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis (TRIPOD) checklist was developed to 

identify the minimum set of information necessary for critical appraisal of CPMs to guide the 

reporting of CPM studies, and consists of 22 items including eligibility criteria of participants, 

outcome definition, missing data handling methods, and model performance (Appendix 1).43 

While TRIPOD was designed for the reporting of individual studies, CHecklist for critical 

Appraisal and data extraction for systematic Reviews of prediction Modelling Studies 

(CHARMS) and Prediction model Risk Of Bias ASessment Tool (PROBAST) were designed to 

guide systematic reviews of CPMs.44, 45 CHARMS identifies 36 items to extract from individual 

studies to facilitate systematic reviews (Appendix 2). Unlike TRIPOD or CHARMS which focus 

on identifying the set of information needed to characterize CPMs, PROBAST focuses on the 

risk of bias and applicability of CPMs to systematic review questions, thus is more acutely 

concerned about the mismatch between CPMs and the use-case (Appendix 3). On the other 

hand, Grade and Assess Predictive tools (GRASP) was explicitly developed to enable 

comparative analysis of CPMs to facilitate selection of CPMs for implementation (Appendix 

4).46 As a tool more interested in implementation than TRIPOD, CHARMS, or PROBAST; 

GRASP focuses on phase of evaluation, usability, and potential or realized impact on either 

clinical effectiveness, patient safety, or healthcare efficiency. A brief comparative summary of 

these frameworks for enabling comparative evaluation of CPMs can be found in Table 1. 
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Table 1. Summary of CPM Frameworks 

Category Description 
Frameworks 

TRIPOD CHARMS PROBAST GRASP 

Background Study rationale, scope, purpose, use-case 3a, 15b, 20 
  

7, 8, 11, 19 

Population Data source and study design (RCT, registry, etc.) 4a, 4b 1.1 1.1 12 

Study setting (IP [ED, ICU, etc.], OP, etc.)  including 

study period 

5a 2.3 
 

9 

Inclusion/eligibility criteria 5b 2.1 1.2 
 

Population characteristics (including comparison 

when appropriate) 

13b, 13c 2.2, 5.1, 

8.3 

  

Target 

Outcome/target definition 

6a 3.1, 3.2, 

3.3, 3.5, 

3.6 

3.1, 3.2, 

3.4, 3.6 

10 

Modeling 
Predictor descriptions (type, what, when, etc.) 

7a 4.1, 4.2, 

4.3 

2.1 12, 13 

Missing data analysis and handling 
9 6.1, 6.2, 

6.3 

4.4 
 

Predictor manipulation/feature engineering 10a 4.5 4.2 
 

Model type 10b 6.4, 6.8 4.6 15 

Model training procedure including feature selection 10b 6.6, 6.7 4.5 
 

Model updating/recalibration 10e, 17 7.5 
  

Evaluation 
Model evaluation procedure including 

performance metrics and calibration 

10d, 16 7.1, 7.2, 

7.3, 7.4, 

8.1, 8.2 

4.7, 4.8 
 

Interpretation of results 
18, 19a, 

19b 

9.1, 9.2 
  

Validation Extent of validation (internal, external) 3b 
  

16, 29, 30 

Usability 
   

31 

Impact (clinical effectiveness, patient safety, 

healthcare efficiency) 

   
32, 33, 34, 

35 

Synthesis of the following CPM frameworks through the merging and recategorization of common items: 

Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD, 

Appendix 1), CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling 

Studies (CHARMS, Appendix 2), Prediction model Risk Of Bias ASessment Tool (PROBAST, Appendix 3), and 

Grade and Assess Predictive tools (GRASP, Appendix 4) through merging and recategorization of common 

items.43-46 

 

 

1.2. Problem or Gap in Literature 

Despite the significant utility of external implementation or adoption, the associated critical 

challenges of non-transportability, the ongoing research on prediction model generalizability, 

and the development of various CPM-related frameworks, there are no CPM-specific 
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frameworks for assessing the transportability of CPMs. In fact, one of the peer reviewers for the 

GRASP article addresses this very point, stating that post-implementation success is “highly 

susceptible to local differences between health systems, how they collect and store data, how 

they follow implementation protocols”.46 Thus the objective of this dissertation was to develop 

and propose a novel framework for assessing the compatibility between the CPM and the 

external environment in which it is to be implemented, called the Assessment of clinical 

Prediction model Transportability (APT) checklist. 

1.3. Scope 

The investigations that are part of this dissertation focus primarily on the data-rich acute-care 

setting, and on supervised machine learning models for binary classification trained using EHR 

data and used to estimate the probability of diagnosis or prognosis. Also, while there are many 

aforementioned factors critical to the success of CDS based on adopted CPMs such as the 

technical capacity of the adopting organization to faithfully re-create the model, this dissertation 

will focus on the modeling-specific categories of concerns as identified through the synthesis of 

extant CPM-related frameworks (Table 1). Among those categories, disparities in purpose or 

setting as a source of CPM non-transportability is well-known and well-studies, and thus will not 

be covered by this dissertation. Similarly, there has been significant and recent work 

investigating data drift monitoring and model updating specific to CPMs in the field of 

biomedical informatics by Sharon E. Davis, which thus will be out of scope for this 

dissertation.36, 38  Finally, since the dissertation focuses on assessment of transportability pre-

implementation, included studies will not focus on the validation category. Instead, this 

dissertation will focus on items pertaining to predictors under the modeling category, target, and 

evaluation. 
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1.4. Specific Aims 

Each specific aim focuses on the remaining categories of concern- hereby called feature, target, 

and evaluation – discovering CPM-specific disparities between CPM and external environment, 

their impact on CPM transportability, and proposing solutions for mitigating non-

transportability. The discoveries and innovations resulting from the specific aims are to be 

integrated into the synthesis of CPM frameworks (Table 1) to produce the APT checklist. 

1.4.1. Aim 1 (Chapter 2): Feature Disparity 

The first aim of the dissertation is: To identify heterogeneity in features commonly used by 

and idiosyncratic to CPMs trained on EHR data, assess the impact of said heterogeneity on 

CPM transportability, and propose solutions for avoiding CPM non-transportability 

caused by feature disparity. To this end, two studies were conducted. The first study 

investigates the non-generalizability impact of HealthCare Process (HCP) features which are 

CPM features specific to EHR data that are highly site-specific due to their dependence on 

hospital protocols, documentation culture, choice of hardware/software, etc. as opposed to 

features more directly based on underlying patient PathoPhysiology (PP). Through this study, 

it’s found that HCP features improve internal and temporal generalizability of CPMs to the 

detriment of external generalizability, and thus should be used with caution if at all. The second 

study is rooted in the idea of insufficient coverage of standardization in EHR data as a driving 

force for discrepancies in meaning and context of CPM features. In particular, respiratory 

support methods is a region of EHR data lacking in standards yet often used to generate features 

for CPMs, resulting in semantic heterogeneity of features based on respiratory support 

information. A novel classification system and accompanying, site-agnostic heuristics are 



12 

 

proposed to mitigate the semantic discrepancy between sites. Together, these studies highlight 

sources of feature discrepancy unique to EHR data as well as methods to identify and mitigate 

their impact on CPM transportability. 

1.4.2. Aim 2 (Chapter 3): Target Disparity 

The second aim of the dissertation is: To identify the causes and characterize the impact of 

heterogeneity in labels required for CPM development and to propose solutions for 

challenges to transportability of CPMs. The targets of prediction for machine learning models 

in the acute care setting are clinical phenotypes commonly derived through rule-based criteria 

using EHR data. Heterogeneity in the overall disease concept understanding as well in the 

specific details of the phenotyping criteria give rise to heterogeneity in labeling, which can result 

in disagreements between the CPM development site and the external implementing site on who 

has or doesn’t have the target phenotype, thereby limiting transportability. To study the extent of 

the impact of target label heterogeneity, a study was conducted investigating the fragility of 

sepsis phenotyping. Numerous well-validated and widely-used sepsis definitions and criteria 

were compared, finding significant differences in disease concept, criteria specifics, and resultant 

cohort characteristics as well as clinical outcomes. These findings highlight the critical 

importance of identifying not only the presence of, but also the potential impact of target label 

disparity on CPM transportability. 

1.4.3. Aim 3 (Chapter 4): Evaluation Disparity 

The third aim of the dissertation is: To characterize and provide solutions for heterogeneity 

in the framing of CPM evaluation approaches by bridging the gap between CPM 

evaluation design and expected implemented behavior of CPM-based CDS. Differences in 
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the framing of CPM evaluation approaches can result in significantly different performance 

metrics between the CPM development site and the external implementing site beyond what can 

be explained by differences in case mix. The overall design of the CPM evaluation experiments – 

e.g., per-patient, per-encounter, or hourly – can significantly change the numeric values of 

performance metrics. Given that evaluation is performed to gauge real-world performance, CPM 

evaluation design are predicated on the expected implemented behavior of e.g., CDS based on 

CPM. Variability in evaluation design choices caused by differences in expected implementation 

behavior or otherwise give rise to disagreements among organizations on how a CPM ought to 

be evaluated, or put differently, how a model was evaluated and how it should have been 

evaluated. To enable an evaluative design more akin to real-world implemented behavior of CDS 

alerts based on CPM, a novel evaluative design, termed “pseudo-prospective trial,” is proposed 

which facilitates the incorporation of factors unique to such settings. These factors include 

regularity or frequency of model execution, alert snoozing, dynamic inclusion/exclusion criteria, 

alternate/surrogate/competing outcomes at various time horizons, and more. The pseudo-

prospective trial concept was proposed, developed, and demonstrated in a study using sepsis 

prediction in the general ward setting as the clinical context. The novel pseudo-prospective trial 

framework was found to significantly expand and enhance understanding of CPM performance, 

shows promise to reduce disparity between CPM evaluation approach at the CPM development 

site and expected implemented behavior at the external implementing site, thereby reducing the 

risk of CPM non-transportability.  

1.5. Overview of Dissertation Structure 

To summarize, this dissertation describes the research effort regarding the development of a 

checklist intended for use by the implementing organization on the formal assessment of CPM 
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transportability, or the compatibility between the CPM and the external environment in which it 

is to be implemented. This dissertation in organized into five chapters, the first of which is this 

introductory chapter. Each of the following three chapters address each of the aforementioned 

specific aims. The fifth, penultimate chapter synthesizes the findings of the preceding three 

chapters and presents the APT checklist. The sixth and final chapter contains the summary and 

conclusions. In more detail, the chapters are as follows: 

1. This first introductory chapter lays out the background, gap in literature or motivating 

problem, scope, specific aims, and the overall structure of the dissertation. 

2. The second chapter addresses specific aim 1 – feature disparity – investigating the 

barriers of CPM transportability regarding the inputs of CPMs, conducted through two 

studies. The first study focuses on identifying the generalizability impact of HCP 

features, finding them to improve internal performance at the cost of harming external 

generalizability. The second study proposes a solution for a major category of cause for 

feature disparity – lack of standards – in the domain of respiratory support methods in 

order to mitigate the risk of semantic discrepancy. 

3. The third chapter addresses specific aim 2 – target disparity – investigating the barriers of 

CPM transportability regarding the target of CPMs. A study is conducted in the clinical 

domain of sepsis, assessing the heterogeneity of overarching disease concept, 

specifications of phenotyping criteria, and the resultant cohort characteristics including 

clinical outcomes. The finding highlights the fragility of clinical phenotyping approaches, 

and the potential impact of disagreement on target phenotyping approaches on CPM 

generalizability. 
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4. The fourth chapter addresses specific aim 3 – evaluation disparity – investigating the 

barriers of CPM transportability regarding the evaluative design of CPMs. A study is 

conducted in which a novel CPM evaluation framework called the pseudo-prospective 

trial is proposed, developed, and demonstrated using sepsis prediction in the general ward 

as the clinical context. The pseudo-prospective trial shows promise as a framework for 

facilitating parity between CPM evaluation design and expected implemented behavior. 

5. The fifth and penultimate chapter synthesizes the findings of the preceding three chapters 

into the primary contribution of this dissertation, the APT checklist. 

6. The sixth and final chapter is comprised of the summary and concluding remarks. 

The structure of the dissertation is provided in a graphical form as follows: 
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Figure 4. Dissertation Overview 

Overview of the dissertation in graphical form. Chapters 2, 3, and 4 addresses specific aims 1, 2, and 3 respectively, 

and chapter 5 describes the development of the APT checklist, the primary contribution of this dissertation.  
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Chapter 2. Feature Disparity 

2.1. Introduction 

 

Figure 5. Chapter 2 Overview 
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This chapter addresses specific aim 1, the objective of which is to identify heterogeneity in 

features commonly used by and idiosyncratic to CPMs trained on EHR data, assess the impact of 

said heterogeneity on CPM transportability, and propose solutions for avoiding CPM non-

transportability caused by feature disparity. To this end, two studies are conducted. 

The first study assesses the generalizability impact of features unique to EHR data and 

commonly used in CPMs called HCP features which are heavily influenced by site-specific 

idiosyncrasies such as hospital protocols, documentation culture, choice of software/hardware, 

etc. It has been found that while HCP features improve estimated out-of-sample performance as 

measured through cross-validation, they harm external (cross-site) performance. Thus, those 

seeking to adopt a CPM and are concerned about CPM transportability should first assess if the 

CPM relies heavily on HCP features, and if so, develop a plan for handling HCP features or 

exclude the CPM from consideration. In addition, the insufficient coverage of EHR data by 

standards such as controlled vocabularies or ontologies can result in disagreements on the 

meaning or semantics of features and/or how to identify or derive those features. This feature 

ambiguity can severely limit the ability of the CPM adopting organization to faithfully replicate 

the model, thereby limiting transportability.  

A second study was performed, identifying respiratory support methods as a domain of EHR 

data lacking in standards, proposing a novel standard, as well as developing an accompanying set 

of EHR-agnostic heuristics for identifying respiratory support episodes from raw EHR data. The 

innovations of the study contribute to the work of standardization or harmonization of EHR data, 

and shows promise as tools for reducing the semantic heterogeneity of EHR data. Because 

semantic heterogeneity limits CPM transportability and adherence to standards reduce semantic 
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heterogeneity, CPM adopters should prefer adherence features to standards when possible, or the 

documentation of an ad-hoc standard when not. 

The findings and innovations of the two studies that comprise this chapter are then used to 

supplement the development of the APT checklist. 

2.2. Overview 

Structurally, this chapter will begin by reiterating the motivating specific aims as has already 

been done in the preceding section, followed by a background section on the following topics – 

data drift/shift and data harmonization. Then, the two studies that comprise this chapter are 

presented, each including their own introduction, background, methods, results, discussion, and 

conclusion sections. Finally, the chapter concludes by discussing the ramifications of the 

findings and innovations of the studies on CPM transportability and the APT checklist.   

2.3. Background and Significance 

2.3.1. Data Shift 

When the relationship between model inputs – also known as predictors or covariates – and 

outputs – also known as target – change between two datasets, e.g., training vs. testing, the 

machine learning community has converged on calling this phenomenon dataset drift or dataset 

shift.29 When this dataset shift occurs between the CPM development site and an external 

implementing site, it can result in significantly degraded performance in the adopting site, thus is 

a barrier to CPM transportability and of interest to the APT checklist.47 

There are numerous potential types and causes of dataset shift such as prior probability shift in 

which the distribution of the outcome or target variable differ between environments.48 A 
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comprehensive treatment of all possible reasons behind dataset shift in machine learning is out of 

scope for this dissertation, however, interested readers are encouraged to read Dataset Shift in 

Machine Learning by Quiñonero-Candela et al.29 

Interestingly, the clinical discipline frames the problem of dataset shift slightly differently, 

borrowing terms and concepts from the study of clinical interventions.49 Clinical trialists are 

concerned with the generalizability of clinical trial results – that the findings of Randomized 

Controlled Trials (RCT) are in fact applicable to patients beyond or external to the RCT 

population or not due to risks of bias.50, 51 As CPM research lies in the intersection of clinical 

research and ML research, there have been recent efforts in unifying the “two worlds” into a 

unified framework of generalizability.49 

There are many potential causes of data shift in clinical prediction modeling, many of which are 

not specific to CPMs and are relevant to ML research in general. However, the focus of this 

dissertation and chapter is on the causes of data shift unique to CPM using EHR data, beyond 

those caused by differences in patient population characteristics. The first study investigates a 

particular cause of data shift that is idiosyncratic to EHR data, and the impact of that shift on 

CPM generalizability. The second study focuses on a data shift stemming from the inadequacy of 

clinical or EHR data harmonization efforts. 

2.3.2. Clinical Data Interoperability and Harmonization 

When different healthcare organizations differ in the structure or syntax of clinical data as well 

as the meaning or semantics of data elements that are ostensibly identical, it limits the ability for 

a CPM adopting organization to faithfully recreate features as it was done by the development 

site, thereby causing dataset shift and acting as a barrier to CPM transportability. The process of 
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unifying the representation of data from multiple sources so as to minimize problems caused by 

the discrepancy in data representation among sites is called data normalization or data 

harmonization.52 Broadly, there are two dimensions of harmonization – syntactic and semantic.53 

Syntactic harmonization and interoperability is enabled by the proliferation and adoption of data 

exchange standards as those described in chapter 1, such as the health messaging standards 

developed by Health Level 7 (HL7) including FHIR.54 The usage of such data transmission 

standards which provide the structure of information packages enable different organizations to 

exchange clinical data without encountering syntax errors.11, 55 

Syntactic interoperability, however, does not guarantee semantic interoperability – the ability for 

different organizations to understand the context and meaning of exchanged information.11 

Harmonization on this sematic level is accomplished using standards such as controlled 

vocabularies, terminologies, or ontologies.11, 56 Various aspects of clinical EHR data have their 

own corresponding standards – for example, diagnosis information in the United States across 

health systems is predominantly coded using International Classification of Diseases (ICD) 

codes.57 Further, there are data models that enforce mapping of various sections of EHR data to 

standards – for example, under the Observational Health Data Sciences and Informatics 

(OHDSI) Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM), 

conditions and procedures are mapped to ICD, measurements are mapped to Logical Observation 

Identifiers Names and Codes (LOINC), drugs are mapped to RxNorm, and so on.58, 59 

While the use of these standards have enabled semantic interoperability where applicable, there 

remain vast domains of EHR data where standards are not available, not widely used, applied 

improperly, or where there are numerous competing standards.60, 61 For example, LOINC is 
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commonly used as the standard for all “measurements” such as lab results, vital signs, cultures, 

etc. but its use is highly inconsistent so as to limit interoperability.62 

Despite ongoing herculean efforts in the development and dissemination of standards for EHR 

data, significant portions of EHR data remain without standards. These regions of EHR data 

lacking in standards are, nonetheless, used to generate features due to their information content 

that can be exploited to improve CPM performance. However, CPMs using these non-standard 

features are difficult to recapitulate thus limiting CPM transportability. The second study of this 

chapter focuses on respiratory support as an exemplary case where a domain of EHR data is 

commonly used for CPMs but is lacking in standards. 

2.4. Study 1: Generalizability Impact of Healthcare 

Process (HCP) Features  

This study assesses the generalizability impact of features unique to EHR data and commonly 

used in CPMs called HCP features which, unlike pathophysiological features, are heavily 

influenced by site-specific idiosyncrasies such as hospital protocols, documentation culture, 

choice of software/hardware. 

2.4.1. Introduction 

The widespread adoption of electronic health records (EHR), lowering cost of computing power, 

and accessible statistical software have enabled the proliferation of CPMs. Typically, CPMs are 

trained using various aspects of EHR data such as demographics, vital signs, and lab results to 

predict some clinical outcome such as disease onset, deterioration, or death. 
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EHR data is observational in that it is generated as part of routine clinical care, not directly for 

research, thus is subject to quality issues and biases. The source of these problems may be 

external – for example, diagnosis documentation is influenced by billing or financial 

reimbursement.63-65 The other core cause is the variable process of documentation. For example, 

clinical lab tests are only performed when appropriate for the patient’s pathophysiology and also, 

only if the clinician decides to order them. Clinician behavior on when and how to reveal and 

record the underlying patient state is influenced by policy, protocol, and culture – what some 

have called the healthcare process model or clinician-initiated data.66, 67 In other words, EHR 

data is not a direct representation of the true underlying patient state, but rather, filtered through 

the lens of the healthcare process, thus is influenced by the idiosyncrasies of healthcare 

processes. 

Of the manifestations of HCP variability, one major concern for CPM developers is nonrandom 

and heterogeneous data missingness. A common strategy to take advantage of informative 

missingness is to add indicator variables as features.68 In fact, one study used only timestamps 

(rather than the actual measurement values) to develop a CPM, and found the model to have an 

AUROC of 0.707 in predicting clinical deterioration.69 Beyond missingness, HCP can impact 

timing, frequency, or rate of measurements, each of which could be captured as features to 

further augment prediction.70, 71 One study found that for clinical lab tests, HCP variables are 

often more informative than the actual measurement values, which they called 

pathophysiological variables.71 In summary, manifestations of HCP such as missingness, timing, 

and frequency of measurements are clinically meaningful and informative, thus the incorporation 

of HCP variables into CPM is likely to improve performance. 
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However, given the heterogeneity of healthcare processes across institutions, the information 

content captured in HCP variables may also vary, resulting in low generalizability of CPMs 

relying on HCP as opposed to PP features. For example, in a comparison of publicly available 

ICU datasets, one study found that the mean number of heart rate measurements per hour varied 

drastically from roughly 1 to 30.72 Thus, given the diversity of HCP including physician behavior 

profiles, it has been hypothesized that CPMs heavily reliant on these signals will have limited 

generalizability.67 Futoma et al. have explicitly tested this hypothesis through assessing the 

impact of missingness indicator variables on CPM generalizability – they found that CPMs 

solely using indicator variables and those using indicator and physiologic variables, both failed 

to generalize across different study sites.73 However, their study was limited to missingness 

indicator variables, did not interrogate temporal generalizability, and only used logistic 

regression. The objective of this study was to expand the understanding of HCP variables on 

generalizability through extending HCP variable types, modes of generalizability, and model 

types. 

2.4.2. Methods 

2.4.2.1. Study Design, Data Sources, and Population 

Two data sources were used for this study; 1) Medical Information Mart for Intensive Care 

(MIMIC) IV, a publicly available, de-identified critical care database based on a tertiary 

academic medical center in Boston, MA, USA; and 2) BJH, an EHR dataset consisting of 

patients admitted to a tertiary academic medical center in St. Louis, MO, USA.74 For both 

cohorts, only ICU stays were used for the analysis, which had to be at least 24 hours long and at 

most 30 days in duration. ICU stays with less than a 24-hour gap were merged as a single ICU 

stay. ICU stays were only included if patient was at least 18 years old at time of ICU stay start. 
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Patients missing critical EHR data such as admission-transfer-discharge, demographics, vital 

signs, and lab results data were excluded. To exclude patients with significant and unusual 

missingness especially in vital signs and lab results, only ICU stays with at least 12 heart rate 

measurements, 1 white blood cell count, and 1 creatinine measurement were included for 

analysis. Only the first ICU stay per patient were used for analysis to avoid “identity 

confounding”.75 All dates within MIMIC-IV are shifted for anonymization purposes, though the 

shift is consistent for each patient. However, MIMIC-IV does effectively provide a range within 

which the real date may lie, so a random date within the possible time window was assigned. To 

accomplish parity in time periods between the two datasets, encounter admission dates were 

limited to between 1/1/12 and 12/31/19. Each dataset was split at roughly the midpoint, 6/1/15, 

into two eras: 0 (pre-split) and 1 (post-split); resulting in four final cohorts: MIMIC-IV era 0, 

MIMIC-IV era 1, BJH era 0, and BJH era 1. For all cohorts, the following were extracted from 

their respective EHR data: demographics, admission-transfer-discharge or patient location, vital 

signs, diagnoses, and lab results. The task for all models/experiments was to predict in-hospital 

mortality within 30 days of ICU admission using information from the first 24 hours of ICU 

admission. 

2.4.2.2. Pathophysiological and Healthcare Process Feature-Sets 

In accordance to the framework laid out by Hripcsak and Albers66, features for prediction were 

divided into two types: pathophysiological and healthcare process (Table 2). Pathophysiological 

features included demographics, vital sign values, and lab result values (and transformations 

thereof such as median, interquartile range, etc.). Healthcare process features included day-of-

week and time-of-day of admission and number of measurements per lab or vital sign. Number 

of measurements were also stratified by six subdivisions of the day (akin to shifts). Further, as 
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there were physiologically infeasible outliers (3 median absolute deviation greater than the 97.5th 

percentile or lesser than the 2.5th percentile) in the data, the number of outlier measurements per 

lab or vital sign were also included as features. Occasionally, lab results and vital signs entries or 

rows contained null result values, which is often the case when the measurement was faulty or 

incomplete, so the number of null measurements per lab or vital sign were also included as 

features. All compared models were trained using either only pathophysiological features (PP), 

only healthcare process features (HCP), or both (HCP + PP). Features where the vast majority 

(>95%) of responses were identical or missing were removed as they were less likely to be 

informative. 

Table 2. Pathophysiological vs. Healthcare Process Feature-Sets 

Feature-Set Definition Example Features 

Pathophysiology 

(PP) 
Direct measure of patients’ true state 

Age at admission, median 

bilirubin, median absolute 

deviation of heart rate, 75th 

percentile of SpO2 

Healthcare Process 

(HCP) 

Indirect measure of patients’ true state, 

influenced by the recording process 

Number of creatinine 

measurements, number of POC 

glucose measurements (3rd shift), 

admission day of week 

(Saturday), number of FiO2 null 

measurements, number of outlier 

respiratory rate measurements 
aTime of day was divided into six 4-hour shifts 

 

 

2.4.2.3. Compared Models 

Three different models were compared: 1) vanilla logistic regression (LR); 2) logistic regression 

with univariate basis spline feature expansion and hyperparameter optimization (SplineLR opt); 

and 3) XGBoost with hyperparameter optimization (XGB opt). For all three models, the model 

pipeline included a standardization step (zero-mean, unit-variance), and an imputation step 

(median). For SplineLR opt and XGB opt, hyperparameters were optimized using random search 



27 

 

(100 iterations of 5-fold CV), optimizing for maximum negative log loss. The regularization 

strength parameter was optimized for SplineLR, whereas the learning rate in addition to 

regularization strength parameter was optimized for XGB opt (Appendix 5, Appendix 6). 

2.4.2.4. Experimental Design and Evaluation 

Each data source-era combination was subsampled to have the same outcome prevalence to 

enable direct comparison of log loss values. Then, for each data source, era, feature set, and 

model type, a model was trained. The internal performance of the model was evaluated through 

the test log loss of three replicates of 5-fold cross validation. Then the models were applied 

externally cross-site and cross-time. For example, a model trained on BJH era 0 was evaluated 

on BJH era 1 (cross-time), MIMIC era 0 (cross-site), and MIMIC era 1 (cross-site and time). 

External performance assessed using 15 bootstrap iterations to match the total number of 

iterations of the internal evaluation procedure, and also because excessive iterations can yield 

overly narrow distributions that are overconfident as they do not account for sampling 

variability.76 First, the internal performance of different model types were compared across 

feature-sets and site-era combinations. Second, the internal performance of different feature-sets 

were compared across model types and site-era combinations. Third, the difference between 

internal and external performances were compared across model types, site-eras, and feature-sets 

(Table 3). 
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Table 3. Dimensions of Comparison 

Dimension Members 

Temporal • Pre-7/1/2015 (Era 0) 

• Post-7/1/2015 (Era 1) 

Site • Barnes-Jewish Hospital (BJH) 

• Medical Information Mart for Intensive Care (MIMIC-IV) 

Model type 

• Vanilla logistic regression (LR) 

• Logistic regression with basis spline feature expansion with hyperparameter 

optimization (SplineLR opt) 

• XGBoost with hyperparameter optimization (XGB opt) 

Feature-set • Pathophysiological (PP) 

• Healthcare process (HCP) 

In this study, the impact of feature-set on temporal and external (site) generalizability of clinical prediction models 

was evaluated, and how model type affected loss of generalizability. 

 

 

2.4.3. Results 

2.4.3.1. Cohort Characterization 

The cohorts varied in size from 18,482 of MIMIC-IV 1 to 26,110 of BJH 1 (Table 4). The 

MIMIC-IV cohorts tended to be slightly older than the BJH cohorts (median age of 66 and 67 vs. 

61 and 62). All cohorts had similar proportions of males ranging from 56.0% to 57.2%. While all 

cohorts had a similar proportion of white patients ranging from 65.7% to 69.9%, BJH had a 

higher proportion of black patients (23.9% and 25.6% of BJH vs. 10.8% and 10.4% of MIMIC-

IV), and notably, BJH had no Hispanic population because Hispanic was not a valid response for 

race in BJH. BMI was similar across cohorts ranging from 27.0 to 27.8, as was ICU length of 

stay (LOS) from 2.4 to 2.8, whereas total LOS varied from 7.6 of MIMIC-IV 0 to 9.3 of BJH 0. 

The 30-day in-hospital mortality rate ranged from 8.2% of BJH 0 to 10.5% of BJH 1.  
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Table 4. Cohort Comparison 

Variable 
BJH 0 

(n = 19,910) 
BJH 1 

(n = 26,110) 
MIMIC-IV 0 

(n = 17,273) 
MIMIC-IV 1 

(n = 18,482) 

Age, median (IQR) 61 

(51 – 72) 
62 

(50 – 71) 
66 

(55 – 78) 
67 

(56 – 77) 

Sex (male), n (%) 11,209 

(56.3%) 
14,710 

(56.3%) 
9,676 

(56.0%) 
10,569 

(57.2%) 

Race, n (%)     

     White, n (%) 13,916 

(69.9%) 
17,935 

(68.7%) 
11,615 

(67.2%) 
12,143 

(65.7%) 

     Black, n (%) 4,753 

(23.9%) 
6,692 

(25.6%) 
1,857 

(10.8%) 
1,929 

(10.4%) 

     Hispanic, n (%) 0 

(0.0%) 
0 

(0.0%) 
704 

(4.1%) 
687 

(3.7%) 

     Asian, n (%) 117 

(0.6%) 
189 

(0.7%) 
473 

(2.7%) 
554 

(3.0%) 

     Other/unknown, n (%) 1,124 

(5.6%) 
1,294 

(5.0%) 
2,624 

(15.2%) 
3,169 

(17.1%) 

BMI, median (IQR) 27.8 

(23.7 – 33.2) 
27.8 

(23.6 – 33.5) 
27.0 

(23.9 – 33.0) 
27.2 

(23.8 – 32.0) 

ICU LOS (days), median (IQR) 2.6 

(1.7 – 5.0) 
2.8 

(1.7 – 5.1) 
2.4 

(1.5 – 4.3) 
2.6 

(1.6 – 4.8) 

LOS (days), median (IQR) 9.3 

(5.5 – 16.9) 
9.0 

(5.3 – 16.9) 
7.6 

(4.7 – 13.1) 
8.1 

(5.0 – 14.6) 

30-day in-hospital mortality, n (%) 1,638 

(8.2%) 
2,753 

(10.5%) 
1,657 

(9.6%) 
1,873 

(10.1%) 
Cohort characteristics and clinical outcomes of four cohorts, the combination of two study sites and two time 

periods. 

 

 

2.4.3.2. Comparison of Model Types for Internal Performance 

The internal cross-validation (test) model performance of different model types (LR, SplineLR 

opt, and XGB opt) were compared, repeated for every site, era, and feature-set combination 

(Figure 6). In every combination, SplineLR opt and XGB opt outperformed LR (Table 5). 

However, in every combination, the difference in performance between SplineLR opt and XGB 

opt were not significant (Figure 6). 
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Figure 6. Comparison of Model Types for Internal Performance  

Negative log loss (y-axis) was compared across different model types (LR, SplineLR opt, XGB opt), repeated for 

each site-era (subplot rows) and feature-set combination (subplot columns).  

 

 

2.4.3.3. Comparison of Feature-Sets for Internal Performance 

The internal cross-validation (test) model performance of different feature-sets (HCP, PP, 

HCP+PP) were compared, repeated for every site, era, and model type combination (Figure 7). 
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In every combination, PP outperformed HCP, and HCP+PP outperformed HCP. In 10 out of 12 

combinations, HCP+PP outperformed PP. 

 

Figure 7. Comparison of Feature-Sets for Internal Performance 

Negative log loss (y-axis) was compared across different model types (LR, SplineLR opt, XGB opt), repeated for 

each site-era (subplot rows) and feature-set combination (subplot columns).  
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2.4.3.4. Performance Loss on External Use 

The internal cross-validation (test) model performance was compared to external (cross-site, 

cross-time, and cross-site and time) bootstrap performance, stratified by model type, site, era, 

and feature-set. For LR, significant performance degradation occurred in 7/12 combinations 

cross-time, in all combinations cross-site, and in all combinations cross-site and time (Figure 8). 

For SplineLR opt, significant performance degradation occurred in 7/12 combinations cross-

time, in 11/12 combinations cross-site, and in all combinations cross-site and time (Figure 9). 

For XGB opt, significant performance degradation occurred in 6/12 combinations cross-time, in 

all combinations cross-site, and in all combinations cross-site and time (Figure 10).  
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Figure 8. External Validation Performance Loss for LR  

Negative log loss (y-axis) was compared between internal and external (cross-time, cross-site, cross-site and time), 

repeated for each site-era (subplot rows) and feature-set combination (subplot columns). 
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Figure 9. External Validation Performance Loss for SplineLR opt 

Negative log loss (y-axis) was compared between internal and external (cross-time, cross-site, cross-site and time), 

repeated for each site-era (subplot rows) and feature-set combination (subplot columns). 
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Figure 10. External Validation Performance Loss for XGB opt  

Negative log loss (y-axis) was compared between internal and external (cross-time, cross-site, cross-site and time), 

repeated for each site-era (subplot rows) and feature-set combination (subplot columns). 
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2.4.3.5. External Use Performance Comparison 

The internal and external performances for all combinations of site, era, model type, and feature-

set are shown in Table 5. For all site-era combinations, the best performing models – internally 

and externally cross-time – were XGB opt using both HCP and PP features. However, for 

external cross-site, the best performing models used PP features, with the exception of BJH era 

1. The best performing model type cross-site were XGB opt except for in MIMIC-IV era 1 where 

SplineLR slightly outperformed XGB opt. Of the best performing models cross-site and time, 

two out of four used PP features, with the other half using HCP+PP; also, three out of four used 

XGB opt, with one using SplineLR opt. 
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Table 5. External Use Performance Comparison 

 

Performance – log loss –  of mortality prediction models for each combination of site, era, model type, and feature 

set. Distributions were generated through repeated cross-validation for internal test; and bootstrap for the external 

generalizability tests.  

Site Era Model type Feature-set

LR PP -0.286 ± 0.005 -0.287 ± 0.003 -0.315 ± 0.004 -0.316 ± 0.005

LR HCP -0.308 ± 0.006 -0.347 ± 0.002 -0.707 ± 0.009 -0.760 ± 0.011

LR HCP+PP -0.278 ± 0.008 -0.311 ± 0.003 -0.488 ± 0.006 -0.501 ± 0.008

XGB opt PP -0.270 ± 0.006 -0.271 ± 0.002 -0.283 ± 0.006 -0.280 ± 0.005

XGB opt HCP -0.301 ± 0.005 -0.309 ± 0.003 -0.363 ± 0.005 -0.353 ± 0.004

XGB opt HCP+PP -0.265 ± 0.007 -0.266 ± 0.003 -0.287 ± 0.005 -0.279 ± 0.005

SplineLR opt PP -0.271 ± 0.006 -0.273 ± 0.003 -0.288 ± 0.004 -0.284 ± 0.005

SplineLR opt HCP -0.303 ± 0.004 -0.310 ± 0.002 -0.362 ± 0.004 -0.371 ± 0.004

SplineLR opt HCP+PP -0.267 ± 0.007 -0.270 ± 0.003 -0.307 ± 0.004 -0.309 ± 0.004

LR PP -0.283 ± 0.004 -0.285 ± 0.004 -0.294 ± 0.005 -0.296 ± 0.005

LR HCP -0.310 ± 0.002 -0.315 ± 0.005 -0.361 ± 0.006 -0.342 ± 0.005

LR HCP+PP -0.276 ± 0.004 -0.282 ± 0.005 -0.309 ± 0.006 -0.299 ± 0.005

XGB opt PP -0.266 ± 0.004 -0.268 ± 0.004 -0.271 ± 0.005 -0.278 ± 0.006

XGB opt HCP -0.301 ± 0.003 -0.309 ± 0.005 -0.316 ± 0.004 -0.318 ± 0.004

XGB opt HCP+PP -0.261 ± 0.003 -0.265 ± 0.004 -0.269 ± 0.005 -0.274 ± 0.005

SplineLR opt PP -0.268 ± 0.003 -0.274 ± 0.004 -0.271 ± 0.005 -0.282 ± 0.005

SplineLR opt HCP -0.302 ± 0.003 -0.310 ± 0.005 -0.319 ± 0.004 -0.319 ± 0.005

SplineLR opt HCP+PP -0.262 ± 0.004 -0.270 ± 0.004 -0.273 ± 0.005 -0.276 ± 0.005

LR PP -0.285 ± 0.006 -0.283 ± 0.004 -0.300 ± 0.005 -0.299 ± 0.003

LR HCP -0.306 ± 0.004 -0.305 ± 0.004 -0.964 ± 0.026 -0.858 ± 0.016

LR HCP+PP -0.277 ± 0.006 -0.274 ± 0.005 -0.983 ± 0.027 -0.859 ± 0.018

XGB opt PP -0.267 ± 0.005 -0.264 ± 0.004 -0.277 ± 0.003 -0.282 ± 0.003

XGB opt HCP -0.298 ± 0.004 -0.297 ± 0.004 -0.332 ± 0.006 -0.332 ± 0.003

XGB opt HCP+PP -0.262 ± 0.005 -0.259 ± 0.004 -0.291 ± 0.004 -0.291 ± 0.003

SplineLR opt PP -0.270 ± 0.007 -0.267 ± 0.004 -0.283 ± 0.004 -0.289 ± 0.003

SplineLR opt HCP -0.298 ± 0.004 -0.301 ± 0.004 -0.329 ± 0.005 -0.331 ± 0.003

SplineLR opt HCP+PP -0.264 ± 0.006 -0.263 ± 0.004 -0.288 ± 0.004 -0.288 ± 0.003

LR PP -0.279 ± 0.005 -0.290 ± 0.005 -0.306 ± 0.004 -0.306 ± 0.005

LR HCP -0.298 ± 0.005 -0.308 ± 0.005 -1.080 ± 0.021 -1.274 ± 0.035

LR HCP+PP -0.266 ± 0.007 -0.277 ± 0.005 -0.936 ± 0.019 -1.097 ± 0.029

XGB opt PP -0.261 ± 0.005 -0.271 ± 0.006 -0.283 ± 0.004 -0.288 ± 0.005

XGB opt HCP -0.295 ± 0.004 -0.302 ± 0.005 -0.350 ± 0.003 -0.359 ± 0.007

XGB opt HCP+PP -0.256 ± 0.004 -0.263 ± 0.005 -0.295 ± 0.003 -0.306 ± 0.005

SplineLR opt PP -0.263 ± 0.004 -0.274 ± 0.006 -0.278 ± 0.003 -0.282 ± 0.004

SplineLR opt HCP -0.294 ± 0.004 -0.303 ± 0.005 -0.344 ± 0.003 -0.359 ± 0.007

SplineLR opt HCP+PP -0.256 ± 0.005 -0.268 ± 0.005 -0.295 ± 0.004 -0.312 ± 0.005

MIMIC-IV

MIMIC-IV

0

1

BJH 0

BJH 1

Internal Test

(mean ± std)

External

Cross-time

(mean ± std)

External

Cross-site

(mean ± std)

External

Cross-site & Time

(mean ± std)
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2.4.3.6. Feature Analysis 

Analysis of features focused on XGB opt model type as it was often the best performing model 

internally and externally. Feature importance was computed using SHAP for each site-era 

combination, and was ranked based on median SHAP value.77 The top 20 highest ranked, or 

most important features are shown in Table 6. Of those, 5 were HCP features (shown in red for 

emphasis): FiO2 count, FiO2 S6 (6th shift) count, O2 flow count, point-of-care glucose count, 

and total outlier count. The distributions of each of the top 20 features are shown in 0. Many PP 

features did not vary drastically across site/eras – for example, the distribution (median, IQR) for 

Blood Urea Nitrogen (BUN) were as follows: BJH 0, 18.5 (12.5 - 30); BJH 1, 18.5 (12.5 - 31.0); 

MIMIC-IV 0, 19.0 (13.0 - 32.0); MIMIC-IV 1, 18.5 (13.0 - 31.0). However, important HCP 

features often did vary drastically across sites. For example, FiO2 count were as follows: BJH 0, 

1 (0 - 2); BJH 1, 1 (0 - 3); MIMIC-IV 0, 2 (0 - 7); MIMIC-IV, 1 (0 - 7). O2 flow were twice as 

more frequently documented in BJH than in MIMIC-IV: BJH 0, 10 (0-23); BJH 1, 7 (0-21); 

MIMIC-IV 0, 3 (0 - 6); MIMIC-IV 1, 4 (0 - 6). Similarly, POC glucose count was much more 

frequently documented in BJH: BJH 0, 9 (3 – 13); BJH 1, 8 (2 – 12); MIMIC-IV 0, 2 (0 – 4); 

MIMIC-IV 1, 2 (0 – 4). 
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Table 6. Feature Importance for XGB opt using HCP+PP 

Variable 
Variable 
Type 

BJH 
Era 0 

BJH 
Era 1 

MIMIC-IV 
Era 0 

MIMIC-IV 
Era 1 

Median 

AGE PP 0.195 0.264 0.287 0.351 0.276 
BUN PP 0.273 0.265 0.212 0.202 0.239 
RDW CV PP 0.119 0.062 0.214 0.202 0.160 
FiO2 (Count) HCP 0.002 0.148 0.108 0.127 0.117 
Anion Gap PP 0.102 0.101 0.105 0.112 0.103 
Albumin PP 0.149 0.181 0.021 0.037 0.093 
PLT PP 0.098 0.092 0.053 0.089 0.091 

Respiratory Rate (q0.75) PP 0.077 0.103 0.033 0.135 0.090 
FiO2 (S6, Count) HCP 0.001 0.003 0.167 0.164 0.083 
Respiratory Rate (q0.25) PP 0.054 0.102 0.118 0.048 0.078 
O2 Flow (Count) HCP 0.167 0.112 0.034 0.015 0.073 
WBC PP 0.021 0.067 0.066 0.109 0.066 
Lactate PP 0.110 0.059 0.052 0.072 0.065 
PTT PP 0.065 0.035 0.104 0.064 0.065 
Temperature PP 0.054 0.066 0.033 0.102 0.060 
Alkaline Phosphatase PP 0.044 0.094 0.049 0.066 0.058 
Arterial pH PP 0.103 0.090 0.018 0.018 0.054 
POC Glucose (Count) HCP 0.025 0.037 0.059 0.084 0.048 

Heart Rate (q0.50) PP 0.017 0.046 0.049 0.046 0.046 

Total Outlier Count HCP 0.034 0.060 0.027 0.057 0.046 
Top 20 most important features based on median SHAP value across the four site-era combinations of the XGB opt 

model using both HCP and PP features. HCP features are highlighted in red for emphasis. 

 

 

2.4.4. Discussion 

In this study, we explored the impact of features heavily influenced by healthcare processes, such 

as frequency of lab tests, on clinical prediction model performance and generalizability. 

Compared to prior work, the types of HCP variables, modes of generalizability, and model types 

were all expanded to provide a more comprehensive view on the impact of HCP features on 

generalizability. What we find is that when performing internal validation, the addition of HCP 

features significantly improved model performance. Applied cross-time, the performance 

improvement (compared to models using only PP features) persisted. However, applied cross-
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site, HCP+PP models were often less performant than models using PP only. Investigation of 

features show that important HCP variables often differ drastically between sites which are 

unlikely to be due to underlying patient population pathophysiology, but rather, cultural and 

procedural differences between sites.  

As expected, vanilla logistic regression performed significantly worse than all other compared 

model types. However, augmenting with relatively simple feature transformation and 

optimization of hyperparameters – in our case, basis spline feature expansion and optimization of 

regularization parameter – yielded performance that was just as good as the more complex 

Gradient Boosted Decision Tree (GBDT) models – in our case, XGB. This result emphasizes the 

value of incorporating non-linearity to the CPM development process, and implies diminishing 

returns with added complexity. We did not compare against deep neural networks or variants 

thereof including recurrent variants due to concerns regarding interpretability. However, there 

are novel neural network architectures that trade performance for interpretability, which if seen 

wide adoption, should also be assessed as well.78 

Models only using HCP features performed poorly compared to those using PP or both. The 

implication is that while HCP features do provide additional information to the model, HCP by 

themselves are insufficient, especially compared to models using PP features. Further, given the 

non-generalizability of models relying on HCP features cross-site, they should be given special 

attention – either dropping them from the model or fine-tuning when applying cross-site. 

There is a growing set of literature investigating the relationship and disconnect between what’s 

present in EHR data and the true underlying patient physiology, and more recently, the impact of 

this phenomenon on clinical prediction modeling. However, there is a lack of terminological or 

conceptual unification, resulting in what appears to be scattered or piecemeal analyses. Much of 
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this work falls under investigating bias in EHR data.71, 79 Some focus narrowly on missing data 

imputation or measurement indicators.73, 80, 81 Others have proposed frameworks for 

understanding the phenomenon – we followed the Hripscsak and Albers framework as 

interpreted by Agniel et al. in which HCP represents the recording process which distorts the 

EHR data representation of the true underlying patient state.66, 71 Under this framework, when a 

lab test is ordered would be considered subjective, whereas the lab test result would be 

considered objective. However, others have a more conservative definition for objective data, 

and argue that the vast majority of EHR data is subjective as it is “clinician-initiated,” meaning 

that only measurements that do not require clinician intervention like routine lab tests or 

telemetry data are unfiltered or unbiased. In summary, many researchers have been tackling the 

issue of EHR data being a filtered view of the patients’ true state, some of whom have developed 

ad-hoc or piecemeal theories that conflict with one another on certain points. We believe that a 

consensus framework and a shared vocabulary will facilitate understanding and accelerate 

research in this field. 

The best performing model and feature-set combination based on the internal cross-validation 

often did not generalize well (cross-site). In other words, the typical optimal model selection 

procedure resulted in a suboptimal model when applied externally. Ideally, external sites would 

fully re-train or fine-tune the model on their own historic data to prevent significant performance 

degradation. However, it’s often unknown where the model will be considered for 

implementation, and even then, it may be prohibitive to acquire data from all those 

organizations. Thus, methods to a priori determine robustness or resilience against non-

generalizability due to drift/shift would be very beneficial for building generalizable models. 

There is ongoing research in this area, often under the umbrella of machine learning safety, on 
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building models that are robust to dataset shift.41 While we cannot offer a domain-agnostic 

advice, our results suggest that for EHR data specifically, if generalizability is a priority, HCP 

features should be used with care or not used at all. 

The external cross-site and cross-site/time performance loss for models using HCP features was 

significantly higher for models trained in BJH era 0 than BJH era 1 across all model types 

(Figure 8, Figure 9, Figure 10). Notably, BJH era 1 covers a system-wide enterprise EHR 

transition on June 2018. We also observed that the EHR transition resulted in many changes to 

the EHR data including extreme changes in frequency for certain measurements. Thus, we 

hypothesize that the EHR transition represents a drastic shift in the healthcare process, thus 

emulating multi-site data, thereby improving generalizability, and modulating cross-site 

performance loss. 

2.4.5. Conclusion 

Addition of features based on variables heavily influenced by the healthcare process, such as 

frequency of lab tests, appear to improve clinical prediction model performance, but those 

models then have limited generalizability or lower performance when applied on external sites. 

Thus, healthcare process features must be used with care, or not used at all. 
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2.5. Study 2:  Respiratory Support Status: Development of 

Standards 

Identifying the lack of standards as a potential driver of CPM non-transportability and 

identifying respiratory support methods as a domain of EHR data lacking in standards, this study 

proposes and evaluates a novel classification standard for respiratory methods as well as 

accompanying heuristics for mining respiratory support episodes. 

2.5.1. Introduction 

Managing respiratory status and providing appropriate respiratory support to prevent or mitigate 

hypoxemia is a critical aspect of clinical management, especially for patients suffering from 

respiratory conditions such as COVID-19.82 Leveraging respiratory support information not only 

provides a more complete clinical picture, but also can be used in downstream analyses such as 

sub-phenotyping or predictive modeling as a source of features or to identify endpoints.83, 84 

However, generating generalizable conclusions from respiratory support information is difficult 

due to the heterogeneity of respiratory support methods and settings, the lack of standardized 

representations, and the poor quality of data regarding respiratory support.85 

Standardization of patient data representation has accelerated knowledge discovery, replication 

of results, and translation into practice. While many parts of healthcare information have been 

standardized – such as the ICD codes for diagnoses, LOINC for measurements and observations, 

or the all-encompassing Unified Medical Language System (UMLS) – much of the patient 

information in EHR data, such as clinical cultures and respiratory support methods, remains 

unmapped.86, 87 Standardization of respiratory support is made challenging due to the inherent 
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diversity of methods, especially when considering methods designed for subpopulations, 

variations, and modifiable settings. Worse yet, the lack of a widely adopted standardization 

schema has resulted in the usage of highly heterogeneous terms in literature and practice, even 

for identical concepts – for example, heated and humidified high-flow nasal cannula has been 

described as high flow nasal cannula, high humidity nasal cannula, high flow nasal oxygen 

therapy, or referred to by brand names such as AirvoTM or OptiflowTM.88-90 Prior efforts to 

standardize respiratory support terms resulted in high granularity, which while necessary for 

coverage, can be excessive for downstream tasks. For example, the “Respiratory Therapy” 

concept in Systematized Nomenclature of Medicine (SNOMED-CT) contains 14 children, of 

which “Oxygen Therapy” itself contains 14 children.91 Thus, there is a need for a pragmatic and 

parsimonious standardization of respiratory support terms. 

Beyond the lack of standardization, extraction of respiratory support status from EHR data is 

made challenging due to scattered, incomplete, and often contradictory documentation which 

necessitates the usage of auxiliary documentation and heuristics to determine respiratory support 

status.74, 92, 93 Prior heuristic development work, however, are dataset-specific and focus on 

endotracheal intubation thus fail to address other strata of respiratory support.74, 92 

Therefore, the objective of the study was to: 1) propose a preliminary, parsimonious, and 

pragmatic terminology system for respiratory support stratified by severity of hypoxemia; 2) 

develop (meta-)heuristics for the construction of respiratory support episodes from raw and 

heterogeneous EHR data; and 3) evaluate the terminology system and heuristics by measuring its 

impact on 30-day mortality prediction through assessment of feature importance and feature 

ablation studies. 
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2.5.2. Methods 

2.5.2.1. Study Design, Data Sources, and Population 

All patients ≥ 18 years of age admitted to all hospitals within a large Midwestern healthcare 

system serving the metropolitan St. Louis, mid-Missouri, and southern Illinois regions between 

3/1/20 and 4/1/21 were eligible for inclusion. Patients were included if they had a COVID-19 

Polymerase Chain Reaction (PCR) or antigen test, positive or negative, within 14 days prior to 

or 7 days after hospital admission. Patients were excluded if they had a hospital length of stay 

(LOS) < 24 hours to allow for a sufficient observation window for the predictive modeling 

study. Patients without associated demographics, comorbidities, or location data were excluded. 

Only patients with at least 5 heart rate and 5 SpO2 measurements during the first 24 hours of 

hospital arrival were included. EHR data, including demographics, vital signs, lab results, 

flowsheet entries, etc., were extracted for all included subjects. This project was approved with a 

waiver of informed consent by the Washington University in St. Louis Institutional Review 

Board. 

2.5.2.2. Classification System of Respiratory Support Methods 

To facilitate generalizability and reproducibility of studies leveraging respiratory support 

information, we propose the following terminologies, in increasing severity: Low Flow Oxygen 

Therapy (LFOT), High Flow Oxygen Therapy (HFOT), Non-Invasive Mechanical Ventilation 

(NIMV), Invasive Mechanical Ventilation (IMV), and ExtraCorporeal Membrane Oxygenation 

(ECMO).74, 94 
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2.5.2.3. Meta-heuristics for Identification of Respiratory Support Episodes 

The authors of MIMIC-III, in addition to the data, also published code for data processing and 

analysis to expedite and encourage collaborative research.74 Among the SQL scripts in their 

GitHub repository is one for calculating mechanical ventilation duration. Essentially, their logic 

was to chain together proximal pieces of documentation that are indicative of mechanical 

ventilation to form episodes with start and end times. Their heuristic has since been used 

successfully by researchers using the MIMIC-III dataset.93 To generalize the heuristic for other 

forms of respiratory support beyond mechanical ventilation, and for other datasets beyond 

MIMIC-III, we developed a generalized version of the MIMIC-III heuristic – a “meta-heuristic” 

– to guide the development of heuristics for the assembly of respiratory support episodes as 

follows: 

1. Define two parameters: 

a. MIN_DURATION for the minimum episode duration 

b. EXTENSION_TOLERANCE for the maximum allowable time gap between 

documentation for the formation of episodes 

2. Identify timestamped documentation that are indicative of the presence of respiratory 

support 

3. Link consecutive documentation occurring within EXTENSION_TOLERANCE into 

episodes 

4. Discard any episodes with duration less than or equal to MIN_DURATION 

 

Next, as we conceived of the respiratory support methods as being mutually exclusive, 

respiratory support episodes are “flattened” into a single timeline such that at any given time, a 

patient is on either no respiratory support or a single respiratory support method, by giving 

higher severity methods priority. Finally, the respiratory support trajectories are “repaired” such 

that gaps between episodes with a duration less than EXTENSION_TOLERANCE are filled by 

extending the preceding episode. Also, gaps at the beginning and end of the patient stay 
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(between encounter start time and first respiratory support episode start time, and between last 

respiratory support episode end time and encounter end time), if less than MIN_DURATION, 

are filled by extending the first or last episode, respectively. 

2.5.2.4. Evaluation through In-hospital Mortality Prediction 

A predictive modeling study was designed to evaluate the utility of the respiratory support 

information extracted through our heuristics on downstream analyses. The task was to predict in-

hospital mortality within 30 days, at 24 hours after hospital arrival for a COVID-19-tested, adult 

cohort presenting to an ED. 121 baseline features were generated from demographic, laboratory, 

vital sign, and other clinical data extracted from the EHR. For most numeric measurements, the 

median value during the observation window was extracted, but for frequent measurements such 

as heart rate, other distributional statistics (25th quantile, 75th quantile, and interquartile range) 

were also extracted.  

10 additional, respiratory-support-derived features were generated using the proposed 

classification schema and heuristics which included duration of respiratory support per type, and 

the last respiratory support during the observation period. For comparison, we identified a small 

set of measurements related to respiratory status: Fraction of inspired Oxygen (FiO2) and 

oxygen flow rate. We also extracted the EHR-native representation of respiratory support called 

oxygen delivery method (O2 Del Method) which included ETT, CPAP, T-Piece, etc. Lastly, we 

also considered a set of features based on the proposed classification, but using the raw time-

stamped data prior to assembly into episodes. The feature sets including explicit respiratory 

support information – O2 Del Method, Raw, and Proposed – all also include “Baseline” and 

“Related” features (Appendix 8, Appendix 9). 
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The compared algorithms were logistic regression (LogReg) and XGBoost (XGB). For LogReg, 

features were standardized and mean-imputed whereas for XGB, features were left as is. 

Hyperparameters such as regularization strength were optimized for log loss using the baseline 

features through 1,000-iteration, 4-fold cross-validation (Appendix 10). Once optimal 

hyperparameters were identified, 5 replicates of 2-fold cross-validation was performed to 

generate a distribution of performance metrics: Area Under Receiver Operating Characteristic 

curve (AUROC), Area Under Precision Recall Curve (AUPRC), and negative log loss.76 The 

distributions of performance metrics were compared using the Wilcoxon signed-rank test (two-

way, paired).95 Feature importance was quantified using SHapley Additive exPlanations (SHAP) 

values for the XGBoost model, and coefficient values for the logistic regression model , both of 

which were aggregated over 100 bootstrap samples.77, 96  

2.5.2.5. Statistical Analysis 

Variables were summarized using frequencies and proportions for categorical data and medians 

and interquartile ranges or means and standard deviations for continuous data. Statistical 

comparisons were performed using the Chi-square and Mann-Whitney U tests where appropriate 

unless specified otherwise. A p-value < 0.01 was considered statistically significant. All 

resampling analyses, cross-validation and bootstrap, were performed using a fixed seed. All 

analysis and figure generation were performed with Python version 3.7.1 (Python Software 

Foundation, Beaverton, OR) using the following packages: scipy, numpy, pandas, matplotlib, 

sklearn, xgboost, and shap.77, 97-102 
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2.5.3. Results 

The severity-stratified respiratory support methods and the documentation serving as evidence 

for each method are listed in Table 7. Examples of the full heuristic application process, along 

with documentation germane to respiratory status, can be found in Figure 11.  Figure 12 shows 

respiratory support utilization over time, with patients temporally aligned at ED arrival. 

 

Table 7. Respiratory support terminologies and heuristics 

Term Institution-specific Evidence 

Low Flow Oxygen Therapy (LFOT) Oxygen delivery method documentation: 

nasal cannula, non-rebreather mask, simple 

mask, venturi mask, aerosol mask, face tent. 

Oxygen flow rate ≤ 15 L / min 

High Flow Oxygen Therapy (HFOT) Oxygen delivery method documentation: high 

flow nasal cannula, high humidity nasal 

cannula, optiflow 

Oxygen flow rate > 15 L / min 

Non-Invasive Mechanical Ventilation 

(NIMV) 

Documentation of “NPPV Status” as “In Use” 

in the “Adult NPPV/NIV” flowsheet 

Invasive Mechanical Ventilation (IMV) Documentation of “Vent Status” as “In Use” 

in the “Ventilator Documentation” flowsheet 

ExtraCorporeal Membrane Oxygenation 

(ECMO) 

Documentation of “Pump Flow (L/min)” or 

“ECMO Pump Speed (RPM)” in the ECMO 

or VAD flowsheets 

Respiratory support  method categories as well as the accompanying evidence of respiratory support usage in EHR 

data to be used in the heuristic for mining respiratory support episodes. 
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Figure 11. Respiratory Support Trajectory Example 

This plot demonstrates the application of the respiratory support trajectory heuristics on a full, single patient 

encounter using data elements from Table 1, MIN_DURATION of 6 hours, and EXTENSION_TOLERANCE of 24 

hours. The x-axis indicates time with each black tick indicating 24 hours and red tick indicating 6 hours. The top 5 

subplots each pertain to a single respiratory support method where vertical lines indicate the times at which pieces of 

documentation serving as evidence for respiratory support were documented. The individual sub-trajectories are all 

merged into a single timeline as shown in the “flattened” subplot, after which it is repaired as according to the 

heuristic. The subplots below the “repaired” subplot provide context for the patient, showing patient location and 

measurements pertaining respiratory status. 

Abbreviations: ED, emergency department; ICU, intensive care unit; LFOT, low flow oxygen therapy; HFOT, high 

flow oxygen therapy; NIMV, non-invasive mechanical ventilation; IMV, invasive mechanical ventilation; ECMO, 

extracorporeal membrane oxygenation. 
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Figure 12. Respiratory Support Utilization Aligned at Arrival  

All patients were aligned at ED arrival, and their usage of respiratory support was plotted for the first 4 weeks. The 

top subplot shows the total number of patients utilizing each respiratory support method, whereas the bottom subplot 

shows the proportion. As expected, patients who have been in the hospital longer are more likely to be on higher 

levels of respiratory support. 

Abbreviations: LFOT, low flow oxygen therapy; HFOT, high flow oxygen therapy; NIMV, non-invasive 

mechanical ventilation; IMV, invasive mechanical ventilation; ECMO, extracorporeal membrane oxygenation. 

 

 

Cohort characteristics and outcomes for the patient population used in this study can be seen in 

Table 8. During the study period there were 45,908 hospitalizations lasting at least 24 hours 
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available for analysis. Of these, 1,601 (3.5%) experienced in-hospital death within 30 days. Non-

survivors were older, more likely to be male, more likely to be COVID-19 positive, and have a 

longer length of stay (Table 8).  

Table 8. Cohort characteristics 

  Outcome = in–hospital mortality within 

30 days of index time   

Variable 
Total 
(n = 45,908) 

Yes 
(n = 1,601 [3.5%]) 

No 
(n = 44,307 [96.5%]) 

pa 

Age (years), median (IQR) 64.0 (51.0 – 76.0) 73.0 (62.0 – 83.0) 64.0 (50.0 – 76.0) < 0.01 * 
Male, n (%) 22,638 (49.3%) 889 (55.5%) 21,749 (49.1%) < 0.01 * 
Race, n (%)    < 0.01 * 
     White 28,032 (61.1%) 933 (58.3%) 27,099 (61.2%) 0.021  
     Black 16,706 (36.4%) 576 (36.0%) 16,130 (36.4%) 0.747  
     Asian 340 (0.7%) 17 (1.1%) 323 (0.7%) 0.168  
     Other/unknown 830 (1.8%) 75 (4.7%) 755 (1.7%) < 0.01 * 
BMI, median (IQR) 27.5 (23.2 – 33.4) 27.1 (22.7 – 32.2) 27.5 (23.2 – 33.4) < 0.01 * 
COVID–19 positive, n (%) 8,332 (18.1%) 502 (31.4%) 7,830 (17.7%) < 0.01 * 
Respiratory support duration 

during observation window 

(hours), mean ± std 
     

     None 16.7 ± 10.4 7.5 ± 10.2 17.0 ± 10.2 < 0.01 * 
     LFOT 5.31 ± 9.16 7.36 ± 10.05 5.24 ± 9.12 < 0.01 * 
     HFOT 0.39 ± 2.70 1.86 ± 5.73 0.34 ± 2.50 < 0.01 * 
     NIMV 0.76 ± 3.74 1.47 ± 5.23 0.73 ± 3.68 < 0.01 * 
     IMV 0.85 ± 4.21 5.79 ± 9.73 0.67 ± 3.75 < 0.01 * 
ICU transfer, n (%) 10,311 (22.5%) 1,321 (82.5%) 8,990 (20.3%) < 0.01 * 
Total LOS (hours), median 

(IQR) 99.7 (59.0 – 172.7) 166.8 (83.4 – 313.6) 98.6 (58.2 – 170.1) < 0.01 * 
In–hospital mortality, n (%) 1,682 (3.7%) 1,601 (100.0%) 81 (0.2%) < 0.01 * 
Abbreviations: IQR, interquartile range; BMI, body mass index; COVID–19, Coronavirus disease 2019; std, 

standard deviation; LFOT, low flow oxygen therapy; HFOT, high flow oxygen therapy; NIMV, non–invasive 

mechanical ventilation; IMV, invasive mechanical ventilation; ECMO, extracorporeal membrane oxygenation; 

ICU, intensive care unit; LOS, length of stay. 

aComparison of variables between those with and without the primary outcome of 30–day in–hospital mortality 

was performed using Mann–Whitney U test for continuous variables, and χ2 for categorical variables. Statistical 

significance, p < 0.01, is indicated by *. 
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The optimized hyperparameters (Appendix 10) were used for generating distributions of 

performance metrics through repeated cross-validation (Figure 13). For both XGB and LogReg, 

the addition of “Related” features significantly improved on “Baseline,” and the addition of “O2 

Del Method,” “Raw,” or “Proposed” features improved on “Related” across all three metrics: 

AUROC, AUPRC, and negative log loss (Figure 13, Appendix 11, Appendix 12). However, 

“O2 Del Method,” “Raw,” and “Proposed” rarely differed significantly, and when they did, the 

differences were very small as was the case for LogReg AUROC between “O2 Del Method” and 

“Proposed” (0.887 [0.884 - 0.890] and 0.887 [0.885 - 0.891], p < 0.01, Appendix 12). 
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Figure 13. Mortality Prediction Performance Comparison  

Comparison of in-hospital mortality prediction performance for LogReg and XGB models with varying sets of 

features from 5-repeat, 2-fold cross-validation. “Baseline” includes demographics, common lab results, and vital 

signs from the EHR data. “Related” also includes O2 flow rate and fraction of inspired oxygen. In addition, “O2 Del 

Method” includes the EHR-native representation of respiratory support status, “Raw” includes data from the 

proposed approach prior to assembly into episodes, and “Proposed” includes features derived from respiratory 

support episodes based on the proposed approach. The center horizontal line represents median, box represents the 

interquartile range between 25th and 75th percentiles, and whiskers represent 2.5th and 97.5th percentiles. 

Abbreviations: LogReg, logistic regression; XGB, extreme gradient boosted trees model; AUROC, area under 

receiver operating characteristic curve; AUPRC, area under precision recall curve. 
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Six of the top twenty most impactful features for the LogReg model were respiratory-support-

derived features, including: last respiratory support, IMV and LFOT duration (Figure 14). For 

the XGB model, respiratory-support-derived features ranked 10th (last respiratory support, IMV) 

and 17th (LFOT duration) (Figure 15). 

 

Figure 14. Logistic Regression Feature Importance 

The left subplot shows the top 20 most important features in the logistic regression model based on coefficient 

values aggregated over 100 bootstrap samples, and the right subplot shows the absolute coefficient values. For each 

feature, the center vertical line represents median, box represents the interquartile range between 25 th and 75th 

percentiles, and whiskers represent 2.5th and 97.5th percentiles. Features based on respiratory support information are 

colored/shaded in red.  

Abbreviations: FiO2, fraction of inspired oxygen, IMV, invasive mechanical ventilation; HFOT, high flow oxygen 

therapy; PLT, platelet count; LFOT, low flow oxygen therapy; MAP, mean arterial pressure; NIMV, non-invasive 

mechanical ventilation; RDW_CV, red blood cell distribution width coefficient of variation; GCS, Glasgow Coma 

Scale. 
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Figure 15. XGBoost SHAP Feature Importance 

The left subplot shows the top 20 most important features in the XGB model based on absolute mean SHAP values 

aggregated over 100 bootstrap samples. The right subplot shows the individual SHAP value for the same top 20 

features, for all encounters in the full dataset. 

For each feature, the center vertical line represents median, box represents the interquartile range between 25th and 

75th percentiles, and whiskers represent 2.5th and 97.5th percentiles. Features based on respiratory support 

information are colored/shaded in red.  

Abbreviations: ASP, aspartate aminotransferase; FiO2, fraction of inspired oxygen; GCS, Glasgow Coma Scale; 

IMV, Invasive Mechanical Ventilation; PLT, platelet count; aPTT, activated partial thromboplastin time; BMI, body 

mass index; LFOT, low flow oxygen therapy. 

 

 

2.5.4. Discussion 

In this study, we 1) propose a preliminary, parsimonious, and pragmatic terminology system for 

respiratory support methods, 2) develop (meta-)heuristics for extraction of respiratory support 

information from EHR data, and 3) investigate the utility of the respiratory support information 

extracted through the proposed terminology system and heuristics via a mortality prediction 
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study in a COVID-19-tested, ED-admit, adult cohort. The developed heuristic was successfully 

applied to EHR data to extract respiratory support episodes, which were then used for in-hospital 

mortality prediction as features, which were found to be among the most important features for 

both LogReg and XGB models. 

Compared to models using demographics and commonly documented lab results and vital signs, 

the addition of respiratory-support-related information, FiO2 and O2 flow rate, significantly 

improved prediction performance for both XGB and LogReg across all measured performance 

metrics. Moreover, the additional inclusion of explicit respiratory support information further 

improved performance significantly, again for both model types and across all metrics.  

Because there are no other dataset-agnostic, full-severity-spanning classification and heuristic 

system for respiratory support information found in literature, we compared our proposed 

approach against two other methods of explicit respiratory status representation: “O2 Del 

Method” which used the EHR-native representation and “Raw” which uses the data elements for 

the proposed approach but prior to assembly into episodes (Appendix 9, Appendix 11). The 

proposed representation had commensurate performance to alternate representations of explicit 

respiratory support information, despite loss of both conceptual and temporal granularity 

resulting from the aggregation of heterogeneous timestamped raw data into the more human-

understandable format of encounter-spanning series of episodes (Figure 11). 

The increase in model performance associated with the addition of explicit respiratory support 

information in XGB was less than that of LogReg. We hypothesize that more complex models 

are able to infer respiratory support status or reconstitute information contained in respiratory 

status based on other features.  
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For the models using features from the proposed approach, IMV status and duration was an 

important predictor which is unsurprising – patients who are intubated are known to have higher 

rates of in-hospital mortality.103 This result simply underscores the importance of leveraging 

respiratory support information, especially those of high severity, for understanding patient 

status. However, even features based on low flow oxygen therapy status were among the most 

important features for both the XGB and LogReg models, indicating that lower severity 

respiratory support information is also critical for developing a complete clinical picture of 

patients. 

In this study, respiratory support information was used as features for in-hospital mortality 

prediction. However, there are many other potential uses of respiratory support information, such 

as endpoint identification, patient sub-phenotype discovery, patient trajectory analytics, or 

characterization of patient cohorts.93, 94, 104  

As documentation regarding respiratory support status varies across time and across sites, 

identification of timestamped documentation that serve as evidence for respiratory support 

cannot be generalized and must be specified in each study by researchers with appropriate 

knowledge of local practice patterns contained within the dataset. Therefore, a (meta-)heuristic 

was developed which provides the structure for developing heuristics to establish episodes for 

any respiratory support method. 

As is typical of studies using EHR data, this study suffers from missingness and inaccuracy of 

information. For example, we identified patients admitted through the ED with a recent positive 

COVID-19 test who were transferred to and remained in the ICU for several days, yet had no 

documentation of respiratory support throughout their entire stay. While heuristics can work with 

scattered, conflicting, and incomplete documentation, significant missingness will still result in 
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unrealistic scenarios. There is trade-off in setting the MIN_DURATION parameter – if it’s too 

long then temporary/interim respiratory supports will be underrepresented, conversely, if it’s too 

short then the heuristic will allow for unrealistically rapid oscillation among respiratory support 

methods. Additionally, tracheostomy status was considered orthogonal to the proposed system. 

NIMV is often used nightly for sleep apnea; thus, researchers utilizing the heuristic must decide 

whether to ignore those episodes based on their needs. Also, patients can be connected to a 

device for respiratory support, but not be actively using them (e.g., delivering no or low flow 

oxygen through a device capable of delivering high flow oxygen), thus researchers must decide 

which is more important for their work: the occupation of the device or the active use of the 

device. Respiratory support methods are ever-evolving – helmet NIV and high-flow nasal 

cannula, for instance, have only recently been used for adult patients, meaning that these 

terminology systems will also require regular revisiting and updating.105 

2.5.5. Conclusion 

To facilitate generalizable and reproducible research, a terminology system was developed for 

standardized representation of respiratory support methods. (Meta-)heuristics were also 

developed to enable extraction of respiratory support episodes from EHR data, and 

transformation into encounter-spanning set of respiratory support trajectories. To demonstrate 

the utility of respiratory support information extracted through proposed methods, feature 

ablation and feature importance analyses were performed via an in-hospital mortality prediction 

study for COVID-19-tested, ED-admit, adult patients. The addition of features generated from 

the proposed approach significantly improved model performance. Further, those features were 

found to be among the most important for models. Finally, the proposed approach, which 

generated more interpretable and generalizable representations, despite the loss of conceptual 
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and temporal granularity, had commensurate performance to alternate representations of explicit 

respiratory support information. 

2.6. Discussion and Conclusion 

The aim of this chapter was to identify, assess the impact of, and propose solutions for data shift 

resulting in the non-generalizability and transportability of CPMs. While there are numerous 

potential causes of data shift general to ML modeling, the focus of this chapter was on CPM-

specific causes. Literature review revealed two unique types of causes of ML model non-

transportability specific to CPMs: 1) bias in EHR data caused by HCP, and 2) insufficient 

coverage of EHR data by standards. Therefore, two studies were conducted for each of the two 

types of causes of CPM non-transportability. The first study focused on the deleterious impact of 

a unique class of CPM features known as HCP features, finding that they harm external 

generalizability while improving internal validity and temporal generalizability. Thus, for CPM 

transportability, models heavily reliant on HCP features should be used with caution – either 

deciding not to use the CPM or planning on re-training or fine-tuning. In the second study, the 

lack of coverage by standards was identified as a source of semantic discrepancy of CPM 

features, so a novel standard was developed and proposed to reduce the risk of non-

transportability of respiratory-support-based features. The individual contributions of the two 

studies are: 1) discovery of HCP features as a critical driver of CPM non-generalizability; and 2) 

a novel classification system and heuristics for respiratory support methods. The contribution to 

the APT checklist is the finding that features should be mapped to pre-existing, well-validated, 

and widely-adopted standards when possible. Otherwise, features must be mapped to ad-hoc 

standards with clear documentation of the coding process to avoid semantic discrepancy of 

features between sites and minimize the risk of CPM non-transportability. 
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Chapter 3. Target Disparity 

3.1. Introduction 

 

Figure 16. Chapter 3 Overview 
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This chapter addresses specific aim 2, the objective of which is to identify the causes and 

characterize the impact of heterogeneity in labels required for CPM development and to propose 

solutions for challenges to transportability of CPMs. To this end, a study was conducted 

assessing the causes of heterogeneity in the target variable assignment process and its impact on 

the characteristics of the resultant cohorts. Sepsis was selected as the clinical context because it 

is a common target for the prediction of CPMs, a syndromic condition with no gold standard test, 

and because there are many competing yet widely used phenotyping approaches. Through this 

study, it has been found that there are sources of phenotyping disagreement on both the macro 

level (disease concept understanding) and the micro level (details of the criteria). Further, these 

differences manifest in highly heterogeneous populations – all ostensibly septic – with 

significantly different characteristics and clinical outcomes. So, CPM adopting organizations 

must acknowledge the fragility of clinical phenotyping used to identify target labels, decide if 

they agree with the approach used by the CPM development team, and if not, understand the 

ramifications of the differences in both disease concept and specific criteria. These findings and 

innovations of the study conducted in this chapter are then used to supplement the development 

of the APT checklist. 

3.2. Overview 

Structurally, this chapter will begin by reiterating the motivating specific aims as has already 

been done in the preceding section, followed by a background section on the following topics – 

disease classification and clinical phenotyping. Then, the study of this chapter is presented, 

including its own introduction, background, methods, results, discussion, and conclusion 

sections. Finally, the chapter concludes by discussing the ramifications of the findings and 

innovations of the studies on CPM transportability and the APT checklist.   
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3.3. Background and Significance 

3.3.1. ICD Codes 

The elephant in the room regarding information about patient conditions or disease diagnosis in 

EHR data is the reliability of ICD code data – whether the list of codes assigned at discharge is 

accurate and comprehensive and thus is suitable for secondary research, including CPM 

development and evaluation. While the study of disease classification has a long and storied 

history, the healthcare industry in the United States has converged on the ICD system to classify 

and code diseases.57 Disease diagnosis information is well-documented – for billing purposes – 

and adheres to a widely-adopted standard; however, it suffers from the following critical 

problems. First, ICD codes are documented primarily at discharge and do not contain when 

within an encounter the patient suffered the onset of a disease. Nevertheless, onset time is 

critically important for CPMs targeted at the acute care setting. Secondly, ICD codes suffer 

biases based on their entanglement with hospital billing. For example, researchers observed the 

“Will-Rogers” phenomenon in pneumonia and sepsis in which severely ill pneumonia patients 

tended to be classified instead as sepsis (upcoded), resulting in apparent improvement in 

outcomes for both the pneumonia cohort and sepsis cohort.63-65 The “gaming” or at least the 

dual-role – clinical and billing – aspect of diagnosis code assignment results in seemingly 

paradoxical findings; for example, contrary to common knowledge, obesity is considered 

protective across numerous comorbidity indices and associated scoring systems likely because 

mild or even severe obesity is unlikely to be documented especially for critically ill patients with 

a litany of more clinically significant conditions.106-110 For these reasons, ICD codes in EHR data 

cannot be considered sufficient for phenotyping patients. As a result, many researcher networks 

such as Electronic Medical Records & Genomics (eMERGE), Pharmacogenomics Research 
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Network (PGRN), and the Food and Drug Administration’s (FDA) Mini-Sentinel surveillance 

initiative have developed phenotypic algorithms that incorporate data available in the EHR 

beyond ICD codes.111 

These computational phenotyping algorithms, or from the perspective of CPM development and 

evaluation, the target variable labeling processes, also suffer from concerns regarding semantic 

heterogeneity that can result in CPM non-transportability just as how feature semantic 

discrepancy was shown to result in CPM non-transportability in chapter 2. There are two levels 

in which organizations can differ regarding the target variable labeling process: 1) the 

overarching disease concept, and 2) specifics of the phenotyping criteria (Figure 17). The 

following sections provide background information on each of these sources of target disparity. 
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Figure 17. Sources of Target Disparity 

Conceptual categorization of the challenges to disease classification. 

 

 

3.3.2. Disease Classification 

Target disparity, which limits CPM transportability, can emerge from discrepancies in disease 

concept understanding based on the challenges of disease classification. While there are other 

frameworks for conceptualizing challenges to disease classification, we focus on the formulation 

laid out by Angus et al., who describe the challenges as being three-fold: problems of 1) 
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knowledge, 2) purpose, and 3) statistics.112 First, due to technological and scientific advances, 

the conceptual understanding of disease in general and of specific diseases are constantly 

evolving,  resulting in the natural fracturing of disease definitions. Second, there are diverse 

purposes for disease classification, each of which may benefit most from a definition tailored 

toward that purpose. Thus, the diversity of purpose contributes to the heterogeneity of 

definitions. Third is the problem of mutual exclusivity – disease cases often lie between 

categorizations revealing that clear-cut classifications are but useful fiction. Together, these 

challenges introduce significant heterogeneity in disease definition and criteria, resulting in 

target label disparity between organizations, harming CPM transportability. The study conducted 

in this chapter demonstrates the impact of disease concept heterogeneity on cohort characteristics 

and clinical outcomes. 

3.3.3. Computational Phenotyping 

In addition to discrepancies in disease understanding stemming from the challenges of disease 

classification, seemingly minor differences in phenotyping criteria even among those that agree 

on the disease concept can lead to disparities in the target variable labels, resulting in CPM non-

transportability. Because ICD codes cannot be fully trusted as complete and accurate 

representations of patient conditions as described in a previous section, and because there are 

rarely ground-truth phenotypic labels in EHR data, computational phenotyping is performed by 

applying an algorithmic rule on a constellation of data elements.111 Even when there is 

agreement on the overarching disease concept – something that is not guaranteed as described in 

the previous section – the developers of phenotyping algorithms may naturally specify the 

criteria differently.113 In addition, heterogeneity of EHR data in general, as explored in chapter 2, 

can induce algorithm developers to prioritize certain data elements or methods over others based 
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on the availability, reliability, and likelihood of bias (Figure 17).114, 115 Data-driven, ML-based 

phenotyping efforts are being explored, but has not seen wide adoption.116 So, in addition to 

disparities in disease understanding as described in the previous section, disparities in criteria 

implementation can contribute to target disparity resulting in CPM non-transportability. The 

study conducted as part of this chapter explores these particular barriers to CPM non-

transportability under the clinical context of sepsis. Sepsis is a complex, syndromic condition 

lacking a gold-standard test, whose definition has evolved significantly in recent years, and has 

received a lot of attention due to its high prevalence and mortality rate, including being a 

common target of prediction for CPM studies.117, 118 In the following section, the sepsis 

phenotyping study is described in which various sepsis definitions and criteria are compared, as 

well as a comparison of the corresponding sepsis cohorts, all to better understand the potential 

non-transportability impact of CPMs.  

3.4. Study 3: Comparison of Sepsis Phenotyping 

This study examines the sources and impact of phenotyping heterogeneity in sepsis through the 

comparison of competing sepsis definitions/criteria as well as the cohorts derived from those 

definitions/criteria. 

3.4.1. Introduction 

Sepsis, an exaggerated immune response to an infectious process that can lead to life-threatening 

organ failure, affects more than 1 million patients each year across the world and carries a high 

risk of death.118, 119 Although accounting for a small proportion of all hospital admissions, sepsis 

is the most expensive condition treated in US hospitals, costing nearly $24 billion on an annual 

basis.119 In order to facilitate consistent, large-scale research into sepsis pathobiology and 



68 

 

outcomes and to augment clinical trial enrollment, a standardized, automated approach to case 

identification from EHR is needed.120 Unfortunately, the lack of a “gold standard” diagnostic test 

for sepsis precludes easy case identification and necessitates identification through surrogate 

measures, a process that has been iteratively refined over decades.118, 121, 122
 

In 1992, the American College of Chest Physicians and the Society of Critical Care Medicine 

defined sepsis as Systemic Inflammatory Response Syndrome (SIRS) in response to infection.121 

Although easy to implement bedside, these criteria were found to be non-specific and 

insufficiently sensitive.123-125 This definition was revisited in 2001, but the fundamental concept 

of sepsis as a systemic inflammatory response due to infection did not change.122 In 2015, the 

Centers for Medicare and Medicaid Services (CMS) introduced the SEP-1 quality metric, where 

severe sepsis was defined as evidence of infection, in conjunction with SIRS and organ 

dysfunction.126 In 2016, the Sepsis-3 consensus definition recharacterized sepsis as organ 

dysfunction caused by a dysregulated response to infection. The following year, Rhee et al. 

modified Sepsis-3 to become the Adult Sepsis Event (ASE) criteria, which was adopted by the 

Centers for Disease Control and Prevention (CDC).118, 127, 128  

In response to the changing paradigm of sepsis, several efforts have been made to characterize 

the shift in diagnostic criteria.112, 129-131 While many focused on the comparative ability of SIRS 

and quick Sequential Organ Failure Assessment (qSOFA) to identify sepsis or predict mortality, 

others focused on defining the degree of overlap between these criteria.132-137 Smaller studies 

investigating the degree of patient overlap each compared different definitions across different 

healthcare settings, making comparative analysis difficult. Few studies directly compared more 

than two criteria using EHR data and often focused on a particular subpopulation or did not 

evaluate the agreement among sepsis cohorts.138, 139  
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In order to better understand the population-level characteristics of the shifting sepsis criteria, 

this study simultaneously implemented established sepsis criteria (Sepsis-1, Sepsis-3, CMS SEP-

1, and CDC ASE) on a large inpatient population to determine the impact of diagnostic criteria 

on population characteristics and quantify the occurrence of mortality on different sepsis 

phenotypes that meet different diagnostic criteria. 

3.4.2. Methods 

3.4.2.1. Study Design, Data Sources, and Population 

This retrospective analysis was conducted using EHR and administrative claims data from 

Barnes-Jewish Hospital / Washington University School of Medicine in St. Louis, a large, 

academic, tertiary-care referral center. Eligible patients were at least 18 years of age and 

admitted to the hospital as inpatients or observation status between 1/1/2012 and 6/1/2018. 

Patients were excluded if they were admitted to the Psychiatry or Obstetrics services, due to 

highly variable rates of physiologic data collection. Encounters were excluded if there were no 

billing code, vital sign, laboratory, service, room, or medication data. Sepsis criteria were 

evaluated on full patient encounters including the ED, general ward, and ICU setting. Only the 

first occurrence of sepsis per encounter was included in each analysis. Patients were not eligible 

to meet sepsis criteria for 72 hours after the conclusion of a surgical procedure to avoid 

conflation of post-surgical patient status with sepsis. All analysis were performed on a per-

encounter level. This project was approved with a waiver of informed consent by the 

Washington University in St. Louis Institutional Review Board (IRB #201804121). 
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3.4.2.2. Implementation 

Data elements necessary for sepsis cohort identification were mapped from extracted EHR data 

(Appendix 24). Comorbidities were identified using the Elixhauser comorbidity index.107, 108 

3.4.2.3. Sepsis Definitions 

Sepsis criteria were implemented according to consensus definitions with modifications as 

indicated (Table 9, Appendix 26, Appendix 27, Appendix 28, and Appendix 29).117, 118, 121, 126-

128 Sepsis was Present On Admission (POA) if the encounter had an admitting diagnosis code of 

sepsis, severe sepsis, or septic shock (Appendix 25). 
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Table 9. Compared sepsis definitions 

Definition Infection Anti-infectives Cultures 
Response to 

Infection 

Time 

constraint 

Time 

zero 

Sepsis-1 

(Bone, 

1992) 

Concomitant 

cultures and 

anti-infectives 

All intravenous 

antibiotics, 

antivirals, and 

antifungals as well 

as enteral 

vancomycin and 

metronidazole. 

“Clinical 

cultures” 

including 

bacterial, 

fungal, 

viral 

culturesa 

Systematic 

Inflammatory 

Response 

Syndrome 

(SIRS) within a 

1-hour window 

Cultures followed 

by anti-infective 

within 48 hours or 

anti-infectives 

followed by 

cultures within 24 

hours. SIRS met 

between 48 hours 

before to 24 hours 

after earlier of 

either culture or 

anti-infective 

Earlier of 

either 

culture 

collection 

or anti-

infective 

initiation 

CMS SEP-1 

(National 

Hospital 

Inpatient 

Quality 

Measures) 

Antibiotics 

All intravenous 

antibiotics (not 

antifungals or 

antivirals) as well 

as enteral 

vancomycin and 

metronidazole 

N/A 

SIRS and organ 

dysfunction 

within 6-hour 

window 

All criteria met 

within a 6-hour 

window 

Latest of 

met criteria 

Sepsis-3 

(Seymour, 

2016) 

Concomitant 

cultures and 

anti-infectives 

All oral and IV 

anti-infectives 

except one-time or 

perioperative anti-

infectives 

All 

bacterial, 

fungal, 

viral and 

parasitic 

cultures as 

well as C. 

diff assays 

Sequential 

Organ Failure 

Assessment 

(SOFA) in the 

critical care 

setting, and 

quick SOFA 

(qSOFA) 

elsewhere 

Cultures followed 

by anti-infective 

within 72 hours or 

anti-infectives 

followed by 

cultures within 24 

hours. (q)SOFA 

met between 48 

hours before to 24 

hours after earlier 

of either culture or 

anti-infective 

Earlier of 

either 

culture 

collection 

or anti-

infective 

initiation 

CDC ASE 

(Rhee, 

2017) 

Concomitant 

blood culture 

and anti-

infectives 

Intravenous and 

enteral antibiotics, 

antifungals, and 

antivirals. 

Blood 

cultures 

Acute organ 

dysfunction 

(modified 

SOFA) 

Anti-infective 

initiation and sign 

of acute organ 

dysfunction both 

within 48 hours of 

blood culture 

Blood 

culture 

collection 

Underlining indicates definition subcomponents that were modified or improvised due to under-specification or to enable 

automated execution 

For further definition implementation details, see Appendix 26 through 29 

aClinical cultures as defined by Rhee et al.128 
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International Classification of Disease (ICD) code identified cases of sepsis were recognized 

using explicit diagnostic codes for sepsis, severe sepsis, and septic shock (Appendix 25).117  

Sepsis-1 case recognition was based on the 1992 consensus guidelines, requiring both Suspicion 

Of Infection (SOI) and at least 2 positive SIRS measurements.121 SOI was defined as 

concomitant antibiotics and cultures (Appendix 26). The SIRS criteria were defined as at least 

two of the following within 1 hour: temperature >38.0 C or <36.0 C; heart rate >90; respiratory 

rate >20 per minute; white blood cell count >12,000 or <4,000 or >10% bands. Onset time was 

defined as the earlier time of either culture or antibiotics. 

CMS SEP-1 was adapted from the severe sepsis definition in the CMS sepsis core measure 

guidelines, which included SOI, positive SIRS criteria, and at least 1 sign of organ dysfunction – 

all met within a 6-hour window.126 Organ dysfunction included shock, acute respiratory failure, 

acute kidney or hepatic injury, thrombocytopenia, coagulopathy and an elevated lactate 

(Appendix 27). In order to enable automated surveillance, SOI was determined based on 

antibiotic administration (Appendix 27). Because CMS SEP-1 was intended to surveil bacterial 

sepsis, antivirals, antifungals, and antiparasitics were not considered for SOI.140 Time of onset, 

per CMS guidelines, was defined as the time when last of the criteria were met. 

Sepsis-3 was defined according to the Sepsis-3 consensus criteria as SOI with either a qSOFA 

score ≥ 2 in the non-ICU setting or a Sequential Organ Failure Assessment (SOFA) score ≥ 2 in 

the ICU (Appendix 28).118, 127 In accordance with the consensus definition, SOI was defined as 

concomitant cultures and antibiotics, and the time of infection was defined as the earlier of either 

cultures or antibiotics.118, 127 Time of onset was defined as time of infection. 
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CDC ASE criteria were implemented according to published criteria, with SOI defined as blood 

culture procurement with concomitant initiation of an antimicrobial regimen of at least 4 

qualifying days (QADs) and acute organ dysfunction identified through a modified SOFA score 

(Appendix 29)11. Organ dysfunction was defined as ≥1 of the following: the requirement for 

vasopressors or mechanical ventilation for ≥24 hours, acute kidney or hepatic injury, 

thrombocytopenia, and an elevated lactate level. Time of onset was defined as time of blood 

culture procurement. 

3.4.2.4. Statistical Analysis 

Missing data imputation was not performed because 1) data missingness is most pertinent among 

laboratory values (Appendix 14) and missingness in this context is presumably due to clinical 

decision-making rather than data missing at random; and 2) missing data imputation for 

heterogeneous, longitudinal data introduces implementation variability that limits interpretability 

and reproducibility.128 

Variables were summarized using frequencies and proportions for categorical data or medians 

and InterQuartile Ranges (IQR) for continuous data. Group-wise comparisons were performed 

using the Kruskal-Wallis, 𝜒2, and Mann-Whitney U tests where appropriate. A p-value <.01 was 

considered statistically significant. Analysis and figure generation were performed with Python 

version 3.7.1 (https://www.python.org/) using Jupyter Notebook (Project Jupyter, 

https://jupyter.org). 
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3.4.3. Results 

3.4.3.1. Study Population 

Over the 89-month study period, 343,977 unique inpatient encounters were recorded among 

which 286,759 met inclusion criteria (Figure 18). The median age for the entire population was 

59.2 years (47.0 - 69.5) and 47.6% were female (Table 10). Comorbidities in the general 

population were common (Appendix 15), including diabetes (27.1%), congestive heart failure 

(20.1%), chronic pulmonary disease (24.4%), chronic kidney disease (19.9%), and cancer 

(17.4%). The size of sepsis cohorts identified by the different criteria varied significantly 

(p<.01): ranging from 12,494 (4.4%) for CDC ASE to 32,369 (11.3%) for Sepsis-1; as did rate 

of POA sepsis (p<.01) from 11.9% for Sepsis-1 to 28.6% for ICD code; and Elixhauser 

comorbidity score (p<.01) from 16 [6 – 26] for Sepsis-1 to 20 [11-30] for CSM SEP-1. 

 

Figure 18. Patient Enrollment 

a A single encounter may meet multiple exclusion criteria. 
b Excluded services included: Obstetrics, Gynecology, Psychiatry, Mental Health, Skilled Nursing, Hospice, 

Nursery, and Pediatrics. 
c  Date of death preceded recorded admission date. 
d A method of categorizing medical comorbidities based on billing diagnosis codes. Comorbidity score ranges from -

32 to 99. 
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Table 10. Baseline Population Characteristics 

Variablea Total ICD code Sepsis-1 CMS SEP-1 Sepsis-3 CDC ASE 

Number of  

encounters (%) 

286,759 

(100.0%) 

20,670 

(7.2%) 

32,369 

(11.3%) 

13,869 

(4.8%) 

21,550 

(7.5%) 

12,494 

(4.4%) 

Age, median (IQR), 

years 

59.2 

(47.0 - 69.5) 

60.8 

(49.7 - 70.1) 

59.7 

(47.7 - 69.4) 

60.4 

(49.1 - 69.8) 

61.8 

(51.4 - 71.4) 

60.9 

(50.6 - 69.5) 

Sex (female),  

No. (%) 

136,503 

(47.6%) 

9,091 

(44.0%) 

15,048 

(46.5%) 

6,181 

(44.6%) 

9,863 

(45.8%) 

5,513 

(44.1%) 

Race, No. (%)       

          White 
187,141 

(65.3%) 

13,409 

(64.9%) 

21,310 

(65.8%) 

9,323 

(67.2%) 

14,467 

(67.1%) 

8,398 

(67.2%) 

          Black 
82,829 

(28.9%) 

5,851 

(28.3%) 

8,902 

(27.5%) 

3,590 

(25.9%) 

5,573 

(25.9%) 

3,244 

(26.0%) 

          Asianb 
1,867 

(0.7%) 

149 

(0.7%) 

227 

(0.7%) 

84 

(0.6%) 

146 

(0.7%) 

94 

(0.8%) 

          Otherb,c 
14,922 

(5.2%) 

1,261 

(6.1%) 

1,930 

(6.0%) 

872 

(6.3%) 

1,364 

(6.3%) 

758 

(6.1%) 

BMI, median (IQR) 
27.7 

(23.5 - 33.0) 

27.4 

(23.1 - 33.0) 

27.2 

(22.9 - 32.8) 

27.6 

(23.3 - 33.0) 

27.5 

(23.0 - 33.2) 

28.0 

(23.5 - 33.7) 

Sepsis present on 

admission, No. (%) 

6,128 

(2.1%) 

5,913 

(28.6%) 

3,861 

(11.9%) 

2,141 

(15.4%) 

2,819 

(13.1%) 

2,247 

(18.0%) 

Elixhauser 

comorbidity 

score, median (IQR)d 

7 

(0 - 16) 

18 

(9 - 28) 

16 

(6 - 26) 

20 

(11 - 30) 

19 

(10 - 29) 

20 

(10 - 29) 

Abbreviations: ICD, International Classification of Disease; CMS SEP-1, Centers for Medicare and Medicaid 

Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and Prevention Adult Sepsis Event; 

IQR, interquartile range; BMI, body mass index. 

a Comparison across all four definition-based cohorts was performed using Kruskal-Wallis one-way analysis of 

variance test for continuous variables, and 𝜒2 for categorical variables. All comparisons were statistically significant 

(p<.01) except where denoted by superscript b. 
b Race: Asian, 𝜒2(3) = 2.25, p≥.01; Race: Other, 𝜒2(3) = 3.75, p≥.01. 
c Other race includes Pacific Islander, Hispanic, Alaska Native, Unknown, Other, and more than one race. 
d Elixhauser comorbidity score was calculated based on formula from Moore et al.108 

 

3.4.3.2. Overlap between sepsis criteria 

The level of agreement between sepsis criteria was low for all pairs except between Sepsis-1 and 

Sepsis-3 where the level of agreement was moderate (κ = 0.533, 95% CI, 0.530 - 0.536; 
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Appendix 16). Of the 32,369 Sepsis-1 cases (13.6% in-hospital mortality rate) and 21,550 

Sepsis-3 cases (18.8%), only 15,508 (47.9% of Sepsis-1, 72.0% of Sepsis-3) met both criteria 

and had an increased in-hospital mortality rate of 21.5% (Figure 19). Only 4,370 encounters met 

criteria for all definitions and had an in-hospital mortality rate of 37.0%. Overall, in-hospital 

mortality was higher for populations that met more than 1 definition and increased by an average 

of 5.4% per additional criteria met (r2 = 0.740; p<.01; Appendix 17). 
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Figure 19. Patient Overlap between Different Sepsis Definitions with Associated 

Mortality 

Filled in circles indicate corresponding cohort(s) represented in the bar above. The bar plot demonstrates the number 

of encounters meeting all depicted criteria (intersection). The red line plot indicates the in-hospital mortality rate per 

respective cohort. 

Abbreviations: CMS SEP-1, Centers for Medicare and Medicaid Services severe sepsis core measure 1; CDC ASE, 

Centers for Disease Control and Prevention Adult Sepsis Event. 

 

 

3.4.3.3. Clinical differences between sepsis criteria 

The time-to-onset (hours) varied significantly across the sepsis definitions (p< .01): from 2.9 for 

Sepsis-1 to 7.6 for CMS SEP-1. The distribution of sepsis onset location also varied significantly 

between definitions (p<.01, Table 11). Sepsis onset occurred in the ED for only 1.7% for the 
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CMS SEP-1 cohort, a significantly lower rate compared to the other definitions (23.5% – 

28.1%). The most common onset location for Sepsis-1 was the general ward (45.9%) whereas 

the ICU was the most common location for Sepsis-3 (42.5%) and CDC ASE (38.8%). At sepsis 

onset, measures of illness severity both varied significantly (p<.01, Table 11); APACHE II 

score varied from 14 [10-17] for Sepsis-1 to 16 [12-20] for CMS SEP-1 and median SOFA score 

varied from 3 [1-5] for Sepsis-1 to 4 [3-6] for CMS SEP-1 and CDC ASE.  

Hospital length of stay (days) varied significantly (p<.01, Table 11) from 8.3 for Sepsis-1 to 

11.3 for CDC ASE; as did the presence of a sepsis discharge ICD code rate (p<.01) from 34.7% 

for Sepsis-1 to 54.5% for CDC ASE; severe sepsis discharge ICD code rate (p<.01) from 23.2% 

for Sepsis-1 to 42.1% for CDC ASE; septic shock discharge ICD code rate (p<.01) from 16.7% 

for Sepsis-1 to 34.6% for CDC ASE; and in-hospital mortality rate (p<.01) from 13.6% for 

Sepsis-1 to 24.1% for CDC ASE. 

Table 11. Onset and Outcome-related Measures by Sepsis Definition 

Variablea Total ICD code Sepsis-1 CMS SEP-1 Sepsis-3 CDC ASE 

Length of stay, median 

(IQR), d 

3.9 

(2.2 – 6.9) 

9.6 

(5.0 – 19.7) 

8.3 

(4.7 – 16.2) 

9.8 

(5.1 – 19.9) 

9.3 

(5.1 – 17.7) 

11.3 

(6.1 – 20.1) 

Time to onset, median 

(IQR), h 
- - 

2.9 

(1.0 – 16.0) 

7.6 

(3.4 – 26.3) 

4.1 

(1.1 – 33.4) 

4.6 

(1.3 – 31.1) 

Location at onset, No. 

(%) 
      

   ER - - 
9,099 

(28.1%) 

235 

(1.7%) 

5,056 

(23.5%) 

3,095 

(24.8%) 

   General - - 
14,843 

(45.9%) 

5,515 

(39.8%) 

7,084 

(32.9%) 

4,362 

(34.9%) 

   ICU - - 
7,605 

(23.5%) 

7,932 

(57.2%) 

9,165 

(42.5%) 

4,851 

(38.8%) 

   Unknown - - 
822 

(2.5%) 

187 

(1.3%) 

245 

(1.1%) 

186 

(1.5%) 

APACHE II score at 

onset, median (IQR)b 
- - 

14 

(10 – 17) 

16 

(12– 20) 

15 

(11– 18) 

16 

(12– 19) 

SOFA score at onset, - - 3 4 3 4 
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median (IQR)b (1– 5) (3– 6) (2– 5) (3– 6) 

Time from onset to abx 

(hours), median (IQR)c 
- - 

1.3 

(0.0 – 7.4) 

0.0 

(0.0 – 0.0) 

1.4 

(0.0 – 8.0) 

0.1 

(0.0 – 4.8) 

ICU transfer 

in the 72h following 

onset among non-ICU 

onset patients, No. (%)d 

- - 
7,860 

(31.7%) 

1,132 

(19.1%) 

6,229 

(50.3%) 

3,760 

(49.2%) 

Mechanical ventilation 

initiation in the 72h 

following onset, No. (%) 

- - 
5,016 

(15.5%) 

1,765 

(12.7%) 

4,493 

(20.8%) 

3,596 

(28.8%) 

Vasopressor initiation in 

the 72h following onset, 

No. (%) 

- - 
5,630 

(17.4%) 

2,450 

(17.7%) 

5,731 

(26.6%) 

4,187 

(33.5%) 

Sepsis discharge ICD 

code, No. (%) 

20,670 

(7.2%) 

20,670 

(100.0%) 

12,117 

(37.4%) 

6,725 

(48.5%) 

8,648 

(40.1%) 

6,812 

(54.5%) 

Severe sepsis discharge 

ICD code, No. (%) 

11,273 

(3.9%) 

11,273 

(54.5%) 

7,502 

(23.2%) 

4,894 

(35.3%) 

6,535 

(30.3%) 

5,259 

(42.1%) 

Septic shock discharge 

ICD code, No. (%) 

7,631 

(2.7%) 

7,631 

(36.9%) 

5,420 

(16.7%) 

3,824 

(27.6%) 

5,132 

(23.8%) 

4,318 

(34.6%) 

In-hospital mortality, 

No. (%) 

8,839 

(3.1%) 

4,209 

(20.4%) 

4,413 

(13.6%) 

3,125 

(22.5%) 

4,055 

(18.8%) 

3,017 

(24.1%) 

Discharge disposition, 

No. (%) 
      

   Discharge to home 
232,216 

(81.0%) 

10,397 

(50.3%) 

19,314 

(59.7%) 

6,876 

(49.6%) 

10,704 

(49.7%) 

5,999 

(48.0%) 

   Discharge/transfer to 

nonacute care facilitye 

39,566 

(13.8%) 

5,063 

(24.5%) 

7,239 

(22.4%) 

3,209 

(23.1%) 

5,781 

(26.8%) 

2,923 

(23.4%) 

   Discharge/transfer to 

acute care hospitale 

1,988 

(0.7%) 

292 

(1.4%) 

375 

(1.2%) 

164 

(1.2%) 

256 

(1.2%) 

150 

(1.2%) 

   Discharge to hospice 

facilitye 

3,313 

(1.2%) 

665 

(3.2%) 

942 

(2.9%) 

454 

(3.3%) 

686 

(3.2%) 

369 

(3.0%) 

   Miscellaneous/othere 
837 

(0.3%) 

44 

(0.2%) 

86 

(0.3%) 

41 

(0.3%) 

68 

(0.3%) 

36 

(0.3%) 

30-day readmission, No. 

(%) 

49,535 

(17.3%) 

4,293 

(20.8%) 

7,100 

(21.9%) 

2,961 

(21.3%) 

4,254 

(19.7%) 

2,753 

(22.0%) 
Abbreviations: IQR, interquartile range; ICD, International Classification of Disease; CMS SEP-1, Centers for 

Medicare and Medicaid Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and 

Prevention Adult Sepsis Event; APACHE, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential 

Organ Failure Assessment; abx, antibiotics; ICU, intensive care unit; MV, mechanical ventilation. 

a Comparison across all four definition-based cohorts was performed using Kruskal-Wallis one-way analysis of 

variance test for continuous variables, and 𝜒2 for categorical variables. All comparisons were statistically significant 

(Length of stay, Kruskal-Wallis H[3] = 740.99, p<.01; Time to onset, Kruskal-Wallis H[3] = 2512.74, p<.01; 

APACHE II score at onset, Kruskal-Wallis H[3] = 991.31, p<.01; SOFA score at onset, Kruskal-Wallis H[3] = 

2339.87, p<.01; Time from onset to antibiotics, Kruskal-Wallis H[3] >10000, p<.01; ICU transfer in the 72h 

following onset, 𝜒2[3] = 2524.51, p<.01; Mechanical ventilation initiation in the 72h following onset, 𝜒2[3] = 

1453.85, p<.01; Vasopressor initiation in the 72h following onset, 𝜒2[3] = 1750.23, p<.01; Sepsis discharge ICD 

code, 𝜒2[3] = 1328.50, p<.01; In-hospital mortality, 𝜒2[3] = 930.69, p<.01; Discharge to home, 𝜒2[3] = 858.57, 
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p<.01; 30-day readmission, 𝜒2[3] = 43.08, p<.01) except where denoted by superscript e. 
b Scores were calculated only for those with sufficient data which was defined as at least one measurement of each 

of the following variables in the 24h preceding sepsis onset: heart rate, systolic blood pressure, temperature, 

respiratory rate, oxygen saturation, white blood cell count, and creatinine. 
c  If patient had already received antibiotics by the time of sepsis onset, then time from onset to antibiotics was set to 

0h. Because antibiotics are a component of all compared definitions, time from onset to antibiotics is sensitive to the 

definition of onset, especially its temporal relationship with time of antibiotics. Notably, time to onset is 0h by 

definition for CMS SEP-1. 
d Encounters where patient was already in ICU at time of onset were excluded. 
e Discharge disposition: hospice, 𝜒2[3] = 6.16, p≥0.01; discharge disposition: acute care hospital, 𝜒2[3] = 0.18, 

p≥0.01; discharge disposition: miscellaneous, 𝜒2[3] = 1.16, p≥0.01. 

 

 

3.4.4. Discussion 

In this retrospective analysis, commonly used sepsis criteria were adapted for automated 

prospective case recognition and applied to patients admitted to the general ward. The resultant 

populations showed significant heterogeneity in size as well as patient characteristics, with the 

SIRS criteria representing the largest and least critically ill population with the CDC ASE criteria 

identifying the smallest cohort with the highest mortality. Moreover, there was little agreement 

between established sepsis criteria, however, when patients met multiple criteria for sepsis, 

mortality increased, rising by 5% for additional criteria met, on average.   

This study reinforces the growing body of literature that suggests no singular definition of sepsis 

encapsulates the entire spectrum of disease severity and highlights the population heterogeneity 

seen with varying sepsis criteria.132, 133, 135, 136, 138, 139 This study adds to existing literature by 

incorporating one of the largest sets of sepsis criteria and applies them across a variety of care 

settings in one of the largest inpatient cohorts. In addition, this analysis uniquely quantifies the 

degree of agreement between criteria and provides for the first time a quantification of the 

mortality seen by different phenotypes of sepsis that meet different overlapping criteria.  
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Surprisingly, low concordance was found between the two interpretations of the Sepsis-3 

definition (Sepsis-3 and CDC ASE, κ = 0.424), where 64.0% of the Sepsis-3 cohort did not meet 

CDC ASE criteria and 37.8% vice versa. The differences in clinical criteria that give rise to this 

heterogeneity warrants further discussion. For instance, the SOI criteria for the CDC ASE 

definition requires the administration of at least 1 dose of an intravenous antibiotic and blood 

culture procurement, whereas the Sepsis-3 criteria permits both parenteral and enteral antibiotics 

as well as a much wider array of cultures. Further, the CDC ASE criteria includes shock and the 

need for mechanical ventilation, whereas Sepsis-3 necessitates at least a 2-point change in SOFA 

score. The low concordance between CMS SEP-1 and other definitions is unsurprising given the 

differences in underlying sepsis concepts, however, even within-criteria variability has been 

observed with CMS SEP-1 (κ = 0.40).126, 141 Cumulatively, these differences manifest in cohorts 

with significantly different characteristics and clinical outcomes, which has far reaching 

implications on sepsis surveillance, phenotyping and outcomes research.112, 139 The path forward 

may be to recognize that competing sepsis criteria yield distinct phenotypes, and that the choice 

of criteria should depend mostly on the intended use case.112  

The compared definitions varied in the ease with which they could be automated and the degree 

to which modifications were necessary. Sepsis-3 and CDC ASE were relatively easy to automate 

given the level of specificity provided in the original manuscripts. However, some differences in 

specificity remained – for example, CDC ASE explicitly lists the names of qualifying anti-

infectives for SOI whereas Sepsis-3 provides broad categories (oral or parenteral). Without a 

consistent and widely adopted classification system for anti-infectives and cultures, 

heterogeneity in interpretation is unavoidable. Sepsis-1 was the least detailed and required the 

most interpretation. For instance, the time window within which at least 2 SIRS criteria must be 
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met was not specified. Consistent with the work by Churpek et al, we decided that SIRS 

elements should occur relatively simultaneously, thus settled on a 1-hour window.124 CMS SEP-

1 was highly detailed, but designed for manual chart review, thus significant changes had to be 

made to enable automated execution which primarily involved simplifying the criteria to use 

discrete data. Further, due to the heterogeneity in sepsis diagnosis code application, the 

preliminary filtering step using ICD codes was omitted.128 Unfortunately, these changes 

manifested in the results being incongruous with prior reports. The CMS SEP-1 cohort had a 

mortality rate of 23% which is higher than previous reports of 16%.117, 139, 142, 143 Notably, the 

proportion of sepsis onset in the ED for CMS SEP-1 was only 1.7% compared to the 76.7% 

found in prior literature, which likely reflects the changes made to the suspicion of infection 

component of CMS SEP-1 and its impact on time-zero.142 Ascertainment of time zero for CMS 

SEP-1, however, is prone to disagreement, in some cases up to a 94.75-hour difference.144 In 

order to minimize variability in interpretation, sepsis criteria should be highly specified and 

algorithmically executable using EHR data. 

Identification of sepsis onset time, or time zero, was often under-defined in many sepsis 

definitions, and thus was inferred based on supporting literature. Unlike other definitions, time 

zero was explicitly defined under CMS SEP-1, which is the time when all requisite criteria have 

been met.126 For CDC ASE, because the definition was anchored around blood cultures, we 

considered time of sepsis onset as time of blood culture procurement.128 In Sepsis-1 and Sepsis-

3, time of onset was defined as earlier of either culture collection or anti-infective initiation as it 

represents the earliest time point in the clinical trajectory where sepsis was considered. Because 

CMS SEP-1 waits until the last time point when all criteria are met, its cohort had a longer time-

to-onset and a different distribution of onset location. Differences in cohort characteristics at 
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onset are likely driven by differences in time zero definitions in addition to differences in the 

cohorts themselves. 

The advent of Sepsis-3 has shifted the spectrum of illness severity such that sepsis now refers to 

patients with end-organ dysfunction, which was previously severe sepsis. CMS SEP-1 operates 

under this paradigm and surveils for severe sepsis. However, given the aforementioned shift in 

severity and the erasure of the severe sepsis concept in the modern paradigm, CMS SEP-1 was 

compared alongside other established sepsis criteria. The variance in implied severity among 

sepsis definitions likely contribute to the heterogeneity of cohorts identified. 

Given the nature of the data collection, processing, and analysis, this study has necessary 

limitations. First, these results arise from a single, large, tertiary academic medical center, which 

may preclude generalizability. Second, this study only included adult patients and excluded those 

admitted to the inpatient psychiatry, obstetrics/gynecology and post-surgical services. More work 

is necessary in validating the sepsis criteria in these cohorts. Third, though great care was placed 

in following all established criteria, many definitions required adaptions to enable automated 

case identification based on EHR data, which could alter definition performance. Fourth, as 

mental status information was missing from this data set, normal mentation was assumed for all 

patients, similar to other Sepsis-3 evaluation approaches.118  

3.4.5. Conclusion 

This retrospective analysis of 286,759 encounters from a large, tertiary-referral center revealed 

that sepsis cohorts based on commonly used sepsis definitions have significantly different 

characteristics and clinical outcomes and have low concordance with one another. To reduce 
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heterogeneity and improve reproducibility in clinical practice and outcomes-related research, a 

standardized and automated approach to case identification is needed.  

3.5. Discussion and Conclusion 

The aim of this chapter was to identify, assess the impact of, and propose solutions for 

heterogeneity of target variable labeling process caused by variance in clinical phenotyping, 

resulting in non-generalizability and non-transportability of CPMs. There are prediction targets 

that are mostly unambiguous – in-hospital mortality for example – but more often, prediction 

targets are complex clinical phenotypes which was the focus of this chapter. Because of the 

untrustworthiness of explicit phenotype documentation in EHR data, clinical phenotyping is 

performed using a constellation of data elements through rule-based, algorithmic criteria. 

Literature review revealed two categories of causes behind clinical phenotyping heterogeneity: 

1) discrepancies in disease understanding, and 2) discrepancies in implementation details of 

phenotyping criteria. A study was conducted to identify and characterize competing disease 

definitions and criteria, as well as comparing the various cohorts derived from those competing 

definitions/criteria regarding their cohort characteristics and clinical outcomes. Sepsis was 

chosen as it is a complex, syndromic condition with no gold-standard whose definition has 

evolved significantly multiple times in recent years. It was found that conceptual differences 

exist even among widely used definitions – e.g., CDC operates under the Sepsis-3 paradigm 

whereas CMS and ISDA have not yet decided to endorse the new definition and remain under 

the Sepsis-2 paradigm.131 Also, there are notably differences between criteria based on even the 

same definitions – e.g., CDC ASE (Rhee) and Sepsis-3 (Seymour) differ on what are considered 

acceptable cultures and anti-infectives. These differences result in significant differences in 

cohorts – not only in terms of cohort size and characteristics but also in terms of clinical 
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outcomes such as in-hospital mortality rates. Given these findings, and given that a CPM trained 

on one target is unlikely to perform well for a different target, CPM transportability is dependent 

on the parity between the developer’s target labeling process and the adopting organization’s 

approach to clinical phenotyping. Thus, organizations seeking to adopt a CPM must assess the 

parity of the target variable phenotyping process to identify discrepancies in disease 

understanding, particulars of the criteria, the cause of the discrepancies, and the impact of the 

discrepancies on the disease cohort.  
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Chapter 4. Evaluation Disparity 

4.1. Introduction 

 

Figure 20. Chapter 4 Overview 
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This chapter addresses specific aim 3, the objective of which is to characterize and provide 

solutions for heterogeneity in the framing of CPM evaluation approaches by bridging the gap 

between CPM evaluation design and expected implemented behavior of CPM-based CDS. 

Differences in how the implementing organizations think a CPM ought to be and will be 

evaluated compared to how the CPM was evaluated during the development process – 

discrepancies in CPM evaluation designs – can result in significant differences in performance, 

thereby complicating the evaluation of transportability. As such, a study was conducted to bridge 

the gap between CPM evaluation designs during the development process, and the expected 

behavior of the CPM when implemented into an external site. This was accomplished through 

the development of a pseudo-prospective trial concept in which implementation factors such as 

alert snoozing behavior, when possible, are integrated into the CPM evaluation process. This 

novel CPM evaluation framework was demonstrated using sepsis prediction in the general ward 

as the clinical context, and the integration of numerous implementation factors into the 

evaluation of CPM through the pseudo-prospective trial was found to significantly extend and 

enrich CPM performance understanding. These findings and innovations of the study conducted 

in this chapter are then used to supplement the development of the APT checklist. 

4.2. Overview 

Structurally, this chapter will begin by reiterating the motivating specific aims as has already 

been done in the preceding section, followed by a background section on the following topics – 

heterogeneity in CPM evaluation design and simulation-based methods for model evaluation. 

Then, the study of this chapter is presented, including its own introduction, background, 

methods, results, discussion, and conclusion sections. Finally, the chapter concludes by 
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discussing the ramifications of the findings and innovations of the studies on CPM 

transportability and the APT checklist.   

4.3. Background and Significance 

4.3.1. Heterogeneity in CPM Evaluation Design 

Assessment of CPM transportability involves the comparison of model performances – between 

those on the development set and on the unforeseen external set.145 There are numerous metrics 

that can be compared, and for the type of models that are of interest in this dissertation – 

supervised, binary classification models – the machine learning field has converged on a 

common set of metrics such as AUROC (Table 12).146 The standardization of performance 

metrics and integration into machine learning software like the popular packages scikit-learn in 

python or yardstick in R have facilitated model evaluation and performance understanding.101, 147 

However, these performance metrics are heavily influenced by factors beyond the model or the 

data, introducing heterogeneity in the meaning of performance metrics that are ostensibly the 

same, thereby limiting assessment of CPM transportability and thus CPM transportability itself. 

A critical source of this heterogeneity is the variability in what we is refer to as the evaluation 

design in this dissertation – also called the framing of prediction models by others – which is 

about how the evaluation process was designed, which can significantly impact the numerical 

values of performance metrics.148 In the case of CPMs in the acute care setting, models can be 

evaluated once-per-patient or at a patient-level, encounter-level, or multiples times per patient 

encounter.32 In addition, these models can look forward at multiple different time scales or time 

horizons for the presence of an outcome event.18  In one study externally evaluating the Epic 

sepsis model, the authors designed and conducted multiple evaluations – at an encounter-level 
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(which they called hospitalization-level) as well as every 15 minutes, assessing for the outcome 

at 4, 8, 12, and 24 hour time horizons, each yielding their own set of performance metrics, with 

the AUROCs ranging from 0.63 to 0.76.18 Just the variability in temporality of evaluation design 

result in significant heterogeneity of CPMs even with the data and model held unchanged. 

Table 12. Traditional Evaluation Metrics for Binary Classification Models 

Categories Metrics 

Proper Scoring Function Log Loss or Binary Cross Entropy 

Brier Score 

Single Metrics Area Under Receiver Operating Characteristic 

Curve 

Area Under Precision Recall Curve 

Dichotomization-Based 

Metrics 
True Positive Rate or Recall or Sensitivity 

Precision or Positive Predictive Value 

False Positive Rate 

Positive Predictive Value 

Negative Predictive Value 

Accuracy 

F1 Score 

Calibration Calibration Curve or Reliability Diagram 

Hosmer-Lemeshow Test 

Cox Slope and Index 

Metrics commonly used for the evaluation of binary classification models 

 

 

In addition to temporality, there are additional factors that result in evaluation design 

heterogeneity stemming from the lack of consideration of implemented CPM behavior. CPMs, 

especially supervised binary classification models, when integrated into clinical practice as CDS, 

are done so often in the form of interruptive alerts.149 As a result, there are behaviors specific to 

CDS alerts that influence the real-world clinical impact of CPMs including but not limited to: 

conditional and dynamic inclusion or exclusion criteria, lag between data collection and 
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documentation, and alert “snoozing” or lockout periods.150 These factors not only influence the 

success of CPM-based CDS interventions, but also add further heterogeneity to the evaluation 

process as model developers can decide whether or not to take any of these multitude of factors 

into consideration.  

Together, the factors pertaining to the temporality of CPMs and to those pertaining to the 

behavior of CDS alerts introduce significant heterogeneity of evaluation design, resulting in 

disparity between CPM evaluation design by the model developers and the expected 

implemented behavior by those adopting the CPM. To put it another way, AUROC as calculated 

by the CPM developers may not be how the CPM adopting organization would expect the 

AUROC to be calculated due to the exclusion of the aforementioned factors into the evaluation 

process, thereby limiting and confusing expected implemented performance and thus 

transportability.151 

The study conducted in this chapter provides a framework for better incorporating these factors 

into the evaluation design so as to bring parity between the CPM development and evaluation 

process. The proposed framework is a simulation-based approach, the background for which is 

provided in the following section. 

4.3.2. Simulation-based Methods for CPM Evaluation 

As described in the previous section, assessment of CPM transportability can be improved by 

bringing parity between the CPM evaluation design carried out by the development team and the 

expected behavior of the CPM-based CDS when implemented in the adopting organization. This 

can be accomplished through the incorporation of temporal and implementation factors into the 

evaluation design through a simulation framework. In the context of this chapter, simulation-
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based methods refer to those akin to Discrete-Event Simulation (DES) – the goal is which is to 

monitor and compare complex system dynamics over time under different conditions or policies 

– which has been used in healthcare for disease progression, staff scheduling, health screening 

modeling, and health behavior modeling.152-157  

Numerous research groups have incorporated DES-based visualization of CPM behavior on 

individual patients, primarily of exemplary cases of model success, into their manuscripts.150, 158-

160 Often, these visualizations track the behavior of the CPM over time (predicted probability or 

risk of outcome at regular intervals throughout the patient encounter) alongside other factors 

such as patient location, important covariates, and critical clinical events including the primary 

outcome of interest. These visualizations contain information about CPM behavior beyond 

traditional performance metrics such as the smoothness of continuous predictions, relationship 

with significant clinical events such as surgical or medical interventions. While these 

visualizations of simulated CPM behavior are informative, they are primarily used as exemplary 

demonstrations of CPM success, not as extensions of evaluative design. 

Others, however, have augmented CPM evaluation through the incorporation of behaviors 

specific to CPM-based CDS. One study incorporated alarm silencing regimens directly into their 

evaluative processes such that while the CPM was executed every 5 minutes, once an alert fires, 

subsequent alerts would be suppressed for 30 minutes afterwards, thus resulting in a unique 

evaluation level or frequency distinct from typical CPM studies and more closely reflecting real 

clinical environments.150 Instead of focusing on the alarm behavior, some have attended to the 

limited nature of healthcare resources, thereby deriving an entirely new set of performance 

metrics that are immediately meaningful to stakeholders; specifically, using surgical ED 

readmission prediction as the clinical context, the authors derived patients seen, readmissions 
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anticipated, expected readmissions prevented, expected readmission cost, provider cost, expected 

readmission cost savings, and expected net cost savings – metrics that are additive to traditional 

performance metrics, and are meaningful for both clinicians and administrators.161 Another study 

highlighted the tendency of typical model evaluation strategies to over-inflate model 

performance, and leveraged a simulation prospective validation strategy to compute metrics 

more accurate to implemented performance, finding all compared sepsis prediction models to 

have PPVs below 0.035 at a fixed sensitivity of 50%, which is significantly lower than the 0.15 

found in literature.162 Collectively, there has been a constellation of independent efforts in 

attempting to incorporate expected implementation behavior into evaluation design to bring 

parity between CPM evaluation conducted by model developers and the expected behavior of the 

CDS based on the model once implemented into an adopting organization; yet there has been no 

framework proposed for uniting these fractured efforts. The study conducted in this chapter 

addresses this specific gap in literature through the proposal of the pseudo-prospective trial 

framework, which is described in the following section. 

4.4. Study 4: Development of the Pseudo-prospective Trial 

This study proposes a novel evaluation design framework for CPMs to improve parity between 

CPM evaluation design and expected implemented behavior of CPM-based CDS by factoring in 

the behaviors of the CPM-based CDS into the evaluation design. 

4.4.1. Introduction 

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to 

infection.118 In 2017, sepsis was responsible for 5.8% of all hospital stays and $38.2 billion in 
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hospital costs.163 Moreover, sepsis has a high mortality rate, and was found to be implicated in 

about one in every three inpatient deaths.164 

Early and effective therapy is critical in the management of septic patients, as prolonged 

recognition and delayed treatment increases mortality.165, 166 As a result, there is an abundance of 

literature focusing on the early detection and prediction of sepsis through traditional or newly 

developed scoring systems such as Systemic Inflammatory Response Syndrome (SIRS) score, 

National Early Warning Score (NEWS), or quick Sequential Organ Failure Assessment 

(qSOFA) score; or more recently through the use of machine learning models.121, 127, 167 Most of 

these efforts focus on the Emergency Department (ED) or Intensive Care Unit settings which are 

data-rich and have a higher prevalence of sepsis compared to the general ward setting.168-170 

However, patients who develop sepsis in the general ward setting have worse outcomes 

compared to those who develop sepsis in the ED or ICU.171 Because general ward patients are 

observed less closely than in the ED or ICU setting with fewer vital signs documented and 

laboratory tests performed, they represent a proportionally more vulnerable population that could 

benefit more from an augmented sepsis early warning system. Therefore, the objective of this 

study was to develop a machine learning model for predicting sepsis in the general ward setting, 

compare its performance to commonly used instruments for sepsis surveillance such as SIRS and 

NEWS, and extend the model evaluation using a novel simulated pseudo-prospective trial.150, 162 

4.4.2. Methods 

4.4.2.1. Study Design, Data Sources, and Population 

The model was developed and validated using EHR data from Barnes-Jewish Hospital / 

Washington University School of Medicine in St. Louis, a large, academic, tertiary-care 
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academic medical center. All patients ≥18 years of age that were admitted to the hospital 

between 1/1/2012 and 6/1/2019 were eligible for inclusion. Patients were excluded if they were 

admitted to the Psychiatry or Obstetrics services, due to highly variable rates of physiologic data 

collection. Encounters were excluded if there were no billing code, vital sign, laboratory, service, 

room, or medication data to indicate a complete patient stay. Encounters were also excluded if 

the total length of stay was below 12 hours or exceeded 30 days. After assignment of index time 

and prediction time, further exclusion criteria were applied based on that index time. (Appendix 

35) To focus on patients most likely to benefit from a risk prediction model, the following 

populations were excluded: patients who had cultures procured or received antibiotics within 48 

hours prior to prediction time; patients who had sepsis present on admission (by admission ICD 

code); and patients who were in the ICU within 24 hours prior to prediction time. To avoid 

conflation of post-surgical care with sepsis care, patients were ineligible if they had surgery 

within 72 hours prior to prediction time. To avoid predicting on patients with excessive 

missingness, encounters were also required to have at least 3 of each vital sign and at least one 

complete blood count and one basic or comprehensive metabolic panel test within 24 hours prior 

to prediction time (Appendix 36). This project was approved with a waiver of informed consent 

by the Washington University in St. Louis Institutional Review Board (IRB #201804121). 

4.4.2.2. Sepsis Definition 

Sepsis was defined using the Sepsis-3 implementation based on Suspicion of Infection (SOI) 

determined by concomitant antibiotics and cultures, and the Sequential Organ Failure 

Assessment (SOFA) score in the ICU setting, and qSOFA (quick SOFA) elsewhere (Appendix 

35).127, 172 Anti-infectives for SOI was limited to intravenous anti-infectives except oral 

vancomycin and metronidazole. In accordance with the Sepsis-3 criteria, SOI required either 
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antibiotics within 72 hours of culture collection, or culture collection within 24 hours of 

antibiotics.127 Time of Suspicion of Infection (TSOI) was the earlier of either antibiotic order start 

time or culture collection time.172 To meet sepsis criteria, the patient must have had a SOFA or 

qSOFA score ≥ 2, depending on location, between 48 hours prior to and 24 hours after TSOI. For 

sepsis cases, time of sepsis onset (TSepsis) was the same as TSOI.To facilitate model development, 

each encounter was assigned an index time (TIndex), which for sepsis encounters was TSepsis, and 

for non-sepsis encounters was 6-hours prior to the maximum of either 1) the midpoint between 

admission and discharge, or 2) 12 hours into admission. Time of prediction (TPrediction) was 6-

hours prior to index time (Appendix 35).  

4.4.2.3. Feature Generation and Engineering 

Features were generated from demographic, location, medication, vital sign, and laboratory data 

available until the time of prediction (Appendix 32, Appendix 33). Medications were mapped to 

classes and subcategories of the Multum MediSource Lexicon by Cerner (Denver, CO). 

Comorbidities were determined using ICD codes only from prior admissions, and were mapped 

using the Elixhauser comorbidity system.107 Time series data were summarized as various 

univariate statistics (max, mean, etc.) over multiple time horizons (3h, 6h, etc.). Measures of 

variance such as standard deviation were only computed if there were at least 4 measurements 

within the time horizon. Missing values, especially results of non-routine lab tests, were likely 

not missing at random but as a result of clinical judgment, thus were kept as is (Appendix 34). 

Features with > 75% missingness, however, were excluded as they are unlikely to improve 

performance. For models that required fully non-null input, mean-imputation was used. 
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4.4.2.4. Model Development 

Patient encounters were split at the patient-level to avoid “identity confounding” into train (75%) 

and test sets (25%).32 Data transformation parameters were generated based on the training set 

then applied to both sets. Random search with repeated cross-validation on the training set was 

used to tune hyperparameters of an eXtreme Gradient Boosting (XGBoost) model, and the 

optimal combination was used for training on the full training set (Appendix 38).173  Feature 

importance for the optimized XGBoost model (XGB opt) was estimated using the well-validated 

SHAP approach, a method of credit attribution based on coalitional game theory with useful 

properties such as additivity and the ability to provide explanations for individual predictions.96 

To condense the model into one that is easier to transport and implement, a “lite” version of the 

XGBoost model (XGB lite) was created using a small subset of features based on the sum of 

absolute SHAP values across the training set (Appendix 40). For comparison, an XGBoost 

model with default parameters (XGB unopt) was trained, as was a logistic regression model 

with l2 regularization (LogReg, Appendix 41). 

4.4.2.5. Model Performance 

The trained models were compared against the Systemic Inflammatory Response Syndrome 

(SIRS) score, National Early Warning Score 2 (NEWS2), and quick Sequential Organ Failure 

Assessment (qSOFA) score.121, 127, 167, 174 Using data from within the 24-hour time window 

preceding prediction time, SIRS was calculated as the highest score occurring within a 1-hour 

sliding window; NEWS2 was calculated using the last available measurements; and qSOFA was 

calculated using the most abnormal measurements. For SIRS, NEWS2, and qSOFA, lack of 

measurements was interpreted as normal. 
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Performance of the model was evaluated on bootstrap samples of the test set. Evaluated metrics 

include (area under) Receiver Operating Characteristic curve (AUROC) and (area under) 

Precision Recall Curve (AUPRC). Model calibration was assessed by binning the test set into 

deciles of predicted risk and comparing their predicted probability of sepsis with actual 

proportion of sepsis cases. Impact of threshold selection was visualized by plotting performance 

metrics (specificity, sensitivity, etc.) against the probability threshold. 

4.4.2.6. Pseudo-prospective Trial 

While the model was trained and evaluated on a single time point per encounter, real world 

implementation would likely involve continuous risk prediction throughout patient encounters. 

To better understand the implemented performance of the best performing sepsis prediction 

algorithm, the model was applied hourly to patient encounters in the test set spanning full 

admission duration. Patients whose model prediction crossed the threshold maximizing F1 score 

(harmonic mean of precision and recall) will hereby referred to as having been “alerted on,” and 

for those, “alert time” was defined as the first alert instance for the encounter. For each patient-

hour, time-sensitive exclusion criteria (e.g., not in the general ward or already on anti-infectives) 

were applied again to remove inappropriate alerts. First, the cross tabulation of sepsis status and 

alert status was generated. Then, among the alerted on, we assessed the proportion of encounters 

with the following sepsis-related interventions and outcomes: sepsis-relevant culture collection, 

sepsis-relevant anti-infective administration, ventilator initiation, ICU transfer, sepsis onset, or 

death. 

4.4.2.7. Statistical Analysis 

Variables were summarized using frequencies and proportions for categorical data or medians 

and interquartile ranges (IQR) for continuous data. Statistical comparisons were performed using 
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the Chi-square and Mann-Whitney U tests where appropriate. A p value < 0.01 was considered 

statistically significant. Analysis and figure generation were performed with Python version 3.7.1 

(Python Software Foundation, Beaverton, OR) using the following packages: scipy, numpy, 

pandas, matplotlib, sklearn, xgboost, and shap.77, 97-99, 173, 175, 176 

4.4.3. Results 

4.4.3.1. Patient Population 

From the initial inpatient population of 401,235 encounters, 331,201 met exclusion criteria, 

leaving 70,034 encounters in the final cohort (Appendix 36). Application of the Sepsis-3 criteria 

identified 2,206 (3.1%) septic patient encounters. Sepsis patients were slightly older (65.6 [56.3 

– 74.3] vs. 60.8 [49.4 – 71.2], p < 0.01), more likely to be white (71.3% vs. 61.8%, p < 0.01), 

had a higher Elixhauser comorbidity score (19 [10 – 29] vs. 9 [1 – 17], p < 0.01), a longer length 

of stay (12.9 [8.0 – 19.3] vs. 3.9 [2.3 – 6.7], p < 0.01), and higher inpatient mortality (16.6% vs. 

0.8%, p < 0.01) (Table 13, Appendix 37). 
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Table 13. Cohort characteristics 

Variable Total Sepsis Non–sepsis pa 

Number of encounters, n (%) 70,034 (100.0%) 2,206 (3.1%) 67,828 (96.9%) < 0.01 * 

Age (years), median (IQR) 61.0 (49.6 – 71.3) 65.5 (56.3 – 74.3) 60.8 (49.4 – 71.2) < 0.01 * 

Sex (female), n (%) 32,751 (46.8%) 992 (45.0%) 31,759 (46.8%) 0.090  

Race, n (%)    < 0.01 * 

     White, n (%) 43,516 (62.1%) 1,573 (71.3%) 41,943 (61.8%) < 0.01 * 

     Other/unknown, n (%) 3,787 (5.4%) 129 (5.8%) 3,658 (5.4%) 0.378  

     Black, n (%) 22,285 (31.8%) 487 (22.1%) 21,798 (32.1%) < 0.01 * 

     Asian, n (%) 446 (0.6%) 17 (0.8%) 429 (0.6%) 0.505  

BMI, median (IQR) 27.6 (23.5 – 33.0) 27.2 (23.1 – 33.4) 27.6 (23.5 – 33.0) 0.252  

Admitted through ED, n (%) 33,364 (47.6%) 747 (33.9%) 32,617 (48.1%) < 0.01 * 

LOS (days), median (IQR) 3.9 (2.4 – 7.0) 12.9 (8.0 – 19.3) 3.9 (2.3 – 6.7) < 0.01 * 

Discharge disposition    < 0.01 * 

     Home, n (%) 59,367 (84.8%) 1,185 (53.7%) 58,182 (85.8%) < 0.01 * 

     Hospice, n (%) 854 (1.2%) 88 (4.0%) 766 (1.1%) < 0.01 * 

     Acute care facility, n (%) 436 (0.6%) 17 (0.8%) 419 (0.6%) 0.447  

     Nonacute care facility, n (%) 8,234 (11.8%) 539 (24.4%) 7,695 (11.3%) < 0.01 * 

     In–hospital death, n (%) 889 (1.3%) 367 (16.6%) 522 (0.8%) < 0.01 * 

     Other, n (%) 254 (0.4%) 10 (0.5%) 244 (0.4%) 0.589  

Sepsis discharge ICD codeb    < 0.01 * 

     Sepsis, n (%) 1,049 (1.5%) 543 (24.6%) 506 (0.7%) < 0.01 * 

     Severe sepsis, n (%) 510 (0.7%) 358 (16.2%) 152 (0.2%) < 0.01 * 

     Septic shock, n (%) 378 (0.5%) 293 (13.3%) 85 (0.1%) < 0.01 * 

30–day readmission, n (%) 14,817 (21.2%) 440 (19.9%) 14,377 (21.2%) 0.165  

Elixhauser comorbidity score, 

median (IQR)c 
9 (1 – 18) 19 (10 – 29) 9 (1 – 17) < 0.01 * 

Abbreviations: BMI, body mass index; ED, emergency department; LOS, length of stay; ICD, International 

Classification of Diseases. 

a Comparison of variables between sepsis and non-sepsis cohort was performed using Mann-Whitney U test for 

continuous variables, and 𝜒2 for categorical variables. Statistical significance (p < 0.01) is denoted by *. 
b Based on sepsis discharge ICD code list from Buchman, Critical Care Medicine, 2020. 
c Based on Elixhauser comorbidity weights from Moore, Medical Care, 2017 

4.4.3.2. Model Performance 

The optimized XGBoost model (XGB opt) using all 1,071 features had the highest AUROC 

(0.862 ± 0.011) and AUPRC (0.294 ± 0.021), compared to the unoptimized XGBoost model 

(XGB unopt), logistic regression (LogReg), and the lite XGBoost model (XGB lite) all of which 
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had similar performances only slightly worse than XGB opt (Figure 21, Appendix 42). Scoring 

systems, however, had significantly lower performance with a loss in AUROC over 0.150. 

 

Figure 21. Model Performance: ROC and PR curves 

The solid lines represent the 50th percentile curves based on 20 bootstrap (full resampling with replacement) 

iterations of the test dataset, and the shaded regions represent the area between the 25th and 75th percentiles. 

Abbreviations: AUROC, area under receiver operating characteristic curve; AUPRC, area under precision recall 

curve; XGB opt, optimized XGBoost model; XGB lite, simple XGBoost model; XGB unopt, unoptimized, out-of-

the-box XGBoost model; LogReg, logistic regression; NEWS2, National Early Warning Score 2; qSOFA, quick 

Sequential Organ Failure Assessment; SIRS, Systemic Inflammatory Response Syndrome.  

 

 

The top five most impactful features for the optimized XGBoost model were found to be: time 

from admission to prediction time, NEWS2 score, age, qSOFA score, and maximum respiratory 

rate within 48 hours prior to prediction time (Figure 22). The calibration curve yielded an r2 

value of 0.837 (Appendix 42). The threshold plot demonstrates the tradeoff between precision 

and recall and revealed highest F1 score (0.346) to be at a threshold of around 0.137 (Figure 23).  
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Figure 22. SHAP feature importance 

Comparison of variables between sepsis and non-sepsis cohort was performed using Mann-Whitney U test for 

continuous variables, and 𝜒2 for categorical variables. Statistical significance (p < 0.01) is denoted by *. 

Abbreviations: qSOFA, quick sequential organ failure assessment; NEWS2, national early warning system 2; SBP, 

systolic blood pressure; WBC, white blood cell count; MAP, mean arterial pressure. 
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Figure 23. Threshold plot for optimized XGBoost model 

The test set was bootstrapped (full resampling with replacement) 20 times and various performance metrics (recall, 

precision, specificity, and F1) were plotted against threshold value. For each metric, the line and shaded area 

represents the median and IQR. A vertical black line was drawn at the threshold maximizing F1 score. 

 

 

4.4.3.3. Pseudo-Prospective Trial 

The EHR data of 17,441 encounters in the test set (557 sepsis encounters and 16,884 non-sepsis 

encounters) were binned hourly into 2,387,482 patient-hours. After exclusions, 3,532 encounters 

were alerted upon, of which 388 met sepsis criteria (11.0% PPV, Appendix 42). Of the 557 

sepsis encounters, 388 were alerted upon (69.7% sensitivity). Of the 13,740 non-sepsis 

encounters, 3,144 were alerted upon (81.4% specificity).  

Of the 3,532 alerted encounters, from the time of the first alert, within 48 hours, 23.9% had 

sepsis-relevant cultures drawn, 13.2% received sepsis-relevant anti-infectives, 2.5% had 



103 

 

ventilator initiated, 6.9% experienced sepsis onset, 4.7% were transferred to ICU, and 0.6% died 

(Table 14, Appendix 45). Altogether, 29.1% of experienced a sepsis-related intervention or 

outcome within 48h of first alert. 

Table 14. Pseudoprospective trial, outcomes for alerted subjects 

Intervention or Outcome within 24h within 48h within 72h 

Sepsis-relevant Cultures 600 (17.0%) 843 (23.9%) 1,018 (28.8%) 

Sepsis-relevant Anti-infectives 286 (8.1%) 466 (13.2%) 591 (16.7%) 

Ventilator Initiation 51 (1.4%) 87 (2.5%) 119 (3.4%) 

Sepsis Onset 182 (5.2%) 245 (6.9%) 291 (8.2%) 

ICU Transfer 112 (3.2%) 167 (4.7%) 209 (5.9%) 

Death 8 (0.2%) 21 (0.6%) 36 (1.0%) 

Total 739 (20.9%) 1,028 (29.1%) 1,237 (35.0%) 
Of the patients who crossed the set threshold in the pseudoprospective trial, and of those who were not already 

suspected of or being treated for sepsis, sepsis-related interventions and outcomes within various time horizons were 

identified. 

 

 

Visualizations of sample patient trajectories alongside hourly predicted sepsis risk scores 

facilitated inspections of model successes and failures (Appendix 46). 

4.4.4. Discussion 

The objective of this study was to develop a machine learning model capable of predicting sepsis 

6-hours ahead of clinical onset using one of the largest inpatient EHR datasets. Unlike most other 

sepsis prediction studies which focus on the data-rich ICU or ED setting, this study focused on 

the general ward setting where the prediction task is made especially challenging due to the 

sparsity of data and low prevalence.177 Moreover, the cohort criteria excluded patients who were 

already suspected of, or were being treated for sepsis, as a clinical prediction model is unlikely to 

benefit these patients. The resultant cohort represents patients who were not captured by clinical 

judgment, and thus could benefit from clinical decision support. Further, this study provides a 
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novel way of better estimating real world performance through the assessment of a pseudo-

prospective trial. 

Excluding patients who were suspected of or were already being treated for sepsis, alongside 

several other exclusion criteria, resulted in the elimination of the majority of inpatients from the 

initial population (Appendix 36). As a result, the retained sepsis cohort are likely cases of 

hospital-acquired sepsis or community-acquired sepsis with delayed recognition. Though the 

restrictive exclusion criteria may limit generalizability, the resultant cohort is more likely to 

benefit from an automated warning system. 

We compared the performance of several machine learning models as well as traditional scoring 

systems and found the optimized XGBoost to have the best AUROC and AUPRC for detecting 

sepsis ahead of meeting traditional diagnostic criteria. The “lite” model used on 25 features and 

had similar diagnostic performance.  

Of the important features as determined by SHAP, time from admission to prediction time was 

the most important, indicating that prolonged length of stay is both a risk factor and outcome for 

sepsis. qSOFA and NEWS2 scores were also important predictors, demonstrating the utility of 

these scores as features though deficient on their own. Admission through the ED was associated 

with a lower probability of sepsis, likely due to the emphasis on sepsis screening in the ED 

setting. Interestingly, while most medication information was not important for the model, 

anticonvulsants had a surprisingly high SHAP value with sepsis patients receiving 

“anticonvulsants” about 10% more frequently than non-sepsis patients (46.6% vs. 36.6%, Figure 

22). However, the Multum classification for anticonvulsants included medications such as 

magnesium sulfate and lorazepam which are not always used as anticonvulsants, thus more work 

is needed on automated feature generation from medication data. Another unexpectedly 
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important feature was the Coombs test, which is unlikely to be related to sepsis, but had 

noticeably different rates of missingness between sepsis and non-sepsis patients (60.1% for 

sepsis vs. 70.3% for non-sepsis, Figure 22). Comorbidities from prior admissions were 

noticeably absent from the list of important features, likely because 46.3% of all encounters were 

first encounters and did not have any prior admissions. It’s possible that the importance of 

comorbidities as features may rise with time, with larger populations with longer histories being 

collected in the electronic health record and the ability to retrieve information cross-sites. 

The pseudo-prospective trial demonstrated a novel approach to better estimating real-world 

model performance and showed that 29.1% of alerted on patients required sepsis-related 

intervention or had a sepsis-related outcome within 48h (Table 14). While the algorithm was 

capable of identifying patients who ultimately required cultures (39.0%) and anti-infectives 

(28.1%), the actual incidence of Sepsis-3 onset after patients were alerted on was relatively low 

(11.0% at any point after and 6.9% within 48h). This may be due to problems in labeling – 

despite our attempt to exclude surgical patients from the cohort, they are not capable of being 

excluded in a prospective basis, and frequently met sepsis criteria. Moreover, alerted on patients 

may be critically ill and treated for sepsis but not meet Sepsis-3 criteria. Also, many patients who 

present to the ED have higher scores which improve through interventions, but then have scores 

that rise again later during the hospital course. Since only the first time a patient crossed the 

sepsis threshold was evaluated here, the subsequent and potentially more important clinical 

changes would be missed. The pseudo-prospective trial highlights some of the anticipated 

challenges of translating a diagnostic scoring method from a retrospective data set to a 

prospective population, which necessitates further investigation.  
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Impressively, the unoptimized XGBoost solution had a median AUROC just 5% lower than the 

optimized version, and similar performance to the optimized logistic regression model and the 

lite XGBoost model. The relatively small benefit conferred by the more complex model 

compared to logistic regression is consistent with prior literature.160 If the added complexity is 

problematic – for interpretability, debugging, or implementation – then it could be argued that 

the simpler logistic regression model is preferred despite the performance loss. Though NEWS2 

and qSOFA were very important features in XGBoost, the gap between traditional scoring 

systems and machine learning models was noticeable with the worst ML model conferring a 

15.1% AUROC improvement over the best traditional scoring system.  

This study has limited generalizability as a single institution study. The study used an 

interpretation of the Sepsis-3 definition and is likely to generalize poorly to sites using alternate 

definitions.118, 127, 172 By design, the study was focused on the general ward setting, and the 

results are not applicable to other settings. Many of the excluded subpopulations (children, 

surgical, etc.) warrant further investigation. While a pseudo-prospective trial was performed, a 

true prospective study is needed to gauge real-world performance. The pseudo-prospective trial 

could be further improved by investigating repeated alerts, incorporating alert lock-out periods, 

accounting for measurement-to-documentation time gap, etc. For the pseudo-prospective trial, a 

threshold was assigned to maximize the F1 score. However, further work is necessary to define 

an operationally meaningful threshold. For the calculation of the qSOFA score, GCS was 

missing in our dataset and assumed normal, which may negatively impact the sepsis label 

assignment process. However, Seymour et al. found that the lack of GCS in the VA dataset did 

not significantly reduce the predictive validity of qSOFA.127 As is typical of studies using 
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electronic health records data, there were and likely remain problems concerning missingness 

and accuracy of clinical data. 

4.4.5. Conclusion 

A machine learning model designed to predict sepsis 6-hours ahead of meeting diagnostic 

criteria yielded an AUROC of 0.862 ± 0.011 and AUPRC of 0.294 ± 0.021. Pseudo-prospective 

evaluation of the model meaningfully expanded the understanding of model performance, and 

revealed relatively good clinical performance, despite a large class imbalance. 

4.5. Discussion and Conclusion 

The aim of this chapter was to identify, assess the impact of, and propose solutions for the 

disparity between the evaluation design conducted by the CPM development organization and 

the expected implementation behavior of the CPM-based CDS in the adopting organization, 

resulting in incomparable performance metrics and confusing the assessment of CPM 

transportability, thus limiting CPM transportability. Implementation behavior includes 

temporality of CPM executions as well as those specific to CPM-based CDS such as alert 

snoozing behavior. These factors are rarely considered in silico yet can have critical impact on 

the success of CPM-based CDS in vivo, thus must be considered in silico as well. To provide a 

framework for uniting and extending the individual and independent efforts in incorporating 

these implementation factors into CPM evaluation design, we proposed the novel pseudo-

prospective trial, a DES-like simulation framework for assessing CPM behavior over time which 

allows for the incorporation of various, time-varying implementation factors into the in silico 

evaluation process. It’s found that the pseudo-prospective trial significantly enhances and 

extends CPM performance understanding, thus shows promise as a tool for bringing parity 
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between the CPM evaluation design and the expected implementation behavior of the CPM-

based CDS. Organizations seeking to adopt an externally developed CPM and implement as a 

CDS should first identify how a CPM is likely to implemented as a CDS in their workflow, and 

assess parity between expected implementation behavior and the evaluation design carried out by 

the CPM development team. If significant disparities are present, the adopting organization must 

understand that the performance metrics reported by the CPM development team cannot be 

interpreted directly, and if possible, request a re-evaluation that does take into account the 

implementation factors based on expected CPM-based CDS behavior.  
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Chapter 5. Development of the APT Checklist 

5.1. Introduction 

 

Figure 24. Chapter 5 Overview 
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The objective of this chapter is to describe the development of the Assessment of Clinical 

Prediction Model Transportability (APT) Checklist. As described in chapter 1, external 

implementation of CPMs or conversely, adoption of externally developed CPMs has numerous 

potential benefits such as the de-duplication of CPM development efforts, enabling of low-

resource organizations to participate in the usage of modern CPMs, facilitating external 

validation studies, and overall, encouraging collaborative development of CPMs. While these 

efforts have been hindered by the lack of health IT interoperability in the past, modern efforts in 

policy, standards, and tools increasingly ease the adoption of externally developed CPMs. 

However, naïve implementation of externally developed CPMs can result in significantly 

degraded performance or lack of transportability. Thus, the assessment of CPM transportability 

is critically important in enabling this new paradigm of open sharing and adoption of CPMs. 

While there is a wealth of research on machine learning model generalizability and 

transportability including subjects such as data drift, methods for estimating external validity, 

and model updating methods; and while there are numerous frameworks guiding the 

development, evaluation, reporting, and systematic review of CPMs; there are no frameworks for 

assessing the transportability of CPMs. So, the objective of this dissertation and this chapter is 

simply to address this gap by proposing a novel framework for the assessment of CPM 

transportability. Broadly, the success of CDS based on an externally developed CPM can be 

impacted by a wide variety of factors such as resource availability – human, technical, financial, 

or otherwise – or the culture surrounding use of ML/AI at the adopting organization. For the 

purpose of this dissertation, the scope was limited to matters concerning the development of 

CPMs. To that end, first, extant CPM-associated frameworks were synthesized to identify the 

key dimensions of CPM development, finding three domains to be fruitful targets of 
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interrogation: feature, target, and evaluation; each comprising a specific aim and chapter of the 

dissertation. Altogether, four studies were conducted as part of these chapters and aims, each 

identifying, characterizing, and/or propose solutions for challenges to transportability of CPMs. 

The findings and innovations of these studies – as described in chapters 2, 3, and 4 – are 

integrated into and merged with the synthesis of extant CPM-associated frameworks, resulting in 

the novel APT checklist. While rigorous evaluation of the framework remains future work, the 

checklist shows promise as a tool for CPM adopting organizations to evaluate the transportability 

of candidate CPMs. 

5.2. Overview 

Structurally, this chapter will begin by reiterating the motivating objectives as has already been 

done in the preceding section, followed by a background section on the following topics – 

frameworks in biomedical informatics and barriers to success of CPM-based CDS. Then, the 

methods and results of this chapter are presented including the synthesis of extant CPM 

frameworks, findings and innovations from each study conducted as part of this dissertation, and 

the integration of the latter into the former, culminating in the development of the APT checklist.  

5.3. Background and Significance 

5.3.1. Frameworks in Biomedical Informatics 

There are many different ways to approach a critical problem in the domain of biomedical 

informatics such as CPM transportability. One such way is to, for example, focus on a narrow 

problem within CPM transportability, developing and comparing methods for CPM updating in 

response to data drift.38 Another broader approach for addressing biomedical informatics 
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problems, which has been prescribed by the board of the American Medical Informatics 

Association as a core competency as a fundamental scientific skill for students of the discipline, 

is the creation of novel frameworks.178 This dissertation addresses the biomedical informatics 

problem of CPM non-generalizability through the development of a novel framework in the form 

of a checklist. 

While a single universal definition is elusive, especially in comparison to the idea of theories or 

models, frameworks are tools created to “characterize, describe, guide, analyze, and evaluate 

phenomena and processes.” 179 Frameworks can be used to predict and explain phenomena or 

describe and guide practice, can take the form of checklists, and can be evaluative.180 Given the 

diversity of problems that are the subject of biomedical informatics research, there is an 

accompanying diversity of theories, frameworks, and tools employed or developed by 

researchers and practitioners of biomedical informatics. Many relate to the adoption or 

implementation of information technologies in healthcare – the APT checklist proposed in this 

dissertation is certainly associated to frameworks on technology acceptance or implementation 

science.180-183 While there are no frameworks specifically for the assessment of CPM 

transportability, there are those in the vicinity for the purposes of CPM development, 

comparative evaluation, reporting, and systematic reviews such as TRIPOD, CHARMS, 

PROBAST, and GRASP.43-46 The APT checklist draws and builds on these frameworks as 

described in the methods and results section of this chapter. Through the interrogation of 

literature – including those describing frameworks – on the implementation of CPM-based CDS, 

concerns beyond those addressed by this dissertation were surfaced, which is the subject of the 

following section. 
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5.3.2. Barriers to Success of CPM-based CDS 

As described in chapter 1, the focus of this dissertation is on CPM transportability – whether a 

CPM could maintain commensurate performance and clinical utility on completely external 

populations. However, CPMs are rarely products in and of themselves to be used directly by end-

users, but rather require packaging into a CDS and incorporated into clinical workflows.184 As 

such, success of CPM depends on a constellation of factors beyond those specific to the 

development and evaluation of CPMs or the subject of this dissertation (Figure 4). So, this 

section is intended to provide the background on these other critically important factors for the 

broader consideration of transportability, the clinical utility of CDS based on externally 

developed CPMs.  

Technological – Akin to McDermott’s concept of technical reproducibility, technological factors 

relate to the capacity of the adopting organization to faithfully re-implement the model.24 While 

simple linear regression models can be easily transported by publishing or otherwise providing 

the coefficients and intercept, more complex models may require additional work including 

directly sharing a frozen model, controlling the version of all dependencies, etc. Interoperability 

efforts, code sharing, proper documentation, and containerization can all help mitigate or 

overcome technological barriers to CPM adoption. 

Financial – Implementation, CDS follow-up, and maintenance all take non-trivial resources, 

especially if the infrastructure needs to be constructed rather than repurposed. Thus, CPM 

adoption efforts require institutional support including financial support. Ideally, the CPM-based 

CDS would be self-sustaining by encouraging behavior that is money-saving for the health 

system such as reducing readmissions. However, the direct return on investment may be difficult 
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to ascertain, only be realized long-term, or worse, may actually be negative even while 

improving patient care (e.g., reducing unnecessary but lucrative tests). To reduce the likelihood 

of project stalling or abandonment, the CPM adoption effort should be aligned with the vision of 

the institution and their funding mechanisms, which may be doubly aligned with national quality 

improvement programs with financial incentives.21 

Cultural – The landscape of opinion on CDS, especially those involving predictive models using 

ML/AI, is complex. On one hand, the excitement of augmenting clinical decision support using 

modern computational hardware and software still burns bright. However, the imposition of EHR 

adoption, coupled with usability issues, increased documentation load, and overuse of 

uninformative interruptive alerts have resulted in frustration with implemented CDS systems.185 

As such, additional efforts likely to result in more disruptive alerts are understandably met with 

weariness and skepticism. Further, there is resistance or even disdain for CDS perceived as 

overbearing due to the underlying presumption of a “cookbook medicine” framework, which is 

seen as taking autonomy and joy away from the practice of medicine.186 As such, the CPM 

adopting organization may not be culturally prepared for additional CPM-based CDS tools. 

Further, there may be subcultures within the institution – divided by specialty, role, age, etc. – 

which may be more or less receptive to CPM-based CDS. Thus it is critical to understand the 

culture of the institution and its stakeholders prior to CPM adoption. 

Personnel – Implementing, debugging, updating, reporting, and potentially performing further 

testing such as A/B testing or running prospective impact trials require varied and skilled 

workforce ranging from computer scientists, biomedical informaticists, to clinical subject matter 

experts as well as project managers, human-computer-interface design experts, statisticians, 

EHR-proficient software engineers, and so on. Further, the CPM-based CDS workflow may 
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involve follow-up by specialized personnel such as rapid response nursing which may require 

staffing up. In sum, insufficient human resources could hinder CPM adoption. 

Ethico-Legal – First, the regulatory landscape of CPM as laid out by the FDA is still-evolving. 

While an in-depth discussion is beyond the scope of this discussion, the FDA is developing a 

framework for handling AI/ML-based Software as Medical Device (SaMD). Of note, one critical 

point of contention is the handling of adaptive models – CPM adoption may involve model fine-

tuning and/or updating which would change the model such that it is no longer the same as the 

explicitly approved model.187 Thus, ensuring that the CPM adoption effort conforms to 

regulatory standards as they evolve can be potentially challenging. Second is the concern of 

culpability when injury occurs based on faulty recommendations by CPMs. The current legal 

perspective is based on standard of care, but long-term incorporation of CPMs in clinical practice 

may make CPM usage as part of standard of care.188 While legal liability falls almost entirely on 

the provider, researchers have observed what has been termed automation bias in which 

providers overly trust recommendations from automated CDS. Thus, the stakeholders of the 

CPM adoption effort must be prepared to agree on, then shoulder the burden of ethical if not 

legal responsibilities of an active CPM-based CDS. Third and last is the issue of unfairness. 

Often CPMs are trained in high-resource, academic medical centers whose case-mix may be 

significantly different from the overall demographic, thus resulting in poor model performance 

for low-resource health systems or minority populations, which could be seen as exacerbating the 

inequality problem in the US healthcare system.  Identifying and reducing bias in CPMs is an 

active field of research (the details of which will be omitted here) which should be considered 

during a CPM adoption effort.189 
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Integration – Most CPM efforts are conceptualized as eventually translating into CDS in the 

form of interruptive alerts as they are most active form of decision support, demanding clinician 

attention, resulting in action or inaction that can be easily logged and analyzed.190 Many part of 

this manuscript presupposes CPM adoption efforts as alert implementation efforts. However, 

CDS can be more extreme by completely prohibiting clinicians from taking certain actions, or be 

more lax by simply proving the user with information with no incentives in either direction or 

requirement for follow-up.184 Further, there are many additional modifiable aspects of CPM-

based CDS in the integration into clinical workflow including the CDS user experience/interface 

design, intended user base, involved stakeholders, incentivization, follow-up action choices, and 

so on. Even when just talking about interruptive alerts, as discussed in chapter 4, they can have 

modifiable “snooze” periods, triggering action, triggering provider criteria, threshold selection, 

and so on. All of these integration factors can significantly impact CPM adoption success, thus 

must be carefully chosen. 

5.4. Methods 

5.4.1. Synthesis of Extant CPM-Associated Frameworks 

The first step in the development of the APT checklist was a review and synthesis of extant 

CPM-associated frameworks to determine the dimension of CPM development and evaluation 

that warrant investigation as to their impact on CPM transportability. To this end, four CPM 

frameworks were reviewed – TRIPOD, CHARMS, PROBAST, and GRASP.43-46 To enable the 

synthesis of these frameworks, each framework was converted to, if not already in the form of, a 

labeled list of items (Appendix 1, Appendix 2, Appendix 3, Appendix 4). This was then used 

to synthesize the frameworks into a single framework outlining the major categories of concerns 
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pertaining to CPM development and evaluation: background, population, target, modeling, 

evaluation, and validation (Table 1). Three of those (sub)-categories were determined to be 

fruitful targets of further investigation: target, feature, and evaluation. The base framework 

constructed through the synthesis of prior frameworks was then enriched through the findings 

and innovations discovered or proposed through the four studies that were conducted as part of 

this dissertation. 

5.4.2. Findings and Innovations from Aim 1 (Chapter 2) 

The objective of chapter 2, or specific aim 1, was to identify, characterize, and propose solutions 

for challenges to transportability of CPMs, specifically focusing on features used as input by 

CPMs. The first study found a class of features that are heavily influenced by site-specific factors 

such as hospital processes, documentation culture, and choice of hardware/software, termed HCP 

features as opposed to features based on the patient’s pathophysiology. These HCP features were 

found to contribute to the overfitting of CPMs, deceptively improving internal and estimated 

external performance at the cost of hurting actual external performance. Thus, the implication for 

the APT checklist and the recommendation for organizations seeking to adopt a CPM is to assess 

the presence and reliance of HCP features, and if heavily reliant, abandon or plan to update or 

retrain. In the second study, the insufficient coverage of EHR data by standards is proposed as a 

cause of CPM feature heterogeneity, and respiratory support methods was identified as an area of 

EHR data lacking standards. A novel classification system and an accompanying set of EHR-

agnostic heuristics was proposed to mine respiratory support episode information from EHR data 

in a standardized manner. The implication for the APT checklist and the recommendation for 

organizations seeking to adopt a CPM is to check if features are based on standards, and if not, 

check for the documentation of ad-hoc standards or at the least, a coherent method of mapping 
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from raw data to features. The recommendations based on the findings and innovations of the 

studies are integrated into the APT checklist as described in a later section. 

5.4.3. Findings and Innovations from Aim 2 (Chapter 3) 

The objective of chapter 3, or specific aim 2, was to identify, characterize, and propose solutions 

for challenges to transportability of CPMs, specifically focusing on features used as the 

prediction target by CPMs. For the study conducted as part of chapter 3, sources of target 

heterogeneity were stratified into two levels – the macro level having to do with disease 

definition and understanding, and the micro level relating to the specifics of the phenotyping 

criteria. For a complex, syndromic condition without a gold-standard diagnostic test commonly 

used as a target for CPMs – sepsis – we found significant heterogeneity in both the macro level 

as well as the micro level, resulting in significant heterogeneity in the sepsis cohorts’ patient 

characteristics as well as clinical outcomes. The implication for the APT checklist and the 

recommendation for organizations seeking to adopt a CPM is to assess agreement with the 

phenotyping approach used by the developers, both on a macro, definition-level and also on the 

micro, criteria-level. The recommendations based on the findings and innovations of the studies 

are integrated into the APT checklist as described in a later section. 

5.4.4. Findings and Innovations from Aim 3 (Chapter 4) 

The objective of chapter 4, or specific aim 3, was to identify, characterize, and propose solutions 

for challenges to transportability of CPMs, specifically focusing on evaluation design of CPMs. 

In the study conducted as part of chapter 4, disparities between the design of CPM evaluation 

performed by the developers and the expected behavior of CPM-based CDS once implemented, 

are hypothesized to impede the assessment of CPM transportability. For example, alert silencing 
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behavior is common in CPM-based CDS, but rarely integrated into the evaluation process. So, a 

novel simulation-based evaluative framework was proposed, termed the pseudo-prospective trial, 

which can facilitate the integration of these additional factors into the CDS evaluation process. It 

was found that the pseudo-prospective trial shows promise as a foundation for bringing parity 

between the CPM evaluation design and the expected implemented behavior of the CPM-based 

CDS. The implication for the APT checklist and the recommendation for organizations seeking 

to adopt a CPM is to assess the (dis)parity between the design of the evaluation carried out by the 

CPM development team and the expected behavior of the CDS based on the CPM once 

implemented such as through the pseudo-prospective trial. The recommendations based on the 

findings and innovations of the studies are integrated into the APT checklist as described in a 

later section. 

5.4.5. Assembly into the APT Checklist 

As previously described, the foundational framework was developed through the synthesis of the 

extant CPM-associated frameworks. The framework was then enriched with the 

recommendations based on the findings and innovations of the three chapters of the dissertation, 

each corresponding to one specific aim, all together comprising of four studies. Categories 

deemed out of scope for the dissertation were enriched through literature review as discussed in 

chapter 1. 

5.5. Results 

The APT checklist is a biomedical informatics framework intended to guide the assessment of 

CPM transportability, aimed toward those seeking to adopt an externally developed CPM (Table 

15). While potentially applicable to other models, this proposed checklist is primarily intended 
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for the acute care setting, and for supervised, binary classification, machine learning models. The 

APT checklist is comprised of 6 categories: background, population, target, modeling, 

evaluation, and validation; and contains 17 items in total. Of those items relevant to CPM 

development and evaluation, 15 were found to have implications for CPM transportability, and 

thus recommendations for each have been documented as a separate column for the checklist. 

Some of those recommendations are directly based on those identified through the conducting of 

the four studies contained in this dissertation. The remaining recommendations are based on 

prior literature, which some based on specific articles. The APT Checklist is as follows: 
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Table 15. The APT Checklist 

Category Description Transportability 

Background Study rationale, scope, purpose, use-case Alignment in vision for CPM usage 

Population Data source and study design (RCT, registry, 

etc.) 
Similar study setting, case mix, and proximity 

in time period 
Study setting and period 

Inclusion/eligibility criteria Ability to execute eligibility criteria 

Population characteristics 
Model transportability metrics (univariate or 

jointa) 

Target 
Outcome/target definition 

Parity of outcome concept, definition, and 

criteria, as well as ramifications of disparityb 

Modeling 
Predictor descriptions (type, what, when, etc.) 

Availability and syntactic parity of features 

Usage and parity of Health Care Process 

(HCP) featuresc 

Feature mapping to standards where 

available, otherwise specification of ad-hoc 

standardsd 

Missing data analysis and handling 

Predictor manipulation/feature engineering 

Model type Technological reproducibility 

Model training procedure including feature 

selection 
 

Model updating/recalibration Capacity and procedure to update/recalibratee 

Evaluation 

Model evaluation procedure 

Parity between evaluation procedure and 

intended use case as by, e.g. 

Pseudoprospective trial resultsf 

Interpretation of results   

Validation 
Extent of validation (internal, external) 

Investigate prior assessments of external 

validity 

Usability  

Impact (clinical effectiveness,  

patient safety, healthcare efficiency) 
  

aUsing e.g. adjMMD from Song (Nat Comm, 2020) 
bInvestigated in chapter 3, study 3 of this dissertation 
cInvestigated in chapter 2, study 1 of this dissertation 
dInvestigated in chapter 2, study 2 of this dissertation 
eUsing, e.g., approach by Davis (JAMIA, 2019) 
fInvestigated in chapter 4, study 4 of this dissertation 
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Chapter 6. Summary and Conclusions 

6.1. Summary 

Modern interoperability efforts in policy, standards, and tools increasingly facilitate external 

implementation of CPMs. Naïve external implementation, however, is prone to failure, resulting 

in significantly degraded performance when implemented. While there are ongoing research in 

ML model generalizability and while there numerous CPM-associated frameworks proposed to 

guide the development, comparative evaluation, and systematic reviews of CPMs, there are no 

frameworks designed to guide the assessment of CPM transportability. Thus, the objective of this 

dissertation was to address this critical gap in literature through the proposal of a novel 

framework specifically for the evaluation of CPM transportability. To that end, prior CPM-

associated frameworks were synthesized and reviewed, finding three categories worthy of 

targeted investigation – disparities in feature, target, and evaluation – each comprising a specific 

aim and chapter of the dissertation. In the three chapters, four studies were conducted, each 

identifying, assessing the impact of, and/or providing solutions for the barriers to CPM non-

transportability. Finally, recommendations based on the findings and innovations of the studies 

were assembled into the APT checklist, the primary innovation and contribution of this 

dissertation. 

6.1.1. Aim 1 

The objective of aim 1, chapter 2, was to identify, assess the impact of, and/or provide solutions 

to barriers of CPM transportability, focusing on the features used as inputs for CPMs. To that 

end, two studies were performed, the first of which identified the impact of HCP features on 
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external generalizability, finding that HCP features in fact reduce external generalizability 

compared to its foil, PP features. Implications for the APT checklist is that CPMs heavily reliant 

on HCPs must be avoided or there must be a plan to retrain. The second study, based on the idea 

that the lack of standards contribute to feature heterogeneity, proposed a novel classification 

system and heuristics for a section of EHR data previously not mapped by standards. 

Implications for the APT checklist is that for any given CPM, the path from raw data to features 

must be unambiguous and readily reproducible, ideally based on widely accepted standards, and 

if not, based on ad hoc standards or through transparent documentation. 

6.1.2. Aim 2 

The objective of aim 1, chapter 2, was to identify the causes and characterize the impact of 

heterogeneity in labels required for CPM development and its ramifications on CPM 

transportability. A study was conducted evaluating the variability in sepsis definitions, 

phenotyping criteria, and cohort characteristics – finding significant heterogeneity in all levels, 

highlighting the fragility of such clinical phenotyping approaches. Implications for the APT 

checklist is that differences between target labeling approaches must be identified and assessed if 

significant enough to warrant abandonment, re-evaluation, or re-training.  

6.1.3. Aim 3 

The objective of aim 1, chapter 2, was to characterize and provide solutions for heterogeneity in 

the framing of CPM evaluation approaches by bridging the gap between CPM evaluation design 

and expected implemented behavior of CPM-based CDS. Identifying the gap between CPM 

evaluation and expected implementation behavior of CPM-based CDS, a study was conducted 

proposing and demonstrating a novel evaluation framework termed the pseudo-prospective trial. 



124 

 

Implications for the APT checklist is that disagreements on how a CPM was evaluated and how 

it’s intended to be used can make irrelevant the evaluation results including measures of 

performance. First, those disagreements must be identified, and if deemed significant, the CPM 

in question must be re-evaluated with the implementation behavior factors integrated into the 

design. 

6.2. Findings and Innovations 

The primary and overall contribution of this dissertation is the proposal of a novel framework 

called the APT Checklist for guiding CPM adoption through the evaluation of CPM 

transportability. Secondary findings and innovations include those from individual studies within 

the chapters based on specific aims, chapters 2, 3, and 4. In study 1, HCP variables were found 

as a driver of CPM non-transportability. In study 2, the fragility of clinical phenotyping often 

used to identify prediction targets for CPMs was found in the context of sepsis. In study 3, a 

novel classification system and meta-heuristics for a section of EHR data previously lacking in 

standards – respiratory support methods – was proposed and evaluated. Finally, in chapter 4, a 

novel CPM evaluation design termed the pseudo-prospective trial was developed and 

demonstrated using sepsis prediction in the general ward setting as the clinical backdrop. 

Overall, this work contributes to the body of biomedical informatics literature guiding the 

success of informatics interventions. 

6.3. Contribution to Informatics 

Comparative evaluation of biomedical informatics solutions is critical to the success and 

advancement of the discipline. However, despite the proliferation of CPMs and the increasing 

ease of cross-site implementation, there are no frameworks guiding the evaluation of CPM 
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transportability. This dissertation addresses this critical lack in literature by proposing a novel 

framework for CPM transportability intended for use by those seeking to adopt externally 

developed CPMs. While further iteration and evaluation remains future work, the checklist 

shows promise as a tool for reducing the risk of adopting non-transportable CPMs. 

6.4. Future Directions 

First and foremost, rigorous meta-evaluation of the APT checklist remains future work. Overall, 

the evaluation should focus on assessing whether adhering to the recommendations made by the 

framework indeed reduces CPM non-generalizability across multiple settings, compared to other 

competing frameworks. In addition, further iteration and refine of the APT checklist can be 

performed through merging with frameworks in the non-clinical ML discipline, by regular 

reviews of the CPM literature, or by conducting studies targeting high-yield problems in CPM 

transportability. Also, since the APT checklist was developed primarily for binary classification 

ML models using EHR data to be used in the acute care setting, the scope of inquiry could be 

expanded to include other types of CPMs used in healthcare. Finally, since the APT checklist 

was intended for use by those seeking to adopt an externally developed CPM, the checklist could 

be re-interpreted as a didactic tool for CPM developers instead. 

6.5. Conclusion 

The overall objective of this dissertation was to address a critical gap in literature through the 

proposal of a novel framework for the evaluation of CPM transportability. To that end, four 

extant CPM-associated frameworks – TRIPOD, CHARMS, PROBAST, and GRASP – were 

synthesized and reviewed, finding the following domains worthy of further, targeted 

investigations: feature, target, and evaluation. For these three specific aims, four studies were 
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conducted in total, each addressing disparities between the CPM development site and the 

external implementation site that give rise to CPM non-transportability. Recommendations based 

on the findings and innovations from these studies were then incorporated into the synthesis of 

prior CPM frameworks, resulting in the novel APT checklist, shows promise as a as a tool for 

reducing the risk of adopting non-transportable CPMs.  
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References of Included Studies 

Study 1 is in preparation for publication and has not yet been published. Study 2 has been 

published in the Journal of American Medical Informatics Association in 2022.191 Study 3 has 

been published in Critical Care Medicine in 2021.192 Study 4 has been published in the Frontiers 

of Digital Health in 2022.193  
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Appendices 

Appendix 1. TRIPOD 

Section/Topic Item Checklist Item 

Title and abstract 

Title 1 Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted. 

Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and 

conclusions. 

Introduction 

Background and 
objectives 

3a Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable 
prediction model, including references to existing models. 

3b Specify the objectives, including whether the study describes the development or validation of the model or both. 

Methods 

Source of data 4a Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation 

data sets, if applicable. 

4b Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.  

Participants 5a Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres. 

5b Describe eligibility criteria for participants.  

5c Give details of treatments received, if relevant.  

Outcome 6a Clearly define the outcome that is predicted by the prediction model, including how and when assessed.  

6b Report any actions to blind assessment of the outcome to be predicted.  

Predictors 7a Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were 
measured. 

7b Report any actions to blind assessment of predictors for the outcome and other predictors.  

Sample size 8 Explain how the study size was arrived at. 

Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any 

imputation method.  

Statistical 

analysis 
methods 

10a Describe how predictors were handled in the analyses.  

10b Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation. 

10c For validation, describe how the predictions were calculated.  

10d Specify all measures used to assess model performance and, if relevant, to compare multiple models.  

10e Describe any model updating (e.g., recalibration) arising from the validation, if done. 

Risk groups 11 Provide details on how risk groups were created, if done.  

Development 

vs. validation 

12 For validation, identify any differences from the development data in setting, eligibility criteria, outcome, and predictors.  

Results 

Participants 13a Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a 
summary of the follow-up time. A diagram may be helpful.  

13b Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of 

participants with missing data for predictors and outcome.  

13c For validation, show a comparison with the development data of the distribution of important variables (demographics, predictors and 

outcome).  

Model 
development  

14a Specify the number of participants and outcome events in each analysis.  

14b If done, report the unadjusted association between each candidate predictor and outcome. 

Model 
specification 

15a Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline 
survival at a given time point). 

15b Explain how to the use the prediction model. 

Model 

performance 

16 Report performance measures (with CIs) for the prediction model. 

Model-updating 17 If done, report the results from any model updating (i.e., model specification, model performance). 

Discussion 

Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).  

Interpretation 19a For validation, discuss the results with reference to performance in the development data, and any other validation data.  

19b Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, and other relevant evidence.  

Implications 20 Discuss the potential clinical use of the model and implications for future research.  

Other information 

Supplementary 

information 

21 Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.  

Funding 22 Give the source of funding and the role of the funders for the present study.  
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Appendix 2. CHARMS 

Domain # Key items 

  

SOURCE OF DATA 1 Source of data (e.g., cohort, case-control, randomized trial participants, or registry data) 

PARTICIPANTS 2 Participant eligibility and recruitment method (e.g., consecutive participants, location, number of centers, 

setting, inclusion and exclusion criteria) 

3 Participant description 

4 Details of treatments received, if relevant 

5 Study dates 

OUTCOME(S) TO 

BE PREDICTED 

6 Definition and method for measurement of outcome 

7 Was the same outcome definition (and method for measurement) used in all patients? 

8 Type of outcome (e.g., single or combined endpoints) 

9 Was the outcome assessed without knowledge of the candidate predictors (i.e., blinded)? 

10 Were candidate predictors part of the outcome (e.g., in panel or consensus diagnosis)? 

11 Time of outcome occurrence or summary of duration of follow-up 

CANDIDATE 

PREDICTORS  

12 Number and type of predictors (e.g., demographics, patient history, physical examination, additional testing, 

disease  characteristics) 

(OR INDEX TESTS) 13 Definition and method for measurement of candidate predictors 

  14 Timing of predictor measurement (e.g., at patient presentation, at diagnosis, at treatment initiation) 

  15 Were predictors assessed blinded for outcome, and for each other (if relevant)? 

  16 Handling of predictors in the modelling (e.g., continuous, linear, non-linear transformations or categorised) 

SAMPLE SIZE 17 Number of participants and number of outcomes/events 

18 Number of outcomes/events in relation to the number of candidate predictors (Events Per Variable) 

MISSING DATA 19 Number of participants with any missing value (include predictors and outcomes) 

20 Number of participants with missing data for each predictor 

21 Handling of missing data (e.g., complete-case analysis, imputation, or other methods) 

MODEL 

DEVELOPMENT  

22 Modelling method (e.g., logistic, survival, neural network, or machine learning techniques)  

23 Modelling assumptions satisfied 

24 Method for selection of predictors for inclusion in multivariable modelling (e.g., all candidate predictors, pre-
selection based on unadjusted association with the outcome) 

25 Method for selection of predictors during multivariable modelling (e.g., full model approach, backward or 

forward selection) and criteria used (e.g., p-value, Akaike Information Criterion) 

26 Shrinkage of predictor weights or regression coefficients (e.g., no shrinkage, uniform shrinkage, penalized 
estimation) 

MODEL 

PERFORMANCE 

27 Calibration (calibration plot, calibration slope, Hosmer-Lemeshow test) and Discrimination   

28 (C-statistic, D-statistic, log-rank) measures with confidence intervals 

29 Classification measures (e.g., sensitivity, specificity, predictive values, net reclassification improvement) and 

whether a-priori cut points were used 

MODEL 30 Method used for testing model performance: development dataset only (random split of data, resampling 

methods e.g. bootstrap or cross-validation, none) or separate external validation (e.g. temporal, geographical, 

different setting, different investigators) 

EVALUATION  31 In case of poor validation, whether model was adjusted or updated (e.g., intercept recalibrated, predictor effects 
adjusted, or new predictors added) 

RESULTS 32 Final and other  multivariable models (e.g., basic, extended, simplified) presented, including predictor weights 
or regression coefficients, intercept, baseline survival, model performance measures (with standard errors or 

confidence intervals) 

33 Any alternative presentation of the final prediction models, e.g., sum score, nomogram, score chart, predictions 

for specific risk subgroups with performance 

34 Comparison of the distribution of predictors (including missing data) for development and validation datasets 

INTERPRETATION 

AND DISCUSSION  

35 Interpretation of presented models (confirmatory, i.e., model useful for practice versus exploratory, i.e., more 

research needed) 

36 Comparison with other studies, discussion of generalizability, strengths and limitations. 
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Appendix 3. PROBAST 

Domain # Item 

Participants 1.1 Were appropriate data sources used, e.g. cohort, RCT or nested case-control study data? 

1.2 Were all inclusions and exclusions of participants appropriate? 

Predictors 2.1 Were predictors defined and assessed in a similar way for all participants? 

2.2 Were predictor assessments made without knowledge of outcome data? 

2.3 Are all predictors available at the time the model is intended to be used? 

Outcome 3.1 Was the outcome determined appropriately? 

3.2 Was a pre-specified or standard outcome definition used? 

3.3 Were predictors excluded from the outcome definition? 

3.4 Was the outcome defined and determined in a similar way for all participants? 

3.5 Was the outcome determined without knowledge of predictor information? 

3.6 Was the time interval between predictor assessment and outcome determination appropriate? 

Analysis 4.1 Were there a reasonable number of participants with the outcome? 

4.2 Were continuous and categorical predictors handled appropriately? 

4.3 Were all enrolled participants included in the analysis? 

4.4 Were participants with missing data handled appropriately? 

4.5 Was selection of predictors based on univariable analysis avoided? 

4.6 Were complexities in the data (e.g. censoring, competing risks, sampling of controls) accounted for 

appropriately? 

4.7 Were relevant model performance measures evaluated appropriately? 

4.8 Were model overfitting and optimism in model performance accounted for? 

4.9 Do predictors and their assigned weights in the final model correspond to the results from the reported 

multivariable analysis? 
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Appendix 4. GRASP  

Category Item # Description 

Background Name 1 Name of predictive tool (report tool’s creators and year in the absence of a given 

name) 

Author 2 Name of developer (first author or researcher) 

Country 3 Country of development 

Year 4 Year of development 

Category 5 Diagnostic/Therapeutic/Prognostic/Preventive 

Intended use 6 Specific aim/intended use of the predictive tool 

Intended user 7 Type of practitioner intended to use the tool 

Clinical area 8 Clinical specialty 

Target population 9 Target patient population and health care settings in which the tool is applied 

Taregt outcome 10 Event to be predicted (including prediction lead time if needed) 

Action 11 Recommended action based on tool’s output 

Input source 12 Clinical (including Diagnostic, Genetic, Vital signs, Pathology) or non-clinical 

(including Healthcare Utilisation) 

Input type 13 Objective (Measured input; from electronic systems or clinical examination) or 
subjective (Patient reported; history, checklist …etc.) 

Local context 14 Is the tool developed using location-specific data? (e.g. life expectancy tables) 

Methodology 15 Type of algorithm used for developing the tool (e.g. parametric/non-parametric) 

Internal validation 16 Method of internal validation 

Dedicated support 17 Name of the supporting/funding research networks, programs, or professional groups 

Endorsement 18 Organisations endorsing the tool and/or clinical guidelines recommending its 
utilisation 

Automation flag 19 Automation status (manual/automated) 

Tool citations 20 Total citations of the tool 

Studies 21 Number of studies reporting the tool 

Author # 22 Number of authors 

Sample size 23 Size of patient/record sample used in the development of the tool 

Journal Name 24 Name of the journal that published the tool’s primary development study 

Journal Rank 25 Impact factor of the journal 

Citation Index 26 Calculated as: Average Annual Citations = number of citations/age of primary 

publication 

Publication Index 27 Calculated as: Average Annual Studies = number of studies/age of primary 

publication 

Literature Index 28 Calculated as: Citations and Publications = number of citations X number of studies 

Pre-implementation Internal validation 29 Tested for internal validity 

External validation 30 Tested for external validity 

During 

implementation 

Usability 31 Reported usability testing 

Potential effect 32 Reported estimated potential effect on clinical effectiveness, patient safety, or 

healthcare efficiency 

Post-implementation Subjective/descriptive 33 Based on subjective studies; e.g. the opinion of a respected authority, clinical 
experience, a descriptive study, or a report of an expert committee or panel 

Observational 34 Based on observational studies; e.g. a well-designed cohort or case-control study 

Experimental 

(impact) 

35 Based on experimental studies; e.g. a well-designed, widely applied 

randomized/nonrandomized controlled trial 
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Appendix 5. Fixed and Optimized Parameters 

Model Type Fixed Parameters Optimized Parameters 

LR N/A N/A 

SplineLR opt 

• (Spline) Number of knots: 5 

• (Spline) Position of knots: quantiles 

• (Spline) Polynomial degree: 3 

• Penalty type: L2 

• Regularization strength, C: log-

uniform between 1e-2 to 1e0 

 

XGB opt 

• Tree method: histogram-based 

• Number of estimators: 100 

• Max tree depth: 10 

• Learning rate, eta: log-uniform 

between 1e-2 to 1e0 

• Regularization strength, gamma: log-

uniform between 1e-1 to 1e2 
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Appendix 6. Hyperparameter Optimization Results 

SplineLR PP HCP HCP+PP 

BJH 0 

   

BJH 1 

   

MIMIC 0 
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MIMIC 1 

   
The regularization strength parameter of logistic regression, named C in the sklearn package’s implementation, was 

optimized through 100 iterations of 5-fold cross validation for each site-era combination. The rest of the parameters 

including those for spline transformation (e.g. number of knots, placement of knots, etc.) were fixed. 
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XGB PP HCP HCP+PP 

BJH 0 

   

BJH 1 

   

MIMIC 0 

   

MIMIC 1 

   
The learning rate and regularization strength parameter of XGBoost, named eta nd gamma respectively, were 

optimized through 100 iterations of 5-fold cross validation for each site-era combination. The rest of the parameters 

(e.g. number of trees, method of tree growth, etc.) were fixed. 
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Appendix 7. Comparison of Important HCP and PP Features for XGB opt 

For each of the top 20 important features determined using median SHAP values across different 

site-era combinations for XGB opt using both HCP and PP features, the distribution histogram 

was generated and computed as median and IQR. 
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Appendix 8. Feature Sets for In-hospital Mortality Prediction Feature Ablation Study 

Feature set Description Includeda Features 

Baseline Features easily 

acquirable and 

commonly used 

for EHR-based 

prediction 

modeling from 

vital signs and lab 

results 

 Age, BMI, Sex (male), Race 

 

(25th, 50th, and 75th quantiles and IQR) 

Heart rate, MAP, Respiratory rate, SpO2, Temperature 

 

(median) 

BMI, GCS eye, GCS motor, GCS total, GCS verbal, Heart rate, 

MAP, Respiratory rate, SpO2, Temperature, ALP, ALT, ASP, 

Albumin, Anion gap, Basophil (absolute), Basophil (percent), 

Bilirubin, direct, Bilirubin, total, Blood, urine, C reactive 

protein, Calcium, total, Chloride, Cholesterol, HDL, Cholesterol, 

LDL, Cholesterol, total, Creatinine, D-dimer, EGFR, Eosinophil 

(absolute), Eosinophil (percent), Ferritin, Glucose, HCO3, HCT, 

HGB, HbA1c, IG (absolute), IG (percent), INR, LE  (urine), 

Lactate, Lipase, Lymphocyte (absolute), Lymphocyte (percent), 

MCH, MCHC, MCV, MPV, Magnesium, Monocyte (absolute), 

Monocyte (percent), Neutrophil (absolute), Neutrophil (percent), 

PLT, PTT, Phosphorous, Potassium, Protein, plasma, Protein, 

urine, RBC, RCW_CV, RCW_SD, Sodium, Specific gravity, 

urine, Triglycerides, Troponin T, Urea nitrogen, Urobilinogen, 

urine, WBC, aPTT, nRBC (absolute), pH, urine 

Related Physiological 

measurements 

explicitly relating 

to respiratory 

support 

Baseline (median) 

FiO2, O2 flow rate 

O2 Del Method EHR-native 

representation of 

respiratory support 

Baseline, 

Related 

(presence and last)b 

CPAP, ETT, Face tent, High flow nasal cannula, High humidity 

nasal cannula i.e.,.Optiflow, NPPV, Nasal cannula, Non-

rebreather mask, Other, Simple mask, T-Piece, Trach 

mask/collar, Trach tube, Venturi mask 

Raw Based on proposed 

heuristics but not 

assembled into 

episodes 

Baseline, 

Related 

(presence and last)b 

ECMO, HFOT, IMV, LFOT, NIMV 

Proposed Based on proposed 

heuristics and 

assembled into 

episodes 

Baseline, 

Related 

(Respiratory support duration [hours] and last)b 

ECMO, HFOT, IMV, LFOT, NIMV 

aFeature sets, in addition to the list of features in the “features” column, also include features for the feature sets in 

the “included” column. 
bPresence indicates the presence of variable within the observation window whereas last indicates the last observed 

respiratory support modality within the observation window. 

Abbreviations: BMI, body mass index; MAP, mean arterial pressure; GCS, Glasgow Coma Scale; ALP, alkaline 

phosphatase; ALT, alanine aminotransferase; ASP, aspartate aminotransferase; HDL, high-density lipoprotein; LDL, 

low-density lipoprotein; EGFR, estimated glomerular filtration rate; HCO3, bicarbonate; HCT, hematocrit; HGB, 

hemoglobin; LE, leukocyte esterase; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin 

concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; PLT, platelet count; PTT, 

prothrombin time; RBC, red blood cell count; RCW, red blood cell distribution width; CV, coefficient of variation; 

SD, standard deviation; WBC, white blood cell count; aPTT, activated partial thromboplastin time; nRBC, nucleated 

red blood cell count; FiO2, fraction of inspired oxygen; CPAP, continuous positive airway pressure; ETT, 

endotracheal tube intubation; NPPV, non-invasive positive pressure ventilation; ECMO, extracorporeal membrane 

oxygenation; HFOT, high flow oxygen therapy; IMV, invasive mechanical ventilation; LFOT, low flow oxygen 

therapy; NIMV, non-invasive mechanical ventilation. 
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Appendix 9. Visualization of Respiratory Support Representation Methods 

 

A visual comparison of different sets of respiratory support features for a single encounter. Each red tick on the x-

axis indicates 6 hours whereas each black tick indicates 24 hours. The first subplot includes patient location 

information. “Floor” includes any non-ICU and non-ER location. Compared to “Baseline” features based on 

demographics, common labs, and vital signs, “Related” also includes common measurements related to respiratory 

support i.e., fraction of inspired oxygen and o2 flow rate (2nd and 3rd subplots). In addition to “Baseline” and 

“Related” features, “O2 Del Method” also includes the EHR-native representation of respiratory support status (4th 

subplot and legend). Each vertical line indicates a timestamped documentation relating to respiratory support at the 

time. “Raw” features were derived from the proposed classification system and heuristics prior to assembly into 

episodes (5th subplot). Finally, the “Proposed” features include those derived from the proposed classification 

system and heuristics after assembly into episodes (6th subplot). The colors of the vertical lines in the “Raw” subplot 

follow the same coloring schema in the “Proposed” subplot. 
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Appendix 10. Hyperparameter Optimization 

Hyperparameters for both XGB and logistic regression were optimized on the baseline set of 

features through 1,000 iterations of 4-fold cross-validation optimized for maximizing negative 

log loss. The hyperparameter optimization schema were as follows: 
Model LogReg XGB 

Preprocessing • Normalization (zero-mean, 

unit-variance) 

• Mean imputation 

None 

Fixed 

parameters 
• Penalty: Elasticnet 

• Solver: saga 

• max_iter: 1000 

• tree_method: hist 

• single_precision_histogram: True 

• eval_metric: logloss 

Hyperparameter 

search space 
• C: log-uniform (1e-4, 1e4) 

• l1_ratio: uniform (0, 1) 

• n_estimators: uniform (3, 100) 

• eta: log-uniform (1e-3, 1e0) 

• max_depth: uniform (3, 100) 

• min_child_weight: log-uniform (1e-2, 1e2) 

• gamma: log-uniform (1e-4, 1e4) 
Parameter names follow the scikit-learn convention for logistic regression, and the scikit-learn API for XGB. 

 

The relationship between parameter values and optimized metric (negative log loss) are shown as 

follows: 

Logistic Regression: 

 
XGB: 

 
The optimal parameters were found to be as follows: 

Logistic Regression: C: 0.0177, l1_ratio: 0.265 

XGB: eta: 0.120, gamma: 0.000133, max_depth: 50, min_child_weight: 50.8, n_estimators: 88 
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Appendix 11. Feature Set Performances 

Model Feature Seta 
Performance Metric 

AUROC AUPRC Negative Log Loss 

XGB 

Baseline 0.876 (0.875 - 0.879) 0.284 (0.282 - 0.288) -0.112 (-0.112 - -0.111) 

Related 0.885 (0.882 - 0.886) 0.317 (0.313 - 0.322) -0.109 (-0.109 - -0.108) 

O2 Del Method 0.887 (0.884 - 0.890) 0.323 (0.317 - 0.326) -0.108 (-0.108 - -0.107) 

Raw 0.888 (0.886 - 0.891) 0.322 (0.321 - 0.329) -0.108 (-0.108 - -0.107) 

Proposed 0.887 (0.885 - 0.891) 0.324 (0.323 - 0.329) -0.108 (-0.108 - -0.107) 

LogReg 

Baseline 0.855 (0.852 - 0.855) 0.262 (0.245 - 0.268) -0.117 (-0.118 - -0.117) 

Related 0.859 (0.858 - 0.864) 0.286 (0.274 - 0.295) -0.115 (-0.116 - -0.115) 

O2 Del Method 0.877 (0.874 - 0.882) 0.320 (0.314 - 0.324) -0.110 (-0.111 - -0.110) 

Raw 0.880 (0.876 - 0.883) 0.321 (0.317 - 0.328) -0.110 (-0.110 - -0.110) 

Proposed 0.881 (0.876 - 0.884) 0.319 (0.313 - 0.325) -0.110 (-0.110 - -0.109) 
Abbreviations: LogReg, logistic regression; XGB, eXtreme Gradient Boosted trees; AUROC, area under 

receiver operating characteristic curve; AUPRC, area under precision recall curve. 

aBaseline include features based on demographics, common labs, and vital signs; Related includes common 

measurements related to respiratory support i.e., fraction of inspired oxygen and o2 flow rate; O2 Del Method 

includes the EHR-native representation of respiratory support status; Raw includes features derived from the 

proposed classification system and heuristics prior to assembly into episodes; Proposed includes features 

based derived from the proposed classification system and heuristics after assembly into episodes. 
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Appendix 12. Pairwise Feature Set Performance Comparisons 

Performance 
Metric 

  LogReg XGB 

Feature Seta Baseline Related 
O2 Del 
Method 

Raw Baseline Related 
O2 Del 
Method 

Raw 

AUROC 

Related p < 0.01       p < 0.01       

O2 Del Method p < 0.01 p < 0.01     p < 0.01 p < 0.01     

Raw p < 0.01 p < 0.01 p < 0.01   p < 0.01 p < 0.01 0.080   

Proposed p < 0.01 p < 0.01 p < 0.01 0.230 p < 0.01 p < 0.01 0.050 1.000 

AUPRC 

Related p < 0.01       p < 0.01       

O2 Del Method p < 0.01 p < 0.01     p < 0.01 p < 0.01     

Raw p < 0.01 p < 0.01 0.030   p < 0.01 p < 0.01 p < 0.01   

Proposed p < 0.01 p < 0.01 0.850 0.020 p < 0.01 p < 0.01 0.080 0.560 

Negative Log 
Loss 

Related p < 0.01       p < 0.01       

O2 Del Method p < 0.01 p < 0.01     p < 0.01 p < 0.01     

Raw p < 0.01 p < 0.01 0.010   p < 0.01 p < 0.01 0.050   

Proposed p < 0.01 p < 0.01 p < 0.01 0.850 p < 0.01 p < 0.01 0.050 0.770 
Abbreviations: LogReg, logistic regression; XGB, eXtreme Gradient Boosted trees; AUROC, area under receiver operating 

characteristic curve; AUPRC, area under precision recall curve. 

p-values generated through 5 replicates of 2-fold cross validation and the Wilcoxon signed-rank test (paired, two-sided) 

aBaseline include features based on demographics, common labs, and vital signs; Related includes common measurements 

related to respiratory support i.e., fraction of inspired oxygen and o2 flow rate; O2 Del Method includes the EHR-native 

representation of respiratory support status; Raw includes features derived from the proposed classification system and 

heuristics prior to assembly into episodes; Proposed includes features based derived from the proposed classification system 

and heuristics after assembly into episodes. 
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Appendix 13. Data Source 

All data for analysis was from Barnes-Jewish Hospital (BJH), one of the fifteen hospitals owned 

by BJC Healthcare, a non-profit health care organization based in St. Louis, MO and affiliated 

with Washington University in St. Louis, St. Louis, MO. During the time period from which the 

data was extracted, BJH primarily used the COMPASS EHR (Allscripts Sunrise, Chicago, IL). 

Clinical data was first loaded into to a hospital-managed data warehouse called Health Data Core 

(HDC), which is primarily used for quality improvement, then was loaded into to a university-

managed research data warehouse called Research Data Core (RDC). All relevant data for 

inpatients between 1/12012 and 6/1/2018 was extracted from RDC. 
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Appendix 14. Missing Data Characterization 

 Scoresb % missing per encounter per cohort 

Variablea 

S
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Respiratory rate             0.04% 0.00% 0.00% 0.00% 0.00% 0.01% 

Heart rate             0.03% 0.00% 0.00% 0.00% 0.00% 0.01% 

Temperature             0.07% 0.06% 0.11% 0.09% 0.16% 0.12% 

PaCO2             79.61% 48.99% 35.25% 32.93% 31.34% 45.70% 

WBC             2.31% 0.03% 0.09% 0.06% 0.02% 0.09% 

SBP             0.05% 0.03% 0.04% 0.03% 0.05% 0.04% 

PLT             2.32% 0.03% 0.09% 0.06% 0.02% 0.10% 

Creatinine             2.30% 0.04% 0.07% 0.05% 0.02% 0.07% 

Bilirubin             35.58% 8.45% 3.86% 6.24% 2.51% 7.27% 

MAP             0.05% 0.03% 0.04% 0.03% 0.05% 0.04% 

PF ratio             50.58% 24.61% 17.12% 11.77% 16.03% 24.77% 

Lactate             75.98% 40.54% 26.54% 30.83% 26.37% 23.74% 

PTT             32.33% 13.12% 6.40% 8.19% 5.39% 12.48% 

INR             26.08% 8.83% 3.63% 5.02% 2.91% 8.61% 

pH             79.61% 48.99% 35.25% 32.93% 31.34% 45.70% 

FiO2             53.07% 27.73% 21.09% 15.19% 20.07% 28.12% 

SpO2             0.04% 0.01% 0.02% 0.02% 0.03% 0.04% 

HCT             2.19% 0.03% 0.07% 0.06% 0.02% 0.09% 

PaO2             79.61% 48.99% 35.25% 32.93% 31.34% 45.70% 

Potassium             2.43% 0.06% 0.09% 0.07% 0.02% 0.13% 

Sodium             2.19% 0.04% 0.06% 0.05% 0.02% 0.06% 

A-a Gradient             93.30% 75.00% 63.60% 63.75% 60.13% 72.78% 

BUN             2.30% 0.04% 0.07% 0.05% 0.02% 0.07% 

PT             26.08% 8.83% 3.63% 5.02% 2.91% 8.61% 
Abbreviations: SIRS, Systemic Inflammatory Response Syndrome; SOFA, Sequential Organ Failure Assessment; 

qSOFA, quick SOFA; AOD, acute organ dysfunction criteria for CDC ASE; OD, organ dysfunction criteria for 

CMS SEP-1; ICD, International Classification of Diseases; CMS SEP-1, Centers for Medicare and Medicaid 

Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and Prevention Adult Sepsis Event; 

ICU, intensive care unit; MV, mechanical ventilation; PaCO2, partial pressure of arterial carbon dioxide; WBC, 

white blood cell count; SBP, systolic blood pressure; PLT, platelet; MAP, mean arterial pressure; PF ratio, 

PaO2:FiO2 ratio; PTT, partial thromboplastin time; INR, international normalized ratio; FiO2, fraction of inspired 

oxygen; SpO2, oxygen saturation; PaO2, partial pressure of oxygen; A-a gradient, alveolar-arterial gradient; BUN, 

blood urea nitrogen; PT, prothrombin time. 
a Only eligible encounters were included in the missingness analysis. 
b Filled in cells indicate that the variable in the corresponding row is used in the score in the corresponding column. 
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Appendix 15. Comorbidity comparison 

Variablea,b 
Total 
(n = 
286.759) 

ICD code 
(n = 
20,670) 

Sepsis-1 
(n = 
32,369) 

CMS 
SEP-1 
(n = 
13,869) 

Sepsis-3 
(n = 
21,550) 

CDC ASE 
(n = 
12,494) 

AIDS/HIV 
2,339 
(0.8%) 

276 
(1.3%) 

458 
(1.4%) 

149 
(1.1%) 

248 
(1.2%) 

175 
(1.4%) 

Chronic 
pulmonary 
disease 

69,890 
(24.4%) 

5,710 
(27.6%) 

10,109 
(31.2%) 

4,187 
(30.2%) 

7,719 
(35.8%) 

3,856 
(30.9%) 

Congestive 
heart failure 

57,549 
(20.1%) 

5,766 
(27.9%) 

8,496 
(26.2%) 

4,443 
(32.0%) 

7,839 
(36.4%) 

4,014 
(32.1%) 

Diabetes 
77,623 
(27.1%) 

6,603 
(31.9%) 

9,696 
(30.0%) 

4,270 
(30.8%) 

7,111 
(33.0%) 

4,011 
(32.1%) 

Hypertension 
116,953 
(40.8%) 

8,034 
(38.9%) 

12,973 
(40.1%) 

5,567 
(40.1%) 

9,365 
(43.5%) 

5,179 
(41.5%) 

Hypothyroidism 
34,417 
(12.0%) 

2,860 
(13.8%) 

4,256 
(13.1%) 

1,940 
(14.0%) 

3,365 
(15.6%) 

1,863 
(14.9%) 

Liver disease 
21,942 
(7.7%) 

3,283 
(15.9%) 

4,148 
(12.8%) 

2,595 
(18.7%) 

3,464 
(16.1%) 

2,198 
(17.6%) 

Peripheral 
vascular 
disorders 

21,372 
(7.5%) 

2,008 
(9.7%) 

2,653 
(8.2%) 

1,329 
(9.6%) 

2,343 
(10.9%) 

1,204 
(9.6%) 

Pulmonary 
circulation 
disorders 

9,473 
(3.3%) 

1,239 
(6.0%) 

1,899 
(5.9%) 

981 
(7.1%) 

1,649 
(7.7%) 

746 
(6.0%) 

Chronic renal 
failure 

57,021 
(19.9%) 

5,816 
(28.1%) 

8,074 
(24.9%) 

3,934 
(28.4%) 

6,519 
(30.3%) 

3,578 
(28.6%) 

Cancer 
50,035 
(17.4%) 

4,193 
(20.3%) 

6,940 
(21.4%) 

2,838 
(20.5%) 

4,006 
(18.6%) 

2,447 
(19.6%) 

a Derived from Elixhauser comorbidities.107, 108  
b Comparison across all four definition-based cohorts was performed using the 𝜒2 test. All comparisons were 

statistically significant (p<0.01). 
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Appendix 16. Pairwise Agreement Among Sepsis Definitions 

  

A, Cohen’s kappa and B, Jaccard index for each sepsis definition pair. Cohen’s kappa is a measurement of inter-

rater reliability that takes into account the probability of chance agreement. Jaccard index is the size of the 

intersection divided by the size of the union. 

Abbreviations: ICD, International Classification of Diseases; CMS SEP-1, Centers for Medicare and Medicaid 

Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and Prevention Adult Sepsis Event. 

  

A B 



161 

 

Appendix 17. Mortality by Fulfilled Number of Sepsis Definitions 

 

Considered sepsis criteria include: ICD billing code, Sepsis-1, CMS SEP-1, Sepsis-3, and CDC ASE criteria. 

Patients meeting all five criteria had an in-hospital mortality rate of 39.7%. Least squares regression equation is: [In-

hospital mortality rate] = 0.167 + 0.054 * [Number of sepsis criteria met]. The regression r2 value is 0.740, and the 

coefficient for the number of sepsis criteria met is significant (p<0.01).  

Abbreviations: ICD, International Classification of Diseases; CMS SEP-1, Centers for Medicare and Medicaid 

Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and Prevention Adult Sepsis Event; 

APACHE II, Acute Physiology and Chronic Health Evaluation; SOFA, Sequential Organ Failure Assessment. 
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Appendix 18. Length of Stay Comparison 

 

 

 

Hospital length of stay stratified by sepsis definition. p<0.01 between all definitions. Whiskers represent the 5th and 

95th percentile. 

Abbreviations: ICD, International Classification of Diseases; CMS SEP-1, Centers for Medicare and Medicaid 

Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and Prevention Adult Sepsis Event. 
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Appendix 19. Illness Severity at Onset Comparison 

 

 

 

 

 

A, APACHE-II and B, SOFA score at time of sepsis onset, stratified by definition. p<0.01 between all definitions 

for both A and B. Scores were only calculated for those with sufficient data, which was defined as at least one 

measurement of each of the following within the 24h preceding sepsis onset: temperature, heart rate, respiratory rate, 

blood pressure, SpO2, creatinine, and white blood cell count. Whiskers represent the 5th and 95th percentile. 

Abbreviations: CMS SEP-1, Centers for Medicare and Medicaid Services severe sepsis core measure 1; CDC ASE, 

Centers for Disease Control and Prevention Adult Sepsis Event; APACHE, Acute Physiology And Chronic Health 

Evaluation; SOFA, Sequential Organ Failure Assessment. 

  

A B 
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Appendix 20. Association between Illness Severity Score and In-hospital Mortality. 

A 

B 

 

C 

 

D 

 

E 

A, illness severity score for all eligible encounters with a length of stay of at least 24 hours (n = 276,467). B-E, 

illness severity score for sepsis cohorts at time of onset. Illness severity scores were calculated for patients in both 

the ICU and non-ICU settings.  
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Abbreviations: CMS SEP-1, Centers for Medicare and Medicaid Services severe sepsis core measure 1; CDC ASE, 

Centers for Disease Control and Prevention Adult Sepsis Event; APACHE II, Acute Physiology and Chronic Health 

Evaluation; SOFA, Sequential Organ Failure Assessment. 
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Appendix 21. Sepsis Incidence Over Time 

Abbreviations: CMS SEP-1, Centers for Medicare and Medicaid Services severe sepsis core measure 1; CDC ASE, 

Centers for Disease Control and Prevention Adult Sepsis Event. 
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Appendix 22. Definition Triplet Venn Diagrams 

  

.   
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Venn diagram for each of the 10 possible triplet combinations of compared sepsis definitions. Percentages in 

parenthesis indicate in-hospital mortality rate. 

Abbreviations: ICD, International Classification of Diseases; CMS SEP-1, Centers for Medicare and Medicaid 

Services severe sepsis core measure 1; CDC ASE, Centers for Disease Control and Prevention Adult Sepsis Event. 
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Appendix 23. Overview 

In order to codify and implement the established definitions for sepsis, the clinical descriptions 

must be converted into computable forms, which includes an inherent degree of subjectivity.  In 

this section, the objective is to elucidate the precise means through which the various definitions 

were implemented – either faithfully or with prudent modification. The most elusive and 

controversial is the concept of suspected or confirmed infection. Infection status was meant to be 

assessed at the bedside (as in Sepsis-1) or determined via manual chart review (as in CMS SEP-

1). Seymour defines suspicion of infection as concomitant cultures and antibiotics which has the 

benefit of being practical and explicit, but has invited criticism for being tautological due to the 

use of physician actions in the diagnostic criteria.120 Regardless, because the Seymour suspicion 

of infection criteria can be executed easily at scale using EHR data, we adopted the structure of 

the Sepsis-3 definition – a dyad of (suspected) infection and response (to infection) – for Sepsis-

1 and CMS SEP-1. Other modulations of the criteria that can have a significant impact on the 

resulting cohort includes how often one can “re-litigate” a patient encounter for sepsis; in other 

words, if one should one investigate only the first episode of infection or every episode of 

infection during a hospital encounter. Seymour et al. (Sepsis-3) indicate that “only the first 

episode of suspected infection for each encounter” was considered whereas Rhee et al. (CDC 

ASE) explain that “multiple windows during a hospitalization are possible.”127, 128 All anti-

infectives and cultures were mapped by both a clinical pharmacist and critical care physician. 

Disagreement was adjudicated by a third critical care physician with over 20 years of critical 

care experience. 
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Appendix 24. Clinical Data Preprocessing and Mapping 

Raw clinical data were mapped to cogent clinical concepts through a combination of informatics 

approaches and subject matter expert manual review. Certain data elements were not present or 

partially present, but were able to be derived from related data elements: 

• BMI = weight (kg) / (height (m))2. BMI was explicitly present for 35.3% of the study 

population, was able to be calculated for 91.8%, and was ultimately available for 92.0%. 

• FiO2 was available explicitly, but was also calculated whenever there was oxygen flow 

documentation according to the following formula: oxygen flow x 3.5 + 21. 

• PaO2 - FiO2 ratio (PFRatio) was calculated whenever there was documentation of either 

PaO2 or FiO2. From each documentation, we looked back 24 hours for the latest 

complement documentation (PaO2 for FiO2 and vice versa) to calculate the ratio. If a 

complement FiO2 could not be found for PaO2, FiO2 was assumed to be 21%. If a 

complement PaO2 could not be found for PaO2, PaO2 was calculated using the following 

formula: 100 – Age (years) * 0.3 

• Estimated glomerular flow rate (eGFR) was calculated according to the MDRD study 

equation: 175 * Creatinine-1.154 * Age-0.203 * ((Gender == Female)*.742)) * 

((Race==Black)*1.212) 

• Blood urea nitrogen – creatinine ratio (BUNCr ratio) was calculated whenever there was 

a blood urea nitrogen documentation and creatinine documentation within a one-hour 

window as blood urea nitrogen / creatinine. Time of documentation was set as the later of 

the two.  
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• Shock index (SI) was calculated whenever there was a heart rate documentation and a 

systolic blood pressure documentation within a one-hour window as heart rate / systolic 

blood pressure. Time of documentation was set as the later of the two. 
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Appendix 25. Detailed criteria for ICD-code surveillance definition. 

Condition 
ICD 
version 

ICD code lista 
Admitting 
diagnosis 

Discharge 
diagnosis 

Sepsis 

9 
995.91, 038.9, 038.0, 038.10, 038.11, 038.12, 
038.19, 038.2, 038.40, 038.41, 038.42, 038.43, 
038.44, 038.49, 038.8 

3,620 11,548 

10 

A41.9, A40.9, A41.2, A41.01, A41.02, A41.1, 
A40.3, A41.4, A41.50, A41.3, A41.51, A41.52, 
A41.53, A41.59, A41.89, A02.1, A22.7, A26.7, 
A32.7, A40.0, A40.1, A40.8, A41.81, A42.7, 
A54.86, B37.7 

3,869 14,278 

Severe 
Sepsis 

9 995.92 10 6,702 

10 R65.20 49 2,105 

Septic 
Shock 

9 785.52 15 4,379 

10 R65.21 109 5,414 
Abbreviations: ICD, International Classification of Diseases. 

a Sepsis ICD diagnosis code list from Buchman, et al.117  
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Appendix 26. Detailed Criteria for Sepsis-1 Surveillance Definition 

1) Overview: Sepsis-1 is defined as the systemic inflammatory response to infection.121 The 

Sepsis-1 clinical criteria is comprised of systemic inflammatory response syndrome (SIRS) 

criteria and suspicion of infection. 

2) Infection (suspected, presumed, and/or confirmed): The source guideline is unspecific on 

how to surveil for infection status. In order to implement the definition in a computable manner, 

we adopted the Sepsis-3 conceptual framework for suspicion of infection which is concomitant 

cultures and antibiotics.121 Suspicion of infection is defined as cultures followed by antibiotics 

within 48 hours or antibiotics followed by cultures within 24 hours. Time of suspicion of 

infection is the earlier of the two – either antibiotic order start time or culture collection time. 

Consecutive antibiotic orders were merged as a single antibiotic regimen with a tolerance of 1 

day, and only antibiotic regimens of at least 2 qualifying antibiotic days were considered. If the 

patient died or was discharged to hospice or an acute care hospital, antibiotic regimens leading 

up to the end date of the encounter could qualify. 

2.1) Antimicrobials: All intravenous antibiotics, antivirals and antifungals were included with 

the addition of enteral vancomycin and metronidazole to account for the practice changing 

treatment guidelines for C. diff released in 2018.194  
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2.2) Cultures: 

TESTS INCLUDED AS “CLINICAL CULTURES”128  

Bacterial and fungal cultures from the following sites: blood, urine, respiratory tract, 
cerebrospinal fluid (CSF), medical devices, catheter tips, bile, pleural, peritoneal, 
joint/synovial, wound, drain, cyst, sinus, abscess. 

Respiratory viral tests: respiratory viral multiplex, influenza swabs, adenovirus. 

C. diff assays: ELISA, PCR. 

Specific organism antigens from serum, urine, or CSF, such as: Histoplasma, Blastomycosis, 
Cryptococcus, Coccidioidomycosis, Legionella. 

Specific organism cultures or smears: Pneumocystis, Legionella. 

Specific organism PCRs: Ehrlichia, CMV, Toxoplasma, Borrelia, Mycoplasma. 

Tests not included: Gram stain without culture, tests for parasites and acid-fast bacilli, 
sexually transmitted infections, serological tests (IgM, IgG), surveillance cultures (e.g., MRSA, 
VRE), HIV, hepatitis, H. Pylori, fungal markers, hepatitis.  

 

3) Response to infection: SIRS criteria were met if 2 or more of the following are met: 

temperature >38.0 C or <36.0 C; heart rate >90; respiratory rate >20 per minute; white blood cell 

count >12,000 or <4,000 or >10% bands. The source guidelines are unspecific on the time 

window within which at least 2 SIRS criteria subcomponents must be met, so it was restricted it 

to one hour. 

4) Sepsis: Encounters were identified as sepsis cases if SIRS criteria were met within a time 

window (48h before to 24h after) surrounding time of suspected infection. Time of sepsis onset 

was defined as time of suspected infection. 
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Abbreviations: SIRS = systemic inflammatory response syndrome; SOI = suspicion of infection; tSOI = time of suspicion of infection; 

abx = antibiotics; cx = cultures.  
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Appendix 27. Detailed Criteria for CMS SEP-1 Surveillance Definition 

1) Overview: In 2015, the Centers for Medicare and Medicaid Services (CMS) established a 

series of quality metrics that standardize the criteria for severe sepsis and septic shock 

recognition.126 These criteria rely on a triad of suspicion of infection, the presence of SIRS 

criteria, and organ dysfunction. 

2) Infection (suspected, presumed, and/or confirmed): According to the specification manual, 

a wide variety of clinical documentation could serve as evidence of infection. However, many of 

the documentation types rely on free text data elements (e.g., clinical notes) and were intended 

for manual abstraction. Per the CMS-criteria, “If an antibiotic is ordered for a condition that may 

be inflammation or a sign or symptom of an infection this may be considered documentation of 

an infection.” As a surrogate for clinical documentation, a sepsis-relevant antibiotic order was 

considered to be evidence for suspicion of infection. Consecutive antibiotic orders were merged 

as a single antibiotic regimen with a tolerance of 1 day, and only antibiotic regimens of at least 2 

qualifying antibiotic days were considered. If the patient died or was discharged to hospice or an 

acute care hospital, antibiotic regimens leading up to the end date of the encounter could qualify. 

 2.1) Antimicrobials: Because the specification manual specifically states to exclude 

documentation of viral, fungal, and parasitic infections, all intravenous antibiotics (excepting 

antivirals, antifungals, or antiparasitics) were included with the addition or enteral vancomycin 

and metronidazole to account for the practice changing treatment guidelines for C. diff released 

in 2018.194 

 

2.2) Cultures: N/A 
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3) Response to infection: SIRS criteria are met if 2 or more of the following are met: 

temperature >38.0 C or <36.0 C; heart rate >90; respiratory rate >20 per minute; white blood cell 

count >12,000 or <4,000 or >10% bands. Organ dysfunction criteria required at least one of the 

following: 

• Hypotension as documented by a systolic blood pressure (SBP) <90 mmHg or mean 

arterial pressure <65 mmHg, excluding orthostatic BP evaluation or SBP decrease of 

more than 40 mmHg. Since the drop of blood pressure by more than 40 required 

knowledge of a patient’s baseline or documentation from a treating clinician, these were 

omitted. Orthostatic blood pressures were also merged into all blood pressure readings 

since their presence in the data set was so scarce.  

• Acute respiratory failure as documented by the need for new invasive or non-invasive 

mechanical ventilation. 

• Acute kidney injury defined as either a rise in serum creatinine (Cr) by 0.5 from baseline, 

a Cr  ≥ 2, excluding those who had end-stage renal disease (ESRD), or oliguria defined 

by a urine output < 0.5 mL/kg/hour for 2 consecutive hours. ESRD was identified by ICD 

codes: N17* or 584*.  Since baseline Cr and hourly urine output was not available, these 

were omitted.  

• Acute hepatic injury as defined by a total bilirubin >2 mg/dL. 

• Platelet count <100,000 cells/µL. 

• INR >1.5 or aPTT >60 sec. Outpatient medications were not a part of this dataset, so it 

was assumed that all patients were not on anticoagulation. 

• Lactate >2 mmol/L. 

 

4) Sepsis:  In accordance with the guidelines, all criteria had to be met within 6-hours and the 

time of onset was defined as the time the last of the criteria were met (below). 
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Abbreviations: SIRS = systemic inflammatory response syndrome; SOI = suspicion of infection; tSOI = time of 

suspicion of infection; abx = antibiotics; cx = cultures.  
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Appendix 28. Detailed Criteria for Sepsis-3 Surveillance Definition 

1) Overview: In 2016, Sepsis-3, the third international consensus definition of sepsis, was 

released and simultaneously evaluated.118, 127 Sepsis was then defined as organ dysfunction 

caused by a dysregulated host response to infection.  

2) Infection (suspected, presumed, and/or confirmed): Infection according to the Sepsis-3 

criteria required antibiotics within 72 hours of culture or a culture within 24 hours of antibiotic 

administration. Only the first episode of suspected infection was identified for each encounter, as 

described in the supplementary material (eAppendix A) in the source publication. Time of 

suspected infection was set as the earlier of either culture collection time or antibiotic order start 

time. 

2.1) Antimicrobials: Consistent with the source publication, all oral and IV antibiotics were 

included and one time perioperative antibiotics were excluded.  

2.2) Cultures: Consistent with the source publication, all bacterial, fungal, viral and parasitic 

cultures as well as C. diff assays from the following sites were included: abdomen, 

bronchoalveolar lavage, blood, bone, cerebral spinal fluid, catheters/devices, pleural space, 

skin/tissue, stool, urinary tract.  

3) Response to infection: Authors of the source publication explain that while both the 

Sequential Organ Failure Assessment (SOFA) and qSOFA scores are primarily recommended 

for sepsis-categorization, qSOFA has the benefit of not requiring laboratory measurements and 

can be assessed quickly and repeatedly, which is especially useful in a non-ICU setting. 

Moreover, Seymour et al. noted that qSOFA has a “predictive validity outside of the ICU that is 

statistically greater than the SOFA score.” We thus decided to use SOFA in the ICU setting and 
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qSOFA in the non-ICU setting. Consistent with the source publication, the thresholds for both 

qSOFA and SOFA were set at ≥ 2.  

4) Sepsis: Consistent with the source publication, encounters were identified as sepsis cases if 

the response to infection criteria was met within a time window (48h before to 24h after) 

surrounding time of suspected infection. If patient was in an ICU at time of suspected infection, 

SOFA was used; otherwise, qSOFA was used. Time of sepsis onset was defined as time of 

suspected infection. 

 

 

 

Abbreviations: SOI = suspicion of infection; tSOI = time of suspicion of infection; qSOFA = quick sequential organ 

failure assessment; SOFA = sequential organ failure assessment; abx = antibiotics; cx = cultures. 
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Appendix 29. Detailed Criteria for CDC ASE Surveillance Definition 

1) Overview: In 2017, Rhee et al. published an epidemiological study investigating sepsis 

incidence and trends using an alternative interpretation of the Sepsis-3 definition which was later 

adopted by Centers for Disease Control and Prevention and named the Adult Sepsis Event.128 

Like Sepsis-3, CDC ASE criteria is comprised of signs of infection and organ dysfunction. 

2) Infection (suspected, presumed, and/or confirmed): Presumed infection was defined as 

initiation of an antimicrobial regimen with a minimum of 4 qualifying antimicrobial days (QAD) 

starting within 2 days of blood culture. As described in the source publication, at least 1 

antimicrobial in the first 4 QAD must be intravenous. If the patient died or was discharged to 

hospice or an acute care hospital, antibiotic regimens leading up to the end date of the encounter 

was included for analysis. 
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2.1) Antimicrobials: All antimicrobials explicitly listed in eAppendix B of the reference 

publication (Rhee, 2017) were used.  

ANTIBIOTICS 

IV Antibacterials 

amikacin, ampicillin, ampicillin/sulbactam, azithromycin, aztreonam, cefamandole, cefazolin, 

cefepime, cefmetazole, cefonicid, cefoperazone, cefotaxime, cefotetan, cefoxitin, ceftaroline, 

ceftazidime, ceftazidime/avibactam, ceftizoxime, ceftolozane/tazobactam, ceftriaxone, cefuroxime, 

cephalothin, cephapirin, chloramphenicol, ciprofloxacin, clindamycin, cloxacillin, colistin, 

dalbavancin, daptomycin, doripenem, doxycycline, ertapenem, gatifloxacin, gentamicin, imipenem, 

kanamycin, levofloxacin, lincomycin, linezolid, meropenem, methicillin, metronidazole, mezlocillin, 

minocycline, moxifloxacin, nafcillin, oritavancin, oxacillin, penicillin, piperacillin, 

pileracillin/tazobactam, polymyxin B, quinupristin/dalfopristin, streptomycin, tedizolid, telavancin, 

ticarcillin, ticarcillin/clavulanate, tigecycline, tobramycin, trimethoprim/sulfamethoxazole, vancomycin 

PO Antibacterials 

amoxicillin/clavulanate, amoxicillin, ampicillin, azithromycin, cefaclor, cefadroxil, cefdinir, cefditoren, 

cefixime, cefpodoxime, cefprozil, ceftibuten, cefuroxime, cephalexin, cephradine, chloramphenicol, 

cinoxacin, ciprofloxacin, clarithromycin, clindamycin, cloxacillin, dicloxacillin, doxycycline, 

fidaxomicin, fosfomycin, gatifloxacin, levofloxacin, lincomycin, linezolid, metronidazole, 

minocycline, moxifloxacin, nitrofurantoin, norfloxacin, ofloxacin, penicillin, pivampicillin, rifampin, 

sulfadiazine, sulfadiazine-trimethoprim, sulfamethoxazole, sulfisoxazole, tedizolid, telithromycin, 

tetracycline, trimethoprim, trimethoprimsulfamethoxazole, vancomycin 

IV Antifungals 

amphotericin B, anidulafungin, caspofungin, fluconazole, itraconazole, micafungin, posaconazole, 

voriconazole 

PO Antifungals 

fluconazole, itraconazole, posaconazole, voriconazole 

IV Antivirals 

acyclovir, ganciclovir, cidofovir, foscarnet, peramivir 

PO Antivirals 

Oseltamivir 

 

2.2) Cultures: In accordance to the source publication, only blood cultures were used. 

3) Response to infection: Authors of the source publication modified the SOFA score to assess 

acute organ dysfunction. The new criteria required at least one of the following: initiation of a 

new vasopressor infusion (norepinephrine, dopamine, epinephrine, phenylephrine, vasopressin), 

at least 24 hours of mechanical ventilation, doubling of serum creatinine or drop in estimated 

glomerular filtration rate by at least 50% (excluding end-stage renal disease), a total bilirubin ≥ 
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2.0 mg/dL with a doubling from baseline, platelet count <100 cells/µL with at least a 50% 

decline from baseline or serum lactate of at least 2.0 mmol/L (below).  

4) Sepsis: In accordance to the source publication, encounters were identified as sepsis cases if 

they met the modified SOFA criteria during the time window (48h before to 48h after) 

surrounding blood culture. Multiple blood cultures could each serve as episodes of presumed 

infection, in accordance to the supplementary material in the originating publication (eAppendix 

A). Time of onset was defined as time of blood culture. 

 

 

Abbreviations: SOI = suspicion of infection; tSOI = time of suspicion of infection; abx = antibiotics; cx = cultures.  
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Appendix 30. APACHE-II Implementation Details 

APACHE-II was used to characterize severity of illness at time of sepsis onset. APACHE-II was 

intended to be measured 24h into ICU admission and every 24h afterwards. However, many 

sepsis patients had an onset-time fairly early into admission and thus had a time-to-onset well 

under 24h, often in non-ICU settings. Thus we decided to only calculate and compare APACHE-

II scores for those who had a minimal set of measurements which we defined as: at least 1 heart 

rate, systolic blood pressure, temperature, respiratory rate, oxygen saturation (SpO2), white blood 

cell count, and creatinine measurement in the 24 preceding onset. Depending on the cohort, 

roughly half the population had a minimal set of measurements, which is reflected in eFigure 3. 

In accordance to the source publication for APACHE-II, the most deranged measurement within 

the past 24h was used to calculate APACHE-II. Unlike in the source publication in which all 

measurements are mandatory, we assumed normal if missing.2 Acute kidney injury (used to 

modulate the creatinine score) was determined based on diagnosis codes (N17* or 584*). History 

of immune-compromise or organ insufficiency were determined based on diagnosis codes. All 

patients were assumed to be non-operative or emergency post-operative patients, not elective 

post-operative patients. 
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Appendix 31. TRIPOD checklist 

Section/Topic Item Checklist Item Page 

Title and abstract 

Title 1 
Identify the study as developing and/or validating a multivariable 

prediction model, the target population, and the outcome to be predicted. 
Title 

Abstract 2 

Provide a summary of objectives, study design, setting, participants, 

sample size, predictors, outcome, statistical analysis, results, and 

conclusions. 

 Abstract 

Introduction 

Background 

and 

objectives 

3a 

Explain the medical context (including whether diagnostic or prognostic) 

and rationale for developing or validating the multivariable prediction 

model, including references to existing models. 

 Introduction, paragraph 1 

& 2 

3b 
Specify the objectives, including whether the study describes the 

development or validation of the model or both. 
Introduction, paragraph 2  

Methods 

Source of data 

4a 

Describe the study design or source of data (e.g., randomized trial, cohort, 

or registry data), separately for the development and validation data sets, if 

applicable. 

Methods, “Study Design, 

Data Sources, and 

Population” section, and 

eMethods 1 

4b 
Specify the key study dates, including start of accrual; end of accrual; and, 

if applicable, end of follow-up.  

Methods, “Study Design, 

Data Sources, and 

Population” section 

Participants 

5a 
Specify key elements of the study setting (e.g., primary care, secondary 

care, general population) including number and location of centres. 

Methods, “Study Design, 

Data Sources, and 

Population” section 

5b Describe eligibility criteria for participants.  

Methods, “Study Design, 

Data Sources, and 

Population” section 

5c Give details of treatments received, if relevant.  N/A  

Outcome 

6a 
Clearly define the outcome that is predicted by the prediction model, 

including how and when assessed.  

Methods, “Sepsis 

Definition” section and 

eMethods 3 

6b Report any actions to blind assessment of the outcome to be predicted.  

The outcome was 

determined in an automated 

fashion using consensus 

criteria definition, 

methods, “Sepsis 

Definition” section and 

eMethods 3 

Predictors 

7a 

Clearly define all predictors used in developing or validating the 

multivariable prediction model, including how and when they were 

measured. 

 Methods, “Feature 

Generation and 

Engineering” section 

7b 
Report any actions to blind assessment of predictors for the outcome and 

other predictors.  

The predictors were 

extracted in an automated 

fashion, methods, “Feature 

Generation and 

Engineering” section 

Sample size 8 Explain how the study size was arrived at. 

Methods, “Study Design, 

Data Sources, and 

Population” section and 

results, “Patient 

Population” section 

Missing data 9 

Describe how missing data were handled (e.g., complete-case analysis, 

single imputation, multiple imputation) with details of any imputation 

method.  

Methods, “Feature 

Generation and 

Engineering” section  

Statistical 

analysis 
10a Describe how predictors were handled in the analyses.  

Methods, “Feature 

Generation and 
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methods Engineering” section  

10b 
Specify type of model, all model-building procedures (including any 

predictor selection), and method for internal validation. 

Methods, “Feature 

Generation and 

Engineering,” “Model 

Development,” and “Model 

Performance” sections 

10d 
Specify all measures used to assess model performance and, if relevant, to 

compare multiple models.  

Methods, “Model 

Performance” and “Pseudo-

Prospective Trial” sections  

Risk groups 11 Provide details on how risk groups were created, if done.  N/A  

Results 

Participants 

13a 

Describe the flow of participants through the study, including the number 

of participants with and without the outcome and, if applicable, a summary 

of the follow-up time. A diagram may be helpful.  

Methods, “Study Design, 

Data Sources, and 

Population” section; 

Results, “Patient 

Population” section, and 

eFigure 1 

13b 

Describe the characteristics of the participants (basic demographics, 

clinical features, available predictors), including the number of participants 

with missing data for predictors and outcome.  

Results, “Patient 

Population” section, Table 

1, eTable 2 

Model 

development  

14a Specify the number of participants and outcome events in each analysis.  

 Results, “Patient 

Population” section, Table 

1, eTable 2 

14b 
If done, report the unadjusted association between each candidate predictor 

and outcome. 

 Elided because too many. 

Subset shown in eFigure 2. 

Model 

specification 

15a 

Present the full prediction model to allow predictions for individuals (i.e., 

all regression coefficients, and model intercept or baseline survival at a 

given time point). 

Elided because too many  

15b Explain how to the use the prediction model. Discussion  

Model 

performance 
16 Report performance measures (with CIs) for the prediction model. 

Bootstrapped mean and 

standard deviation reported 

in Figure 1 and eTable 4  

Discussion 

Limitations 18 
Discuss any limitations of the study (such as nonrepresentative sample, few 

events per predictor, missing data).  
 Discussion, last paragraph 

Interpretation 19b 
Give an overall interpretation of the results, considering objectives, 

limitations, and results from similar studies, and other relevant evidence.  
Results and Discussion  

Implications 20 
Discuss the potential clinical use of the model and implications for future 

research.  
 Discussion 

Other information 

Supplementary 

information 
21 

Provide information about the availability of supplementary resources, 

such as study protocol, Web calculator, and data sets.  

Supplementary digital 

content referred to and 

linked throughout 

manuscript 

Funding 22 Give the source of funding and the role of the funders for the present study.  
 Title page, “Financial 

Support” section 
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Appendix 32. Data source 

The data for analysis was sourced from Barnes-Jewish Hospital (BJH), one of the fifteen 

hospitals owned by BJC Healthcare, a non-profit health care organization based in St. Louis, MO 

and affiliated with Washington University in St. Louis, St. Louis, MO. During the time period 

from which the data was extracted, BJH primarily used the COMPASS EHR (Allscripts Sunrise, 

Chicago, IL). Clinical data was first loaded into to a hospital-managed data warehouse called 

Health Data Core (HDC), which is primarily used for quality improvement, then was loaded into 

to a university-managed research data warehouse called Research Data Core (RDC). All relevant 

data for inpatients between 1/12012 and 6/1/2019 was extracted from RDC. 
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Appendix 33. Data preprocessing and mapping 

Raw clinical data were mapped to cogent clinical concepts through a combination of informatics 

approaches and subject matter expert manual review.  

Certain data elements were not present or partially present, but were able to be derived from 

related data elements: 

• BMI = weight (kg) / (height (m))2. BMI was explicitly present for 35.3% of the study population, 

was able to be calculated for 91.8%, and was ultimately available for 92.0%. 

• FiO2 was available explicitly, but was also calculated whenever there was oxygen flow 

documentation according to the following formula: oxygen flow x 3.5 + 21. 

• PaO2 - FiO2 ratio (PFRatio) was calculated whenever there was documentation of either PaO2 or 

FiO2. From each documentation, we looked back 24 hours for the latest complement 

documentation (PaO2 for FiO2 and vice versa) to calculate the ratio. If a complement FiO2 could 

not be found for PaO2, FiO2 was assumed to be 21%. If a complement PaO2 could not be found 

for PaO2, PaO2 was calculated using the following formula: 100 – Age (years) * 0.3 

• Estimated glomerular flow rate (eGFR) was calculated according to the MDRD study equation: 

175 * Creatinine-1.154 * Age-0.203 * ((Gender == Female)*.742)) * ((Race==Black)*1.212) 

• Blood urea nitrogen – creatinine ratio (BUNCr ratio) was calculated whenever there was a blood 

urea nitrogen documentation and creatinine documentation within a one-hour window as blood 

urea nitrogen / creatinine. Time of documentation was set as the later of the two.  

• Shock index (SI) was calculated whenever there was a heart rate documentation and a systolic 

blood pressure documentation within a one-hour window as heart rate / systolic blood pressure. 

Time of documentation was set as the later of the two. 

All numeric features were standardized (zero-mean and unit-variance) based on the distribution 

of the features in the training dataset. Time series data was summarized across various lookback 

time windows (3h, 6h, 12h, 24h, 48h, 96h) through the following aggregation functions: 

minimum, maximum, mean, skew, median, count, standard deviation, and last. No binning was 

performed. No boolean flag for presence/absence was generated. 
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Appendix 34. Data availability 

 Total Sepsis Non-sepsis 

Labs and Vital Signs % missing # recorded % missing # recorded % missing # recorded 

ALP 25.77 1 (0 - 2) 7.52 3 (2 - 7) 26.36 1 (0 - 2) 

ALT 25.77 1 (0 - 2) 7.48 3 (2 - 7) 26.36 1 (0 - 2) 

AST 26.21 1 (0 - 2) 7.75 3 (2 - 7) 26.81 1 (0 - 2) 

A-a Gradient 97.71 0 (0 - 0) 78.92 0 (0 - 0) 98.32 0 (0 - 0) 

Albumin 25.69 1 (0 - 2) 7.43 3 (2 - 7) 26.29 1 (0 - 2) 

Anion Gap 0 4 (3 - 7) 0 14.5 (9 - 22) 0 4 (3 - 7) 

BUN 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

BUN-Cr ratio 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

Base Excess 93.21 0 (0 - 0) 64.01 0 (0 - 1) 94.16 0 (0 - 0) 

Basophils 5.15 3 (1 - 5) 2.27 8 (4 - 13) 5.25 3 (1 - 5) 

Basophils abs 6.82 3 (1 - 5) 6.17 7 (4 - 13) 6.84 3 (1 - 4) 

Bicarbonate 0 4 (3 - 7) 0 17 (10 - 25) 0 4 (3 - 7) 

Bilirubin 25.71 1 (0 - 2) 7.43 3 (2 - 7) 26.3 1 (0 - 2) 

Bilirubin direct 67.81 0 (0 - 1) 54.35 0 (0 - 1) 68.25 0 (0 - 1) 

Calcium 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

Calcium ionized 89.88 0 (0 - 0) 56.26 0 (0 - 3) 90.97 0 (0 - 0) 

Chloride 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

Cholesterol 64.71 0 (0 - 1) 57.62 0 (0 - 1) 64.94 0 (0 - 1) 

Coombs 48.09 1 (0 - 1) 15.78 2 (1 - 3) 49.14 1 (0 - 1) 

Creatinine 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

DBP 0 24 (14 - 50) 0 
141 (79 - 

222) 
0 24 (14 - 46) 

Eosinophils 5.04 3 (1 - 5) 2.4 8 (4 - 13) 5.13 3 (1 - 5) 

Eosinophils abs 6.84 3 (1 - 5) 6.3 7 (4 - 13) 6.85 3 (1 - 5) 

FiO2 61.87 0 (0 - 8) 14.91 41 (10 - 100) 63.4 0 (0 - 6) 

Glucose 0.02 7 (3 - 25) 0 39 (16 - 101) 0.02 7 (3 - 23) 

HCT 0 4 (3 - 7) 0 16 (9 - 24) 0 4 (3 - 7) 

HDL 64.62 0 (0 - 1) 57.12 0 (0 - 1) 64.86 0 (0 - 1) 

HGB 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

Heart Rate 0 28 (16 - 57) 0 
162 (95 - 
261.75) 

0 27 (16 - 53) 

HgA1C 65.89 0 (0 - 1) 67.36 0 (0 - 1) 65.84 0 (0 - 1) 

INR 20.46 1 (1 - 3) 4.03 4 (2 - 8) 20.99 1 (1 - 3) 

Immature 
Granulocyte 

62.27 0 (0 - 2) 57.62 0 (0 - 5) 62.42 0 (0 - 1) 

Immature 
Granulocyte abs 

60.95 0 (0 - 2) 55.53 0 (0 - 6) 61.13 0 (0 - 2) 

LDH 84.39 0 (0 - 0) 65.82 0 (0 - 1) 84.99 0 (0 - 0) 
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LDL 65.65 0 (0 - 1) 58.93 0 (0 - 1) 65.87 0 (0 - 1) 

Lactic Acid 80.86 0 (0 - 0) 45.83 1 (0 - 3) 82 0 (0 - 0) 

Lipase 84.06 0 (0 - 0) 83.41 0 (0 - 0) 84.08 0 (0 - 0) 

Lymphocytes 4.29 3 (2 - 5) 1.9 9 (5 - 15) 4.37 3 (1 - 5) 

Lymphocytes abs 6.48 3 (1 - 5) 6.07 8 (4 - 13) 6.49 3 (1 - 5) 

MAP 0 24 (14 - 50) 0 
141 (79 - 

222) 
0 24 (14 - 46) 

MCH 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

MCHC 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

MCV 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

MPV 0.53 4 (3 - 7) 0.41 14 (9 - 22) 0.53 4 (2 - 7) 

Magnesium 32.26 1 (0 - 3) 7.21 7 (3 - 14) 33.07 1 (0 - 3) 

Monocytes 4.31 3 (2 - 5) 1.9 9 (5 - 14) 4.39 3 (1 - 5) 

Monocytes abs 6.45 3 (1 - 5) 6.21 8 (4 - 13) 6.46 3 (1 - 5) 

Neutrophils 4.29 3 (2 - 5) 1.9 9 (5 - 15) 4.37 3 (1 - 5) 

Neutrophils abs 6.43 3 (1 - 5) 5.98 8 (4 - 13) 6.44 3 (1 - 5) 

O2 Flow 62.2 0 (0 - 8) 15.19 38 (8 - 94) 63.73 0 (0 - 6) 

PCO2 87.95 0 (0 - 0) 37.76 1 (0 - 6) 89.58 0 (0 - 0) 

P-F Ratio 60.44 0 (0 - 8) 12.92 45 (11 - 107) 61.99 0 (0 - 7) 

PLT 0.01 4 (3 - 7) 0 15 (9 - 22) 0.01 4 (2 - 7) 

PO2 87.95 0 (0 - 0) 37.76 1 (0 - 6) 89.58 0 (0 - 0) 

PT 20.46 1 (1 - 3) 4.03 4 (2 - 8) 20.99 1 (1 - 3) 

PTT 27.15 1 (0 - 2) 7.43 4 (2 - 8) 27.79 1 (0 - 2) 

Phosphorus 52.89 0 (0 - 2) 15.14 5 (1 - 11) 54.11 0 (0 - 2) 

Plasma Protein 25.74 1 (0 - 2) 7.57 3 (2 - 7) 26.33 1 (0 - 2) 

Potassium 0.17 4 (3 - 7) 0 16 (10 - 24) 0.18 4 (3 - 7) 

RBC 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

RDW CV 0.02 4 (3 - 7) 0 15 (9 - 22) 0.02 4 (2 - 7) 

RDW FL 57.41 0 (0 - 4) 53.67 0 (0 - 13) 57.53 0 (0 - 3) 

Respiratory Rate 0 
23 (13.25 - 

48) 
0 

147 (82 - 
240) 

0 22 (13 - 45) 

SBP 0 24 (14 - 50) 0 
141 (79 - 

222) 
0 24 (14 - 46) 

Shock Index 0 25 (15 - 53) 0 
150 (86 - 

242) 
0 24 (14 - 49) 

Sodium 0 4 (3 - 7) 0 16 (9 - 23) 0 4 (3 - 7) 

SpO2 0 23 (13 - 48) 0 
146 (80.25 - 

235.75) 
0 22 (13 - 45) 

TSH 75.19 0 (0 - 0) 68 0 (0 - 1) 75.43 0 (0 - 0) 

Temperature 0 19 (12 - 37) 0 88 (50 - 142) 0 18 (12 - 34) 

Triglycerides 64.73 0 (0 - 1) 57.34 0 (0 - 1) 64.97 0 (0 - 1) 

Troponin I 53.82 0 (0 - 2) 38.94 1 (0 - 3) 54.31 0 (0 - 2) 
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Urinalysis Ketones 94.18 0 (0 - 0) 91.61 0 (0 - 0) 94.26 0 (0 - 0) 

Urinalysis Leukocyte 
Esterase 

82.97 0 (0 - 0) 57.21 0 (0 - 1) 83.81 0 (0 - 0) 

Urinalysis Nitrite 47.98 1 (0 - 1) 18.59 1 (1 - 2) 48.94 1 (0 - 1) 

Urinalysis 
SpecificGravity 

47.98 1 (0 - 1) 18.59 1 (1 - 2) 48.94 1 (0 - 1) 

Urinalysis pH 47.99 1 (0 - 1) 18.59 1 (1 - 2) 48.94 1 (0 - 1) 

WBC 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

eGFR 0 4 (3 - 7) 0 15 (9 - 22) 0 4 (3 - 7) 

pH 87.95 0 (0 - 0) 37.76 1 (0 - 6) 89.58 0 (0 - 0) 
Percentage of encounters missing labs and vital signs measurements, and number of labs and vital signs 

measurements per encounter (median and IQR) stratified by sepsis. 

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, 

blood urea nitrogen; Cr, creatinine; DBP, diastolic blood pressure; HCT, hematocrit; HDL, high density lipoprotein; 

HGB, hemoglobin: INR, international normalized ratio; LDH, lactate dehydrogenase; LDL, low density lipoprotein; 

MAP, mean arterial pressure; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin 

concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; P-F, PaO2 to FiO2 ratio; PCO2, 

partial pressure of carbon dioxide; PLT, platelets; PO2, partial pressure of oxygen; PT, prothrombin time; PTT, 

partial thromboplastin time; RBC, red blood cell count; RDW CV, red cell distribution width coefficient of 

variation; RDW FL, red cell distribution width femtoliters; SBP, systolic blood pressure; TSH, thyroid stimulating 

hormone; WBC, white blood cell count; eGFR, estimated glomerular filtration rate. 

  



192 

 

Appendix 35. Index time identification for sepsis and non-sepsis cohorts 

For each patient encounter, a single index time was identified, and prediction was performed six 

hours prior to that index time. 

For non-sepsis patients, index time was the maximum of [12 hours into admission] or [mid point 

between admission and discharge]: 

 

For sepsis patients, based on the elements that qualified the patient for meeting sepsis criteria, 

the time of suspicion of infection was also the time of sepsis and the time of index: 

 

Abbreviations: SOI, suspicion of infection; qSOFA, quick sequential organ failure assessment; cx, cultures; abx, 

antibiotics. 
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Appendix 36. Cohort selection PRISMA-style diagram  

 

Each encounter can meet multiple exclusion criteria, thus the sum of number of encounters excluded by each criteria 

is greater than the total number of excluded encounters. 

  



194 

 

Appendix 37. Cohort characteristics: comorbidities 

Variable 
Total 
(n = 70,034) 

Sepsis 
(n = 2,206) 

Non-sepsis 
(n = 67,828) 

pa 

AIDS/HIV, n (%) 540 (0.8%) 11 (0.5%) 529 (0.8%) 0.173   

Alcohol abuse, n (%) 1,120 (1.6%) 37 (1.7%) 1,083 (1.6%) 0.833   

Blood loss anemia, n (%) 917 (1.3%) 31 (1.4%) 886 (1.3%) 0.759   

Cardiac arrhythmias, n (%) 20,191 (28.8%) 1,142 (51.8%) 19,049 (28.1%) < 0.01 * 

Chronic pulmonary disease, n (%) 17,823 (25.4%) 782 (35.4%) 17,041 (25.1%) < 0.01 * 

Coagulopathy, n (%) 5,679 (8.1%) 505 (22.9%) 5,174 (7.6%) < 0.01 * 

Congestive heart failure, n (%) 19,846 (28.3%) 908 (41.2%) 18,938 (27.9%) < 0.01 * 

Deficiency anemia, n (%) 3,655 (5.2%) 132 (6.0%) 3,523 (5.2%) 0.111   

Depression, n (%) 11,881 (17.0%) 419 (19.0%) 11,462 (16.9%) 0.011   

Diabetes, complicated, n (%) 8,717 (12.4%) 377 (17.1%) 8,340 (12.3%) < 0.01 * 

Diabetes, uncomplicated, n (%) 13,099 (18.7%) 327 (14.8%) 12,772 (18.8%) < 0.01 * 

Drug abuse, n (%) 4,434 (6.3%) 97 (4.4%) 4,337 (6.4%) < 0.01 * 

Fluid and electrolyte  
disorders, n (%) 

20,911 (29.9%) 1,300 (58.9%) 19,611 (28.9%) < 0.01 * 

Hypertension, n (%) 31,368 (44.8%) 1,067 (48.4%) 30,301 (44.7%) < 0.01 * 

Hypothyroidism, n (%) 9,001 (12.9%) 371 (16.8%) 8,630 (12.7%) < 0.01 * 

Liver disease, n (%) 6,061 (8.7%) 307 (13.9%) 5,754 (8.5%) < 0.01 * 

Lymphoma, n (%) 2,960 (4.2%) 124 (5.6%) 2,836 (4.2%) < 0.01 * 

Metastatic cancer, n (%) 6,676 (9.5%) 261 (11.8%) 6,415 (9.5%) < 0.01 * 

Obesity, n (%) 5,309 (7.6%) 245 (11.1%) 5,064 (7.5%) < 0.01 * 

Other neurological disorders, n (%) 4,622 (6.6%) 205 (9.3%) 4,417 (6.5%) < 0.01 * 

Paralysis, n (%) 1,861 (2.7%) 105 (4.8%) 1,756 (2.6%) < 0.01 * 

Peptic ulcer disease excluding 
bleeding, n (%) 

566 (0.8%) 25 (1.1%) 541 (0.8%) 0.107   

Peripheral vascular disorders, n 
(%) 

5,514 (7.9%) 272 (12.3%) 5,242 (7.7%) < 0.01 * 

Psychoses, n (%) 1,243 (1.8%) 45 (2.0%) 1,198 (1.8%) 0.381   

Pulmonary circulation disorders, n 
(%) 

3,301 (4.7%) 241 (10.9%) 3,060 (4.5%) < 0.01 * 

Renal failure, n (%) 17,758 (25.4%) 769 (34.9%) 16,989 (25.0%) < 0.01 * 

Rheumatoid arthritis/collagen 
vascular diseases, n (%) 

2,911 (4.2%) 111 (5.0%) 2,800 (4.1%) 0.042   

Solid tumor without metastasis, n 
(%) 

9,671 (13.8%) 384 (17.4%) 9,287 (13.7%) < 0.01 * 

Valvular disease, n (%) 7,699 (11.0%) 487 (22.1%) 7,212 (10.6%) < 0.01 * 

Weight loss, n (%) 5,987 (8.5%) 450 (20.4%) 5,537 (8.2%) < 0.01 * 
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Appendix 38. XGBoost hyperparameter optimization  

Random search on the training set was used to optimize XGBoost hyperparameters.  

The fixed parameters were as follows: 

Parameter Value 
tree_method hist 
grow_policy depthwise 
single_precision_histogram True 
n_estimators 100 

 

The parameter spaces for optimization were as follows: 

Parameter Min Max Distribution 
subsample 0.2 1.0 Uniform 
colsample_bytree 0.2 1.0 Uniform 
max_depth 2 32 Uniform 
eta 1e-4 1 Log uniform 
gamma 1e-2 1e2 Log uniform 
max_bin 4 128 Uniform 
min_child_weight 1 100 Log uniform 
max_delta_step 0 1000 Uniform 

 

At each iteration, for each combination of parameters randomly sampled from the above 

distribution, 3-fold cross validation was repeated 3 times. Area under precision recall curve 

(AUPRC) was computed for each of the 9 splits. 300 iterations were performed yielding a total 

of 2,700 splits. The distribution of mean AUPRCs were as follows:  



196 

 

 

The best mean AUPRC found through random search was 0.275 compared to the median of 

0.211 and 0.241 of an unoptimized XGBoost model using default parameters. 

For each parameter, the parameter value was plotted against AUPRC and training time. For the 

AUPRC plots, each point represents a split whereas for the training time plot, each point 

represents the mean per iteration. 
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Appendix 39. SHAP values of optimized XGBoost model 

Features Absolute SHAP value 
(median [IQR]) 

Time to pred time (h) 0.262 (0.256 - 0.277) 

Age (years) 0.125 (0.112 - 0.141) 

NEWS2|Score 0.119 (0.097 - 0.132) 

qSOFA|Score 0.098 (0.066 - 0.122) 

SBP (min 96h) 0.097 (0.064 - 0.125) 

RespiratoryRate (max 48h) 0.086 (0.071 - 0.115) 

ShockIndex (max 12h) 0.063 (0.050 - 0.069) 

Coombs (count 48h) 0.063 (0.047 - 0.089) 

SBP (min 48h) 0.058 (0.047 - 0.080) 

ShockIndex (max 24h) 0.052 (0.034 - 0.067) 

Admitted through ED 0.051 (0.030 - 0.066) 

MCHC (max 96h) 0.049 (0.030 - 0.072) 

Temperature (count 96h) 0.047 (0.035 - 0.065) 

HeartRate (delta 96h) 0.047 (0.040 - 0.059) 

WBC (median 12h) 0.042 (0.035 - 0.046) 

RespiratoryRate (max 96h) 0.039 (0.022 - 0.054) 

Anticonvulsants 0.035 (0.022 - 0.048) 

RespiratoryRate (max 24h) 0.035 (0.025 - 0.055) 

Potassium (median 12h) 0.033 (0.021 - 0.042) 

Temperature (max 12h) 0.033 (0.025 - 0.042) 

Coombs (median 48h) 0.033 (0.027 - 0.054) 

Miscellaneous respiratory 
agents 

0.032 (0.022 - 0.041) 

SBP (min 24h) 0.029 (0.015 - 0.057) 

SpO2 (std 96h) 0.025 (0.013 - 0.045) 

BMI 0.025 (0.014 - 0.045) 
20 bootstrap samples were generated based on the training set, and for each feature, SHAP values (median and IQR) 

were calculated across bootstrap samples. The top 25 features based on absolute SHAP values are shown. 

Abbreviations: NEWS2, National Early Warning Score 2; qSOFA, quick Sequential Organ Failure Assessment; 

SBP, systolic blood pressure; MCHC, mean corpuscular hemoglobin concentration; WBC, white blood cell; SpO2, 

oxygen saturation; BMI, body mass index. 
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Appendix 40. Feature selection for lite model 

 

20 bootstrap samples were generated based on the training set, and for each feature, absolute SHAP values were 

summed across bootstrap samples. 

Based on relative drop-off in SHAP value, the cutoff (denoted by the dotted horizontal line) was drawn, and all of 

the features above the cutoff were used for the “lite” version of the XGBoost model (XGB lite). 
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Appendix 41. Logistic regression hyperparameter optimization 

 

Using grid search with 3-fold, 3-repeat stratified cross validation on the training set, the optimal C (inverse 

regularization strength) parameter was searched between 10e-4 to 10e2 and was determined to be 3.16e-3, yielding a 

mean AUPRC of 0.240. This value of C was then used for the logistic regression model (LogReg).  
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Appendix 42. Model performance comparison  

Model AUROC AUPRC 

XGB opt 0.862 ± 0.011 0.294 ± 0.021 

XGB lite 0.856 ± 0.006 0.244 ± 0.013 

XGB unopt 0.857 ± 0.007 0.287 ± 0.017 

LogReg 0.857 ± 0.008 0.256 ± 0.024 

NEWS2 0.699 ± 0.012 0.092 ± 0.009 

qSOFA 0.705 ± 0.013 0.079 ± 0.006 

SIRS 0.679 ± 0.010 0.066 ± 0.004 

Model performance distributions were determined through 20 bootstrap samples on the test dataset.  

Abbreviations: AUROC, area under receiver operating characteristic curve; AUPRC, area under precision recall 

curve; XGB opt, optimized XGBoost model; XGB lite, simple XGBoost model; XGB unopt, unoptimized, out-of-

the-box XGBoost model; LogReg, logistic regression; NEWS2, National Early Warning Score 2; qSOFA, quick 

Sequential Organ Failure Assessment; SIRS, Systemic Inflammatory Response Syndrome. 
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Appendix 43. Calibration plot for optimized XGBoost model  

 

For each of the 20 bootstrap samples on the test set, subjects were binned into deciles of predicted probability of 

sepsis. The grey bar plot and left y-axis represents the number of subjects in each bin (median and IQR). The red 

line plot and right y-axis represents the proportion of actual septic subjects in each bin (median and IQR). 
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Appendix 44. Pseudo-prospective trial, alert confusion matrix 

 Sepsis Non-sepsis  

Alerted 388 3144 
PPV 
= 11.0% 

Not 
alerted 

169 13740  

 
Sensitivity 

= 69.7% 
Specificity 
= 81.4% 

F1 
= 19.0% 

Based on the 17,441 encounters in the test dataset, after application of exclusions. Alerts for non-sepsis patients 

could be from any part of the patient encounter whereas alerts for sepsis patients can only be from before sepsis 

onset. 
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Appendix 45. Pseudo-prospective trial, time to intervention or outcome for alerted subjects  

Intervention or Outcome n (%) 
Time to event (h), 

median (IQR) 

Sepsis-relevant Cultures 1,376 (39.0%) 31.1 (11.4 - 75.2) 

Sepsis-relevant Anti-infectives 991 (28.1%) 52.6 (20.8 - 115.7) 

Ventilator Initiation 225 (6.4%) 65.5 (25.7 - 135.3) 

Sepsis Onset 388 (11.0%) 29.8 (11.4 - 71.6) 

ICU Transfer 371 (10.5%) 57.1 (17.8 - 128.5) 

Death 164 (4.6%) 191.5 (81.5 - 320.7) 
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Appendix 46. Pseudoprospective trial, patient trajectory visualizations 

Vertical solid blue line represents time of sepsis whereas the dotted blue line represents the first 

time in the encounter the predicted probability of sepsis crossed the threshold, which would have 

triggered an alert. Each black tick on the x-axis represents 24 hours whereas each red tick 

represents 6 hours. 

Abbreviations: Cx, sepsis-relevant cultures; Abx, sepsis-relevant anti-infectives; Vent, ventilator; 

WBC, white blood cell; PLT, platelets; BUN, blood urea nitrogen; DBP, diastolic blood 

pressure; SBP, systolic blood pressure; MAP, mean arterial pressure; PFRatio, PaO2 FiO2 ratio.  

Example of alert success (true positive): 



208 

 

 

 

An alert fired roughly 18 hours prior to sepsis-relevant culture collection, sepsis-relevant anti-

infective administration, sepsis onset, and ICU transfer. 
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Example of alert failure (false negative): 

 

 

The sepsis risk score was consistently low up to the point of sepsis onset and ICU transfer.  
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Example of alert failure (false negative): 

 

While there were scores crossing the threshold preceding sepsis onset, they were suppressed due 

to the lack of common labs (CBC/BMP) in the 24 hours preceding evaluation time.  
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Example of model success (true negative): 

 

This patient was never septic, and the alert never crossed the threshold. 
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Example of alert failure (false positive): 

 

While the patient was never septic, there were short periods where the score just barely exceeded 

the threshold. 
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Example of model failure (false positive):

 

While this patient was never septic (due to not meeting qSOFA), they did receive sepsis-relevant 

anti-infectives and cultures.  
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