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Understanding Control of Metabolite Dynamics and Heterogeneity 

by 

Christopher John Hartline 

Doctor of Philosophy in Energy, Environmental & Chemical Engineering 

Washington University in St. Louis, 2022 

Professor Fuzhong Zhang, Chair 

 

Microbes live in complex and continually changing environments. Rapid shifts in nutrient 

availability are a common challenge for microbes, and cause changes in intracellular metabolite 

levels. Microbial response to dynamic environments requires coordination of multiple levels of 

cellular machinery including gene expression and metabolite concentrations. This coordination is 

achieved through metabolic control systems, which sense metabolite concentrations and direct 

cellular activity in response. Several reoccurring control architectures are found throughout diverse 

metabolic systems, which suggests underlying evolutionary advantages for using these control 

systems to coordinate metabolism. One common, yet understudied, control architecture is the 

positive feedback metabolite uptake loop, which features a metabolite responsive-transcription 

factor (MRTF) that activates genes necessary to uptake its cognate metabolite. Understanding the 

design principles behind these complex metabolic control systems is a fundamental issue across 

many biological sub-disciplines since metabolism is a central feature of cellular behavior. 

The goal of this dissertation is to elucidate how the architecture and parameters of a MRTF-based 

control system shape metabolite dynamics and heterogenous metabolic response to changing 

nutrient environments. This dissertation focuses on the Escherichia coli fatty acid degradation 
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system, which employs the positive feedback uptake loop architecture. The function and 

performance of these control systems to three common metabolic tasks was evaluated. First, after 

a nutrient depletion, microbes must rapidly turn off metabolic pathways to conserve resources. 

Second, microbes must maintain sensing ability in the face of metabolic conditions which impact 

cellular growth rate. Finally, upon abrupt shifts between nutrients, microbes must shift metabolic 

resources to uptake the new nutrient or otherwise cease growth. This shifting process can be 

heterogenous, with a sub-population which maintains a non-growing state that confers tolerance 

to antimicrobial compounds. Taken together, this work provides deeper understanding of the 

design principles for the control of metabolite dynamics and heterogeneity for applications in 

metabolic engineering and synthetic biology.



1 

 

Chapter 1: Introduction 
 

This chapter contains text and figures published as:  

 

Hartline, C.J.*, Schmitz, A.C.*, Han, Y.*, and Zhang, F. (2021). Dynamic control in metabolic 

engineering: Theories, tools, and applications. Metab. Eng. 63, 126–140. 

doi:10.1016/j.ymben.2020.08.015. 

 

and  

 

Schmitz, A. C.*, Hartline, C. J.*, and Zhang, F. (2017). Engineering microbial metabolite 

dynamics and heterogeneity. Biotechnol. J. 12, 1700422. doi:10.1002/biot.201700422. 

 

Reprinted with permission.  

*Authors contributed equally to work. 

 

 

Microbes are highly adaptive living creatures capable of self-replication and complex 

chemistry. These properties make microbes a potentially useful tool in solving complex 

environmental challenges. For example, engineering microbes for chemical production is a 

growing field which has enabled the renewable synthesis of a wide range of target products 

including fuels (Jiang et al., 2017, 2018; Bai et al., 2019), polymer precursors (Bowen et al., 2016; 

Zheng et al., 2020), medicines and nutraceuticals (Yuan and Alper, 2019; Rahmat and Kang, 

2020), flavors and fragrances (Chen et al., 2020), and even metallic nanoparticles (Reed and Alper, 

2018). Despite these promising starts, commercial production of these compounds in industrial 

scales has been lagging, largely due to the inability of the engineered strains to maintain stable 

performance at large scales while meeting stringent titer, rate, and yield (TRY) requirements 
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(Wehrs et al., 2019). Similar to how control systems in chemical processes can improve 

performance and safety metrics (Ng and Stephanopoulos, 1996), incorporating genetic control 

systems to sense and control microbial metabolite concentrations is beginning to be explored as a 

method to improve microbial production of chemicals. 

 At the same time, microbes can adapt to and replicate in the human body and cause disease. 

Bacterial infection due antimicrobial resistant bacteria are thought to contribute to at least 700,000 

deaths annually as of 2016, and some estimates that number will grow to 10 million annually by 

2050 without action to limit the spread of antimicrobial resistance in bacteria (O’Neill, 2016; 

Theriault et al., 2021). Ongoing research into antimicrobial resistance mechanism have shown the 

importance of metabolism in providing protection against antimicrobial compounds (Amato et al., 

2014; Stokes et al., 2019). Microbes have evolved natural metabolite-sensing control systems 

which allow them to sense changes in their environment and tune metabolism in response. These 

control systems can drive metabolism to enhance growth in fluctuating environments (Nguyen et 

al., 2021), reduce growth to protect against toxic compounds (Peng et al., 2015), and can even 

activate disease-causing phenotypes under varying metabolic conditions (Abu Kwaik and 

Bumann, 2013). Additionally, these control systems are implemented through stochastic molecular 

mechanisms which allow a population of cells to display a range of responses to their environment. 

These diversified responses of microbes to their environment can make treatment of disease more 

challenging.  

Because metabolism is central to many aspects of microbial life, understanding how cells 

control their metabolite concentrations over time (called ‘metabolite dynamics’) and the variation 

of metabolite concentration in a population of cells (called ‘metabolite heterogeneity’) is critical 
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to many fields of microbiology including the development of advanced microbial chemical 

synthesis platforms and the treatment of disease caused by microbes. 

1.1 Metabolite Dynamics in Natural and Engineered Microbes 

1.1.1 Overview of Metabolite Dynamics 

Microbial function relies on thousands of molecular components constituting a complex 

network of gene-protein-metabolite interactions. These systems display a wide range of temporal 

responses which are difficult to understand based on knowing the presence of molecular 

interactions alone (Tyson and Novak, 2020). Because of these complexities, biologists from a 

broad range of disciplines have begun to adopt language and ideas from the mathematical analysis 

of dynamical systems and control theory to aid in analyzing and designing network interactions in 

biological systems (He et al., 2016; Vecchio et al., 2016). At the heart of these analyses is the 

conversion of a map of network interactions into a set of ordinary differential equations of the 

form: 

d x

dt
 = f(x) + d(t) 

Here, x is a vector representing the metabolic state of the cell, which is the concentration of all 

molecular species being analyzed. The time derivative of x represents the rate of change of those 

molecular species.  Thus, the temporal change in each species depends both on the current 

metabolic state, and on the specific molecular interactions which map the current state into a rate 

of change for the concentration of each molecular species. Additionally, an external disturbance d 

can be introduced which impacts the temporal evolution of the systems. This framework has been 

widely successful in describing the how gene networks respond to stimuli (Smolen, 2000; Tegnér 
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et al., 2003; Dayarian et al., 2009) and have been used in the development of novel gene-protein 

interactions for controlling microbial behavior (Kelly et al., 2018; Aoki et al., 2019).  

Metabolite dynamics focuses on how metabolite concentrations inside the microbial cell 

change over time. Metabolite dynamics occur when there is an imbalance in the rate of production 

and consumption of a metabolite which causes a net change in the metabolite concentration over 

time, i.e. dx/dt ≠ 0. Several factors can lead to this imbalance, particularly the presence of a new 

disturbance such as a change in the external concentration of one or more metabolites. If the 

metabolic network is asymptotically stable, the system will eventually reach a steady-state 

condition where there is no net change in metabolite concentrations. Analysis of the metabolite 

dynamics can reveal several key properties of the system which affect its biological function. As 

examples, the rate of convergence to a steady state (Liu and Zhang, 2018), the existence of multiple 

steady states (Venturelli et al., 2012), oscillations in metabolite concentrations (Fung et al., 2005), 

and the presence of delays and overshoots (Novák and Tyson, 2008) are all important properties 

of metabolite dynamics. These properties can impact cell growth, productivity, and response and 

therefore are key metrics of analyzing performance. Additionally, the use of optimality principles 

can be included in the analysis to uncover trade-offs and design principles in controlling metabolite 

dynamics in both natural and engineered control systems (Chubukov et al., 2012; Oyarzún and 

Stan, 2013). These many lines of analysis can provide deeper insight into the biological role of 

evolved gene-protein-metabolite interactions, as well as the design of new interactions to enhance 

metabolite productivity in fermentations.  

1.1.2 Metabolite Dynamics Affect Fitness of Natural Microbes 

Metabolite dynamics serve as a driver of cellular response to the environment (Gerosa and 

Sauer, 2011), rather than simply being an output of cellular functions. These driving mechanisms 
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occur at all levels of cellular function including transcription, translation, and post-translation. At 

the transcriptional level, metabolites can directly drive cell adaptations through metabolite-

responsive transcription factors (MRTFs) to continuously control gene expression profiles. Nearly 

half of all transcription factors in E. coli are regulated directly through binding to metabolites 

(Madan Babu, 2003; Krishna et al., 2007). Changes in metabolite availability often dive changes 

in expression of metabolite-specific pathways, to allocate more resources to that metabolite’s 

catabolism or anabolism. Well known examples include lacI and araC, which strongly upregulate 

lactose and arabinose catabolic pathways, respectively, when these sugars are available 

intracellularly. Other MRTFs more globally coordinate many metabolic processes and genes, such 

as Lrp, which upregulates up to 10% of E. coli genes, including amino acid biosynthesis and 

catabolism and pili synthesis in response to leucine (Tani et al., 2002).  

In addition to binding MRTFs, metabolite binding to RNA aptamers is gaining recognition 

as an important way in which metabolites drive cell response through regulation of protein 

translation, which can drive changes in metabolite concentrations in some cases (Barrick et al., 

2004; Mandal et al., 2004; Serganov et al., 2008). For example, a wide-spread guanidine 

responsive ykkC riboswitch is found in urea carboxylases, arginases, nitrate/sulfate/bicarbonate 

transporters, and in small multidrug resistance efflux pumps (Nelson et al., 2017). This riboswitch 

senses the concentration of guanidine, and increases export if concentrations are too high to 

prevent cytotoxicity. Thus, metabolite dynamics drive changes in protein abundance through 

diverse transcription and translation control mechanisms. 

Upon entering new environmental conditions, the expression of new proteins can take 

several minutes, while the dilution of old proteins through cell growth can take several hours. 

Additionally, intrinsic noise in transcription and translation can create cell-to-cell differences 
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protein abundance which cannot be avoided (Kochanowski et al., 2015). Thus, microbes have also 

evolved fast responding mechanisms for controlling metabolic flux in response to metabolite 

changes (Kochanowski et al., 2013). Metabolites can affect flux through allosteric control 

mechanisms by binding directly to enzymes to affect their kinetic properties. A particularly 

striking example is in the control of TCA cycle anaplerosis (Xu et al., 2012). Here, 

phosphoenolpyruvate is accumulated by shutting down activity of PEP carboxylase through 

depletion of fructose-1,6-bisphosphate, which acts as an allosteric activator of PEP carboxylase. 

Disruption of this allosteric mechanism through point mutation disrupts growth when glucose 

availability oscillates (Xu et al., 2012), which demonstrates the necessity of these fast mechanisms 

for adaptation to fluctuating environments. Despite several well-known examples, systematic 

identification of allosteric metabolite-protein interactions with biological function is difficult due 

to their highly transient nature, and the current mapping of allosteric metabolite-protein 

interactions is likely far from completion (Ledezma-Tejeida et al., 2021). Nonetheless, recent 

advances in proteomic methods have enable the identification of hundreds of novel interactions 

between metabolites and enzymes (Li et al., 2010; Link et al., 2013; Feng et al., 2014; Diether et 

al., 2019). 

In addition to direct interaction with proteins, metabolites can trigger post-translational 

modifications though enzyme phosphorylation and acetylation which alter the kinetic activity of 

metabolic enzymes (Kochanowski et al., 2015). Like direct allosteric interactions, post-

translational modifications are rapid and reversable, but most often catalyzed by a metabolite 

sensor with kinase or acetyltransferase activity. A well-known example of this is the isocitrate 

dehydrogenase (ICD) kinase, AceK in E. coli, which directs isocitrate between the glyoxylate 

shunt, or the full TCA cycle through both phosphorylation/dephosphorylation of ICD (Walsh and 
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Koshland, 1985). AceK is thought to sense the abundance of ATP/ADP to switch between TCA 

cycle and glyoxylate shunt (Zheng and Jia, 2010), thus allowing a robust tuning of the rates of the 

two pathways (Shinar et al., 2009). Deactivation of AceK phosphatase activity causes growth 

arrest on acetate (LaPorte et al., 1985), showing that this control mechanism is necessary to 

correctly balance the activity of the two pathways. Until recently, only a small number of these 

post-translational control mechanisms have been identified, but recent work has shown that post-

translational modification of enzymes is widespread in bacteria metabolism (Brunk et al., 2018; 

Schastnaya et al., 2021). Systematic identification of these control mechanisms, and the 

metabolites which drive them is likely to be an ongoing challenge. Altogether, these diverse and 

wide-spread metabolite sensing and control mechanisms demonstrate the importance of 

controlling metabolite dynamics to the growth and fitness of bacteria.  

1.1.3 Metabolite Dynamics Affects Productivity of Engineered Microbes 

Metabolite dynamics are also important to consider in industrial fermentations. Cells face 

two types of environmental variations during batch processes: slow global environmental changes 

due to process progression, and local environmental heterogeneity. Traditionally, cellular 

productivity is optimized for production in a single environment and at either exponential or 

stationary growth phase, which leads to sub-optimal productivity as the environment or cell growth 

phase changes during a production process (Gadkar et al., 2005; Anesiadis et al., 2008). Due to 

the difficulty in maintaining a homogenous environment in a large fermenter, cells can pass 

through regions with varied microenvironments, for instance different pH and different oxygen or 

substrate concentrations (Lara et al., 2006; Nadal-Rey et al., 2021). These disturbances result is 

changes in internal metabolite concentrations and affect bioproduction. Controlling metabolite 

dynamics can address these challenges by altering output of both natural and engineered metabolic 
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pathways in response to environmental changes, which has been done through the dynamic 

regulation of fatty acid ethyl ester and fatty acid producing pathways to achieve high productivity 

and yield (Zhang et al., 2012a; Xu et al., 2014; Liu et al., 2015). 

Production of some chemicals through metabolic engineering can be suboptimal, or even 

infeasible without controlling metabolite dynamics, particularly if the engineered pathway 

significantly impacts cell growth. In some cases, a two-stage metabolic switch can be used to 

decouple the competing tasks of biomass accumulation and metabolite overproduction (Burg et 

al., 2016). In this mode of dynamic metabolic engineering, metabolism is optimized for biomass 

accumulation in the first stage, while product formation is optimized during the second stage. Early 

work showed that glycerol production in E. coli could be improved by 30% using this two-stage 

strategy (Gadkar et al., 2005). Continuous sensing and control of metabolite production pathways 

can also be used to balance metabolite production and cell toxicity for improved production 

metrics, as demonstrated in the production of pinene in E. coli (Dunlop et al., 2010; Siu et al., 

2018). In this system, toxic pinene accumulation was sensed through a stress response TF MexR, 

which increased expression of pinene efflux pumps whenever pinene accumulated too much. This 

was shown to enhance tolerance to pinene production over a wide range of system parameter 

values (Siu et al., 2018). Thus, from both fundamental science and metabolic engineering 

perspectives, it is important to understand and have the ability to control metabolite dynamics.  

1.2 Metabolite Heterogeneity in Natural and Engineered Microbes 

1.2.1 Overview of Metabolite Heterogeneity 

 Genetically identical microbes display phenotypic heterogeneity even in identical 

environment, due to many inherent stochastic processes governing cell biology. For example, 

random segregation of molecules between daughter cells, stochastic gene expression, stochastic 
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translation machinery concentration, and stochastic enzyme catalysis are all sources of 

heterogeneity within a microbe. Because of the highly interconnected network of gene-protein-

metabolite interactions, these sources of heterogeneity can propagate to cell-to-cell differences in 

metabolite concentrations. The extent and consequences of metabolite heterogeneity to microbial 

biology have only been recently revealed experimentally due to difficulties in analyzing metabolite 

concentrations at single cells, particularly during cell growth (Mustafi et al., 2012; Ibáñez et al., 

2013; Zenobi, 2013; You et al., 2015). 

 The study of metabolite heterogeneity focuses on quantifying and modeling the shape of 

the distribution of metabolite concentrations across a population of cells. Important metrics are the 

mean and standard deviations of the population (Kiviet et al., 2014), the frequency of outliers with 

extremely altered metabolism (Hare et al., 2021), and the presence of multimodality (Guantes et 

al., 2016). Several methods for modeling and simulating metabolite heterogeneity have been put 

forward (Levine and Hwa, 2007; Thomas et al., 2011; Oyarzún et al., 2015; Ray et al., 2016). A 

popular starting point for modeling metabolite heterogeneity involves setting up a chemical master 

equation to keep track of the number and fluctuations of metabolites and other compounds over 

time, which can then be simulated by the Gillespie algorithm, or approximated used a tau-leaping 

method (Gillespie, 2007). However, this approach has difficulties due to the many timescales 

involved in production and consumption of intracellular metabolites (Tonn et al., 2019). Thus, 

frameworks for analyzing metabolite heterogeneity and its connection with gene-protein-

metabolite network structures is an active field of research. 

1.2.2 Metabolite Heterogeneity Affects Fitness of Natural Microbes 

Variation of single cell metabolite concentration affects the collective behavior of a culture, 

even under constant environments. Flux balance analysis using experimentally measured single-
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cell protein copy numbers (Taniguchi et al., 2010) predict that there is a large variation on single 

cell metabolic activities, that could lead to single cell growth rate variation as much as five-fold 

(Labhsetwar et al., 2013). Furthermore, experimentally measured coefficient of variation (CV) 

(standard deviation divided by mean) of single cell growth rate ranges from 0.2 to 0.4 (Kiviet et 

al., 2014).  Both the size and the frequency of growth rate fluctuation is likely caused by 

fluctuations in the concentration of cellular components, including metabolites.  

Metabolite heterogeneity can also play a larger role in fluctuating environments, especially 

in rapidly switching environments. Under these rapidly varying conditions, microbial populations 

may maintain multiple sub-populations with different metabolic pathways active, so that some 

cells are always optimized from growth upon environmental changes (Grimbergen et al., 2015). 

The potential benefit of this bet-hedging, or stochastic switching, strategy was demonstrated in 

galactose utilization network of Saccharomyces cerevisiae, where cells were engineered to 

randomly activate galactose pathways at different rates (Acar et al., 2008). It was found that 

populations which had frequent random switching grew faster under rapid fluctuations between 

galactose and glucose, as compared to populations with less frequent random switching. 

Phenotypic heterogeneity has also been observed upon diauxic shifts from glucose to many carbon 

sources in many microbial species (Boulineau et al., 2013; New et al., 2014; Solopova et al., 2014). 

For example, in Lactococcus lactis undergoing diauxic shift from glucose to cellobiose, only a 

small fraction of the population activated cellobiose consumption pathways once glucose was 

depleted, while the remaining fraction stopped growth (Solopova et al., 2014). Moreover, the size 

of fraction which transitioned to cellobiose was smaller if initial glucose concentrations were 

higher, which suggests cell’s ability to adapt depends on their initial metabolic environment and 

potentially their initial metabolism. This phenomenon of responsive diversification, where a 
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population of adapted and non-adapted cells emerge from a single population, was also observed 

in E. coli during rapid nutrient shifts from glucose to fumarate (Kotte et al., 2014). Many factors 

potentially affect the size of the heterogeneity in switching times between nutrient sources 

including cell-to-cell differences in transcriptional activity, sensing components, or stochastic 

difference in metabolic pathways prior to switching (Schwabe and Bruggeman, 2014; 

Radzikowski et al., 2016; Chu, 2017; Barthe et al., 2020). For example, in the case of L. lactis 

transition to cellobiose, knockout of the stringent response gene relA increased the number of cells 

which transition (Solopova et al., 2014), implicating a role for the stringent response mechanisms 

and its key metabolite signal, (p)ppGpp (Magnusson et al., 2005), in governing switching times 

and frequency.  

 Metabolic heterogeneity has also been shown to underly some mechanisms bacterial 

persistence (Amato et al., 2014). Bacterial persistence allows a sub-population of bacteria to 

tolerate to antibiotic treatment (Balaban et al., 2019), which could be one mechanism that leads to 

recurrent infection in a clinical setting (Michiels et al., 2016). Persistence is a phenotype typically 

associated with transient metabolic dormancy (Wood et al., 2013) which slows the activity of many 

growth-related processes which are traditionally targeted by antibiotics. After persistence, cells 

can regrow and generate a new population, where again only a few cells are persisters, indicating 

that the persister phenotype is not inherited and that underlying stochastic process play a role in 

triggering persistence (Harms et al., 2016). Stochastic expression of toxin-antitoxin systems, which 

can trigger elevated levels of the signaling metabolite ppGpp are one mechanism by which cells 

enters persister state (Ronneau and Helaine, 2019). ppGpp shuts down transcription and 

translation, thus acting as a general signaling mechanism for cells to become dormant (Pacios et 

al., 2020). However, while knocking out genes responsible for ppGpp synthesis reduces persister 
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levels, it does not prevent persisters (Nguyen et al., 2011). Reduced ATP concentrations have also 

been associated with elevated persistence (Conlon et al., 2016; Manuse et al., 2021), independent 

of the formation of ppGpp (Shan et al., 2017). However, low ATP is also associated with slow 

growth, which may partially account for increased antibiotic tolerance, and therefore may not be 

a trigger of persistence (Pacios et al., 2020). Rapid nutrient shifts and diauxic shifts from glucose 

to fumarate, glycerol, and succinate also trigger elevated levels of persistence to multiple 

antibiotics (Amato et al., 2013; Amato and Brynildsen, 2014, 2015; Radzikowski et al., 2016). For 

example, in the case of glucose to fumarate shifts in E. coli, nearly all cells become persisters after 

the switch, and those cells activated several stress response genes which could give cells protection 

against antibiotics (Radzikowski et al., 2016). It was proposed that the ultimate cause of entry into 

persistence was a flux limitation in central metabolism, and cell-to-cell differences in the activity 

of fructose-1,6-bisphosphatase (Fbp) may explain why some cells adapt and others become 

persisters (Radzikowski et al., 2016). This view was later supported by observations of large 

heterogeneity in the expression of TCA cycle enzymes, where stochastically low TCA expression 

was associated with elevated tolerance to ciprofloxacin (Zalis et al., 2019). This evidence shows 

that, while there are likely many contributing factors to bacterial persistence, heterogeneity in 

metabolism is a central feature of persistence, which warrants further experiment into identifying 

the potential metabolite and metabolic triggers which explain cell-to-cell differences in entry and 

exit from the persistence phenotype. 

1.2.3 Metabolite Heterogeneity Affects Cellular Productivity 

 While heterogeneity in bioreactor conditions has been shown to impact bioproduction, the 

importance of metabolite heterogeneity is only beginning to be recognized. Large cell-to-cell 

variation on productivity of engineered microbes was observed in the biosynthesis of 5’-
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pyrophospate in E. coli (You et al., 2015), the production of free fatty acids (FFA) in E. coli (Xiao 

et al., 2016), and the production of L-valine, L-leucine, and L-isoleucine in Corynebacterium 

glutamicum (Mustafi et al., 2012). The size of metabolite variation was quantified in an engineered 

FFA-producing E. coli strain, where the mean FFA concentration between four isolated 

subpopulations was as large as ninefold (Xiao et al., 2016).  This heterogeneity strongly affects 

the ensemble FFA titer and productivity as more than half of the FFA was produced from a 

subpopulation consisting of only 15% of the bacteria. The rest of the population consumed nutrient 

without producing a high concentration of FFA. Low producing cells probably devote more 

resources to growth, thus dominating the culture over time, leading to an overall decrease in 

productivity as demonstrated by bimodal L-valine production in C. glutamicium (Mustafi et al., 

2014). On the other hand, single cell modeling of intracellular resource competition shows that the 

expression of competing metabolic pathways may be positively correlated at the single cell level 

(Han and Zhang, 2020). This would suggest that cells with higher expression of  metabolite 

producing pathways could potentially be the faster growing cells in the population as well. Overall, 

these findings demonstrate that it is essential to understand the multifaceted contributions to 

metabolite heterogeneity and to develop methods to control it in engineered cells.  

1.3 Metabolic Control Systems 

 

 Given the importance of metabolite concentrations to microbial metabolism, propagation, 

and survival, cells have evolved control mechanisms which shape the metabolite dynamics and 

heterogeneity to enhance their overall fitness in their environments (Chin et al., 2008). While 

metabolite concentrations are dependent on the whole gene-protein-metabolite network, smaller 

metabolic control systems are used to interact with metabolites directly. These metabolic control 
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systems require two main components. First, a sensing component is necessary to measure the 

intracellular concentration of a metabolite. Second, an actuating component is necessary to receive 

the information about metabolite concentration and affect cellular activity in response. These 

components can be within one molecule, for example in enzyme allostery, which senses metabolite 

concentration at the allosteric site and actuates a change in enzyme activity. The sensing and 

actuating can also rely on multiple molecular components, such as in transcriptional control of a 

gene by MRTFs.  

 The molecular control systems found in natural systems use a small number of recurrent 

functional motifs across a wide variety of pathways (Alon, 2007). These network motifs, or 

regulatory architectures, often have similar functional roles in the pathways in which they appear. 

System parameters, which are the strengths and rates of interactions between molecular species, 

also affect overall system performance. Regulatory architecture and parameters are evolved 

together to achieve optimal dynamic response to environmental changes (Zaslaver et al., 2004; 

Chubukov et al., 2012). Because these systems are used in disparate pathways, biologists are 

interested in the functional advantages these architectures give to microbes which drives the 

convergent evolution of these functional motifs. These insights are similarly important to engineers 

to endow newly designed metabolic pathways with these advantages. In the next section, we will 

review negative and positive feedback motifs, and their consequences to metabolite dynamics and 

heterogeneity. 

1.3.1 Negative Feedback Control 

 Negative feedback is a critical control methodology across many engineering disciplines 

for increasing robustness and tuning response times (Vecchio et al., 2016) and is similarly found 

in the control of a number of natural metabolic pathways (Chubukov et al., 2014). For a negative 
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metabolic feedback system, the metabolite concentration acts as a signal, and actuates pathway 

activities to counteract changes in the metabolite concentrations. An example of a negative 

feedback architecture is in product feedback inhibition (PFI) where the final metabolite of a 

pathways allosterically inhibits the activity of the enzymes that produce it. Incorporating negative 

feedback architectures has been analyzed to enhance performance in several common problems 

faced by microbes with both natural and engineered metabolic networks.  

 A common task microbes face is to switch on transcriptional expression of pathway 

enzymes in response to a metabolite, through an MRTF. In both natural and engineered metabolic 

systems, rapid response to a switching metabolite concentration is desired because it allows 

microbes to quickly adapt to changing conditions or reach a productive metabolic state more 

rapidly. In controlling transcription, switching on pathway expression using an open loop (OL) 

architecture in response to an input metabolite is generally slow. It was found that for an OL 

architecture, it takes 2.48 cell cycles for the pathway metabolite concentration to rise to 50% of its 

steady-state concentration (defined as the metabolite rise-time) after addition of a signaling 

metabolite. Liu et al. built and studied three closed loop feedback systems of different 

architectures: a negative gene loop (NGL), a negative metabolic loop (NML), and a negative 

layered metabolic loop (NLML) (Liu and Zhang, 2018). While all three loops had some ability to 

decrease the rise-time for pathways metabolite concentrations compared to the OL, the NLML, 

where metabolite concentration is feedback through a genetic inverter then an enzyme controller, 

was capable of dramatically accelerating rise-times by 11.8-fold. However, this rapid increase in 

rise-time was accompanied by a large metabolite concentration overshoot, where metabolite 

concentration rises above the steady-state before settling. Through tuning the many parameters, it 

was found that for NLML, faster rise times were generally correlated with larger overshoots. Using 
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a high maximum promoter strength of the genetic inverter and a low threshold of the enzyme 

controller were found to be the most efficient for decreasing the rise-time. However, large 

overshoots may not be desirable for many microbes or engineers because pathway resources may 

be wasted on producing enzymes that are not being used. In these cases, an NML architecture 

could be more appropriate to accelerate metabolite dynamics (1.9-fold) without an accompanying 

overshoot. 

 A second kind of task for microbes is to be robust against microbial environmental 

perturbations and genetic perturbations (e.g. mutations) which affect metabolism. Environment  

perturbations can cause major concentration changes for metabolites necessary for growth 

(Kresnowati et al., 2006; Taymaz-Nikerel et al., 2013). Transcription-level metabolite feedback 

was shown to help make metabolite levels less sensitive to these metabolic fluctuations (Oyarzun 

and Stan, 2012; Oyarzún and Stan, 2013). Using strong, tight promoters allowed the system to 

further minimize the decrease in product concentration, however, strong promoters could also lead 

to oscillatory dynamics. Negative feedback in pathways also allows microbes to be more robust to 

both changes in the microbial environment and changes in system parameters due to mutation. For 

example, parameter sensitivity analysis of the pinene production-efflux system showed that 

including negative feedback system reduced the sensitivity of pinene production to system 

parameters variation (Dunlop et al., 2010; Harrison and Dunlop, 2012). This robustness was 

verified by constructing a library of pinene export feedback systems, which showed several 

members with enhanced pinene tolerance, despite having varying promoter strengths and number 

of TF binding sites in the promoter (Siu et al., 2018). These results highlight how incorporating 

negative feedback control into pathway design can make the system more robust to bother 

environmental and genetic perturbation.  
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 Finally, negative feedback has been explored as a mechanism to reduce the amount of 

metabolite heterogeneity (Borri et al., 2015, 2016; Oyarzún et al., 2015). In these papers, a 

metabolic enzyme is continuously controlled by a promoter and the enzyme converts a substrate 

into a final product. Two main feedback loop architectures have been considered: enzyme 

autoregulation or end-product feedback. Compared to a constitutive system with an identical mean 

product level, both enzyme autoregulation and end-product feedback could always reduce 

metabolite noise, with stronger feedback leading to stronger noise reduction (Borri et al., 2015). 

Additionally, feedback sensitivity was identified as a critical parameter to achieve large noise 

reduction for a wide range of promoters and feedback strengths (Borri et al., 2015, 2016; Oyarzún 

et al., 2015).  

 These several advantages of incorporating negative feedback demonstrate their utility in 

enhancing the performance some metabolic pathways. However, these studies thus far have been 

limited to regulation of linear pathways, and primarily focus on control at the transcriptional level. 

Thus, more work is needed to understand the roles of negative feedback in pathways with branches 

and loops, and at the post-transcriptional level, which are also common in metabolism. 

1.3.2 Positive Feedback Control 

 Biology makes extensive used of positive feedback in the control of a number of 

transcription, cell signaling and metabolic networks (Mitrophanov and Groisman, 2008; Tiwari et 

al., 2011). For positive feedback systems, changes in the metabolite’s intracellular concentration 

work to promote further changes in the concentration. Thus, while negative feedback is associated 

with improving the stability of a network, positive feedback generally promotes instability 

(Cinquin and Demongeot, 2002). While this is typically considered problematic in the design of 

chemical engineering control system (Morud and Skogestad, 1994), biology uses this property to 
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ensure robust state switching (Freeman, 2000) and to maintain memory of past conditions (Acar 

et al., 2005), which is important in maintaining differentiated cells.  

Positive feedback is necessary for systems to exhibit bistability, which is the existence of 

multiple steady states for a given parameter value or external metabolite concentration. Induction 

of the lactose catabolism system in E. coli has been shown to exhibit bistability when induced non-

metabolizable inducers such as TMG (Novick and Weiner, 1957; Ozbudak et al., 2004). In this 

case, individual cells either fully activate lactose utilization networks or not, leading to large cell-

to-cell differences in enzyme concentrations, and potentially metabolite concentrations. Thus, 

bistability can help to generate the multiple populations needed for metabolic bet-hedging, where 

different cells have different uptake rates of extracellular nutrients. Another general property of 

bistable systems is hysteresis, a memory-like property where the threshold of the signal output 

response curve is different depending on the recent history of the input signal (Ferrell, 2002).  

Hysteresis can allow the internal metabolite signal to be reduced without switching metabolic 

states. Additionally, hysteresis enables a slow response to metabolite concentrations signals that 

are near the switching threshold (Tiwari et al., 2011). This property allows bistable switches to 

filter out mild, transient changes in the metabolite concentrations which may be typical of a 

microbe’s natural environment or of heterogenous bioreactors. Several positive feedback 

architectures for generating bistable metabolite uptake rate have been explored (Oyarzun and 

Chaves, 2015). It was found that using an activator-repressor topology, where the metabolite 

activates its own uptake and represses its consumption, had the largest parameter space for 

generating bistability.  

While bistability is an interesting possibility for positive feedback systems, not all positive 

feedback systems are bistable. For example, while the lac operon can be bistable using non-
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metabolizable inducer, bistability is has not been observed using the native inducer, lactose 

(Zander et al., 2017). Additionally, although activator-repressor topologies have the highest 

potential for bistability, no natural metabolic systems have been identified which use this topology 

(Krishna et al., 2007). In contrast, many cellular uptake systems, including the lactose system, 

have positive feedback in metabolite uptake, coupled with negative feedback in metabolite 

consumption. These systems have much smaller bistable parameter regions (Krishna et al., 2007; 

Oyarzun and Chaves, 2015), suggesting that the metabolite uptake systems may not benefit from 

bistability. Coupling positive feedback with negative feedback in metabolic systems without 

bistability may help efficiently allocate metabolic resources (Krishna et al., 2007; Zander et al., 

2017) in response to extracellular environment nutrients, which can potentially explain its wide 

adoption.  

1.4 Metabolic Control System for Fatty Acid Metabolism 

 

 Fatty acids (FAs) are critical metabolites in microbial metabolism and serve diverse 

functional roles. Fatty acids in phospholipids serve as the primary component of cellular 

membranes in both bacteria and eukaryotic domains (Lombard et al., 2012). The FA composition 

of those membranes plays an important role in surviving under different conditions, for example 

by increasing the ratio of cyclopropane FAs under stationary phase and acidic conditions (Cronan, 

1968; Shabala and Ross, 2008) or by increasing unsaturated FA content under low temperature 

(Marr and Ingraham, 1962; de Mendoza et al., 1983).  FAs also serve as a highly reduced, high 

energy carbon source, with an estimated ATP yield of ~100 per molecule, compared to ~30 ATP 

per molecule for glucose. Finally, it is becoming more evident that FAs and their catabolism play 

complex roles in regulating disease states, including both in promoting and inhibiting growth of 



20 

 

infectious bacteria (Gullett et al., 2019; Kengmo Tchoupa et al., 2022), in triggering inflammation 

and immune response (Hosomi et al., 2020), in microbial survival of antibiotic treatment (du Preez 

and Loots, 2012), and even in promoting proliferation of cancer cells (Carracedo et al., 2013). 

Given the many roles of FAs in biology, understanding how microbes regulate their dynamic 

response to exogenous FAs is a necessary step in unraveling how these processes contribute to 

microbial growth and disease. 

1.4.1 FadR as Master Regulator of Fatty Acid Catabolism in E. coli 

 In aerobic conditions, E. coli can grow on long chain FAs as a sole carbon source. 

Catabolism of FA proceeds by primarily by the aerobic β-oxidation pathway, which yields two 

carbon units in the form of acetyl-CoA for use in central metabolism, and yields reduced NADH 

and flavoproteins (Nunn, 1986). Several TFs are involved in the transcriptional regulation of β-

oxidation, including global regulators ArcA and CRP which coordinate FA degradation with the 

metabolic state of the cell (Cho et al., 2006). However, the primary transcriptional regulator of FA 

degradation is FadR, which represses transcription of the β-oxidation genes in the absence of 

exogenous FAs. 

 As a first step in sensing exogenous FAs, FAs must be transported intracellularly by FadL 

and FadD. FadL is responsible for transporting FAs across the outer membrane. FadD 

simultaneously transports fatty acids across the inner membrane, and activates FAs to acyl-CoA 

through ATP-dependent ligation to free coenzyme A (Weimar et al., 2002). FadR represses 

transcription of these genes through binding to operator sites to block transcription (Xu et al., 

2001). However, binding of acyl-CoAs to FadR antagonizes its DNA binding activity (Henry and 

Cronan, 1992), thus allowing transcription of fadl and fadD. In this way, a positive feedback loop 

is formed, with acyl-CoAs activating fadD expression via FadR to promote further conversion of 
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FA to acyl-CoA. This regulatory logic of positive feedback in metabolite uptake is common in 

several E. coli systems, including the well-studied lactose uptake system. For a list of systems in 

E. coli displaying this regulatory logic, see Appendix A Table A.1.  

 Once FAs are activated to acyl-CoA, they are primarily degraded by the β-oxidation 

enzymes FadE, FadA, and FadB. Transcription of these enzymes is repressed by FadR when acyl-

CoA concentration is low. The activity of these three enzymes removes two-carbon subunits from 

the acyl-chain, progressively shortening it. Assays of purified FadR show that FadR binding 

activity is not antagonized by acyl-CoAs shorter than 12 carbon units (DiRusso et al., 1992). Thus, 

these enzymes reduce the intracellular concentrations of the FadR-antagonizing acyl-CoAs, 

forming a negative feedback loop on acyl-CoA concentration. Overall, the regulation of the acyl-

CoA concentration by FadR and the β-oxidation pathway forms a coupled positive and negative 

feedback loop which shares regulatory logic with other pathways, including the lactose 

degradation pathway. In contrast to the lac operon, transcription of the acyl-CoA forming (fadD) 

and degradation (fadE, fadAB) genes occurs from different operons, which allows for differential 

regulation of each of these pathways.  

 FadR also activates the expression of IclR, a TF which represses expression of the 

glyoxylate shunt operon aceBAK (Gui et al., 1996). Since degradation of FA produces only two 

carbon unit molecules of acetyl-CoA, bypass of the oxidation steps in the TCA cycle is required 

to direct carbon towards gluconeogenesis and biomass production, which is performed by the 

glyoxylate shunt enzymes AceB and AceA (Dolan and Welch, 2018). Acyl-CoAs activate 

expression of the glyoxylate shunt via FadR and IclR, which prepares the central metabolism for 

increased acetyl-CoA concentrations. Thus, FadR not only regulates FA degradation directly, but 
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also coordinates central metabolism for incorporation of FA into biomass (Clark and Cronan, 

2005).  

1.4.2 FadR as a Global Regulator in Response to Exogenous FA 

As a transcriptional regulator, FadR has many unique regulatory activities beyond 

controlling expression of FA degradation pathways. First, FadR also acts global activator of FA 

biosynthesis (Campbell and Cronan, 2001). FA operator sites have been identified in all FA 

biosynthesis genes (My et al., 2015). FadR activation of these genes occurs when FadR is bound 

to the operator site, but this binding is again antagonized by acyl-CoAs. In this way, FadR acts as 

a global switch between FA biosynthesis in the absence of exogenous FAs, to FA degradation in 

the presence of FAs (Cronan and Subrahmanyam, 1998). Overexpression of FadR upregulates 

many FA biosynthesis genes, leading to an increase in total FA biosynthesis (Zhang et al., 2012b). 

Overexpression of FadR more strongly upregulates expression of fabB and fabF, which are 

involved in unsaturated FA biosynthesis, than other FA biosynthesis genes, leading to an increase 

in the fraction of unsaturated FAs in the cell membrane (Zhang et al., 2012b). Additionally, 

deletions of FadR strongly reduce the expression of fabA, another gene involved in unsaturated 

FA biosynthesis, and reduce the overall fraction of unsaturated FAs in the membrane (Nunn et al., 

1983; Henry and Cronan, 1991). Thus, FadR also plays a role in regulating the ratio of saturated 

to unsaturated FAs in the membrane through its differential regulation of FA biosynthesis genes 

(DiRusso et al., 1999; My et al., 2015).  

Interestingly, FadR has also been shown to repress the universal stress protein uspA 

(Farewell et al., 1996). While the function of UspA is unknown, it is strongly upregulated under 

stress conditions including starvation of nutrients and addition of toxic agents like heavy metals, 

oxidants, acids, and antibiotics (Nyström and Neidhardt, 1992). Addition of extracellular FA 
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increases uspA expression during exponential growth, but the role of UspA in FA metabolism is 

not known (Cronan and Subrahmanyam, 1998). But given this evidence, FadR may play a role in 

stress response through regulation of uspA. 

More recently, FadR has been discovered as a regulator of pathogenicity genes in 

enterohemorrhagic E. coli (EHEC). EHEC rely on the a type III secretion system, encoded in the 

Locus of Enterocyte Effacement (LEE), to colonize the human intestine (Hartland et al., 2002). 

Screening a library of E. coli TF knockouts transformed with the LEE pathways revealed that FadR 

acts as a repressor of the LEE pathway, potentially through repression of LEE1 which is a activator 

of the other pathogenicity genes (Pifer et al., 2018). Further work on this pathway demonstrated 

that FadR more likely acts as an activator of LEE, not a repressor, and that expression from the 

LEE locus is reduced by the presence of exogenous FA (Ellermann et al., 2021). These regulations 

by FadR partially coordinate bacterial virulence in response to the host metabolism and to disease 

progression, establishing another major role of FadR regulation in E. coli. 

These diverse regulatory roles of FadR make it a unique global regulator of FA 

degradation, biosynthesis, stress response, and virulence in E. coli. At the core of these regulations 

is the metabolite uptake positive feedback loop architecture, which allows coordination of these 

functions with the presence of exogenous FAs. Although this core architecture is similar to other 

pathways found in E. coli, the necessity of coordinating these multiple functions through a single 

regulatory may place unique constraints on the dynamics of the control system. Thus, 

understanding the control of metabolite dynamics and heterogeneity in the FA uptake and 

degradation system is a critical, yet unexplored, step in understanding the multi-pathway dynamic 

response of E. coli to FAs in its environment.  



24 

 

1.5 Dissertation Overview 

 

This primary objective of this dissertation is to elucidate how the architecture and 

parameters of a MRTF-based metabolic control system impact the metabolite dynamics and 

heterogeneity in response to fluctuating and diverse metabolic environments. This dissertation 

focuses on the metabolite uptake positive feedback loop, a common architecture employed for the 

uptake of many metabolites in E. coli. The FA uptake system is studied as a representative 

example, due to its biological importance in controlling multiple beyond FA degradation, 

including FA biosynthesis, stress response, and E. coli virulence.  

In Chapter 2, we examine how regulatory architecture and parameters of the FA uptake 

control system contribute to accelerating pathway recovery after extracellular FA is depleted. Fast 

recovery of nutrient degradation pathways after nutrient depletion is generally beneficial to cell 

survival by preventing waste of metabolic resources. We demonstrate that fast recovery can be 

achieved by rapid release of transcription factor from a metabolite-sequestered complex. This 

release depends on the rate of metabolite consumption and exposure time to FA. Further, we 

construct strains with re-wired architecture and demonstrate the benefits of negative autoregulation 

in controlling recovery time and overall resource usage. 

In Chapter 3, we explore how changes in growth rate affect the minimum output, maximum 

output, and dynamic range of a MRTF-based biosensor. High dynamic range is a critical parameter 

in many biosensing applications to achieve good external control of metabolic pathways. We 

develop a kinetic model to explore how tuning the parameters of the biosensor impact the dynamic 

range growth rate dependence and find that there is strong coupling between the dynamic range 
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and its growth rate dependence. Additionally, we find that the transport and enzymatic catalysis 

mechanisms of the metabolite inducer shape the dynamic range-growth rate dependence. 

In Chapter 4, we examine to role of positive feedback in the FA uptake control system in 

contributing to β-lactam tolerance in response to sudden nutrient shifts from gluconeogenic carbon 

to FA. Tolerance to antibiotics can be problematic in the treatment of microbial infections and can 

lead to the rise of antibiotic resistance. We find that cells exhibit a transient antibiotic tolerance 

after the switch and that the length of this transient tolerance is correlated with the time it takes to 

the accumulation of FadD enzymes. Thus, our results show that positive feedback in metabolism 

is not sufficient to trigger persistence but can instead controls the period of antibiotic tolerance 

after a nutrient shift. 

Finally, in Chapter 5 the conclusions of this dissertation are summarized and possible 

future directions for research efforts in understanding and designing metabolic control systems are 

explored. Taken together, this dissertation provides a significant advance in understanding how 

microbes control metabolite dynamics and heterogeneity in the face of several kinds of 

environmental fluctuation. These advances expand our ability to design new metabolic control 

systems for use in metabolic engineering and synthetic biology applications, as well as deepen our 

knowledge of E. coli response to extracellular nutrients and FAs. 
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Chapter 2 Abstract 

 

Microbes adapt their metabolism to take advantage of nutrients in their environment. Such 

adaptations control specific metabolic pathways to match energetic demands with nutrient 

availability. Upon depletion of nutrients, rapid pathway recovery is key to release cellular 

resources required for survival in the new nutritional condition. Yet little is known about the 

regulatory strategies that microbes employ to accelerate pathway recovery in response to nutrient 

depletion. Using the fatty acid catabolic pathway in Escherichia coli, here we show that fast 

recovery can be achieved by rapid release of a transcriptional regulator from a metabolite-

sequestered complex. With a combination of mathematical modelling and experiments, we show 

that recovery dynamics depend critically on the rate of metabolite consumption and the exposure 

time to nutrient. We constructed strains with re-wired transcriptional regulatory architectures that 

highlight the metabolic benefits of negative autoregulation over constitutive and positive 

autoregulation. Our results have wide-ranging implications for our understanding dynamic 
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metabolic adaptations and guiding the design of gene circuitry for synthetic biology and metabolic 

engineering. 

2.1 Introduction 

 

Bacteria constantly adapt to changing environments by coordinating multiple levels of their 

intracellular machinery. Metabolic regulation provides a control layer that adapts catabolic activity 

to nutritional conditions. Such regulation relies on a complex interplay between gene expression 

and metabolic pathways (Piazza et al., 2018). In the case of catabolic pathways, genes for nutrient 

uptake and consumption need to be upregulated when the specific nutrient is available in the 

environment. Failure to quickly increase pathway capacity may result in missed metabolic resource 

opportunity and a potential cost on fitness (Lambert et al., 2014) and population survival (Amato 

et al., 2013; Kotte et al., 2014; Solopova et al., 2014). Conversely, upon nutrient depletion, the 

expression of catabolic enzymes is wasteful and leads to a suboptimal use of biosynthetic resources 

(Dekel and Alon, 2005; Kalisky et al., 2007).  

Metabolite-responsive transcription factors are a widespread regulatory mechanism in 

microbes. Upon sensing nutrient availability, they trigger changes in enzyme expression and 

metabolic flux (Kotte et al., 2010). This strategy has been shown to control the dynamics of 

pathway upregulation in various ways (Alon, 2007; Chin et al., 2008; Chubukov et al., 2012). For 

example, negative autoregulation of transcription factors can speed the response time of gene 

expression (Rosenfeld et al., 2002) and feedback circuits based on metabolite-responsive 

transcription factors have been demonstrated to accelerate metabolite responses (Liu and Zhang, 

2018). While much of the literature has focused on the control of activation dynamics upon nutrient 
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induction, little is known on how these regulatory mechanisms shape pathway recovery after 

depletion of nutrients.  

Here we study a common regulatory architecture found in over a dozen bacterial nutrient 

uptake systems (Keseler et al., 2017) (Figure 2.1A; see also Appendix A, Table A.1). When a 

nutrient is absent from the environment, a metabolite-responsive transcription factor (MRTF) 

represses the expression of uptake and catabolic enzymes. When the nutrient is present, the nutrient 

is internalized and sequesters the transcription factor via reversible binding, thus preventing gene 

repression. This causes an upregulation of metabolic enzyme genes and an increase in the rate of 

nutrient import and utilization. A common feature of these control systems is the presence of 

negative autoregulation of the transcription factor (Appendix A, Table A.1). After nutrient 

depletion, the MRTF must recover its repressive activity on the catabolic pathway genes to rapidly 

shut down pathway activity, yet it is unclear what components of the regulatory system help to 

accelerate the recovery dynamics.  

Using the Escherichia coli fatty acid catabolic pathway as a model system, we took a 

theoretical-experimental approach to study its recovery dynamics in response to a nutrient shift 

from an ON state to an OFF state. As illustrated in Figure 2.1B, these two states are defined as an 

environment with and without the presence of oleic acid as carbon source, respectively. In the ON 

state, oleic acid is imported as fatty acyl-Coenzyme A (acyl-CoA) which binds to the transcription 

factor FadR and sequesters it into a complex. This acyl-CoA sequestration releases FadR from its 

cognate DNA elements (Cronan, 1997), which relieves the repression of the uptake gene fadD and 

thus accelerates the import of oleic acid. We found that upon depletion of oleic acid, repression by 

FadR is recovered via its rapid release from the sequestered complex, which in turn is driven by 

consumption of acyl-CoA. We further found that the architecture of FadR autoregulation affects 
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the maintenance of a sequestered pool of FadR. In particular, negative autoregulation enables a 

large sequestered-transcription factor (TF) pool during the ON state and, at the same time, a 

reduced biosynthetic cost in the OFF state. Our results shed light on the regulatory mechanisms 

that allow cells to rapidly adapt to environmental shifts and provide insights for the design of gene 

circuits in synthetic biology and metabolic engineering, where strain performance is sensitive to 

nutrient fluctuations and inhomogeneities typical of large-scale fermentations. 

 

 

Figure 2.1. General architecture of a bacterial nutrient uptake system. (A) Regulation of 

nutrient uptake by a metabolite-responsive transcription factor, a ubiquitously observed control 

system in bacteria (Table A.1). (B) We use the Escherichia coli fatty acid uptake as a model 

system. The ON state is defined by induction at a constant level of oleic acid, which is imported 

as acyl-CoA by uptake enzyme FadD. Acyl-CoA sequesters the transcription factor FadR, which 

derepresses expression of the uptake enzyme. The OFF state is defined by the washout of oleic 

acid after some time (t0) in the ON state. The release of sequestered FadR recovers its repression 

on FadD synthesis. FadR is also subject to negative autoregulation. (C) Schematic of the 

experiments and simulations in this work, with defined exposure time to oleic acid (green area)  

and with recovery time of FadD levels in the OFF state (τ50) defined as the time to reach to halfway 

between the maximum and minimum concentrations. 
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2.2 Results 

2.2.1 Recovery Dynamics in the Fatty Acid Uptake System 

To study the recovery dynamics of fatty acid uptake, we built a kinetic model based on 

four core components of the regulatory system: FadD (D), free FadR (R), acyl-CoA (A) and 

sequestered FadR (aR). The model represents cells growing at a fixed growth rate with oleic acid 

at a fixed concentration in the media. We simulated the recovery dynamics by mimicking the three 

stages in our experimental setup: preculture without oleic acid, response to induction in the ON 

state, and recovery in the OFF state. During preculture, we ran the model to steady state in the 

absence of oleic acid and then initiated simulations of the ON state from the steady state achieved 

in preculture, with a fixed concentration of oleic acid for  a defined exposure time. The 

concentrations achieved at the end of the ON state were used as initial conditions for the OFF state, 

which was simulated without oleic acid until the system recovers to the steady state in preculture 

(Figure 2.1C). 

 We defined two metrics to quantify the recovery dynamics after the switch from ON to 

OFF state (Figure 2.1C). First, we define the recovery time as the time taken for FadD to decrease 

to halfway between its maximum and minimum steady-state value after nutrient depletion (τ50)  

(Figure 2.1C). Second, we defined the metric η as the proportion of free FadR released from the 

sequestered complex after one doubling time, shown in equation 2.1: 

 
𝜂 =

𝐹𝑎𝑑𝑅𝐷𝑇 − 𝐹𝑎𝑑𝑅𝐷𝑇−𝑛𝑒𝑤

𝐹𝑎𝑑𝑅𝐷𝑇
 

(Eq. 2.1) 
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where FadRDT and FadRDT-new are the concentrations of free FadR and newly expressed FadR in 

the OFF state after one doubling time (DT). This definition allows us to quantify the contribution 

of free FadR released from the sequestered pool to the recovery dynamics.  

 Since pathway recovery depends on the system state at the time of the ON to OFF switch, 

we used the kinetic model to study the relation between the initial conditions at the time of the 

switch and the recovery dynamics. To this end, we studied the impact of exposure time to oleic 

acid during the ON state, as well as the amount of acyl-CoA-consuming enzyme. We simulated 

the OFF-state dynamics for 2,500 combinations of 50 acyl-CoA-consuming enzyme 

concentrations and 50 exposure times, and calculated τ50 and η for each. The simulation results of 

the OFF-state dynamics (Figure 2.2A) suggest that the τ50 decreases with increasing concentrations 

of consuming enzyme, while the amount of released FadR (η) increases with both the consuming 

enzyme and the exposure time. Further simulations suggest that when exposure time increases, the 

pool of acyl-CoA accumulates further, with a rise time from 8.5 to 10 h, for levels of consuming 

enzyme from 100 µM and 6 µM (Appendix A, Figure A.2B). This larger pool takes a longer time 

to be consumed in the OFF state (Appendix A, Figure A.2A) and so delays the release of FadR 

from the complex. This results in a longer recovery time (details in Appendix A, Section A.3 and 

Figure A.2). Model simulations also reveal a strong inverse relation between τ50 and η (Figure 

2.2B), indicating that the release of FadR from sequestration by acyl-CoA provides a mechanism 

for cells to achieve rapid recovery during nutrient depletion. Further, the sensitivity of this inverse 

relation increases when cells are exposed to a longer ON state. Simulations show that longer cell 

exposure times to oleic acid increase the pool of sequestered FadR (Appendix A, Figure A.2). 

Consequently, in the OFF state, more FadR can be released from sequestration than with new FadR 

synthesis, thus increasing the sensitivity of τ50 changes in the amount of released FadR. 
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Figure 2.2. Nutrient exposure time and speed of metabolite consumption in the OFF state 

shape the recovery time. (A) Predicted recovery time (τ50) and proportion of free FadR released 

from sequestration after one doubling time (η) for variations in the amount of consuming enzyme 

and nutrient exposure time. (B) Inverse relation between the proportion of released FadR (η) and 

predicted recovery time. (C) Simulated time course of FadD concentration in OFF state and 

predicted recovery times for increasing concentration of acyl-CoA consuming enzyme. (D) 

Measured time course of fadD expression when switching from ON to OFF state for strains with 

low (ΔfadE mutant reporter) and high (WT reporter) concentration of acyl-CoA consuming 

enzyme. Strains were switched from M9G plus 1 mM oleic acid to M9G media at time zero. Error 
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bars represent standard error of the mean (SEM) of the results from biological triplicates (n = 3). 

Recovery times were calculated from exponential fits to each of the triplicate time course data 

(inset). Error bars represent SEM of the results from biological triplicates (n = 3). (E) Time course 

simulations of FadD induction and recovery dynamics, and predicted recovery times, for 

increasing exposure times. (F) Measured time course of fadD expression from the WT reporter 

strain grown for 3, 6 and 9 hours of exposure to oleic acid (M9G plus 1 mM oleic acid) and then 

switched to an OFF state (M9G). Error bars represent the SEM of the results from biological 

triplicates (n = 3). Recovery times were again calculated from exponential fits, with error bars 

indicating the SEM of the results from triplicate (n = 3). 

 

 

To verify the model predictions, we sought to experimentally perturb η through two 

complementary strategies, as follows: (i) by engineering strains with different amounts of acyl-

CoA consuming enzymes, and (ii) by manipulating the exposure time to oleic acid. We first 

constructed a reporter strain with a decreased rate of consumption of acyl-CoA, the ΔfadE mutant 

reporter strains (see Appendix A, Table A.4 and Table A.5), where we deleted the fadE gene 

encoding the second step of the fatty acid β-oxidation pathway. This prevents metabolization of 

acyl-CoA by β-oxidation and leaves membrane incorporation (catalyzed by enzyme PlsB) as the 

only pathway for acyl-CoA consumption. We measured fadD expression dynamics after switching 

the strains from the ON state (M9G + 1mM oleic acid media) to OFF state (M9G media) using a 

red fluorescent protein (RFP) reporter fused downstream of the fadD promoter. The fadE knockout 

strain displayed a slower recovery than the wild type, with ~60% increase in recovery time (Figure 

2.2D), confirming our theoretical prediction shown in Figure 2.2C. The measured increase in 

recovery time entails an increased expenditure of biosynthetic resources to import a metabolite 

that is no longer present in the environment. 

Next, we measured the fadD recovery dynamics after switching the cultures from growth 

with 3, 6, and 9 hours of exposure time in the ON state. As predicted from the model in Figure 
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2.2E, the measured recovery time decreased for an increase in exposure time (Figure 2.2F). 

However, we observe that recovery time is not decreased further beyond 6 hours of exposure to 

oleic acid. We speculate that faster recovery is counteracted by the delay of having to consume a 

higher level of accumulated acyl-CoA, or because the maximum level of sequestered FadR may 

already have been achieved at 6 hours. 

2.2.2 Impact of Autoregulatory Architecture on Recovery Dynamics  

Among the uptake systems in E. coli with the architecture of Figure 2.1A, we found that 

the majority have a transcriptional regulator that represses its own expression, few systems have 

constitutive expression of the regulator, and no systems display positive autoregulation (see 

Appendix A, Table A.1). To better understand the salient features of each regulatory architecture 

and how they affect recovery dynamics, we built variants of our kinetic model with FadR under 

constitutive expression and positive or negative autoregulation (details in 2.4 Materials and 

Methods). Simulations of the recovery dynamics in the OFF state for varying exposure times in 

the ON state suggest that these architectures behave similarly for short exposure times (< 1 hour), 

quickly sequestering all the free FadR (Figure 2.3A, top). For longer exposure times (>1 hour), 

model simulations suggest important differences in the dynamics of sequestered FadR among the 

various modes of autoregulation. Negative autoregulation shows an accumulation of sequestered 

FadR, while positive autoregulation leads to an overall depletion of sequestered FadR. Constitutive 

expression causes the total level of FadR to be maintained at a constant level (Figure 2.3A).  

To elucidate whether these predicted trends are a consequence of the model parameters or are 

inherently determined by the autoregulatory architecture, we analyzed the model and found 

relations for the change in steady-state concentrations of total FadR (ΔRT) in each autoregulatory 

architecture (the details of derivation are in Appendix A, Section A.5), as follows: negative 
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autoregulation ΔRT > 0; positive autoregulation ΔRT < 0; constitutive expression, ΔRT = 0. These 

relationships are valid for any combination of positive parameters, and therefore, the long-term 

trends observed in Figure 2.3A are structural properties of the model.  

To determine the effect of the three regulatory architectures on the recovery time, we 

simulated the recovery dynamics of each architecture for various exposure times and calculated 

the recovery time (Figure 2.3A, bottom). We observe that the overall relation between recovery 

time and exposure time is similar across the three architectures (Figure 2.3A bottom inset). 

However, for positive autoregulation, we found recovery to be significantly slower for a wide 

range of exposure times. To test this prediction, we engineered an E. coli strain with positively 

autoregulated FadR expression by replacing the native fadR promoter with one that activated by 

FadR (PfadRpo) (see Appendix A, Section A.6, Table A.4), and a PfadD reporter plasmid. The 

positively autoregulated reporter strain (PA reporter)  (Appendix A, Section A.6, Tables A.5, A.6) 

was grown in the ON state (M9G medium plus 1 mM oleic acid) and then rapidly switched to the 

OFF state (M9G medium) after 3, 6 and 9 hours. We measured the fadD expression dynamics (see 

time course dynamics in Appendix A, Section A.6, Figure A.3), and calculated the respective 

recovery times (Figure 2.3B). Consistent with the trend predicted from the model, the recovery 

times for the positively autoregulated strain increased with the exposure time to oleic acid in the 

ON state (Figure 2.3C).  
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Figure 2.3. Impact of regulatory architecture on the recovery time after nutrient depletion. 

(A) Top, simulated steady-state concentrations of sequestered (thick line) and total (thin line) FadR 

for various times spent in the ON state for three regulatory architectures of FadR; constitutive 

expression (black line) is represented by a blunt line. Bottom, predicted recovery times for each 

architecture. (B) Measured recovery times in the WT (WT reporter) and positively autoregulated 

strain (PA reporter), (Appendix A, Tables A.3B and A.4) for 3, 6 and 9 hours of exposure in ON 

state. Recovery times were calculated from exponential fits to each of the triplicate time course 

data (see Appendix A, Section A.6 and Figure A.3), and error bars represent SEM of the calculated 

values (n=3). (C) Schematics illustrating how negative and positive autoregulation affect the build-

up of sequestered FadR in the ON state. 

2.2.3 Negative Autoregulation Provides a Resource-Saving Recovery Strategy 

The results from the above-described autoregulation relationship suggest that constitutive 

expression and negative autoregulation can both maintain large amounts of sequestered FadR for 
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long exposure times to oleic acid. Our earlier results showed that longer exposure times lead to 

larger pool of sequestered FadR (Appendix A, Figure A.2D), which enables a faster recovery time 

(Figure 2.2E and 2.2F). We thus asked which system parameters influence the steady-state pool 

size of sequestered FadR in these two architectures. We found that for high concentrations of oleic 

acid, the steady-state concentration of sequestered FadR in the ON state is given by Equations 2.2 

and 2.3 (details in Appendix A, Section A.7): 

Negative autoregulation:  lim
𝐴→∞

aR =
𝑎𝑛

𝜇
 (Eq. 2.2) 

Constitutive expression: lim
𝐴→∞

aR =
𝑝𝑐

𝜇
 

(Eq. 2.3) 

where A and aR are the steady-state concentrations of acyl-CoA and sequestered FadR, 

respectively, and an and pc are the promoter strengths in each case. These results suggest that at 

high oleic acid concentrations, the amount of sequestered FadR scales linearly with the strength of 

its own promoter. In simulations of both architectures in the ON state induced with high 

concentration of oleic acid (1 mM) and various promoter strengths, we found that increasing 

promoter strength both increases the amount of sequestered FadR in the ON state and decreases 

the recovery time (Figure 2.4A).  

The results in Figure 2.4A also suggest that through tuning of fadR promoter strength, in 

principle, constitutive expression and negative autoregulation can produce the same recovery time. 

We thus sought to identify potential benefits of one architecture over the other in terms of the 

recovery dynamics in the OFF state. Since production of FadR entails a biosynthetic cost, we 

compared both regulatory architectures in terms of the cost of FadR synthesis. From time course 

simulations of FadR synthesis rates in the ON and OFF states (Figure 2.4B), we computed the total 

amount of synthesized FadR for increasing fadR promoter strengths by integrating the area under 
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the curves (Figure 2.4C). Our results show that both architectures require identical biosynthetic 

costs for FadR in the ON state, but negative autoregulation leads to a reduced biosynthetic cost for 

FadR in the OFF state compared to constitutive expression (Figure 2.4C).  

 

 

Figure 2.4. Comparison of recovery dynamics in constitutive expression and negative 

autoregulation. (A) Simulated recovery times for variations in the strength of FadR’s own 

promoter, with the two architectures achieving the same recovery times. (B) Time course 

simulations of FadR synthesis rates for 48 hours in the ON state (1 mM oleic acid) and OFF state, 

for increasing promoter strengths; the yellow curve represents the response with the fitted promoter 

strength value (Appendix A, Table A.2). To ensure fair comparison, promoter strengths were 
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chosen to achieve the same recovery time in the two architectures. (C) Cost of FadR synthesis for 

increasing concentrations of sequestered FadR, modified by changes to fadR promoter strength. 

Circles correspond to costs associated to simulations shown in (B). Details of the simulations are 

in Section 2.4 Materials and Methods. 

 

2.3 Discussion 

 

In this paper, we combined mathematical modelling and experiments to study metabolic 

pathway recovery upon depletion of a nutrient. Changes in nutrient conditions trigger 

transcriptional programs that adapt cell physiology (Chubukov et al., 2014) to meet the cellular 

energy budget (Weiße et al., 2015). We chose the regulation of fatty acid uptake in E. coli as our 

model system, as it was representative of a widely conserved transcriptional program for 

controlling the uptake of nutrients in bacteria (see Appendix A, Table A.1). We show that fast 

recovery after nutrient depletion can be achieved by rapid release of a transcriptional regulator 

from a metabolite-sequestered complex. In particular, a sizable contribution of FadR rapidly made 

available after oleic acid depletion came from its release from its sequestered complex form (aR), 

as opposed to new synthesis. The rapid availability of FadR quickly recovers its inhibition on the 

fad regulon and so shortens the recovery time. Furthermore, our model simulations and 

experiments have demonstrated that increasing the amount of FadR stored in complex form during 

nutrient exposure and fast consumption of acyl-CoA (the sequestering metabolite) facilitate a 

speedy recovery in the OFF state. 

Our model simulations show that pathway recovery is delayed by high intracellular acyl-

CoA concentrations, which slow the release of free FadR from stored complex until those high 

concentrations are reduced. This delay occurs because FadR is only able to sense the intracellular 
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metabolite concentrations, which can remain high even when extracellular metabolite 

concentrations are low. During this delay, wasteful expression of the uptake pathway continues 

despite the absence of oleic acid in the environment. Previous research has shown that upon 

nutrient induction, metabolite dynamics tend to lag behind slow upregulation of metabolic 

enzymes (Liu and Zhang, 2018). In contrast, here we find that after inducer depletion, the recovery 

of metabolic enzymes back to their downregulated state lags behind the metabolite dynamics. This 

has important implications for designing synthetic control circuits which utilize non-metabolizable 

inducers such as isopropyl-β-D-thiogalactopyranoside (IPTG) or methyl-β-D- 

thiogalactopyranoside (TMG). Without consumption of the inducer, the postinduction recovery 

response will be slow and may cause a dramatic drain of cellular resources. Our simulations of the 

relation between sequestered FadR and recovery time suggest that this inherent lag can be 

compensated for by storing and releasing higher amounts of TFs, which highlights the benefits of 

maintaining a sequestered pool of FadR.  

Further mathematical analyses revealed principles that explain how autoregulation shapes the 

recovery time. We found that systems with only negative autoregulation and constitutive 

expression can maintain the pool of sequestered FadR needed for a rapid recovery. In contrast, we 

found that positive autoregulation loses this storage over time, resulting in a reduced availability 

of FadR after nutrient depletion and slower recovery times. We additionally found that negative 

autoregulation of the transcription factor reduces the total biosynthetic cost of for FadR in a full 

ON-OFF-state cycle as compared to using constitutive expression. This occurs because both 

systems need to maintain the same level of sequestered FadR in the ON state in order to achieve 

the same recovery time, but only negative autoregulation allows FadR synthesis to be 

downregulated in the OFF state. Thus, negative autoregulation provides a resource-saving strategy 
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for controlling the recovery dynamics compared to constitutive expression. We found that the 

transcriptional regulators in 13 out of 18 nutrient uptake systems have negative autoregulation (see 

Appendix A, Table A.1), suggesting an evolutionary pressure for a resource-saving control 

strategy. Past studies in the literature have found that expression under negative autoregulation can 

decrease response times in gene expression (Rosenfeld et al., 2002), linearize dose-response in 

responsive systems (Madar et al., 2011), and even speed up metabolic dynamics (Liu and Zhang, 

2018). In addition to these properties, we find that negative autoregulation enables rapid and more 

resource-saving metabolic recovery to nutrient depletion. 

Recent efforts in synthetic biology focus on engineering gene control circuits to manipulate 

microbial metabolism (Gupta et al., 2017a; Liu et al., 2018; Lv et al., 2019). One key goal of such 

control systems is to rapidly turn off metabolic pathways in response to metabolic signals (Gupta 

et al., 2017b; Harder et al., 2018; Moser et al., 2018). Our results provide core design principles 

for engineered metabolic systems with tunable response to nutrient depletions, which could be 

used as a pathway control tool in bioreactors. Our experiments and simulations reveal that the 

recovery time can be simply tuned through well-established promoter engineering techniques 

(Alper et al., 2005; Zhang et al., 2012; Mannan et al., 2017). Further, we identify regulatory 

architectures with differing dynamic responses to nutrient depletion, which provides further 

avenues for tuning system response to the highly dynamic and heterogeneous environments typical 

of large-scale fermenters. These design rules can be readily applied to mitigate against deleterious 

nutrient fluctuations found in metabolic engineering applications. 
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2.4 Materials and Methods 

2.4.1 Materials 

Phusion DNA polymerase, T4 DNA ligase, restriction enzymes, and Teknova 5x M9 

minimal salts were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Gel 

purification and plasmid miniprep kits were purchased from iNtRON Biotechnology (Lynnwood, 

WA, USA.). Oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, IA, 

USA). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA.) 

2.4.2 Plasmids, Strains, and Genome Modifications 

A list of plasmids used along with promoter sequences in this study is provided in 

Appendix A, Section A.4, Tables A.4 and A.5). E. coli DH10β was used for plasmid construction. 

The plasmid pSfadDk-rfp was constructed by cloning the fadD promoter (500 bp upstream of its 

translation start site) into the 5’ of a rfp gene in a BglBrick vector, pBbSk-rfp (Lee et al., 2011) 

using Golden Gate DNA Assembly (Engler et al., 2008). The positively autoregulated fadR strain 

was engineered by replacing fadR’s native promoter with a FadR-activated promoter PfadRpo via 

CRISPR-Cas9 genome editing (Jiang et al., 2015). Detailed engineering methods and the 

characterization of the PfadRpo promoter are described in Appendix A Section A.6.  

Three reporter strains were created to measure expression dynamics from the fadD promoter. 

These strains were created by transforming plasmid pSfadDk-rfp into either the wild-type DH1 

strain, DH1(ΔfadE), or an engineered strain with positively autoregulated fadR, resulting in wild-

type (WT) reporter, ΔfadE mutant reporter, and PA reporter, respectively. 

2.4.3 Media Conditions 

All strains were grown from single colonies and cultivated overnight in Luria-Bertani (LB) 

medium before experiments. For OFF State culture conditions, cells were grown in M9 minimal 
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medium (Liu et al., 2015) supplemented with 1% glycerol and 0.5% Tergitol NP-40 solution 

(M9G). For ON state culture conditions, cells were grown in M9G plus 1 mM oleic acid 

(M9G+OA). All cultures were supplemented with appropriate antibiotic selection (50 mg/L 

kanamycin, 100 mg/L ampicillin). 

2.4.4 Assays of fadD Expression Dynamics   

To measure the recovery dynamics, reporter strains were grown in 3 mL M9G+OA for 24 

to 48 hours at exponential-growth state. To rapidly switch nutrients, cells were centrifuged (5,500 

relative centrifugal force [rcf], 2 minutes) and washed twice in M9G. Cultures were then diluted 

in M9G medium to an optical density at 600 nm (OD600) of 0.08 and transferred to a Falcon 96-

Well imaging microplate (Corning, NY, USA). The microplate was then incubated in an Infinite 

F200 Pro plate reader (Tecan, Männedorf, Switzerland) at 37°C with constant shaking. To 

maintain exponential growth during measurement, cultures were diluted by a factor of 5 for three 

times during incubation. Kinetic measurements of cell density (absorbance at 600 nm) and RFP 

fluorescence (excitation: 584 ± 9 nm, emission: 620 ± 20 nm) were taken every 900 seconds until 

all diluted cultures reached stationary phase. Fluorescence from water in the same 96-well plate 

was used as the background and was subtracted from all fluorescence measurements. The 

background-corrected fluorescence was later normalized by cell density. To calculate the recovery 

time, the average of three biological replicates were fitted to an exponential curve, shown in 

equation 2.4: 

 𝐹 = 𝑎 × 𝑒−𝑏∗𝑡 + 𝑐 (Eq. 2.4) 

where F is the background-corrected, cell-density-normalized fluorescence. The recovery time 

was calculated as τ50 = ln(2)/b.  
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For switches after defined times in the ON state, cultures were first grown in exponential 

growth phase for 24 to 28 hours in M9G. Samples from these cultures were then centrifuged (5,500 

rcf, 2 minutes) and suspended in M9G+OA with an initial OD600 of 0.08 and cultivated in 96-well 

plates for various amount of time as indicated.  

2.4.5 Kinetic Model of Fatty Acid Uptake 

To study the system dynamic response to oleic acid exposure (ON state) and its recovery 

(OFF state) (Figure 2.1C), we built a kinetic model of the fatty acid uptake system. We define the 

model as a system of ordinary differential equations (ODEs) describing the rate of change of each 

species, shown in equations 2.5 to 2.8: 

 

 𝑑𝑅

𝑑𝑡
= 𝑃𝑅(𝑅, 𝑝𝑟)  − 𝑘𝑓 ⋅ 𝑅 ⋅ 𝐴2 + 𝑘𝑟 ⋅ 𝑎𝑅 − 𝜇 ⋅ 𝑅 

(Eq. 2.5) 

 
𝑑𝐷

𝑑𝑡
= 𝑏𝐷 +

𝑎𝐷

1 + (𝑘𝐷 ⋅ 𝑅)2
− 𝜇 ⋅ 𝐷 (Eq. 2.6) 

 𝑑𝐴

𝑑𝑡
 =  

𝑘𝑐𝑎𝑡,𝐷 ⋅ 𝑂𝐴

𝐾𝑀,𝐷 +  𝑂𝐴
 ⋅  𝐷 −

𝑘𝑐𝑎𝑡,𝐵 ⋅ 𝐴

𝐾𝑀,𝐵 +  𝐴
 ⋅  𝐵 − 2 ⋅ (𝑘𝑓 ⋅ 𝑅 ⋅ 𝐴2 + 𝑘𝑟 ⋅ 𝑎𝑅) − 𝜇

⋅ 𝐴 

(Eq. 2.7) 

 𝑑𝑎𝑅

𝑑𝑡
 =  𝑘𝑓 ⋅ 𝑅 ⋅ 𝐴2 − 𝑘𝑟 ⋅ 𝑎𝑅 − 𝜇 ⋅ 𝑎𝑅 (Eq. 2.8) 

where R, D, A and aR represent the concentrations of transcription factor FadR, uptake enzyme 

FadD, internalized fatty acid acyl-CoA, and sequestered complex acyl-CoA-FadR, respectively 

(Figure 2.1B). The reversible sequestering of one FadR dimer by two acyl-CoA molecules 

(stoichiometry as defined in (van Aalten et al., 2000)) is modeled as mass-action kinetics in the 

term 𝑘𝑓𝑅𝐴2 − 𝑘𝑟𝑎𝑅. The term 𝑃𝑅(𝑅, 𝑝𝑟) represents the expression and autoregulation of the fadR 

promoter. To model FadR negative autoregulation for the wild-type strain, we use equation 2.9: 

about:blank
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 𝑃𝑅,𝑛   =  𝑏𝑛 +
𝑎𝑛

1 + 𝐾𝑛 ⋅ 𝑅
 (Eq. 2.9) 

To fit model parameters, we first extended the model to emulate batch culture experiments 

and then used least-squares fitting of simulations to time course measurements of RFP 

fluorescence expressed under an fadD promoter, from the ΔfadE mutant strain, in various 

concentrations of oleic acid (see details in Appendix A, Section A.2 and Table A.2). The fitting 

results are illustrated in Figure A.1, and the parameter values are reported in Table A.2B. These 

values were used throughout the study, unless otherwise stated. To understand the impact of model 

parameters on the recovery time, we performed global parameter sensitivity analysis (details in 

Appendix A, Section A.7 and Figure A.4). To model the strains with positive autoregulation and 

constitutive expression of FadR, we use equations 2.10 and 2.11: 

 
𝑃𝑅,𝑝   =  𝑏𝑝 +

𝑎𝑝 ⋅ 𝐾𝑝 ⋅ 𝑅

1 + 𝐾𝑝 ⋅ 𝑅
 

(Eq. 2.10) 

 𝑃𝑅,𝑐   =  𝑝𝑐 (Eq. 2.11) 

 

2.4.6 Model Simulations 

The model was solved with the MATLAB R2018a ODE solver suite. To simulate the ON 

state, simulations were initialized using the steady-state values achieved from simulations of the 

preculture (oleic acid [OA] concentration 0 µM), and a constant oleic acid concentration was set 

to 1,000 µM. Simulations were then run for a defined exposure time. To simulate the OFF state, 

the system was initialized from the state achieved at the end of the ON state, and the oleic acid 

concentration was set to 0 µM. Simulations were then run to steady state, and recovery times were 

calculated as the time from the start of the OFF state until FadD reached halfway between its initial 



59 

 

value and minimum steady-state value. To calculate the cost of FadR synthesis in the ON and OFF 

states (Figure 2.4C), we integrated simulations of the FadR synthesis rate over 48 hours in each 

state.  

In Figure 2.3, for fair comparison, model parameters are set such that the steady-state 

concentration of FadR is the same for all three architectures prior to switching to the ON state. 

Likewise, in Figure 2.4B and 2.4C for fair comparison, fadR promoter strengths for both 

architectures were set to achieve same concentration of sequestered FadR in the ON state (and thus 

equal recovery times). 

2.5 Supplemental Information 

 

Table A.1- A.6, Figures A.1-A.4, and Appendix Sections A.1-A.9 can be found in Appendix A. 
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Chapter 3: The Growth Dependent Design Constraints of 

Transcription-Factor-Based Metabolite Biosensors 
 

This chapter contains text and figures published as: 

 

Hartline C.J., Zhang, F. (2022). The growth dependent design constraints of transcription-factor-

based metabolite biosensors. ACS Synth. Biol. doi: 10.1021/acssynbio.2c00143 

 

Reprinted with permission. 

 

Chapter 3 Abstract 

 

Metabolite biosensors based on metabolite-responsive transcription factors are key synthetic 

biology components for sensing and precisely controlling cellular metabolism. Biosensors are 

often designed under laboratory conditions but are deployed in applications where cellular growth 

rate differs drastically from its initial characterization. Here we asked how growth rate impacts the 

minimum and maximum biosensor outputs and the dynamic range, which are key metrics of 

biosensor performance. Using LacI, TetR, and FadR-based biosensors in Escherichia coli as 

models, we find that the dynamic range of different biosensors have different growth rate 

dependencies. We developed a kinetic model to explore how tuning biosensor parameters impact 

the dynamic range growth rate dependence. Our modeling and experimental results revealed that 

the effects to dynamic range and its growth rate dependence are often coupled, and the metabolite 

transport mechanisms shape the dynamic range-growth rate response. This work provides 

systematic understanding on biosensor’s performance under different growth rates, which will be 
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useful for predicting biosensor’s behavior in broad synthetic biology and metabolic engineering 

applications. 
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3.1 Introduction 

 

 Metabolite-responsive transcription factor (MRTF)-based biosensors have broad 

applications in synthetic biology and metabolic engineering, ranging from metabolic detection 

(Layton et al., 1998; Xu et al., 2013; Rogers and Church, 2016; Xiao et al., 2017) screening and 

selecting for high-metabolite-producing strains (Raman et al., 2014; Cheng et al., 2018; Bentley 

et al., 2020), dynamic metabolic control (Liu et al., 2015b; Schmitz et al., 2017; Liang et al., 2020; 

Wu et al., 2020; Hartline et al., 2021; Verma et al., 2022), to strain functional evolution (Chou and 

Keasling, 2013; Xiao et al., 2016). Nature has evolved various MRTFs that can be harnessed to 

create biosensors for a wide range of metabolites (Li et al., 2015; Liang et al., 2015; Liu et al., 

2015a; Thompson et al., 2019; Hanko et al., 2020). Protein engineering and directed evolution of 

MRTF have further expanded the range of compounds which can be detected (Taylor et al., 2016; 

Koch et al., 2019; Flachbart et al., 2021). Additionally, promoters regulated by MRTFs can be 

engineered to tune sensitivity and dynamic range (Chen et al., 2018; Dabirian et al., 2019), 

enabling precise control of biosensor’s performance (Mannan et al., 2017; Liu et al., 2018).  These 

biosensors can be further layered to create complex circuits (Lo et al., 2016; Zhou et al., 2021), 

which require a well-defined performance for correct operation (Brophy and Voigt, 2014). 

 Most MRTF-based biosensors were designed and tested in well-defined laboratory 

conditions using rich growth media. These biosensors were often characterized using fluorescent 

proteins whose expression has little burden to growth and other cellular processes.  However, 

during applications, biosensors are often deployed in different growth environments and used to 

control burdensome genes that affect cell growth rate. Changes in cell growth rate has been shown 

to impact several cellular parameters including plasmid copy numbers (Klumpp, 2011), ribosome 

concentration and mass fraction (Scott et al., 2014), transcription factor abundance and 
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concentration (Schmidt et al., 2016), and gene expression rate (Klumpp et al., 2009; Klumpp and 

Hwa, 2014), and average cellular volume (Volkmer and Heinemann, 2011; Taheri-Araghi et al., 

2015). Biosensor operation relies on these shared cellular resources, so changes in cell growth rate 

will unavoidably affect the expression of MRTF and its regulated genes. Additionally, cell growth 

dilutes all molecular components as the volume of the cell increases (Figure 3.1A), so faster growth 

may lead to a net reduction in the concentration of molecules needed for biosensor operation 

(Klumpp et al., 2009; Hintsche and Klumpp, 2013). Thus, when cell growth rate changes, it may 

significantly alter a sensor’s behavior, leading to undesirable performance. For example, in two-

stage dynamic metabolic control, engineered microbial cells need to shift from a high-growth 

phase to a low-growth production phase (Hartline et al., 2021). Biosensors used in two-stage 

dynamic metabolic control have to be optimized to perform under both growth conditions (Qian 

et al., 2017; Moreb et al., 2020).  

 Many MRTF-based biosensors, use a repressed-repressor architecture (Canton et al., 2008; 

Lee et al., 2011). In this architecture, the MRTF represses gene expression from its cognate 

promoter in the absence of its target metabolite, but its expression repression activity is 

antagonized by the presence of a specific intracellular metabolite (Figure 3.1A). The output of a 

biosensor is the steady-state expression level of the controlled gene at a particular target metabolite 

concentration (Figure 3.1B). A sensor’s behavior can be characterized by its minimum output in 

the absence of target metabolite, its maximum output under a saturating concentration of 

extracellular target metabolite, and its dynamic range (DR) which is defined as the ratio of the 

maximal increase in biosensor output relative to the its minimum output (Figure 3.1B) (Mannan 

et al., 2017). In real applications, it is often desirable to keep a low minimum output to prevent 

unwanted gene expression in the absence of target metabolite (Anthony et al., 2004), a high 
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maximum output to reach high signal-to-noise ratios (Nevoigt et al., 2007), and a large DR. 

Previous studies have shown how TF-repressed gene expression varies under different cell growth 

rates (Klumpp et al., 2009), yet, little is known about how growth rate affects a biosensor’s 

behavior. Experimentally characterizing biosensor’s behavior under a wide range of growth rates, 

for example by growing the biosensor in medium with different nutrient conditions both with and 

without the target metabolite, is labor intensive. Thus, it would be beneficial to develop 

quantitative models to understand how biosensor operation is impacted by growth rate to avoid 

undesirable sensor performance due to the change of growth rate. 

In this work, we use three repressed-repressor type of biosensors to explore the effect of 

growth rate to sensor behavior. Interestingly, we found that while all sensors displayed both 

decreasing minimum and maximum outputs, the DR could have either a positive or negative 

growth rate dependence.  By integrating experimental data with kinetic modeling, we provide a 

mathematical framework to reveal biosensor’s behavior under changing growth conditions. We 

show how different parameters of the biosensor promoter and TF expression can lead to either a 

positive or negative dynamic range-growth rate (DR-µ) dependence. Additionally, our results 

show how growth rate-dependent membrane transport mechanisms of the target metabolite shape 

the overall DR-µ dependence. Our model and experimental results demonstrate a coupling 

between DR and sensitivity of DR to changes in growth rate for most biosensor designs, which 

implies a trade-off between high DR and low sensitivity objectives. Altogether our work provides 

a framework for tuning or predicting a biosensor’s behavior under varying growth conditions, 

which will be useful for a wide range of biosensor applications in synthetic biology.  



68 

 

 

Figure 3.1. Molecular components contributing to the operation of a metabolite-responsive 

transcription factor (MRTF)-based biosensor. (A) Schematic of general components 

contributing to overall biosensor response. Extracellular metabolite enters the cell, becoming 

intracellular metabolite. Intracellular metabolite represses the DNA-binding activity of the MRTF. 

The MRTF represses the biosensor’s promoter, which controls the expression of a reporter protein. 

All components are universally affected by growth rate through dilution as the cell volume 

expands. (B) Minimum output, maximum output, and dynamic range (DR) are critical parameters 

characterizing the dose-response curve of a MRTF-based biosensor. 
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3.2 Results 

3.2.1 Growth Rate Dependence of Biosensor Dynamic Range 

To study the relationship between sensor DR and cell growth rate of MRTF-based 

biosensors, we first tested three TF-promoter systems with a repressed-repressor architecture, 

TetR-Ptet (Figure 3.2A), LacI-PlacUV5 (Lee et al., 2011) (Figure 3.2B), and FadR-PAR (Zhang et al., 

2012a; Liu and Zhang, 2018; Hartline et al., 2020) (Figure 3.2C)  that sense extracellular chemicals 

anhydrotetracycline (aTc), isopropyl β-D-1-thiogalactopyranoside (IPTG), and fatty acid (FA), 

respectively. All these three sensors have been commonly used for various applications (Lee et al., 

2011; Zhang et al., 2012a). For each biosensor, we used a red fluorescent protein (RFP) as a 

reporter. Each biosensor construct was cloned into plasmids with the stringently regulated SC101 

origin of replication to reduce copy number variation due to changes in growth rate (Klumpp, 

2011; Jahn et al., 2016). Additionally, for the FA-sensor, native regulations of the fadR and fadD 

genes were removed, and fadE was knocked-out to prevent FA from being used as a carbon source 

for growth through β-oxidation (Hartline et al., 2020). Thus, all three target metabolites are 

primarily non-metabolizable activators of the biosensor output gene.  

To manipulate cellular growth rate, biosensor cells were grown in minimal medium 

supplemented with different commonly-used carbon sources (You et al., 2013) including acetate, 

pyruvate, glycerol, sorbitol, succinate, glycerol with amino acids, and xylose. These differing 

media conditions supported a range of growth rates from 0.24-0.51 h-1 (see Appendix B, Table B.3 

for a summary of media conditions and growth rates).  To quantify the effect of growth rate on 

DR, sensor minimum and maximum outputs were measured under exponential growth phase under 

different media conditions either without or with high concentrations of the target metabolites, 

respectively. The target metabolite concentrations used for aTc (1000 nM) (Lee et al., 2011), IPTG 
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(1 mM) (Mannan et al., 2017), and FA (4 mM) (Zhang et al., 2012a) were previously shown to 

saturate the output of these biosensors. Our results show that both minimum and maximum outputs 

decreased with increasing growth rate for all three sensors (Figure 3.2D, 3.2E, 3.2F). At saturated 

target metabolite concentration (i.e. maximum output) a sensor’s promoter is equivalent to a strong 

constitutive promoter, while in the absence of the target metabolite (i.e. minimum output), a 

sensor’s promoter is equivalent to a repressor repressed promoter. Previous studies have shown 

that protein concentration under the control of either a constitutive promoter or a repressor 

controlled promoter decreases with increasing growth rates (Klumpp et al., 2009). Thus, our 

observations are consistent with previous studies. Additionally, we observe that cell growth rates 

in maximum output are always lower than in minimum output (Figure 3.2D, 3.2E, 3.2F), 

suggesting growth burden from activation of these sensors, even when they were only used to 

express an RFP reporter protein. These observations clearly demonstrated the influence of cell 

growth rate to sensor output as well as the effect of sensor’s function to cell growth, which cannot 

be ignored during biotechnology applications (Han and Zhang, 2020a, 2020b).    

We next calculated the DR of each biosensor under different growth rates. Interestingly, 

the aTc and IPTG sensors displayed an increasing DR with increasing growth rate (Figure 3.2G, 

3.2H), while the FA sensor showed a decreased DR with increasing growth rate. Our results 

showed that for aTc and IPTG sensors, although both the minimum and maximum outputs 

decreased with growth rate, the minimum output decreased more rapidly than the maximum 

output, thus leading to a relative increase in the ratio of the two, as quantified by the DR. In 

contrast, the FA strain has a negative DR trend with increasing growth rate (Figure 3.2I) because 

the maximum output decreased more rapidly than the minimum output for this system. One major 

difference between the aTc/IPTG biosensors, and the FA biosensors is that FA transport requires 



71 

 

the protein FadD to enter the intracellular space, whereas aTc and IPTG can diffuse into the cell 

(Figure 3.2A, 3.2B, 3.2C). The concentration of these transport proteins is growth-dependent, 

particularly since FadD is expressed from a constitutive promoter (Klumpp et al., 2009), which 

may contribute to the rapid decline in maximum biosensor output at higher growth rates. Thus, 

these results suggest that although all three biosensors have the same general architecture, their 

DR-µ dependency are different and may be a tunable property of biosensors. 
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Figure 3.2. Minimum output, maximum output, and dynamic range of Ptet, PlacUV5, and PAR 

biosensors at different growth rates. (A-C) Schematic of cellular interactions for the (A) TetR-

based biosensor, (B) LacI-based biosensor and (C) FadR-based biosensor. (D-F) Minimum (top) 

and maximum (bottom) output of the biosensor at different growth rates for (D) TetR, (E) LacI, 

and (F) FadR-based biosensors. (G-I) Calculated dynamic range of biosensor at different growth 

rates for (G) TetR, (H) LacI, and (I) FadR-based biosensors. Error bars are S.D. of biological 

replicates, n=3. Dashed line: Line of best fit. 
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To gain further insights into the different DR-µ dependencies, we developed a kinetic 

model to describe the intracellular concentration of the biosensor’s output protein (G) and the 

intracellular concentrations of TF repressor (R) and target metabolite (MIn) at different growth 

rates. The volumetric production rate of each species is balanced by the dilution due to cellular 

volume expansion during cell growth. Additionally, transport of the target metabolite across cell 

membrane via either passive transport by diffusion or enzyme-facilitated active transport were also 

considered. For active transport, the concentration of protein transporters can also be affected by 

dilution due to cell growth. For a detailed description of the model, see Appendix B, Section B.1.  

In the absence of the target metabolite, an analytical solution can be derived to describe the 

minimum output (Gmin) at steady state (see Appendix B, Section B.1.2 for details): 

𝐺𝑚𝑖𝑛 =
1

𝜇
(𝑏𝐺  + 

𝑎𝐺

1+
𝑏𝑅

𝐾𝐺𝜇

)                                                (Eq. 3.1) 

where µ represents cell growth rate. Parameters bG, aG, and KG are intrinsic to the biosensor 

and describe the basal expression level, the strength of activated expression, and the MRTF-

promoter dissociation constant, respectively. While the production rate of the MRTF is constant 

with growth, the total concentration of MRTF (R = bR / µ) is decreasing due to dilution by cell 

growth (see  Appendix B, Section B.1.1 and B.1.2 for details). Because both the biosensor output 

protein (G) and its repressor (R) are being diluted by growth, we calculate the dependence of Gmin 

on µ to understand the combined effect: 

𝑑

𝑑µ
(𝐺𝑚𝑖𝑛) = −1

µ2 (𝑏𝐺  + 𝑎𝐺

(1+
𝑏𝑅

𝐾𝐺𝜇
)

2)                         (Eq 3.2) 
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The dependence of Gmin on µ is negative for all parameter values. Thus, Gmin always 

decreases with growth rate, and is consistent with our experimental observation for all three 

biosensors (Figure 3.2D, 3.2E, 3.2F). The dependence of maximum output and DR on growth rate 

depend on sensor parameters and are not monotonic. A biosensor’s DR can be described as: 

𝐷𝑅 =  
𝑎𝐺𝑏𝑅

𝐾𝐺𝜇
 

𝑀𝑖𝑛

(𝑎𝐺+𝑏𝐺+
𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

)(𝐾𝑅+𝑀𝐼𝑛+ 
𝑏𝑅𝐾𝑅
𝐾𝐺𝜇

)
       (Eq. 3.3) 

where KR represents the dissociation constant between the target metabolite and MRTF. Finally, 

Min describes the intracellular target metabolite concentration which can also be a function of the 

growth rate, depending on the target metabolite’s transport kinetics. To understand how the model 

parameters affect the DR-µ dependency, we next calculate the derivative of DR with respect to 

growth rate µ (dDR/dµ): 

𝑑

𝑑𝜇
(𝐷𝑅)  =  

𝑎𝐺𝑏𝑅

𝐾𝐺
 
M𝑖𝑛( 

𝑏𝐺𝐾𝑅𝑏𝑅
2

𝐾𝐺
2𝜇2

  −(𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛))+𝐾𝑅
𝑑𝑀𝑖𝑛

𝑑𝜇
(𝑎𝐺+𝑏𝐺+

𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

) (𝜇+ 
𝑏𝑅
𝐾𝐺

)

𝜇2(𝑎𝐺+𝑏𝐺+
𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

)
2

(𝐾𝑅+𝑀𝑖𝑛+ 
𝑏𝑅𝐾𝑅
𝐾𝐺𝜇

)
2      (Eq. 3.4) 

Our modeling result suggests that depending on the parameter values of a biosensor and its 

intracellular target metabolite concentration, dDR/dµ can be either positive (increasing with 

growth rate) or negative (decreasing with growth rate), depending on the sign of S:  

S = 𝑀𝑖𝑛 ( 
𝑏𝐺𝐾𝑅𝑏𝑅

2

𝐾𝐺
2𝜇2   − (𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛)) + 𝐾𝑅

𝑑𝑀𝑖𝑛

𝑑𝜇
(𝑎𝐺+𝑏𝐺+

𝑏𝐺𝑏𝑅

𝐾𝐺𝜇
) (𝜇 + 

𝑏𝑅

𝐾𝐺
)  (Eq. 3.5)   

3.2.2 Tuning DR-µ Dependence Through TF Expression 

To understand how sensor parameters affect the growth dependence of Gmin, Gmax, and DR 

(i.e. dDR/dµ), we first targeted to the aTc-inducible sensor and tuned the production rate of the 

MRTF repressor TetR (i.e. bR). According to our model, both Gmin and Gmax should decrease with 

bR at a fixed growth rate, regardless of other parameters (see Equation 3.1 and Appendix B, 
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Equation B.12)). Experimentally, we placed TetR under the control of a constitutive promoter and 

a library of RBS with different strengths to vary the TetR production rate (Figure 3.3A), while not 

changing the promoter or RBS sequence of the biosensor output gene. When growing the library 

of cells at a fixed growth rate (in glycerol minimal medium), both Gmin and Gmax decreased with 

increasing TetR levels for 3.7- and 1.2-fold change across the library, respectively (Figure 3.3B, 

3.3C), which matches our analytical model predictions (Figure 3.3E, 3.3F).Our model also shows 

that Gmin is sensitive to changes in TetR production rate at low levels of TetR, while it becomes 

less sensitive at higher TetR levels (Figure 3.3E), which matches our observation of high 

sensitivity in Gmin to TetR expression when TetR is low (Figure 3.3B). We further observe that 

under our experimental parameter regime, Gmin is more sensitive to changes in TetR production 

rate than Gmax (Figure 3.3B, 3.3C), thus affecting DR mostly by lowering the leaky expression 

level and leading to an increasing DR (Figure 3.3D), consistent with model prediction (Figure 

3.3G). Additionally, we fit our model to the experimentally measured TetR expression, Gmin and 

Gmax (see Appendix B, Section B.2.2 for details). From the fitted model, we calculated the DR and 

observed a good agreement between the model and the observed DR-TetR expression trend (R2 = 

0.49). Overall, these experimental observations are qualitatively consistent with numerical 

simulations with increasing bR values and with model fitting, thus validating our model. 
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Figure 3.3. Tuning biosensor DR through changing TetR expression level at a constant 

growth rate. (A) Schematic of the TetR gene used to tune TetR expression level (bR). The TetR 

level was varied by using a library of TetR genes with different RBS strengths. (B-D) 

Experimentally measured (B) minimum biosensor output, Gmin, (C) maximum biosensor output 

Gmax, and (D) dynamic range of TetR RBS library members with varying TetR expression levels. 

Error bars represent S.D., n=3. RBS sequences and their corresponding TetR expression levels,  

Gmin, Gmax, and DR are given in Appendix B, Table B.6. Solid line is fit of model to the 

experimental data (details in Appendix B, Section B.2.2) (E-F) Numerical model simulations of 

(E) minimum output, (F) maximum output, and (G) DR for different values of bR. Parameter 

values and ranges are given in Appendix B, Table B.1. 
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We next measured how Gmin, Gmax, and DR change with growth rate under different TetR 

production rate (Figure 3.4A). According to Equation 3.2, as bR increases, the dependence of Gmin 

on µ is expected to be less negative. Experimentally, we indeed observed a less negative slope on 

the Gmin-µ plot with a higher TetR expression (Figure 3.4B). This result indicates that when TetR 

production is insufficient (low TetR production), leaky expression becomes worse at lower growth 

rates, while a high TetR production rate can make the sensor less leaky across a wide growth rate 

range. The dependence of Gmax on growth rate was negative and had similar slope for low and 

medium TetR production rates and a reduced slope at high TetR production rates (Figure 3.4C). 

This result indicates that at high TetR expression, maximal induction may not be achieved at lower 

growth rates. Finally, Equation 3.5 predicts that lowering the TetR production rate bR should 

reduce the DR-µ dependence, changing it towards a negative regime. Our experimental results 

indeed showed a less positive dDR/dµ value at a lower TetR production rate (Figure 3.4D). 

Overall, our result showed that for aTc biosensor, a high TetR production rate provides high DR, 

however at a cost of higher growth dependence.  
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Figure 3.4. The growth rate dependence of DR for TetR-based biosensors with varying TetR 

production rates. (A) Three TetR operons with different RBS strength to produce TetR at low 

(yellow), medium (green), and high (purple) levels. (B) Minimum biosensor output at varying 

growth rate for each library member (left) and the dependence of minimum output on growth rate 

(right). (C) Maximum biosensor output at varying growth rate for each library member (left) and 

the dependence of the maximum output on growth rate (right). (D) DR at varying growth rate for 

each library member (left) and the dependence of DR on growth rate (right). dGmin/dµ and 

dGmax/dµ are normalized to the average Gmin and Gmax, respectively, from all data. Error bars of 

individual data points are S.D., n=3. Error bars for  Gmin, Gmax, and DR-µ dependence are standard 

error of the slope. A Student’s t-test was conducted between each pair of growth rate dependence 

data, stars indicate significant difference (N.S., not significant; * p < 0.05; ** p < 0.01; *** p < 

0.001). 
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3.2.3 Metabolite Transport Affects DR-µ Dependence 

  Our experimental results on the aTc sensor showed that DR increased with both growth 

rate and TetR production rate. We next examine which parameter space can simultaneously 

support these trends and whether such trends can inform us on the parameters of the target 

metabolite transport mechanism. An extracellular target metabolite can enter or exit a cell via 

either passive transport (metabolite concentration gradient related) or protein-facilitated active 

transport (growth rate related), or a combination of both mechanisms. If passive transport is the 

only mechanism, the intracellular target metabolite concentration is mostly determined by 

extracellular target metabolite concentration and has little influence from growth rate. In this case, 

our mathematical analysis indicates that sensor DR cannot increase with both growth rate and 

MRTF production rate (see Appendix B, Section B.1.3). On the other hand, DR can increase with 

growth rate and MRTF production rate if intracellular aTc concentrations are also increasing with 

growth rate (see Appendix B, Section B.1.3). One way this could occur is when aTc membrane 

transport involves proteins whose steady state concentration is regulated by growth rate via cell 

dilution. Indeed, previous studies demonstrated that aTc can be exported by the AcrAB-TolC 

multi-drug efflux pump (Le et al., 2006), and demonstrate that the expression of acrAB is elevated 

at lower growth rates (Rand et al., 2002). Together, this may lead to reduced aTc concentrations 

at low growth rates due to elevated efflux. To elucidate this mechanism, we incorporated both 

passive transport and active export to our model (Figure 3.5A) and explored the parameter space 

that provides positive dependence of DR on both growth rate and TetR production rate. When 

active export is incorporated in the model, intracellular target metabolite becomes growth-

dependent, which causes the gradient-dependent passive export to also be growth-dependent 

(Appendix B, Figure B.1A).  Both passive and active transport rates were varied over 4-orders of 

magnitude to explore a large parameter space, starting from parameter settings where the target 
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metabolite’s passive and active export rates are equal and considering different target metabolite 

concentration regimes (Min » KM,ex, Min = KM,ex, or Min « KM,ex, Appendix B, Figure B.1A). Our 

parameter space covers three modes of target metabolite export, where metabolite export is 

primarily through the active pathway, the passive pathway, or a mix of both active and passive 

pathways (Figure 3.5B). Modeling results show that sensor DR increased as passive transport rate 

increased and active export decreased (Figure 3.5C). This is because intracellular target 

metabolite concentration is high when the passive transport rate is higher than the active export 

rate (Appendix B, Figure B.1B). Interestingly, when active export rate is similar to or higher than 

passive transport rate, DR is more likely to positively correlate with growth (Figure 3.5D). And 

when active export rate is lower than passive transport rate, DR is more likely to positively 

correlate with TetR production rate (Figure 3.5E). As a result, DR can positively correlate with 

both cell growth and TetR production rate only when active export rate is similar to passive import 

(Figure 3.5F). Our modeling results further show that dMin/dµ strongly increases when active 

export rate is similar to passive import (Appendix B, Figure B.1C), which is a necessary condition 

to observe simultaneous positive correlation for DR with cell growth and TetR production rate 

(see Appendix B, Section B.1.3). Thus, the aTc biosensor used in our experiments likely fall into 

this parameter range. 

  



81 

 

 

Figure 3.5. Modeling the impact of passive and active transport mechanism on DR-growth 

rate dependence for aTc-type biosensors. (A) Diagram of transport reactions including passive 

import of metabolite by diffusion and active export facilitated by a protein transporter. (B) Ratio 

of active to passive export rates, (C) Calculated DR, (D) dDR/dµ, (E) dDR/dbR, and (F) Parameter 

region where both dDR/dµ and dDR/dbR, under different parameter space. The parameters kdiff  and 

kcat,ex were increased to increase passive and active transport rate, respectively. KM,ex was varied to 

represent three scenarios where its value is either greater, similar, or smaller than the intracellular 

target metabolite concentration (Min). See Appendix B, Figure B.1 and Section B.2.1 for details. 

Parameters values are given in Appendix B, Table B.1.  
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 In contrast to the aTc sensor, many chemicals cannot diffuse across cell membrane 

passively, but solely rely to protein transporters and enzyme conversion to turn on the sensor. For 

example, the FA sensor requires a membrane-associated acyl-CoA synthase to convert 

extracellular FA into intracellular acyl-CoA, which binds to FadR, the MRTF, to turn on reporter 

expression. Thus, to understand the FA sensor, we modified our model to include both enzyme-

based import and export mechanisms without passive transport (Figure 3.6A). Similar to the aTc 

model, DR increases when the active import rate is higher than export rate (Figure 3.6B), leading 

to higher intracellular target metabolite (acyl-CoA) concentration (Figure 3.6C).  In contrast to 

aTc-type of sensors, the DR of FA-type of sensors has a negative dependence on cell growth when 

import rate is higher than export rate, which should occur under most cases since faster target 

metabolite import is necessary for high biosensor induction (Figure 3.6D). Thus, these modeling 

results are consistent with our experimental results. Additionally, when import is higher than 

export, the intracellular target metabolite growth dependence (dMin/dµ) is strongly negative 

(Figure 3.6E) indicating a large potential drop in the maximum biosensor output at higher growth 

rates, which is also consistent with experiments. 
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Figure 3.6. Modeling the impact of active transport mechanism on DR-growth rate 

dependence for FA-type biosensors. (A) Diagram of transport reactions. Target metabolite 

transport only occurs by protein-facilitated active mechanisms. (B) Model simulated DR under 

different import and export rates. All other parameters are held constant and are given in Appendix 

B, Table B.1. (C) Intracellular target metabolite concentration (Min), (D) DR-µ dependence, and 

(E) intracellular metabolite-µ dependence, under different parameter space.  

 

3.2.4 DR and DR-µ Are Sensitive to Similar Parameters 

 Thus far, our modeling and experimental results have shown good qualitative agreement 

and have predicted the effects of bR and transport mechanisms on both DR and DR-µ dependence. 

In order to gain a deeper understanding of the other parameters effects on DR and DR-µ 

dependence, we conducted a global parameter sensitivity analysis, for a transport mechanism with 

both passive and active transport (Appendix B, Section B.3). Our results show that both the DR 

(Appendix B, Figure B.2A) and dDR/dµ (Appendix B, Figure B.2B) are most sensitive to 

parameters intrinsic to the biosensor (aG, bG, and KG), the MRTF expression level, and parameters 

in MRTF-metabolite  interaction (bR, ksr, ksf). The similarity in parameter sets which strongly affect 

DR and dDR/dµ suggest both are tightly coupled. These results are consistent with our observation 

of the TetR system where increasing TetR production rate tuned both the DR and the DR-µ 

dependence in the same direction.  
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3.3 Discussion 

 

Change in cellular growth rate often affects the performance of biosensors and cause 

problems when using biosensors in a different nutrient or environment (Cardinale and Arkin, 

2012). In this work, we characterized the growth-rate dependent behavior of three commonly-used 

MRTF-based biosensors through changing the growth medium of the biosensors. Our results show 

that DR of the aTc-TetR and IPTG-LacI sensors have positive correlations with cell growth rate. 

In industrial-scale bioreactor settings where growth rates are typically lower than that in rich 

medium of lab settings, these sensors will have lower DRs and leakier expression before induction 

(Figure 3.2D, 3.2E) (Hollinshead et al., 2014; Nadal-Rey et al., 2021). Thus, these sensors may 

not be suitable for controlling toxic genes or burdensome pathways whose leaky expression can 

cause undesirable mutations to deactivate the strain’s function. In contrast, DR of the FA-FadR 

biosensor has a negative correlation with cell growth rates. A higher DR at lower growth rate can 

benefit the sensor’s application, although its leaky expression was also high at lower growth rate 

(Figure 3.2F). 

In this work we used a simplified kinetic model for understanding the DR-µ dependency. 

The core modeling approach expands upon previous phenomenological models which were 

successful in capturing design constraints between various tunable molecular interactions and 

biosensor dose-response parameters (Mannan et al., 2017). We extended these phenological 

models with kinetic interactions between TF and intracellular target metabolite, as well as 

metabolite transport, which have been shown to capture key dynamic features of bacterial response 

to external metabolites (Hartline et al., 2020). Many of the model parameters are related to key 

biological processes that can be tuned experimentally to optimize a sensor’s performance, such as 

the TF-operator interactions (Hao et al., 2014; Chen et al., 2019) and the presence of exporters 
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(Diao et al., 2016; De Paepe et al., 2017). Our model captures new design constraints for tuning 

DR across growth rates. For example, while the DR can be increased by reducing the minimum 

output through a stronger binding of the MRTF to the biosensor promoter, our model predicts this 

can result in a reduction of the maximum output at some growth rates, because there is a limit to 

how much the sensor promoter can be activated by the intracellular target metabolite. Thus, once 

model parameters are characterized at a single growth rate, the model can be used to predict the 

change in DR under different medium compositions by measuring the growth rate, allowing 

engineers to check for a potential loss of sensor performance without the need for lengthy 

experimental re-characterization of the biosensor at different growth rates or under different 

growth mediums. Additionally, while our results focus on biosensor’s with a repressed-repressor 

architecture, previous phenomenological models (Mannan et al., 2017) can be similarly extended 

following our procedures to identify growth-dependent design constraints for other biosensor 

architectures, such as the commonly used activated-activator architecture. 

Importantly, our model also highlights some fundamental couplings in biosensor’s 

performance across varying growth rates, which are important when engineering a MRTF-based 

sensor. For both types of sensors explored in this study, strategies in increasing the DR always led 

to stronger growth rate dependence of DR (regardless of whether the dependence is positive or 

negative), thus making the DR more sensitive to changes in growth (Figure 3.4D, Figure 3.5, 

Figure 3.6). Therefore, there is a trade-off between high DR and low DR-µ sensitivity, which is 

important in applications when the value of the DR itself is critical. As an example, MRTF-based 

biosensors used for high-throughput screening usually require high DRs to reduce the 

identification of false-positive and false-negative strains (Lin et al., 2017; Dabirian et al., 2019). 

However, a sensor with too high of a DR also has high DR-µ sensitivity, which will lead to a high 
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false-hit rate when screening under different conditions. Thus, reducing DR in exchange for a less 

sensitive DR-µ dependence may present a better strategy in sensor design.  

Additionally, our model suggests that transport of the target metabolite plays important 

roles in the growth rate dependence of DR. Different biosensors with similar underlying 

parameters can show different DR-µ dependencies. For biosensors the target metabolite’s transport 

is controlled by passive diffusion and active export (e.g. aTc), there is a narrow parameter region 

where increasing TF expression can improve DR while also maintaining a positive DR-µ 

dependence (Figure 3.5E). In contrast, for biosensors where internal metabolite levels are 

controlled solely by enzymes (e.g. FA), the metabolite-µ dependence is negative over a large 

parameters space, so DR cannot be improved by increasing TF levels without leading to a more 

negative DR-µ dependence under these conditions. Thus, our model highlights metabolite 

transport or production as an important consideration for understanding the impact of growth on a 

sensor’s DR.  

MRTF-based biosensors are key components of synthetic biology systems and enable a 

diverse range of sensing applications. These applications require sensors with robust and 

predictable operation under a wide range of nutrient conditions and growth environments. Our 

work has uncovered new design considerations and trade-offs for metabolite biosensors under 

changing growth conditions, which will be found useful for a wide range of metabolic engineering 

and synthetic biology applications. 
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3.4 Methods 

3.4.1 Materials 

 Phusion polymerase, restriction enzymes, and T4 ligase were purchased from Thermo Fisher 

Scientific (Waltham, MA, U.S.A.).  DNA primers were synthesized by Integrated DNA 

Technologies (Coralville, IA, U.S.A.). DNA plasmid miniprep kits were purchased from iNtRON 

Biotechnology (Burlington, MA, U.S.A). All other reagents were purchased from Sigma-Aldrich 

(St. Louis, MO, U.S.A.)  

3.4.2 Plasmids and Strains 

 E. coli MDS42pdu (Csörgő et al., 2012) was used to clone and isolate plasmids. E. coli MG1655 

was used to host biosensor plasmids.  All plasmids were constructed through PCR amplification 

and standard Golden-Gate DNA assembly techniques. Plasmids were transformed into electro-

competent strains by electroporation and selected on LB agar plates with corresponding antibiotics 

(ampicillin, 100 mg/L; kanamycin, 50 mg/L; streptomycin 100 mg/L). Plasmids (Appendix B, 

Table B.4), strains (Appendix B, Table B.5), and sequences of constructed plasmids are given in 

Appendix B, Section B.5.  

3.4.3 FA Biosensor Construction 

The FA-FadR biosensor was created in strain MG1655 by modifying a previous FA sensor 

(Hartline et al., 2020). These modifications include the deletion of fadE, replacement of fadD’s 

native promoter with a constitutive promoter Ppro4 to deactivate the positive feedback loop in FA 

transport (Hartline et al., 2020), and deletion of the negative autoregulation of FadR (Zhang et al., 

2012b). These genome modifications were performed using CRISPR-Cas9 following previous 

methods (Jiang et al., 2015, 2017) using pTargetF plasmids as listed in Appendix B, Table B.4. 

The sequence of Ppro4 was taken from a library of insulated constitutive promoters (Davis et al., 
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2011) and constructed from PCR of overlapping primers. Deletion of the negative autoregulation 

of FadR was done by replacing fadR’s native promoter with the constitutive PfadRm1 (Appendix B, 

Section B.5.1). Additionally, the constitutively controlled fadR was cloned to the pA6a BglBrick 

plasmid, resulting in plasmid pAfadRm1a-fadR (Appendix B, Section B.5.1 for full sequence).  

3.4.4 TetR RBS Library Construction 

A library of plasmids with varying TetR RBS strength (namely pSk-PTet-rfp-PJ23110-RBSLibrary-

tetR) was constructed by introducing a terminator, followed by the constitutive Bba_J23110 

promoter, followed by an RBS 3’ of pTetR promoter and 5’ of the TetR coding sequence on a 

pS2k-rfp plasmid. Terminator and promoter were constructed from overlapping primers. The RBS 

library was then introduced by primers with degenerate nucleotide sequences. To evaluate the RBS 

strength, we constructed another plasmid library, namely pSk-PJ23110-RBSLibrary-rfp, by 

replacing the tetR gene of pSk-PJ23110-RBSLibrary-tetR with rfp.  This library was constructed by 

individually amplifying the promoter, RBS sequence and first 30 codons of the TetR coding 

sequence from aTc-biosensor-TetR-RBS-library members which had characterized minimum and 

maximum outputs. These sequences were then individually cloned 5’ of rfp and introduced to a 

BglBrick backbone with SC101 origin and kanamycin resistance. The final constructed sequences 

are shown in Appendix B, Section B.5.1. A list of the tested RBS sequences is given in Appendix 

B, Table B.6. 

3.4.5 Cell Growth and Induction Conditions 

 Cells were cultivated in different growth media following previous protocols (Basan et al., 2020; 

Hartline et al., 2022). Specifically, single colonies from an overnight Luria-Bertani (LB) plate 

were cultivated for 3-5 hours in LB medium (225 rpm, 37 °C) supplemented with appropriate 

antibiotic. Cells were then washed twice by centrifugation (4500 rcf, 3 minutes) into M9 minimal 
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medium supplemented with 1% (w/v) glycerol and diluted to OD600 ~0.04 and grown overnight. 

Overnight cultures were again washed in M9 media without supplemented carbon. To achieve 

different growth rates, washed cells were transferred to M9 media supplemented with the 

following nutrient sources: 75 mM sodium acetate, 20 mM sodium pyruvate, 1% Glycerol, 20 mM 

sorbitol, 15 mM sodium succinate, 1% glycerol + 7 amino acids (0.8 mM Glycine, 0.2 mM 

Histidine, 0.4 mM isoleucine, 0.8 mM leucine, 0.4 mM lysine, 0.2 mM methionine, 0.4 mM 

phenylalanine), 20 mM xylose. For the FadR-based biosensor only, media was supplemented with 

0.5% Tergitol NP-40 and the following nutrient sources were used: 75 mM sodium acetate, 1% 

glycerol, 1% glycerol+7 amino acids, and 0.4% glucose. A summary of growth rates achieved for 

each media condition is given in Appendix B, Table B.3. To induce biosensor activity, 1000 nM 

anhydrotetracycline (aTc), 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), and 4 mM of 

sodium oleate, were added to the media for the aTc, IPTG, and FA sensors, respectively. 

3.4.6 Biosensor Growth Rate, Minimum, Maximum, and Dynamic Range Assays 

 Cells growing in different carbon sources, with or without the sensor metabolite were diluted to 

OD600 at ~0.0007. Exponentially growing cells were transferred to a Falcon 96-Well Imaging 

Microplate (Corning, NY, U.S.A.). An Infinite F200PRO plate reader (TECAN, Männedorf, 

Switzerland) was used to take automated OD600 and red fluorescence measurements (Excitation: 

584±9 nm, Emission: 620±20  nm) every 15 minutes with constant shaking at 37°C. Following 

previously established procedures for calculating growth rate (Basan et al., 2020; Hartline et al., 

2022) and biosensor output (Mannan et al., 2017), growth rate was calculated as the slope of 

natural log(OD600) from OD600 0.1 to 0.4. RFP values were normalized by the OD600, and the 

minimum and maximum RFP/OD values were calculated as the average of RFP/OD measurements 
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over the same OD600 range (0.1-0.4). The dynamic range was calculated from the minimum and 

maximum outputs measured from the same biological replicate (colony). 

3.4.7 TetR RBS library characterization. Colonies of freshly transformed aTc-biosensor-

TetR-RBS-library members were picked and grown following the cell growth and induction 

methods in M9 media supplemented with 1% glycerol. The minimum, maximum, and dynamic 

range of several colonies were measured, and colonies with different dynamic range were chosen 

for further characterization. The RBS sequence was determined by Sanger sequencing to confirm 

uniqueness of tested library members and duplicate members were combined. The minimum, 

maximum, and DR of the sequence verified library members were then re-measured with 

biological triplicates in 1% glycerol medium. To get the TetR expression level, TetR expression 

library members were individually constructed, and then also grown in M9 with 1% glycerol, and 

the growth rate and steady state RFP/OD were measured by plate reader. A summary of the RBS 

sequences characterized, and their TetR expression level, minimum and maximum outputs is 

provided in Appendix B, Table B.6. 

3.4.8 Dynamic Range Modeling and Simulations 

Details of the model development and parameterizations are given in supplementary 

information. Kinetic model simulations were performed using MATLAB 2020B ode15s (The 

Mathworks, Natick, MA, U.S.A.) from initial conditions where the concentration each species is 

zero. Simulations were run for 109 seconds to reach steady state, and the end point of each 

simulation was used as the model output. To obtain the model minimum and maximum outputs, 

the model was run with either 0 µM or 4000 µM extracellular target metabolite (Mex), respectively. 

dDR/dbR was calculated directly from the simulations using Equation (S21), dDR/dµ was 
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calculated numerically using a 5-point central difference formula by running 5 simulations at 

nearby µ (equally spaced on the range µ ±0.0039).  

 

3.5 Supplemental Information 

 

Table B.1- B.6, Figures B.1-B.3, and Appendix Sections B.1-B.5 can be found in Appendix B. 

 

3.5.1 Abbreviations 

anhydrotetracycline, aTc; dynamic range, DR; Dynamic range-growth rate, DR-µ; fatty acid, FA; 

isopropyl β-D-1-thiogalactopyranoside, IPTG; metabolite-responsive transcription factor, MRTF. 
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Chapter 4 Abstract 

 

Nutrient shifts from glycolytic to gluconeogenic carbon sources can create large sub-populations 

of extremely antibiotic tolerant bacteria, called persisters. Positive feedback in Escherichia coli 

central metabolism was believed to play a key role in the formation of persister cells. To examine 

whether positive feedback in nutrient transport can also support high persistence to β-lactams, we 

performed nutrient shifts for E. coli from gluconeogenic carbon sources to fatty acid (FA). We 

observed tri-phasic antibiotic killing kinetics characterized by a transient period of high antibiotic 

tolerance, followed by rapid killing then a slower persister-killing phase. The duration of transient 

tolerance (3-44 hours) varies with pre-shift carbon source and correlates strongly with the time 

needed to accumulate the FA degradation enzyme FadD after the shift. Additionally, FadD 

accumulation time and thus transient tolerance time can be reduced by induction of the glyoxylate 

bypass prior to switching, highlighting that two interacting feedback loops simultaneously control 

the length of transient tolerance. Our results demonstrate that nutrient switches along with positive 

feedback are not sufficient to trigger persistence in a majority of the population, but instead triggers 

only a temporary tolerance. Additionally, our results demonstrate that the pre-shift metabolic state 

https://doi.org/10.3389/fmicb.2022.854272
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determines the duration of transient tolerance and that supplying glyoxylate can facilitate antibiotic 

killing of bacteria.  

 

4.1 Introduction 

 

Antibiotic tolerance describes the ability of bacteria to survive longer periods of antibiotic 

treatment while remaining genetically susceptible to antibiotic killing (Meylan et al., 2018). 

Heterotolerance, or persistence, is a special case of antibiotic tolerance where only a sub-

population of an isogenic culture displays antibiotic tolerance, leading to a biphasic antibiotic 

killing kinetics—a rapid killing phase for the susceptible subpopulation followed by a slow killing 

phase for the tolerant population. Tolerance and persistence have been suspected as an important 

cause of recurrent and recalcitrant bacterial infections, particularly when the disease-causing 

bacterium appears to remain susceptible to antibiotic killing during in vitro assays (Ojha et al., 

2008; Mulcahy et al., 2010; Fauvart et al., 2011; Morrison et al., 2020).  Further, tolerance can 

promote the ability of bacteria to acquire antibiotic resistance (Levin-Reisman et al., 2017; 

Windels et al., 2019; Liu et al., 2020), which reduces antibiotic efficacy in clinical settings and is 

contributing to an impending global public health crisis (Aslam et al., 2018; Talebi Bezmin Abadi 

et al., 2019). These public health problems have led to increased interest in understanding 

antibiotic tolerance mechanisms in microbes. 

 The degree of metabolic activity has been deeply explored as a central feature of antibiotic 

tolerance and persistence (Shah et al., 2006; Amato et al., 2014; Lopatkin et al., 2019). Increased 

antibiotic tolerance is observed in metabolic environments where cells are slowly growing or non-

growing, including in stationary phase and biofilms (Gilbert et al., 1990; Jõers et al., 2010; Orman 
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and Brynildsen, 2015). Genomic screens for antibiotic tolerance genes have identified several 

mutations in metabolic pathways which vary the frequency of antibiotic tolerant cells (De Groote 

et al., 2009; Bernier et al., 2013). These mutations affecting metabolic genes may contribute to 

antibiotic resistance under repeated antibiotic selection (Zampieri et al., 2017; Lopatkin et al., 

2021). Additionally, antibiotic tolerant cells were shown to have lower levels of ATP (Shan et al., 

2017; Manuse et al., 2021), increased levels of alarmones (Hauryliuk et al., 2015; Svenningsen et 

al., 2019), and reduced translation (Gefen et al., 2008). These metabolic mechanisms alter the 

efficacy of antibiotics, leading to the prolonged survival of antibiotic tolerant cells (Stokes et al., 

2019). Persistence has an additional requirement of maintaining a sub-population of tolerant cells 

while the remainder of the population is antibiotic susceptible (Balaban et al., 2019). Thus, several 

stochastic mechanisms for generating and maintaining low metabolic activity, particularly 

stochastic induction of toxin-antitoxin pairs and stochastic accumulation of (p)ppGpp, have been 

explored in connection with persistence (Balaban, 2004; Germain et al., 2015; Schmitz et al., 2017; 

Svenningsen et al., 2019; Evans and Zhang, 2020).  

 Nutrient shifts are one of the mechanisms that has been shown to produce increased sub-

populations of antibiotic tolerant cells (Radzikowski et al., 2017). During a nutrient shift, bacteria 

need to adjust their metabolic activities for different nutrient sources. The ability to generate 

tolerant subpopulation during metabolic adjustment may have evolutionary benefits to the entire 

population (Van Boxtel et al., 2017). Diauxic shifts from glucose to fumarate, glycerol, and 

succinate have been shown to result in bi-phasic killing kinetics with elevated levels of Escherichia 

coli persisters to both ofloxacin (Amato et al., 2013; Amato and Brynildsen, 2014) and ampicillin 

(Amato and Brynildsen, 2015) antibiotics. Similarly, complete shifts from glucose to fumarate 

resulted in an apparent mono-phasic killing kinetics with a large population of extremely slow 
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growing E. coli cells that were tolerant to many antibiotics with diverse mechanisms of action 

(Radzikowski et al., 2016), while only a small fraction of cells were able to resume growth on 

fumarate (Kotte et al., 2014).  It was proposed that bistability in a positive feedback loop involving 

a phosphoenolpyruvate (PEP) flux sensor and the enzyme fructose‐1,6‐bisphosphatase (Fbp) was 

responsible for creating a two-population response to nutrient shifts. Positive feedback has been 

highlighted for its ability to increase cell-to-cell variability in gene networks and produce 

bistability, and can be an important mechanism in maintaining cells in the persister state (Eldar 

and Elowitz, 2010). Many metabolic regulatory networks are also controlled by positive feedback 

loops, particularly in the uptake of carbon sources such as carbohydrates (e.g. lactose, arabinose, 

xylose, glycerol) and fatty acids (FAs) from the environment (Weissenborn et al., 1992; Song and 

Park, 1997; Cronan and Subrahmanyam, 1998; Ferrández et al., 2000; Ozbudak et al., 2004; 

Megerle et al., 2008; Hartline et al., 2020).  However, it is not known whether the prevalent 

feedback loops in nutrient uptake can commonly lead to elevated levels of persistence during 

nutrient shifts.  

In this work, we studied E. coli nutrient transition to FA because both FA transport and 

catabolic pathways are regulated by a positive feedback loop. Recent work in pathogenic bacteria 

has highlighted that utilization of exogenous FAs from the host environment plays a central role 

in regulating virulence factors in a broad-range of gram-negative pathogens, including E. coli 

(Pifer et al., 2018; Pan et al., 2020; Ellermann et al., 2021). Thus, nutrient transitions to FA 

catabolism are associated with increased pathogenicity, but these transitions remain an 

understudied mechanism with respect to its effect on antibiotic tolerance. To avoid complication 

from the Fbp regulatory loop that may form bistability (Kotte et al., 2014), we focus on shifts from 

gluconeogenic carbon sources such as glycerol. Because both glycerol and FA require Fbp for 
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growth (Fraenkel and Horecker, 1965), switching between gluconeogenic carbon sources should 

avoid triggering major changes in the activity of the Fbp loop. Distinct from the mono-phasic and 

bi-phasic killing kinetics previously reported during glycolytic-to-gluconeogenic switches, we 

observed a transient tolerance phase, where the population displays nearly universal tolerance to 

ampicillin during the first 8 hours right after glycerol-to-FA shift. The transient tolerant phase was 

followed by a rapid killing phase for 98% of cells, followed by a persister phase with slower killing 

kinetics. This three-phase killing kinetics was observed when switching from at least 5 different 

gluconeogenic carbon sources (i.e. glycerol, pyruvate, malate, succinate, and acetate) tested in this 

study. We genetically fused the FA transport gene fadD (encodes the acyl-CoA ligase FadD) to a 

yellow fluorescent protein (YFP) and tracked transport expression kinetics after the nutrient shift. 

The results showed that the period of transient tolerance correlates well (R2 = 0.82 in the absence 

of glyoxylate and R2 = 0.98 in the presence of glyoxylate) with the time needed for FadD to 

accumulate to a threshold before resuming growth. We demonstrate that the activity of the positive 

feedback loop in the glyoxylate bypass modulates the timing of both transient tolerance and FadD 

production on shifts to FA. These results demonstrate a fundamental difference in E. coli response 

to gluconeogenic-to-FA nutrient shifts compared to previously reported glycolytic-to-

gluconeogenic switches. Overall, our results have broad implications for the relation between 

metabolic regulations, nutrient shifts, and β-lactam antibiotic tolerance. 

4.2 Results 

4.2.1 Nutrient Shifts to Fatty Acid Stimulate Transient Ampicillin Tolerance 

Similar to many other nutrients, FA uptake in E. coli is regulated by a positive feedback 

loop (Figure 4.1A). In this loop, the fatty acyl-CoA ligase FadD controls the uptake and activation 

of extracellular free FAs to acyl-CoAs, which are then catabolized by a series of FA degradation 
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(Fad) enzymes to acetyl-CoA for use in central metabolism. Expression of fadD and the fad 

regulon is repressed by the transcriptional regulator FadR, whose DNA-binding activity is further 

inhibited by acyl-CoAs, forming a simple positive feedback loop. Modeling of this FA uptake loop 

shows that bistability in FA uptake can appear under some parameters and the parameters for E. 

coli may be near the bistable regime (Mannan and Bates, 2021). In the bistable regime, a 

subpopulation of cells would have low FadD expression due to FadR repression, thus low FA 

uptake rate to activate FadR and to support rapid cell growth. Another subpopulation would 

maintain a high FadD expression level, thus can keep high intracellular acyl-CoA level to both 

antagonizes FadR’s DNA binding activity and to support cell growth. If bistability in FA uptake 

does occur, the rapid growing subpopulation will be killed by ampicillin whereas cells with slow-

growing cells may display tolerance ampicillin which only targets growing cells.   

To test the possible presence of bistability in FA uptake, we transformed E. coli cells with 

an engineered FadR-based acyl-CoA biosensor (Zhang et al., 2012) that reports intracellular acyl-

CoA level (Xiao et al., 2016; Liu and Zhang, 2018), and indirectly reports expression of fad genes. 

To characterize the acyl-CoA biosensor activity under different conditions, the strain was grown 

to steady state in defined media containing mixtures of glycerol and oleate at different ratios. Flow 

cytometry showed that the mean activity of the acyl-CoA biosensor increased as the ratio of FA-

to-glycerol increased (Figure 4.1B), consistent with the biosensor’s behavior in glucose/FA media 

(Liu and Zhang, 2018). At single-cell level, the biosensor activity showed unimodal distribution 

under all conditions (Figure 4.1C), without a distinctive subpopulation above the detection limit 

of the method (~1% of the population). These results suggest that although positive FA uptake 

loop can support bimodality/bistability under some parameters (Mannan and Bates, 2021), the 
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actual parameters for this strain of E. coli do not support a large bimodal population. Even so, a 

much smaller bimodal population may exist below the detection limit of flow cytometry. 

Thus, to more sensitively determine whether two distinct subpopulations exist with 

different killing kinetics, we next conducted nutrient shifting experiments (Radzikowski et al., 

2016) from different ratios of glycerol/FA mixtures to pure FA accompanied by ampicillin 

treatment (Figure 4.1D). When pure FA was used in the pre-culture as a negative control without 

nutrient switching (FA-to-FA), a typical biphasic killing kinetics was observed (Figure 4.1E): 

nearly-immediate and rapid killing followed by a small population (0.008%) of antibiotic tolerant 

cells, close to previously reported levels of persistent cells in active cultures (Balaban et al., 2019). 

Although we observe a short period without killing (less than 1 hour), which may be caused by 

starvation and cold stress from the washing procedures to provide temporary tolerance to 

ampicillin (Heinemann et al., 2020), this tolerance is not maintained for a large fraction of the 

population. Overall, this result proves that the switching procedure used in this study did not 

generate an elevated level of persisters. In contrast, when switching from glycerol to FA, the killing 

curve displayed much longer initial tolerant period, where nearly all cells survived ampicillin 

treatment during the first 8 hours. This transient tolerance period is followed by a rapid killing 

where 98% of the transiently tolerant cells were killed. Finally, the rate of killing reduced with 

~2% population having elevated antibiotic tolerance. When mixtures of glycerol and FA were used 

in the pre-culture, the killing curves also displayed an initial transient tolerant period followed by 

rapid killing. The length of this tolerance period increased as the amount of FA in the pre-culture 

decreased (Figure 4.1E). These results further confirm that the long transient tolerance to 

ampicillin was caused by specifically by nutrient shifting rather than the washing procedure used 
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in this study and suggests a connection between the prior acyl-CoA activity with the tolerance 

period.  

 

 

Figure 4.1. Transitions from glycerol to fatty acid (FA) generates transient ampicillin 

tolerance. (A) Simplified metabolic and regulatory network for FA and glycerol utilization. (B) 

Average acyl-CoA biosensor activity during co-utilization of FA and glycerol at different ratios. 

Across all conditions, the total concentration of carbon is constant at 72 mM. (C) Single-cell 

distribution of acyl-CoA biosensor activity during co-utilization of FA and glycerol at different 

ratios. A single representative distribution is shown per condition, n = 10,000 per distribution. All 

distributions are unimodal, with the mean shifting higher for higher fractions of FA. (D) 

Illustration of media switching and antibiotic killing experimental protocol. Abbreviations: GLY, 

glycerol; Amp, Ampicillin; FA, Fatty acid. (E) Time course survival curves of cells after nutrient 
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shifts from mixtures of glycerol and FA to 100% FA with 100 µg/mL ampicillin. The 

glycerol/oleate fraction in the pre-switch correspond with the conditions displayed for the 

distributions in Fig 1C. Average of biological replicates, n=3, Error Bars represent SEM. Curves 

are fitting of the Gompertz model to experimental data.  

 

4.2.2 Transient Tolerance Correlates with Lag Phase During Nutrient Shift 

To examine whether the transient tolerant exists when switching from other gluconeogenic 

carbons, we performed additional switching experiments by replacing glycerol with 4 other carbon 

sources: acetate, pyruvate, malate, and succinate. These carbon sources represent different entry 

points into the central metabolism (Figure 4.2A), thus would allow us to compare how different 

metabolic state of cells in the pre-culture affect transient tolerance. All transitions displayed similar 

tri-phasic killing kinetics with an initial transient tolerance followed by rapid killing of susceptible 

cells and a slow killing of persistent cells. The period of transient tolerance varied significantly 

with different carbon sources (Figure 4.2B). While transitions from acetate had a relatively short 

transient tolerance time (3.3 ± 0.4 hours, 95% confidence interval (C.I.)), transitions from pyruvate 

displayed extremely long tolerance (44 ± 3 hours, 95% C.I.). However, despite great variability in 

the timing, all conditions showed that majority of cells were eventually killed by ampicillin, 

indicating that the initial antibiotic tolerance is only temporary after gluconeogenic to FA nutrient 

shifts. 

Shifts from glycolytic to gluconeogenic carbon sources have been shown to produce lag phase 

during which cell halts growth transiently (Basan et al., 2020). Since ampicillin is only effective 

on growing cells, cessation of growth after a nutrient shift offers a simple mechanism for transient 

tolerance. To test this, we measured growth kinetics of cultures switching from each gluconeogenic 

carbon source to FA without antibiotic (Figure 4.2C). The lag time of each shift was found to 
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correlate well (R2 = 0.82) with the transient tolerance time (Figure 4.2D). These results suggest 

that non-growing cells in the lag phase after a nutrient shift cause transient tolerance to ampicillin. 

 

Figure 4.2. Tolerance time correlates with lag time on transitions from gluconeogenic carbon 

sources to oleate. (A) Simplified metabolic network for gluconeogenic carbon source utilization. 

Pre-shift carbon sources used are in bold with a corresponding symbol indicating that carbon 

source: (FA, square; Acetate, right-pointing triangle; Pyruvate, star; Glycerol, Circle; Malate, up-

pointing triangle; Succinate, kite). Dark arrows indicate pathways necessary for FA utilization. 

Names of key metabolite intermediates and enzymes are shown. (B) Time course survival curves 

of cells after shifts from gluconeogenic carbon sources to FA with 100 µg/mL ampicillin. Data 

points are averaged values from biological replicates, n = 3. Curves are fitting of a two-population 

Gompertz model to experimental data. Vertical dashed line indicates tolerance time determined by 

fitting the Gompetz model. (C) Time course OD600 after shift from gluconeogenic carbon to FA 
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without ampicillin, normalized to time point t = 0. Average of biological replicates, n=3, SEM 

Error Bars. (D) Correlation between measured tolerance time and lag time after switch to FA. 

Dashed line is least-squares linear fit to the data with equal weighting. 

4.2.3 Time for FadD Accumulation Correlates with Transient Tolerance  

Since the lag time and transient tolerance period after the nutrient shift are well correlated, we 

sought to understand the molecular mechanisms which govern both phenomena. Growth rate in 

pre-culture conditions was shown to predict lag time for glycolytic to gluconeogenic switches 

(Basan et al., 2020) and therefore may also predict tolerance time on nutrient shifts from 

gluconeogenic carbons to FA. We measured pre-culture growth rates and found a weak negative 

correlation (R2 = 0.35) between pre-culture growth rate and tolerance time (Figure 4.3A). Although 

the direction of correlation is consistent with previous studies (Basan et al., 2020), nutrient shifts 

from pyruvate to FA presents a clear outlier, suggesting the presence of other mechanisms that 

control tolerance time more directly.  

Previous studies illustrated that β-oxidation enzymes are essential for growth when FA is the 

sole carbon source (DiRusso et al., 1999), suggesting a possible role for β-oxidation enzymes in 

tolerance time during nutrient shifts to FA. Because FadD is a key component of the positive 

feedback loop controlling transport and activation of FAs for β-oxidation, we genetically fused a 

YFP to FadD to monitor activity of FA degradation during the nutrient shift. The FadD-YFP strain 

was grown in different gluconeogenic carbon sources and switched to FA in the absence of 

ampicillin. Cell growth and YFP fluorescence were simultaneously monitored after the nutrient 

shift. After shifting from different gluconeogenic carbon sources, the initial FadD levels were 

different and all lower than that without carbon shift (i.e. from FA to FA, Figure 4.3B), suggesting 

that the β-oxidation enzymes were not highly expressed in gluconeogenic carbons. The FadD 

concentration gradually increased over time during the lag phase. When cells resume steady state 

growth, FadD concentration from all switches reached the same threshold level (Figure 4.3C). 
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Without carbon shift (from FA to FA), the FadD level remained above this threshold level, and the 

cells continued to grow without a lag phase. We measured the time needed to reach this threshold 

FadD level and found that it has a good correlation with the tolerance time (R2 = 0.82, Figure 

4.3D). Since the timing of accumulating FadD correlates well with transient tolerance, we 

wondered whether this timing of each phenomenon is simply determined by the amount of FadD 

initially present immediately after the nutrient shift. Although FadD accumulation time appears to 

decrease with increasing initial FadD concentrations (R2 = 0.57, Figure 4.3E), transitions from 

pyruvate again provide a strong outlier with cells taking much longer to accumulate FadD to a 

threshold. 
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Figure 4.3. Timing of FadD accumulation associated with transient tolerance time. (A) 

Correlation between measured tolerance time and growth rate in pre-switch carbon source. Dashed 

line is least-squares linear fit to data with bisquare weighting. (B) Time course of YFP/OD600 from 

FadD-YFP fusion (colored line, left axis) and OD600 (black line, right axis) after shifts from a 

gluconeogenic carbon source to FA, n = 3, Error Bars represent SEM. The dotted line indicates 

the YFP/OD600 level when cells resume steady state growth. (C) Average YFP/OD600 from FadD-

YFP fusion at the end of the lag phase, n = 3. Values from individual replicates shown as points. 

The dashed line (namely the FadD threshold) shows the average FadD concentration at the end of 

lag phase across all pre-shift conditions except FA. (D) Correlation between tolerance time and 

FadD accumulation time (time for FadD to reach the threshold level). Tolerance time was obtained 

from data in Fig 2B. Dashed line is a linear fit. (E) Correlation between YFP/OD600 value at the 
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steady state of pre-culture and FadD accumulation time. Dashed line is a least-squares linear fit 

with bisquare weighting. 

 

To verify whether these FadD dynamics are representative of the nutrient shifts in the presence 

of antibiotics, we performed similar experiments using the FadD-YFP fusion strain in the presence 

of ampicillin. Across all switching conditions, OD600 initially decreased slightly followed by a 

leveling off period (Appendix C, Figure C.1A). Because this slight decrease is also observed in 

the absence of antibiotic, this decrease more likely represents reductive division of cells, which 

has been previously reported for cells under starvation conditions (Nyström, 2004), rather than 

killing by antibiotics. After this relatively level period (transient tolerance), the OD decreases 

substantially, corresponding to rapid killing of susceptible cells. In all switching conditions, the 

FadD level continued to increase during the transient tolerance period, indicating active 

transcription and translation. The time needed to reach a threshold FadD level still correlated well 

with the tolerance time (R2 = 0.79, Appendix C, Figure C.1B). Additionally, the timing of FadD 

accumulation in the absence and presence of ampicillin correlated extremely well (R2 = 0.997, 

Appendix C, Figure C.1C), indicating that the FadD dynamics during the nutrient shift are nearly 

the same prior to reaching the FadD threshold, regardless of the presence of ampicillin. Overall, 

these results suggest that FA metabolic activity was low during lag phase, resulting in slow cell 

growth and transient tolerance to ampicillin. A key level of FadD is needed to resume cell growth 

and active metabolism in FA medium. 

Finally, we evaluated the single-cell behavior of FA metabolism using the acyl-CoA biosensor 

during nutrient transitions from pyruvate to FA, which has the longest transient tolerance time. We 

characterized the acyl-CoA biosensor activity under mixtures of pyruvate and FA and found that 

the population has a monomodal distribution of acyl-CoA biosensor activity under all conditions 
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(Appendix C, Figure C.2A), consistent with the biosensor activity on glycerol/FA mixtures (Figure 

4.1C). We then conducted nutrient switches from pyruvate to FA with ampicillin and measured 

the acyl-CoA biosensor activity at time points during the transient tolerance phase. Again, we 

observed monomodal populations at all time points, with the biosensor activity of the whole 

population increasing sharply by 4 hours after the shift, and then more gradually after 21 hours 

(Appendix C, Figure C.2B). Thus, these results suggest that there is a single, large majority 

population before the shift and this whole population gradually transitions toward active FA 

metabolism after the shift, leading to growth and sudden killing by ampicillin for a large population 

at the end of the transient tolerance.   

4.2.4 Multiple Metabolic Regulations Control the Transient Tolerance Time 

Given that the time for FadD to reach its threshold concentration correlates well with transient 

tolerance, we wondered what controls FadD accumulation. Particularly, shifts from pyruvate to 

FA produced the longest transient tolerance times from the above experiment. We searched the 

literature and did not find direct regulatory effects of pyruvate on fadD expression in E. coli. 

However, pyruvate activates the IlcR transcription factor (Lorca et al., 2007) which represses 

expression the glyoxylate bypass operon aceBAK (Figure 4.4A). The glyoxylate bypass is 

necessary for FA utilization because β-oxidation produces only two-carbon metabolite precursors 

in the form of acetyl-CoA (Dolan and Welch, 2018). To examine whether pyruvate impacts the 

glyoxylate bypass or β-oxidation gene expression, we evaluated the expression level of the aceB 

and fadD genes via RT-qPCR for cells growing in glycerol, pyruvate, and FA (Appendix C, Figure 

C.3). In pyruvate, aceB expression is 1.7-fold lower compared to that in glycerol, however, fadD 

expression is not significantly different between glycerol and pyruvate conditions, indicating that 

the glyoxylate bypass rather than the FA transport genes is more blocked in pyruvate. During 
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growth on FA, both aceB and fadD expression are significantly increased (13.7-fold and 5.0-fold 

increase respectively), which indicates that the expression of both aceB and fadD genes needs to 

be increased for cells to grow on FA, in agreement with previous literature (Clark and Cronan, 

2005).  

In addition to pyruvate regulation, IclR activity is antagonized by glyoxylate (Lorca et al., 

2007), an intermediate in the glyoxylate bypass (Figure 4.4A), thus forming a positive feedback 

loop which also governs FA utilization. Therefore, when cells are growing in pyruvate, 

accumulation of glyoxylate is slow, and the glyoxylate bypass enzymes remain at low levels. We 

hypothesize that switching from pyruvate to FA requires a gradual increase in the metabolic flux 

through the glyoxylate bypass to produce central metabolites (e.g. amino acids) for synthesizing 

β-oxidation enzymes. To test this hypothesis, we added glyoxylate to the pre-shift medium to 

activate the glyoxylate bypass enzymes, thus alleviating the bottleneck in the glyoxylate bypass 

enzymes. New nutrient shift experiments with glyoxylate displayed decreased lag phase as well as 

FadD accumulation times for pyruvate, succinate, and malate (Figure 4.4B, 4.4C). Among them, 

pyruvate exhibited the most drastically change, its FadD accumulation time decreased from 

11.4±1.3 hours to 3.4±0.5 hours (95% C.I.) (Figure 4.4C). Additionally, we performed similar 

growth kinetic experiments during nutrient shift to FA with ampicillin and observed similar 

reductions in the transient tolerance time measured by OD600 (Appendix C, Figure C.4). The 

transient tolerant time shifting from pyruvate with glyoxylate supplement to FA decreased from 

>16 hours without glyoxylate to 3.1±0.5 hours (95% C.I.). With the presence of glyoxylate in the 

pre-shift medium, the highest correlation between the transient tolerance period and FadD 

accumulation time was obtained (R2 = 0.98, Figure 4.4D), demonstrating that both FadD 

accumulation and transient tolerance are accelerated by the removal of the glyoxylate bottleneck.  
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Figure 4.4. Activity of glyoxylate shunt affects tolerance time. (A) Simplified metabolic 

network with key positive-feedback regulatory interactions for FA utilization. Metabolic enzymes 

(FadD/AceB) convert a precursor into a regulatory metabolite intermediate (acyl-CoA/glyoxylate). 

The regulatory intermediate represses the activity of a transcription factor (FadR/IclR) which 

alleviates the repression of the metabolic enzyme. IclR activity is also activated by pyruvate. (B) 

Time course of YFP/OD600 from FadD-YFP fusion (colored line, left axis) and OD600 (black line, 

right axis) after shifts from a glyoxylate supplemented gluconeogenic carbon source to FA (not 

supplemented with glyoxylate). Error Bars represent SEM with n = 3 for FA, ACE, MAL, and 

SUC, n = 4 for PYR, and n= 5 for GLY. The dotted line indicates the YFP/OD600 level when cells 

resume steady state growth. (C) FadD accumulation time for nutrient shifts from carbon source 

without glyoxylate (stripes) or with glyoxylate (dotted). Stars indicate significant change in 

accumulation time, two-tailed t-test (**, p < 0.01) (D) Correlation between tolerance time and 

FadD accumulation time for shifts from carbon with glyoxylate to FA. Tolerance timed determined 

by time course optical density measurements (Appendix C, Figure C.4). Dashed line is a least-

squares linear fit. 
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4.3 Discussion 

 

In this study, we sought to elucidate the role of nutrient shifts and positive metabolic 

feedback architecture in producing antibiotic tolerant cells. In doing so, we discovered that nutrient 

shifts from gluconeogenic carbon source to FA produce tri-phasic antibiotic killing kinetics which 

depend on the initial metabolic state of the cells. These killing kinetics are defined by an initial 

period of nearly universal antibiotic survival, followed by a sudden increase in antibiotic killing 

for over 98% of the population, followed by a slower, persister killing rate. Our results outline a 

clear mechanism for this behavior. First, before switching to FA, cells are in single population of 

low Fad activity. After shifting to FA, the bulk of the population is in a metabolically mal-adapted 

state which causes the cells to cease growth, producing a lag phase. In this metabolically reduced 

stated, ampicillin, which targets actively dividing cells, is rendered ineffective. This tolerance 

continues until the cells adapt their metabolism by increasing the concentration of key metabolic 

enzymes such as the FA degradation and glyoxylate bypass pathways to restore metabolism and 

growth. Further, the timing of the recovery depends on its initial metabolic state and on specific 

regulatory mechanisms for enzyme induction.  

The connection between lag phase and antibiotic tolerance has been demonstrated 

previously (Fridman et al., 2014) when shifting from stationary phase media to rich media. In the 

so-called “tolerance by lag” (TBL) phenotype, mutant strains of E. coli have a population of cells 

with a wide distribution of lag times when shifting back to rich media, which allows the population 

to be more tolerant to ampicillin killing. While TBL and transient tolerance can both be attributed 

to the growth-arrest of cells in a lag phase, there are several important distinctions between these 

phenomena. First, the shapes of the killing curves are different. In transient tolerance, the killing 

curve is initially flat followed by a sharp decline which suggests that transient tolerant populations 



116 

 

shift from high tolerance to low tolerance over time. In contrast, the TBL killing curves gradually 

decrease at a constant slope without distinct phases which suggests that tolerance from TBL is 

more constant in time. Second, TBL is caused by mutations in genes which are selected for by the 

length of antibiotic treatments. In contrast, transient tolerance is caused by a major disruption of 

the metabolic network due to nutrient shift which forces cells to halt growth. Finally, although 

transient tolerance is correlated with lag, we show that transient tolerance is more fundamentally 

affected by the time is takes to readjust the metabolic network by accumulating pathway enzymes. 

Because nutrient shifts can often leave cells in a metabolically mal-adapted state, transient 

tolerance is likely to be a general tolerance mechanism to ampicillin for cell populations. 

Since the FA utilization and β-lactam tolerance mechanisms in E. coli are well-known, the 

connection between adaptation of the FA pathways and transient tolerance may seem apparent at 

first. However, the tri-phasic shape of the antibiotic killing curves shed important insights and 

raise new questions about how E. coli responds to nutrient shifts in general. In particular, it has 

previously been demonstrated that on glucose-to-fumarate transitions cells adopt a responsive 

diversification strategy where only a small minority of cells are capable of adaptation and the vast 

majority becoming persisters (Kotte et al., 2014; Radzikowski et al., 2016). From these 

experiments, it has been suggested then that prolonged cold shock and flux limitation are triggers 

of persistence (Heinemann et al., 2020). Our results show that cold shock and flux-limitation on 

nutrient shifts does not necessarily trigger persistence but can instead induce only a temporary 

tolerance. The correlation of transient tolerance with adaptation to FA utilization and the sudden 

killing of at least 98% of the population suggests that a majority of cells adapt to utilizing FA after 

a gluconeogenic-to-FA transitions with very few cells entering a long-lived persister state. 

Therefore, our results demonstrate that despite both being regulated by positive feedback, 
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glycolytic-to-gluconeogenic and gluconeogenic-to-FA transitions follow fundamentally different 

adaptation strategies. These contrasting results highlight the need for a deeper understanding of 

how the underlying molecular mechanisms contribute to the choice of adaptation strategies in 

response to nutrient transitions. 

More generally, our results elucidate the role of metabolic positive feedback loops in 

nutrient shift and β-lactam tolerance. For example, the positive feedback loop in the glyoxylate 

bypass causes cells to maintain transient tolerance for up to 44 hours when switching from 

pyruvate to FA. Adding glyoxylate to the pre-shift medium accelerated both transient tolerance 

and FadD accumulation, indicating that a bottleneck in the glyoxylate bypass has a global effect 

on the metabolic network, beyond its own regulatory loop. Previous studies of antibiotic 

persistence have demonstrated the possibility of potentiating antibiotic killing by introducing key 

metabolites (Allison et al., 2011). Our results demonstrate that glyoxylate can act as a key 

regulatory metabolite to prime the metabolic network to adapt to certain nutrient shifts, thus 

reducing transient tolerance to β-lactams. Because of the presence of these specific metabolic 

regulations, cells maintain a memory of their pre-shift nutrient conditions, causing large 

differences in tolerance time despite having identical post-shift nutrient environments. 

Additionally, although we mainly focus on understanding the transient tolerance period, we note 

that shifts from different carbon sources also have different rates of antibiotic killing and different 

persister fractions (Figure 4.2B, Appendix C, Table C.1). These observations suggest a more 

profound impact of metabolism on persistence, which are worth further studies. Altogether, our 

findings show how the pre-shift metabolic conditions can have long lasting effects on the 

metabolism and antibiotic tolerance of cells after a nutrient shift.  
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4.4 Materials and Methods 

4.4.1 Strains, Plasmids, and Construction 

All strains were derived from Escherichia coli NCM3722, which was obtained from the 

Coli Genetic Stock Center (Yale, USA). All strains, plasmids, and primers used are given in 

Appendix C, Table C.2 and the plasmid sequences are given in Table C.3. Phusion DNA 

polymerase, restriction enzymes, and T4 ligase used in plasmid construction were purchased from 

Thermo Fisher Scientific (Waltham, MA, U.S.A.). Primers were synthesized by Integrated DNA 

Technologies (Coralville, IA, U.S.A). 

Acyl-CoA Biosensor Strain. The Acyl-coA biosensor plasmid pSARk-yemGFP was 

constructed from three parts following standard enzyme digestion and ligation protocols.  The 

bglBrick vector pS5k-rfp (Lee et al., 2011) was digested by AatII and XhoI. The pAR promoter 

was obtained by digesting pBARk-rfp (Xiao et al., 2016) with AatII and BglII. The yemGFP 

sequence was amplified by polymerase chain reaction (PCR) yemGFP_F and yemGFP_R 

(Appendix C, Table C.2) and digested with BglII and XhoI. Parts were ligated and transformed 

into E. coli NCM3722 to make the Acyl-CoA Biosensor Strain.  

FadD-YFP Strain. The FadD-YFP strain was constructed by following the pTarget-pCas 

homologous recombination system protocol as described previously (Jiang et al., 2015, 2017). 

Homology arms with 200-300 base pairs upstream and downstream of FadD were amplified from 

E. coli NCM3722 genomic DNA by PCR. The YFP gene was amplified from a codon optimized 

plasmid (Cox et al., 2010). The fadD and YFP genes were separated by a flexible glycine-serine-

rich linker constructed on primers (Bai et al., 2019). A guide RNA with the following sequence 

was synthesized on primers and amplified along with the pTarget backbone: 

TGACGACTGACTTAACGCTC. PCR products were then assembled via Golden Gate Cloning 
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to form pTargetF-FadD-YFP. The pTarget plasmid was then used to integrate YFP into the genome 

of E. coli NCM3722 transformed with pCas. Genome integration was verified by colony PCR and 

sequencing, and the genome integrated strain was cured of the pTarget and pCas plasmids. The 

final sequence of the FadD-YFP strain in the genome region of fadD is given in Appendix C, Table 

C.3. 

4.4.2 Growth Media 

Cell growth and nutrient shift experiments were performed in M9 minimal media with 

corresponding carbon source (M9 minimal salts supplemented with 75 mM MOPS at pH 7.4, 2 

mM magnesium sulfate, 1 mg/L thiamine hydrochloride, 10 μM iron(II) sulfate, 100 μM calcium 

chloride, 3 μM ammonium heptamolybdate, 0.4 mM boric acid, 30 μM cobalt(II) chloride, 15 μM 

copper(II) chloride, 80 μM Manganese(II) chloride, and 10 μM Zinc sulfate). Media was 

supplemented with sodium salts of each carbon source at a 72 mM carbon: 4mM oleate, 36 mM 

acetate, 24 mM pyruvate, 24 mM glycerol, 18 mM (S)-malate, 18 mM succinate. For experiments 

with co-utilization of glycerol and FA, the ratios of glycerol and oleate were adjusted to maintain 

a total of 72 mM carbon atoms in the media. For experiments with co-utilization of carbon and 

glyoxylate, 9 mM glyoxylate was used in all conditions, along with following concentrations of 

each carbon source such that 72 mM of carbon atoms was maintained: 3 mM oleate, 24 mM 

acetate, 18 mM pyruvate, 18 mM glycerol, 13.5 mM (S)-malate, 13.5 mM succinate. All cultures 

were supplemented with appropriate antibiotic for selection (Ampicillin, 100 μg/mL; Kanamycin, 

50 μg/mL). 

4.4.3 Acyl-CoA Biosensor Activity 

Single colonies of the acyl-CoA biosensor strain were grown in 3 mL LB media for 2-3 

hours, then washed twice in M9 without a carbon source. Cultures were shifted into 3 mL M9 
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media supplemented with specified glycerol and oleate concentration and grown for an additional 

3-5 hours. Cells were again washed twice in M9 without a carbon source and were transferred M9 

media supplemented with the specified glycerol/oleate ratios in a 96-well plate. Cells were diluted 

to a density of ~2 cells/μL so that the glycerol/oleate ratio does not significantly change during 

cell growth. Cells were grown for 9 hours, then growth was halted by addition of 100 μg/mL of 

rifampicin and incubated on ice for at least 15 minutes prior to measurement. Samples were 

analyzed with a Guava easyCyte HT5 flow cytometer (Luminex Corporation, Austin, TX, U.S.A.) 

with blue 488 nm excitation laser and the green 525 nm emission filter. 

4.4.4 Nutrient Shifting and Colony Counting Assays 

All nutrient shifts were performed following previous methods (Radzikowski et al., 2016). 

Specifically, cells were cultivated in a pre-shift medium at 37°C and were kept in exponential 

growth phase for 14-17 hours. Cells were then collected and centrifuged in a pre-chilled centrifuge 

(4 °C) at 4500 rcf for 10 minutes. Supernatant was discarded and cells were resuspended in chilled 

M9 without carbon source. Three washes were performed. Finally, cell density (OD600) was 

normalized to 0.5 in M9 without carbon, and then diluted 1:5 into pre-warmed oleate media so that 

the final cell density was 0.1, and the final oleate and ampicillin concentrations were 4 mM and 

100 µg/mL respectively, and with a final culture volume of 25 mL. At times indicated, 1 mL 

culture was transferred to centrifuge tubes pre-filled with 200 μL of phosphate buffered saline 

(PBS, pH 7.4). Cells are centrifuged at 4500 rcf, 4 °C, and washed 4 times in PBS. Finally, cell 

pellets were resuspended to a final volume of 1 mL, and serial dilutions were also performed in 

PBS.  For each diluted culture, 10 µL was transferred onto LB agar plates and incubated for 12 

hours at 37°C. Colonies were counted to determine the colony forming units per mL of culture 

(CFU/mL).  
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4.4.5 Transient Tolerance Time Determination 

To quantify the length of time where the cells are transiently tolerant to ampicillin, we fit 

the colony counting data to a modified two-population Gompertz model, which has been widely 

used to describe kinetics of bacterial growth (Zwietering et al., 1990) and mortality (Kirkwood, 

2015):  

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 =  ((1 − 𝑝) × (1 − 𝑒𝑥𝑝 (−𝑒𝑥𝑝(1 + 𝜇𝑇𝑇 × 𝑒 × (𝑡 − 𝜏𝑇𝑇))))) 

+ ((𝑝) × (1 − 𝑒𝑥𝑝 (−𝑒𝑥𝑝(1 + 𝜇𝑃𝐸𝑅 × 𝑒 × (𝑡 − 𝜏𝑃𝐸𝑅))))) 

where p is the persister fraction, 𝜇𝑇𝑇 and 𝜇𝑃𝐸𝑅 are the maximum killing rates of the transient 

tolerant and persister population, respectively, 𝜏𝑇𝑇 and 𝜏𝑃𝐸𝑅 are the transient tolerance times of 

the transient tolerant and persister fractions, respectively. Next, we assume that the tolerance time 

of the transient tolerant fraction and persister fraction are equal, i.e. 𝜏𝑇𝑇  = 𝜏𝑃𝐸𝑅  =  𝜏. Thus, only 

the maximum rate of killing distinguishes the transient tolerant and persister populations. 

To fit the data, CFU/mL counts were first normalized to the CFU/mL from time point zero and 

converted to a log10 scale. All data from replicates of each shifting experiment was fit to the two-

population Gompertz model using the MATLAB R2020B curve fitting tool (cftool). An initial 

transient tolerance time was determined; the data was then re-normalized to the average CFU/mL 

counts prior to the tolerance time for each replicate. The re-normalized data was fit again, and the 

parameters along with their 95% confidence intervals and SEM were determined. 

4.4.6 FadD-YFP Kinetic Assays 

Cells were grown in different pre-shift carbon sources at steady state as described for 

Colony Counting Assays. Cells were centrifuged and washed in M9 without carbon source for 4 

times. Washed cells were then transferred to a Falcon 96-Well Imaging Microplate (Corning, NY, 
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USA) and diluted to an initial OD600 of 0.08 in oleate media with or without ampicillin, with a 

final volume of 150 µL. An Infinite F200PRO plate reader (TECAN, Männedorf, Switzerland) 

was used to make automated OD600 and fluorescence measurements (Excitation: 514 nm, 

Emission: 552 nm) every 6 minutes with constant shaking and 37 °C temperature control. 

Fluorescence measurements are normalized by OD600 to give an estimate of FadD concentration.  

4.4.7 Lag Phase, Threshold, and Accumulation Time Calculations 

Lag phase was determined by a similar protocol as described previously (Basan et al., 

2020). The steady state growth rate after nutrient shift was first calculated by fitting a line to the 

natural log of the OD600 for the first hour after the culture density increases 8-fold from its initial 

density. The time point where this line intersects the initial culture density is the end of the lag 

phase. The fluorescence measurement at the closest measured time point is used as YFP/OD600 at 

the lag time. The FadD threshold was determined by taking the average YFP/OD level at the end 

of the lag phase across all nutrient shift conditions without glyoxylate. The accumulation time was 

determined as the first time point where the YFP/OD600 was above this threshold and the 

YFP/OD600 at all subsequent time points also exceeded the threshold. 

4.4.8 Tolerance Time via OD600 Calculation and YFP Normalization 

For kinetic optical density measurements in the presence of ampicillin, the transient 

tolerance time was calculated as the last local maximum in the log of the OD for each time series. 

To determine this, a moving window slope of 11 time points was used twice to calculate the first 

and second derivatives of the log OD. The last time point where the first derivative was closest to 

zero, and where the second derivative was negative was taken as the tolerance time measured by 

OD600. Additionally, all fluorescence measurements after the measured tolerance time were 
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normalized by the OD600 at the tolerance time to give an estimate of the FadD concentration which 

is unbiased by the reduction in OD due to cell death. 

4.4.9 Transcription Analysis by Reverse Transcription-qPCR 

Cells were cultivated to steady state growth to an OD600 of 0.2 and 2 mL of cells were 

collected and stored in RNA/DNA Shield (Zymo Research, Irvine, CA, USA). Total RNA was 

extracted from cells using the Quick-RNA Miniprep Plus Kit (Zymo Research) following 

manufactures protocols. Contaminating genomic DNA was removed by DNase I treatment of RNA 

on collection column, following the Quick-RNA Miniprep Kit protocol. cDNA was synthesized 

using Revert Aid First strand cDNA Synthesis (Thermo Fischer Scientific) with random hexamer 

primers following the manufactures protocol. Negative control reactions without the use of reverse 

transcriptase were preformed to evaluate the potential presence of contaminating genomic DNA. 

2 µL of cDNA was amplified using Power SYBR green PCR Master Mix (Thermo Fischer 

Scientific) and gene specific primers (Appendix C, Table C.2). qPCR reactions for each biological 

replicate, gene, and growth condition were performed in triplicate. qPCR assays were performed 

on a QuantStudio3 (Thermo Fischer Scientific) following standard thermal cycling conditions 

recommended by the manufacturer. Expression levels of the condition invariant gene gyrA were 

used as a control for normalization between samples (Said-Salman et al., 2019). Fold changes of 

each gene of interest were calculated following the 2-ΔΔCT method. 

 4.5 Supplemental Information 

 

Tables C.1- C.3, Figures C.1-C.4, and Appendix Sections C.1-C.2 can be found in Appendix C. 
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4.5.1 Abbreviations 

ACE, Acetate; Amp, Ampicillin; FA, Fatty Acid; F1,6P, fructose-1,6-bisphosphate; F6P, fructose 

6-phosphate; GLY, glycerol; GOX, Glyoxylyate; ICT, Isocitrate; MAL, Malate; PEP, 

phosphoenolpyruvate; PYR, pyruvate; SUC, Succinate; TBL, tolerance by lag 
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Chapter 5: Conclusions and Future Directions 

5.1 Conclusions 

 

Metabolite dynamics and heterogeneity are two concepts which are gaining acceptance as 

critical considerations in the design of engineered metabolic systems for producing commodity 

chemicals (Schmitz et al., 2017; Hartline et al., 2021). Microbiologists have long understood the 

significance of metabolic control systems in natural microbes, since the discovery of the lactose 

inducible promoter in E. coli (Jacob and Monod, 1961). Despite this long history of deciphering 

the molecular interactions involved in the control of metabolism, our ability to quantitatively 

characterize systemic features arising from these interactions and to design new systems has been 

limited. As such, only 53 examples of engineered dynamic control in metabolic engineering were 

identified from the year 2000 to 2020 (Hartline et al., 2021). This dissertation expands the details 

of how the regulatory architectures and parameters of metabolic control systems combine to affect 

metabolite dynamics and heterogeneity, with a particular focus on the FA system in E. coli.  

In Chapter 2, we dissected the role of regulatory architecture and parameters on recovering 

pathway shutdown after a nutrient becomes depleted. Based on modeling and experimental results, 

we uncovered the importance of maintaining and releasing a pool of sequestered TF in actuating 

recovery. Our results show that negative autoregulation is a superior architecture for achieving fast 

recovery with lower overall resource usage. This suggests a potential reason why many metabolites 

uptake positive feedback loops incorporate negative autoregulation of the TF. The work elucidates 

the tunable parameters and the constraints of regulatory architecture for controlling pathway 

recovery in the design of metabolite uptake systems, which can be used in metabolic engineering 

and metabolite sensing applications. 
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In Chapter 3, we explored how changes in cell growth rate due to changing nutrient 

conditions affect the minimum, maximum, and dynamic range (DR) of MRTF-based biosensors. 

Our modeling results show how the growth dependence of DR is related to the biosensor’s 

parameters, and to the transport mechanism of the sensed metabolite. Our results show that 

dynamic range and its growth rate sensitivity are deeply coupled in due to their parameters, which 

is a previously unknown design constrain in the engineering of MRTF-based biosensors. Since 

MRTF-based biosensors are a critical component of engineered metabolic control systems, these 

results highlight new considerations, and provide quantitative modeling approaches in the design 

of such systems for use in different nutrient and growth environments. 

Finally, in Chapter 4, we explored how positive feedback in nutrient uptake contributes to 

β-lactam antibiotic tolerance after rapid nutrient shifts to FA. Our results show that both before 

and after shifts to FA, there is apparently only a single population of cells which adapts to FA 

utilization. During the adaptation period, cells are tolerant to killing by β-lactams. This tolerance 

disappears for a majority of the population after the transient tolerance time, which is strongly 

correlated with the timing of FadD production in the positive feedback loop. This study revealed 

that positive feedback loops can control the timing of adaptation to nutrient sources and antibiotic 

tolerance, without necessarily triggering persistence in these cells. These results shed new light on 

persistence mechanisms during switching nutrient environments and suggests potential treatment 

methods. 
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5.2 Future Directions 

 

This dissertation uncovers several new design principles for controlling metabolite dynamics and 

heterogeneity at the transcription level through MRTFs. To uncover these design principles, we 

took a combination of synthetic biology methods and modeling. These results highlight new 

research directions which can be addressed to expand the applicability of this work to new systems. 

5.2.1 Synthetic Biology Parts Design for Enhanced Metabolic Control Systems 

From synthetic biology perspective, we were able to tune the architecture of the system by 

replacing native promoters with engineered promoters with different regulatory logic to 

experimentally test the impact on metabolite dynamics, for example in Chapter 2. These parts with 

altered logic were derived from native FadR-regulated promoters, such as FabA, or from random 

rearmament of FadR-regulatory sites to inactivate them. Although this approach successfully 

changes the regulatory logic, the parameters of the system were also significantly altered, thus 

requiring more tuning to get the parameters to be comparable between systems. This was 

particularly noticeable in Chapters 2 and 3, where replacement of the native FadR promoter with 

a positive autoregulation (Chapter 2) or constitutive regulation (Chapter 3) lead to a significant 

loss of repression on controlled promoters (PFadD and PAR). In both cases, we solved the problem 

by introducing extra copies of the re-wired fadR on a plasmid to increase FadR levels, which added 

further complexity to the experiments. Additionally in Chapter 4, it would be interesting to tune 

the system into the bistable region by replacing the FadD promoter. This experiment was 

attempted, but ultimately failed because a promoter with suitable parameters could not be easily 

found. Advancements in methods to predict promoter strength (Zhao et al., 2022) and RBS strength 

(Salis et al., 2009) directly from sequence are being explored, but current methods often make 

inaccurate predictions for native promoters, and fail to capture the impact of regulators. The use 
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of libraries with a range of parameter strengths could be useful but selecting out the correct ones 

from the library is labor intensive. Thus, having the ability to quickly engineer novel promoters 

with appropriate and tunable parameters would significantly accelerate research in the control of 

metabolite dynamics and heterogeneity. Additionally, fine tuning the parameters of a control 

system is necessary for their function in metabolic engineering (Stevens and Carothers, 2015; Liu 

et al., 2018), so rapid parameter tuning will be a critical advancement for this field. 

In these studies, we took advantage of the fact that FadR acts as both a positive and negative 

regulator of gene expression in some contexts. However, few TF have this capability without 

extensive engineering, and many TF act repressively in the absence of a metabolite (Brautaset et 

al., 2009; Shong et al., 2013).  While our work shows that negative autoregulation is beneficial for 

rapid pathway shutdown (Chapter 2), our results along with more recent modeling also shows that 

positive autoregulation can be useful for purposely generating a slow response in for metabolic 

engineering applications (Mannan and Bates, 2021). In these cases, a positively autoregulating 

transcription factor needs to be identified. Thus, more research into protein engineering to turn 

negative regulators into positive regulators can benefit the design of metabolic control systems 

with appropriate dynamics. 

5.2.2 Quantitative Design Algorithms for Metabolic Control Systems 

 In this work, we used mathematical modeling to elucidate design constraints and 

advantages of regulatory architecture and parameters. These models where generally small in 

scale, containing only a few differential equations with limited interactions between components. 

This approach helped to abstract molecular details of the system and yet still provided good 

agreement in trends between experiment and data. However, future models of metabolic control 

systems will benefit by incorporating more interactions between the control system and 
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metabolism, for example by modeling the effects of burden on control system components and the 

role of the sensed metabolite as a carbon and energy source in the metabolic network. Incorporating 

these interactions may help models to achieve better numerical accuracy to experimental data, 

which will be very important in both the design of novel control systems and in understanding the 

advantages of different control systems. Thus, algorithms which both capture these details, yet 

maintain the simplicity and abstraction of small-scale models should enable better designs and 

understanding of metabolic control. 

 For the FadR system, our work focused primarily on the interactions between FadR, acyl-

CoA and FadD in the metabolite uptake positive feedback loop. However, FadR has many 

interesting regulatory roles including in central metabolism, FA biosynthesis, stress response, and 

virulence. Additionally, other regulations play an important role in regulating FA catabolism 

dynamics. For example, experiments in Chapter 4 revealed that the IclR-aceB-glyoxylate positive 

feedback loop affected the dynamics of the FadR-fadD-acyl-CoA feedback loop though some 

global coordinating mechanism. Additionally, although the kinetics of nutrient switches could be 

broadly captured with a single transient tolerance time, many cells maintain tolerance for a much 

longer duration. Understanding these persister cells will require modeling of heterogeneity in the 

system. Thus, there remains much research to understand the dynamics and heterogeneity of FadR 

and FAs in the context of these many global interactions, and more complex models will be 

necessary to capture these dynamics.  

5.2.3 Metabolic Control Systems in Control of Antibiotic Persistence 

 This dissertation revealed that transitions from gluconeogenic carbon to FA produce a 

transient tolerance to β-lactam antibiotics. These results raise several questions about the role of 

metabolism in persistence. First, a prevalent view of metabolic persistence holds that carbon 
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starvation and flux limitation in central metabolism triggers ppGpp synthesis (Gaca et al., 2015), 

which can further trigger persistence in cells (Radzikowski et al., 2017; Wood and Song, 2020). 

The transient tolerant cells similarly face a strong metabolic perturbation, which is sufficient to 

cease cell wall biosynthesis (the primary target of β-lactam activity) yet is insufficient to 

completely inhibit transcription and translation. Given these results, it would be interesting to 

understand the role of ppGpp and other stress response mechanisms in transient tolerance, and its 

relation to the metabolic signals necessary to generate “bona fide persistence” (Radzikowski et al., 

2016; Song and Wood, 2021). Second, previous reports claim bistability is an important 

mechanism in maintenance of persistence after a flux limitation. We did not observe bistability in 

FA metabolism, instead seeing only a single population before and after the switch. Thus, 

bistability may still paly a role in the difference between transient tolerance and persistence. 

Methods for quickly tuning the control system in the appropriate range can help tune bistability 

and potentially the length of transient tolerance or degree of persistence, which could have use in 

synthetic biology or metabolic engineering. Finally, this dissertation focused on β-lactam 

antibiotics in transient tolerance. Our results show that transcription and translation are active 

during FA nutrient shifts, which suggests these could be targeted by antibiotics. It would be 

interesting to see if different classes of antibiotic generate different killing kinetics, which would 

provide a useful tool in understanding the coordinated control of different biosynthetic and 

catabolic pathways during nutrient shifts. The work in this dissertation highlights the many 

avenues for research in understand the connection between metabolite dynamics, heterogeneity, 

and antibiotic tolerance.  
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Appendix A: Supplemental Information for “Metabolite 

sequestration enables rapid recovery from fatty acid depletion in 

Escherichia coli” 
 

Appendix A contains supplemental information for Chapter 2. 

 

A.1. Nutrient Uptake Systems in Escherichia coli 

 

Table A.1. Nutrient uptake systems in Escherichia coli. List of metabolite-responsive 

transcription factors (TF) that control expression of nutrient uptake enzymes in Escherichia coli, 

taken from EcoCyc (Keseler et al., 2017). All these systems follow the schematic in Figure. 2.1A. 

TF Name TF autoregulation Operon inhibited by 

TF 

Sequestering 

metabolite  

ArsR Arsenate 

inducibility 

regulator 

Negative  arsB, from arsRBC 

operon 

Arsenite / 

Antimonite ion 

AlsR Allose utilization 

regulator 

Negative  alsABC, from 

alsRBACE operon 

D-allose 

BetI Betaine Inhibitor Negative  betT Choline 

ChbR Chitobiose 

regulator 

Negative  chbBCA from 

chbBCARFG operon 

N,N’-

diacetylchitobiose 

6-phosphate 

CytR Cytidine regulator Negative  nupC and nupG Cytidine 

FadR Fatty acid 

degradation 

regulon 

Negative  fadD Acyl-CoA 

GntR Gluconate 

repressor 

None, constitutive gntT, gntU D-Gluconate 

LacI Lactose inhibitor None, constitutive lacZYA Allolactose 

LldR Lactate regulator Negative  lldP, from lldPRD 

operon 

S-lactate 
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LsrR Quorum sensing 

system 

Negative  lsrACDB operon AI-2 (autoinducer) 

NagC N-

acetylglucosamine 

transcriptional 

regulator 

Negative  chbF, from 

chbBCARFG operon 

Acetyl-D-

glucosamine 6-

phosphate 

NanR N-acetyl-

neuraminic acid 

regulator 

None, constitutive nanT, from 

nanATEK-yhcH 

operon 

N-

acetylneuraminate 

PaaX Phenylacetic acid 

regulator 

Negative  paaK, from paa 

operon 

Phenylacetyl-CoA 

PuuR Putrescine 

utilization and 

transport regulator 

Negative  puuP, from puuAP 

operon 

Putrescine 

RbsR Ribose repressor Negative  rbsACB, from rbs 

operon 

D-ribose 

SrlR Glucitol Repressor Negative  srlAEB, from 

srlAEBD-gutM-slrR-

gutQ operon 

D-sorbitol  

TreR Trehalose 

repressor 

None, constitutive treB, from treBC 

operon 

Trehalose 6-

phosphate 

UlaR Utilization of l-

ascorbic acid 

repressor 

None, constitutive ulaABC, from 

ulaABCDEF operon  

L-ascorbate 6-

phosphate 
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A.2. Kinetic Model of Fatty Acid Uptake 

To model the system in Figure 2.1B, we use the kinetic model: 

 , (Eq. A1) 

 
, (Eq. A2) 

 
, (Eq. A3) 

 , (Eq. A4) 

 , (Eq. A5) 

where R, D, A and sR represent the concentrations of transcription factor FadR, uptake enzyme 

FadD, internalized fatty acyl-CoA and sequestered acyl-CoA-FadR complex, respectively (Figure 

2.1B). During inducting, two molecules of acyl-CoA bind to sequester 1 dimer of FadR (van Aalten 

et al., 2000). We model this reversible binding as mass-action kinetics (Eq. A5). The term  

represents the expression and autoregulation of the fadR promoter. To model TF expression when 

under negative autoregulation (n), positive autoregulation (p) or constitutive expression (c), we 

write 

 , (Eq. A6) 

 
, (Eq. A7) 

 , (Eq. A8) 

respectively. We can use the model to simulate growth in continuous culture by fixing oleic acid 

concentration (OA) in Eq. A3. Model parameters can be found in Table A.2. 
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Table A.2. Model parameters for kinetic model of fatty acid uptake.  

Parameter     

Description fadR basal exp. rate 

Units =  

(Fitted) 

fadR promoter strength 

Units =  

(Fitted) 

Affinity of FadR for its own promoter 

Units =  

(Fitted) 

Hill coefficient 

Units = N/A 

(Fixed = 1) 

Parameter     

Description fadD basal exp. rate 

Units =  

(Fitted) 

fadD promoter strength 

Units =  

(Fitted) 

Affinity of FadR for fadD promoter 

Units =  

(Fitted) 

Hill coefficient 

Units = N/A 

(Fixed = 2) 

Parameter     

Description Turnover rate of FadD 

Units =  

(Fitted) 

Michaelis const. for FadD 

Units =  

(Fitted) 

Turnover rate of PlsB enzyme 

Units =  

(Fitted) 

Michaelis const. 

Units =  

(Fitted) 

Parameter     

Description Conc. of PlsB enzyme 

Units =  

(Fixed = 0.1369) 

Fwd rate of sequestering 

Units =  

(Fitted) 

Reverse rate of sequestering 

Units =  

(Fitted) 

Cell growth rate 

Units =  

(Fitted) 

 

 

To fit model parameters, we use time course data from batch cultures induced with 

titrations of oleic acid, shown in Figure A.1B. We used a red fluorescent protein (RFP) gene placed 

at 3’ of the fadD promoter on a low copy number plasmid (pSfadDk-RFP). The plasmid was 

incorporated to a fadE knockout strain to make ΔfadE-reporter. The fadE knockout strain was 

chosen to reduce the consumption rate of intracellular acyl-CoA and to simplify the metabolite 

dynamics for this parameterization purpose. Cells were cultivated in M9 glycerol (M9G) medium, 

in flasks, to exponential growth phase and induced with varying concentrations of oleic acid. Time 
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course measurements of cell density (Figure A.1A) and RFP fluorescence (Figure. A.1B) were 

recorded.  

For model fitting we extended the Eqs. (A1) - (A8) with population growth in batch culture: 

 , (Eq. A9) 

 
, (Eq. A10) 

with parameters defined in Table S2. We first converted fluorescence values to units of 

concentration (μM) by assuming that the average fluorescence value in the absence of inducer 

(dark blue points, Figure A.1B) represents the steady state concentration of FadD reported in, 

measured in (Schmidt et al., 2016), where cells were grown in the same media as ours (M9G). This 

gives a conversion factor of 1.12x10-4 μM per unit of fluorescence, which was then applied to all 

fluorescence values; results are in Figure A.1B. 

We then performed a weighted least-squares fitting of simulations to the data. We define 

 and  as the simulated and average measured FadD concentration (from three biological 

replicates), at time t, from the ith time series. The index i = 1, … ,9 refers to the time course when 

induced with oleic acid = 0, 0.4, 1, 4, 10, 40, 100, 400, and 1000 μM respectively. Fitting was 

performed to find optimal values of model parameters (p) that minimize the cost function 

 

, 
(Eq. A11) 

given constraints 

 , (Eq. A12) 
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where LB and UB are lower and upper bounds on the parameter search space. The term  is the 

standard error measured from triplicate data. The term  in Eq. A11 ensures that the difference 

between simulation and data at each time point is weighted by the inverse of the relative standard 

error. This increases the weight of those contributions to the cost where data has a lower measured 

error. We optimized parameters with a two-step approach. We first used a genetic algorithm (GA) 

from the Global Optimization toolbox in MATLAB 2018a to find a candidate for a global 

minimum (using 200 generations of the GA), and then to initialize the solver fmincon and perform 

a local optimization using the same cost function (Eq. A11). Fitting was performed independently 

100 times; results are shown in Figure A.1B, and summary statistics of parameter values are given 

in Table A.3. 

Growth rates (μ) were estimated through a least-squares fitting of the measured optical 

densities in Figure A.1A to the exponential function: 

 . (Eq. A13) 

  

To understand the impact of each model parameter on the recovery time, we conducted 

global parameter sensitivity analysis; see Appendix A.8 for details. 
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Figure A.1. Fitting model to data. (A) Plot of time series data of measured optical density (OD), 

in log scale, during growth in media induced with titrations of oleic acid. Values of the fitted 

growth rate to each data series is given inset, including average growth rate (based on all data 

series) used to in the model; modelled growth shown in red line, ± SEM in red dashed lines. (B) 

Ensemble of 100 independent fits (grey curves) and the optimal fit (coloured curves) of simulations 

to time course data (point with error bars), after converting fluorescence values to concentration. 

Error bars in data represent SEM from biological triplicates (n = 3). Fitting performance in inset. 
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Table A.3. Results of parameter fitting. Optimal parameter values together with search bounds 

and summary statistics for 100 independent fits. The bounds on growth rate, μ, are based on ± two 

times the SEM from data (shown in Figure A.1A, inset). Hill coefficients are fixed to nR=1 and 

nD=2, based on the number of FadR binding sites on the fadR and fadD promoters. Concentration 

of PlsB is fixed to 0.1369 μM, as taken from (Schmidt et al., 2016). 

Parameters Optimal 
Bounds of GA Summary Statistics 

Lower bound Upper bound Average Median SD CV 

μ 0.1818 0.1817 0.1913 0.1854 0.1840 0.0036 1.9172% 

bR 0.0007 1.00E-06 0.0600 0.0210 0.0173 0.0140 66.7954% 

aR 0.0131 1.00E-06 0.1500 0.0414 0.0343 0.0343 82.8857% 

KR 4.3222 1.00E-03 100.0000 27.1436 22.9710 21.3182 78.5385% 

nR 1.0000 - - - - -   -   

bD 0.0108 1.00E-06 0.1000 0.0108 0.0112 0.0015 13.5842% 

aD 0.0517 1.00E-06 0.1000 0.0486 0.0484 0.0021 4.4003% 

KD 305.9500 1.00E-03 750.0000 267.2850 215.9050 201.6395 75.4399% 

nD 2.0000 - - - - - - 

kcatD 49.0000 1.00E-06 27,000.0 12,364.4 12,817.5 7,610.1 61.5483% 

KmD 0.0672 1.00E-02 650.0000 173.6743 149.1950 128.8831 74.2096% 

kcatB 192.9100 1.00E-06 620.0000 235.0742 214.5650 160.4516 68.2557% 

KmB  45,429.0 1.00E-02 50,000.0 29,547.0 31,923.5 12,371.9 41.8719% 

PlsB 0.1369 - - - - - - 

kf 612.5500 1.00E-06 625.0000 409.3018 446.6350 174.9435 42.7419% 

kr 900.7300 1.00E-06 3,200.0 844.9572 515.6600 928.0828 109.8378% 

Init. Biomass 0.1648 1.00E-02 2.0000 0.2308 0.1521 0.2567 111.2037% 

Obj Value 82.0500 - -   160,209.7   150,475.6   161,591.8 100.8627% 
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A.3. Impact of the Exposure Time to Nutrient 

 

As seen in Figure A.2, simulations suggest that for small increases in exposure time to oleic 

acid cause a decrease in recovery time, but for longer times recovery time is increased again. 

Further analysis of the simulations indicates that for exposure times, acyl-CoA accumulates to 

higher levels. In the OFF state larger pools of accumulated acyl-CoA take longer to consume, 

which causes delays in the release of free FadR in the OFF state. We infer that this delays the 

recovery of FadD, increasing recovery time. We hypothesized that the bottleneck lies in the 

consumption rate of acyl-CoA, as it is limited by the effective vmax of the consuming enzyme 

kinetics (in our system vmax = kcat,BPlsB). To computationally test this hypothesis, we increased the 

concentration of consuming enzyme (PlsB) in the model and found a faster release of free FadR 

which, in turn, reduced recovery time. Since longer exposure times increase the level of FadR 

stored in complex (a-R), we also found a general decrease in recovery time. 
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Figure A.2. Exposure time to oleic acid affects accumulated acyl-CoA and recovery time. 

Colored curves show how the respective relations are affected by increases in the concentration of 

consuming enzyme.  
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A.4. Plasmids and Strains Used in This Study 

 

Table A.4. Plasmids used in this study. 

Plasmids Replication Origin Operon Resistance Reference 

pSfadDk-RFP SC101** PfadD-rfp KanR This Study 

pEfadRpoa-fadR colE1 PfadRpo-fadR AmpR This Study 

pSfadRpok-rfp SC101** PfadRpo-rfp KanR This Study 

 

Table A.5. Strains used in this study. 

Strains Relevant Genotype Reference 

E. coli DH1 F-  λ- supE44  hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Hanahan 1983 

DH1(ΔfadE) DH1, ΔfadE Steen 2010 

WT-reporter DH1, pSfadDk-RFP This Study 

ΔfadE-reporter DH1, ΔfadE, pSfadDk-RFP This Study 

PA-reporter DH1, fadR::PfadRpo-fadR, pSfadDk-RFP, pEfadRpoa-fadR This Study 

PA-FadR reporter DH1, fadR::PfadRpo-fadR, pSfadRpok-RFP, pEfadRpoa-fadR This Study 
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A.5. Steady State Analysis: Autoregulation Affects FadR Levels During 

Induction 

 

Here, we ask how the mode of FadR autoregulation affects how the pool of total FadR 

changes for long exposure times. To quantify this change, we look at the difference in the steady 

state   between the concentration of total FadR achieved in the ON-state (

) to that achieved before induction ( ) for each of the three systems (negative 

autoregulation, positive autoregulation and constitutive expression). 

 

To derive the expression for , we define total FadR as , which from Eq. A1 and 

A4 follows 

 , (Eq. A14) 

where  is the FadR synthesis rate as a function of free FadR and parameters, , defined in 

Eqs. A6-A8 for each architecture.  is growth rate and assumed constant before and during the ON 

state. At steady state Eq. A14 gives 

 . (Eq. A15) 

We can now write down an expression for  as 

 
, (Eq. A16) 

where  and  are free FadR before induction and during the ON-state, respectively. In 

general, Eq. A1 at steady state gives 
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 , (Eq. A17) 

where Rss, Ass and sRss are steady state concentrations of free FadR, acyl-CoA and sequestered 

FadR, respectively. Before induction, we have that  and   for the three architectures. 

Substitution into Eq. A17 leads to 

 . (Eq. A18) 

We now substitute Eqs. A6-A8 into Eq. A18 for each mode of autoregulation, to get:  

   

 (constitutive expression) 

(Eq. A19) 

 

 

   

(negative autoregulation) 

(Eq. A20) 

 

 

  

(positive autoregulation) 

(Eq. A21) 

 

To compute the steady state during the ON state, we first solve for sR in steady state from Eq. A4 

to obtain , and then substitute into Eq. A17: 



152 

 

 , (Eq. A22) 

where we have defined 

 
, (Eq. A23) 

We now substitute Eqs. A6-A8 into Eq. A2 for each mode of autoregulation, to get the steady state 

concentration of R(I)
ss for each mode of autoregulation: 

   

(constitutive expression) 

(Eq. A24) 

 
  

(negative autoregulation) 

(Eq. A25) 

 

 

 (positive autoregulation) 

(Eq. A26) 

We now use the expressions for R(I)
ss in Eqs. A19-A21 and for R(0)

ss in Eqs. A24-A26 to compute 

the direction of change in steady state concentration of free FadR. From Eq. A23 we have that 

 for positive parameters, and therefore: 

 , (Eq. A27) 

 , (Eq. A28) 
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 . (Eq. A29) 

Therefore, irrespective of the mode of autoregulation, the steady state level of free FadR is always 

lower in the ON state relative to its steady state level before induction.  

 

We can now return to Eq. A16 to compute the change in total FadR levels for each mode of 

autoregulation. For constitutive expression, substituting Eq. A8 into A16 we get 

 , (Eq. A30) 

and therefore, there is no change in the level of total FadR in the ON state, relative to its level 

before induction. 

For negative autoregulation, substitution of Eq. E6 into E16 gives 

 

 . (Eq. A31) 

Using the relation in Eq. A28, it can be shown that  and therefore the level of total 

FadR is increased in the ON state, relative to its level before induction. 

For positive autoregulation, substitution of Eq. A7 into A16 leads to 

 
. (Eq. A32) 

Using the relation in Eq. A29, it can be shown that  and therefore level of total FadR 

is decreased in the ON-state, relative to its level before induction. 
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In summary, we conclude that: 

- For constitutive expression there is no change in total FadR and thus the system maintains 

the level of sequestered FadR during induction. 

- For negative autoregulation, total FadR increases and thus the system builds up a larger 

pool of sequestered FadR during induction. 

- For positive autoregulation, total FadR decreases and thus the system loses sequestered 

FadR during induction. 
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A.6. Construction and Characterization of Strain with Positively Autoregulated 

fadR  

 

To engineer a strain with a self-activating architecture, a portion of the fadR promoter 

sequence, including the -10, -35 and the fadR operator sites were replaced with a sequence 

originating from the promoter of the fabA gene, which is positively regulated by FadR. To alter 

the genome sequence, we utilized pTarget-pCas genome editing system. The original promoter 

sequence and the engineered promoter (PfadRpo) sequence are show in Table A.6. To enhance the 

expression of the FadR, we placed a plasmid copy of the positively regulated fadR, PfadRpo-fadR, 

in a ColE1 origin plasmid. The positively autoregulated reporter strain (named “PA reporter”) was 

then created by transforming the pSfadDk-RFP reporter plasmid (Table A4, Table A5). 

To confirm the self-activation of fadR, we measured the dose-response of the engineered 

PfadRpo promoter. A rfp gene with a strong ribosome binding site (RBS) was cloned to the 3’ of the 

PfadRpo promoter in a BglBrick plasmid (pSfadRpok-rfp). The engineered promoter and RBS 

sequences are shown in Table A.6. To measure dose-response output, PA-FadR reporter strain was 

grown in M9G with oleic acid concentrations = 0, 0.4, 1, 4, 10, 40, 100, 400 and 1000 μM. Cells 

were grown in a plate reader. Cell culture absorbance and RFP fluorescence were measured. 

Cultures were initially started at OD600 = 0.001 and were allowed to reach steady state. 

Measurements for each culture condition were made in triplicate. Induction with high 

concentration of oleic acid reduces the output expression from the PfadRpo promoter (Figure A.3A), 

confirming PfadRpo as a positively autoregulated promoter. 

  



156 

 

Table A.6. Sequences of engineered promoter with positively autoregulated fadR. (A) Native 

fadR promoter sequence, PfadR. Bold lettering indicates FadR operator site, blue lettering indicates 

coding sequence. (B) Positively autoregulated fadR promoter, PfadRpo, engineered in this work. The 

underlined sequence is derived from the fabA promoter region of E. coli DH1 genome. (C) 

Engineered PfadRpo used to control rfp expression.  

 

(A) CCCTTTTTCTTCTTTTTGTCTGCTATCAGCGTAGTTAGCCCTCTGGTATGATGAGTCCAACTTTGTTTT 

GCTGTGTTATGGAAATCTCACTATGGTCATTAAGGCG 

(B) CCCTTTTTCTTCTTTTTATTCCGAACTGATCGGACTTGTTCAGCGTACACGTGTTAGCT 

ATCCTGCGTCAACTTTGTTTTGCTGTGTTATGGAAATCTCACTATGGTCATTAAGGCG 

(C) CCCTTTTTCTTCTTTTTATTCCGAACTGATCGGACTTGTTCAGCGTACACGTGTTAGCTATCCTGCGTCA

ACTTTGTTTTGCAGGTTTGTAAATAAAGGAGGGAGAAAGGGTATATGGCGAGTAGCGAA 

 

 

Figure A.3. Characterization and use of PA reporter strain. (A) Dose-response of PfadRpo-rfp 

indicates FadR activated, and OA inhibited PfadRpo expression. Error bars are SEM for biological 

replicates (n=3) and blue curve is fit of a hill equation to the mean oleic acid concentrations. (B) 

Time course fluorescence data for the switching experiment of the PA-reporter strain. Cells were 

induced by 1mM oleic acid at time zero, and grown for three different exposure times, 3, 6, and 9 

hours (dashed vertical lines), after which cultures were rapidly switched to fresh media lacking 

oleic acid (OFF state). Error bars represent the SEM from biological triplicates. 

 

 

  

(A) 
(B) 
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A.7. Steady State Analysis: Promoter Strength Affects Level of Sequestered 

FadR 

 

For long exposure times, in Section A.4 we have shown that constitutive expression and 

negative autoregulation can maintain or even build up the concentration of sequestered FadR. Here 

we study how the mode of autoregulation and parameters shape the steady state level of sR (sRss) 

achieved for long exposure times. We recall from the previous section that the steady state of 

sequestered FadR in the ON state is 

 
, (Eq. A33) 

where Rss is given by the formulae in Eq. A24 and A25 for constitutive and negative autoregulation 

 
, 

(Eq. A34) 

 

, 

(Eq. A35) 

respectively. Note that in Eqs. (A34)-(A35) we have substituted the expression for λ given by Eq. 

A23. Substituting both expressions back into Eq. A33 we get 

 
, 

(Eq. 

A36) 

 

, 

(Eq. 

A37) 
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for constitutive expression and negative autoregulation, respectively. To explore how parameters 

affect sRss for long exposure time, we consider the scenario when there is a large accumulation of 

acyl-CoA from high levels of inducer in the media. We therefore approximate sRss for each system 

by evaluating Eq. A36 and A37 in the limit . For constitutive expression we get 

 
. (Eq. A38) 

For negative autoregulation, we further assume that the basal expression of fadR promoter is 

negligible (bn = 0), so that Eq. A37 simplifies to 

 

, 
(Eq. A39) 

and thus we obtain 

 
. 

(Eq. A40) 

In summary, from Eq. A38 and A40 we conclude that in both architectures, sequestered FadR is 

scaled by the fadR promoter strength.  

 

  



159 

 

A.8. Sensitivity Analysis of Kinetic Model 

 

We used global sensitivity analysis (GSA) to quantify the impact of model parameters on 

the recovery time. We performed GSA using the method of extended Fourier amplitude sensitivity 

test (eFAST) (Saltelli et al., 1999; Marino et al., 2008) . We adapted the MATLAB code reported 

in (Marino et al., 2008) and implemented eFAST to calculate the first-order and total-order 

sensitivity indices (Figure A.4). We assumed that each parameter could vary from 0.1- to 10-fold 

its fitted value, and model output was defined as the recovery time of FadD for the given input 

parameters. To enable us to determine which parameters the recovery time was statistically and 

significantly more sensitive to, we adopted the method of adding a dummy parameter to the model 

(details in (Marino et al., 2008)). This was used to compare to the sensitivities of other model 

parameters and a 2-tailed t-test was performed to test for significance. The parameters with 

significantly higher sensitivities are highlighted with an asterisk in Figure A.4. The results suggest 

that recovery time is more sensitive to parameters associated with the sequestering kinetics of 

FadR by acyl-CoA and the promoter strength of fadR promoter. It is also sensitive to the 

parameters representing the expression and regulation of FadD, but this is expected as it directly 

affects recovery time. 
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Figure A.4. Global sensitivity analysis of recovery time to model parameters. Bar plot of the 

total-order sensitivity indices calculated from global sensitivity analysis (GSA) with eFAST. 

Sensitivities were calculated from 257 samples per search curve (set of parameters), and this 

sampling was repeated 7 times to ensure coverage of parameter values. Bars and error-bars show 

the average and 1 standard deviation of sensitivities over the 7 repeated sampling. eFAST assigns 

a dummy parameter a small, non-zero sensitivity (last bar). This was exploited to perform a two-

tailed t-test to calculate whether the sensitivity of each parameter was significantly greater than 

that of the dummy parameter (asterisk, using a significance α=0.01). Parameters are listed in 

descending order of sensitivity (bottom). 
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Appendix B: Supplemental Information for “The Growth 

Dependent Design Constraints of Transcription-Factor-Based 

Metabolite Biosensors” 
 

Appendix B contains supplemental information for Chapter 3. 

B.1. Kinetic Model of MRTF-Based Biosensor with Repressed-Repressor 

Architecture 

B.1.1 Description of Kinetic Model  

Motivated by the reactions shown in Figure 3.1A and recent simplified kinetic modeling of 

biosensors (Mannan et al., 2017; Hartline et al., 2020), we develop the following kinetic model for 

the operation of a biosensor.  

Biosensor Expression 

Hill-equations have been successful in describing the rate of protein production from a biosensor 

promoter as a function of the amount of transcription factor (TF) (Mannan et al., 2017), so we use 

the repressed-repressor hill-equation to describe protein production rate. These biosensor reporter 

proteins (G) are diluted by growth only, and the effects of proteases are ignored due to being much 

slower than cell growth under most conditions. Thus, we get the following kinetic equation for the 

concentration of the biosensor output protein: 

 
d𝐺

dt
 =  𝑏𝐺  +  

𝑎𝐺

1+
𝑅𝐹
𝐾𝐺

 –  𝜇𝐺 (Eq. B.1)  

Where bg is the basal promoter expression rate, ag is the promoter strength, and KG is the TF-

operator dissociation constant. RF is the amount of free repressor TF, described below. The effects 

of co-operativity in TF binding are ignored. 
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Transcription Factor Expression and Metabolite-TF Sequestration 

Free repressor (Rf) is produced at a constitutive rate. Based on previous modeling (Hartline et al., 

2020), free repressors can bind to intracellular target metabolite (Min) with mass-action kinetics to 

produce metabolite-bound repressors (Rs), which cannot bind to DNA. This reaction is reversable 

with first order kinetics as represented by the following reaction scheme: 

 

This gives the following kinetic equations for the intracellular concentration of free repressor (Rf)  

and metabolite-bound repressor intracellular (Rs): 

 
d𝑅𝐹

dt
 =  𝑏𝑅  −  𝑘𝑠𝑓𝑅𝐹M𝑖𝑛  + 𝑘𝑠𝑟𝑅𝑆   −  𝜇𝑅𝐹  (Eq. B.2) 

 
d𝑅𝑆

dt
 = 𝑘𝑠𝑓𝑅𝑓𝑀𝑖𝑛  − 𝑘𝑠𝑟𝑅𝑆   −  𝜇𝑅𝑆 (Eq. B.3)  

 

where bR is the constitutive repressor production rate, and ksf and ksr are the forward and reverse 

binding rates between metabolite and MRTF. The total concentration of TF is RT = RF +RS . 

Metabolite transport mechanisms 

We provide a general mechanism to describe intracellular metabolite dynamics which can be 

reduced to more specific mechanism by setting appropriate rates or concentrations to zero. First, 

metabolite diffusion cross cell membrane is bi-directional with an identical diffusion rate constant 

in each direction. Second, a metabolite can either be transported from extracellular environment 
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or catalytically created/destroyed by an enzyme following Michaelis-Menten kinetics. The enzyme 

transporters are constitutively expressed and are diluted by cell growth, which gives growth rate 

dependence. Third, the metabolite binds to the repressor TF. Finally, the metabolite is also diluted 

by growth. These give the following kinetic equations for the intracellular target metabolite 

concentrations: 

 
dIin

dt
 = 𝑘𝑑𝑖𝑓𝑓(𝑀𝑒𝑥  − 𝑀𝑖𝑛) +

𝑘𝑐𝑎𝑡,𝑖𝑚𝑇𝑖𝑚

𝐾𝑀,𝑖𝑚+M𝑒𝑥
𝑀𝑒𝑥   −  

𝑘𝑐𝑎𝑡,𝑒𝑥𝑇𝑒𝑥

𝐾𝑀,𝑒𝑥+𝑀𝑖𝑛
𝑀𝑖𝑛  

 −  𝑘𝑠𝑓𝑅𝐹𝑀𝑖𝑛  + 𝑘𝑠𝑟𝑅𝑆  –  𝜇𝑀𝑖𝑛  (Eq. B4) 

 

 
𝑑𝑇𝑖𝑚

𝑑𝑡
 =  𝑏𝑇,𝑖𝑚 −  𝜇𝑇𝑖𝑚 (Eq. B5) 

 
d𝑇𝑒𝑥

dt
 =  𝑏𝑇,𝑒𝑥 −  𝜇𝑇𝑒𝑥 (Eq. B6) 

Where Mex is the extracellular metabolite concentration, and Tim and Tex are the concentrations of 

importer and exporter enzymes, respectively. The parameter values and descriptions of the other 

parameters are given in Table B.1. 
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B.1.2 Analytical Solutions for Minimum Output, Maximum Output, and Dynamic Range  

The steady-state value for the output protein concentration can be solved by setting Eq. B1-B6 to 

zero and solving for G. 

 

Minimum Output 

For a repressed-repressor architecture, the minimum output (Gmin) occurs when extracellular target 

metabolite concentration is zero (Mex = 0), so that maximum repression of the biosensor is 

achieved. 

Thus, the amount of free repressor is:  

 𝑅𝐹,𝑚𝑖𝑛  =
𝑏𝑅

µ
 (Eq. B7) 

and Gmin can be calculated as: 

 𝐺𝑚𝑖𝑛 =
1

𝜇
(𝑏𝐺  +  

𝑎𝐺

1+
𝑏𝑅

𝐾𝐺𝜇

) (Eq. B8) 

 

To understand the effect of growth rate on the minimum output, we take the derivative with respect 

to growth: 

 
𝑑

𝑑µ
(𝑅𝐹)  =

−𝑏𝑅

µ2
 (Eq. B9) 

 
𝑑

𝑑µ
(𝐺𝑚𝑖𝑛) =

−1

µ2 (𝑏𝐺  + 
𝑎𝐺

(1+
𝑏𝑅

𝐾𝐺𝜇
)

2) (Eq. B10) 
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From Eq B.9-B.10, we observe that the minimum is always decreasing with growth for all positive 

parameters. Additionally, based on Eq. B9, the overall repression of the biosensor is decreasing 

since the repressor is diluted at higher growth rates. 

 

Maximum Output 

The maximum output depends on the amount of free repressor. From Eqs. B2-B3, we can find the 

fraction of free repressors available at steady-state: 

 𝐹𝑅𝑓 ≡
𝑅𝐹

𝑅𝐹+𝑅𝑆
=  

1

1+
𝑘𝑠𝑓 𝑀𝑖𝑛

𝑘𝑠𝑟 +𝜇 

 =  
𝐾𝑅

𝑀𝑖𝑛+𝐾𝑅
 (Eq. B11) 

Because the metabolite-MRTF binding rate ksr is much faster than cell growth rate (i.e. ksr >> µ), 

we can set ksr+µ ≈ ksr, and let KR ≡ ksr/ksf be the TF-metabolite dissociation constant. Solving for 

Min is generally difficult, so we write Gmax in terms of Min: 

 𝐺𝑚𝑎𝑥 =
1

𝜇
(𝑏𝐺  +  

𝑎𝐺

1+
𝑏𝑅𝐾𝑅

𝐾𝐺𝜇(𝑀𝑖𝑛+𝐾𝑅)

) (Eq. B12) 

 
𝑑

𝑑µ
(𝐺𝑚𝑎𝑥) =  

−1

µ2 (𝑏𝐺  +  
𝑎𝐺(1−

d𝑀𝑖𝑛
dµ

∗
𝑏𝑟𝐾𝑅

𝐾𝐺(𝑀𝑖𝑛+𝐾𝑅)
2)

(1+
𝑏𝑅𝐾𝑅

𝐾𝐺𝜇(𝑀𝑖𝑛+𝐾𝑅)
)

2 ) (Eq. B13)  

 

From this equation, it can be determined that the maximum output decreases with growth if 
dMin

dµ
≤

 0, and increases with growth rate if 
dMin

dµ
>  0. 
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Often, models allow Min to reach infinity to describe the maximum output of a biosensor. However, 

in experimental scenarios, the intracellular or extracellular metabolite cannot be made arbitrarily 

high due to limitations in solubility, toxicity to cells, or transport limitations into the intracellular 

environment. Thus, in our models, Mex takes on a large, but not infinite, value so that the potential 

effects of these realistic experimental limitations can be captured by the model. 

 

Dynamic Range 

Finally, the DR can be calculated as 

 𝐷𝑅 =  
Gmax

Gmin
− 1 =  

𝑎𝐺𝑏𝑅

𝐾𝐺μ
 

𝑀𝑖𝑛

(𝑎𝐺+𝑏𝐺+
𝑏𝐺 𝑏𝑅
𝐾𝐺 μ

)(𝐾𝑅+𝑀𝑖𝑛+ 
𝑏𝑅 𝐾𝑅
𝐾𝐺 μ

)
 (Eq. B14) 

and its derivative: 

 
𝑑

𝑑𝜇
(𝐷𝑅)  =  

𝑎𝐺𝑏𝑅

𝐾𝐺
 
𝑀𝑖𝑛( 

𝑏𝐺𝐾𝑅𝑏𝑅
2

𝐾𝐺
2𝜇2

  −(𝑎𝐺+ 𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛))+𝐾𝑅
𝑑𝑀𝑖𝑛

𝑑𝜇
(𝑎𝐺+𝑏𝐺 +  

𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

) (μ+ 
𝑏𝑅
𝐾𝐺

)

𝜇2(𝑎𝐺+𝑏𝐺+
𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

)
2

(𝐾𝑅+𝑀𝑖𝑛+ 
𝑏𝑅𝐾𝑅
𝐾𝐺𝜇

)
2   

  (Eq. B15) 

which can be either positive or negative depending on the sign of: 

  𝑆 =  𝑀𝑖𝑛 ( 
𝑏𝐺𝐾𝑅𝑏𝑅

2

𝐾𝐺
2𝜇2   − (𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛)) + 𝐾𝑅

𝑑𝑀𝑖𝑛

𝑑𝜇
(𝑎𝐺+𝑏𝐺+

𝑏𝐺𝑏𝑅

𝐾𝐺𝜇
) (𝜇 +  

𝑏𝑅

𝐾𝐺
)  

  (Eq. B16) 
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B.1.3 Analytical Solution for Parameter Space with dDR/dµ and dDR/dbR Both Positive 

dDR/dµ positive for passive-only metabolite transport  

If diffusion is the only process by which metabolite can enter the cell, a simplified relation between 

DR and µ can be obtained. From Eq S4, the active import and export rates can be set to zero. 

Additionally, since ksr >> µ, then Eq S3 can be used to eliminate the sequestration terms from Eq 

S4. Then at steady state, Eq S4 can be solved for the internal metabolite concentration: 

 𝑀𝑖𝑛  =  
𝑘𝑑𝑖𝑓𝑓

(𝑘𝑑𝑖𝑓𝑓+µ)
𝑀𝑒𝑥  ≈  𝑀𝑒𝑥 𝑖𝑓 𝑘𝑑𝑖𝑓𝑓 >> µ (Eq. B17) 

Generally, diffusion happens on the order of a few minutes (Reuter et al., 2020), with a diffusion 

rate of 8.4 h-1 estimated for the lacI inducer TMG (Noel et al., 2009), while the growth rate of a 

cell is 0.69  h-1 for a cell with a 1-hour doubling time. Thus, the intracellular target metabolite 

concentration becomes approximately independent of growth rate, (i.e. dMin/dµ = 0). If growth 

dilution cannot be ignored, the metabolite-µ dependence becomes negative for all positive 

diffusion rates as evident by equation S16: 

 
𝑑

𝑑µ
(𝑀𝑖𝑛) = − 

𝑘𝑑𝑖𝑓𝑓

(𝑘𝑑𝑖𝑓𝑓+µ)
2 𝑀𝑒𝑥 (Eq. B18) 

If dMin/dµ = 0 then the DR-µ dependence becomes   

 
𝑑

𝑑𝜇
(𝐷𝑅)  =  

𝑎𝐺𝑏𝑅

𝐾𝐺
 

𝑀𝑖𝑛( 
𝑏𝐺𝐾𝑅𝑏𝑅

2

𝐾𝐺
2𝜇2

  −(𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛))

𝜇2(𝑎𝐺+𝑏𝐺+
𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

)
2

(𝐾𝑅+𝑀𝑖𝑛+ 
𝑏𝑅𝐾𝑅
𝐾𝐺𝜇

)
2 (Eq. B19) 

And a simplified condition for where dDR/dµ is positive is found:  

  𝑆𝑝𝑎𝑠𝑠𝑖𝑣𝑒−𝑜𝑛𝑙𝑦   =  ( 
𝑏𝐺𝐾𝑅𝑏𝑅

2

𝐾𝐺
2𝜇2   − (𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛))  >  0 (Eq. B20) 
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Analytical solution for dDR/dbR positive 

dDR/dbR can be calculated directly from Eq. B13:  

 
𝑑𝐷𝑅

𝑑𝑏𝑟
 =  

𝑎𝐺𝑀𝑖𝑛

𝐾𝐺𝜇
 

(𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛)−
𝑏𝐺𝐾𝑅𝑏𝑅

2

𝐾𝐺
2𝜇2

 

(𝑎𝐺+𝑏𝐺+
𝑏𝐺𝑏𝑅
𝐾𝐺𝜇

)
2

(𝐾𝑅+𝑀𝑖𝑛+ 
𝑏𝑅𝐾𝑅
𝐾𝐺𝜇

)
2 (Eq. B21) 

Which is positive under the condition: 

 𝑆𝑑𝐷𝑅/𝑑𝑏𝑅   =  ( (𝑎𝐺+𝑏𝐺)(𝐾𝑅+𝑀𝑖𝑛) −
𝑏𝐺𝐾𝑅𝑏𝑅

2

𝐾𝐺
2𝜇2  )  >  0 (Eq. B22) 

 

Comparing Eq B20 and Eq B22, it can be seen that 𝑆𝑑𝐷𝑅/𝑑𝑏𝑅  =  −𝑆𝑝𝑎𝑠𝑠𝑖𝑣𝑒−𝑜𝑛𝑙𝑦. Thus, there is no 

parameter space where both dDR/dµ and dDR/dbR are positive for a passive diffusion only 

mechanism. Examining Eq B16, if 𝑆𝑑𝐷𝑅/𝑑𝑏𝑅 is positive, the sign of dDR/dµ is only positive when 

𝑑𝑀𝑖𝑛

𝑑𝜇
> 0, which motivates the examination active transport mechanisms to identify parameter 

spaces where both Eq B16 and Eq B22 are positive.  

 

B.2. Model Parameterization and Fitting 

B.2.1 Model Parameterization for Simulations 

The model is parameterized to biologically relevant values to explore the effects of parameters and 

transport mechanisms. For growth rate, a doubling time between 1-8 hours was measured, so the 

average of these corresponding growth rates (~1.8 hour doubling time) was used. To parameterize 

the biosensor, parameters were chosen from previous literature values (Rosenfeld et al., 2002; 

Hooshangi et al., 2005; Hartline et al., 2020), and then some parameters were further tuned to 

match experimental results from our study. In particular, we observed that the maximum DR range 
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from our library was ~500. So, ag, bG, and KG, were tuned to give a maximum dynamic range of 

500, while keeping the minimum output constant to match previous literature. 

To model the appropriate transport dynamics, we assumed the TetR system had the mechanism 

outlined in Figure 3.5. The diffusion rate was chosen to be 10-times the maximum growth rate 

observed so that diffusion is much faster than growth. This value is on the same order of magnitude 

as the diffusion rate observed for the lac inducer TMG (Noel et al., 2009). Next, as a starting point 

for our analysis, we desired a set of parameters where the transport of the intracellular metabolite 

through active and passive mechanisms are equal (for more detail, see Figure B.1A) which will 

allow us to observe the effect of moving away from this balanced point on DR and dDR/dµ. To 

identify this initial balance point, the literature values for ksf, kcat,ex, and KM,ex were fine-tuned to 

match the following constraint: 

 
𝑘𝑐𝑎𝑡,𝑒𝑥𝑇𝑒𝑥

𝐾𝑀,e𝑥+𝑀𝑖𝑛
𝑀𝑖𝑛 −  (kdiff +  μ) 𝑀𝑖𝑛   =  0 (Eq. B23) 

To explore the effect of tuning the KM values, KM values were chosen to be KM =1000 Min, KM = 

Min, and KM =0.001Min for KM << Min, KM = Min  and KM >> Min, respectively. Parameter-fine 

tuning was performed using Matlab 2020b optimization toolbox fmincon.  

Finally, when exploring the catalytic import/export mechanism, as many parameters were 

maintained between the systems as possible, instead of re-tuning to match the FA-FadR sensor. 

To enable a fair comparison between mechanisms, the center kcat,im value was chosen so that Min 

= KM,ex. A summary of parameters used is given in Table B.1. 
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Table B.1. Model Parameters and Values for Biosensor Model. 

Parameter Description Value (units) 

Parameters used across all simulations 

µ0 Growth Rate 0.3899  (h-1) 

𝑀𝑒𝑥 External metabolite 4000 (µM) 

𝑏𝐺  Biosensor basal expression rate 1.113E-2 (µM h-1) 

𝑎𝐺  Biosensor promoter strength 5.565E0 (µM h-1) 

𝐾𝐺  TF Dissociation constant 2.573E-5; (µM) 

𝑏𝑅 TF constitutive expression rate 1.380E-2 (µM h-1) 

𝑘𝑠𝑟 TF-M reverse sequestration rate 900.7 (h-1) 

Parameters Tuning bR at constant growth (Figure 3) 

𝑏𝑅 TF constitutive expression rate 
Range: 

Min: 2.30E-3 (µM h-1) 

Max: 1.38E-2 (µM h-1) 

𝑘𝑠𝑓 
TF-M forward sequestration 

rate 
3.345E3 (µM-1 h-1) 

𝑀𝑖𝑛 Internal metabolite 1.894E3 (µM) 

Parameters: passive transport/active export mechanism (aTc-type: Figure 5, Figure S2) 

𝑘𝑑𝑖𝑓𝑓 Metabolite diffusive rate 
Center value: 

6.931E1 (h-1) 

𝑏 𝑇,𝑒𝑥 
Met. transporter (export) 

constitutive expression rate 
0.0625 (µM h-1) 

𝑘𝑐𝑎𝑡,𝑒𝑥 Active export turnover rate 

Center values: 

KM Low: 8.657E4 (h-1) 

KM Med: 1.730E5 (h-1) 

KM High:8.657E7 (h-1) 

𝐾𝑀,𝑒𝑥 Active export Michaelis constant 
KM Low: 1.894E0 (µM) 

KM Med: 1.894E3 (µM) 

KM High:1.894E6 (µM) 

𝑘𝑠𝑓  
TF-M forward sequestration 

rate 

KM Low: 4.117E3 (µM-1 h-1) 

KM Med: 3.345E3 (µM-1 h-1) 

KM High:2.958E3 (µM-1 h-1) 

Parameters: active import/export mechanism (FA-type, Figure 6) 
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𝑏 𝑇,𝑒𝑥 
Met. transporter (export) 

constitutive expression rate 
0.0625 (µM h-1) 

𝑘𝑐𝑎𝑡,𝑒𝑥 Active export turnover rate 
Center value: 

1.730E5 (h-1) 

𝐾𝑀,𝑒𝑥 Active export Michaelis constant 1.894E3 (µM) 

𝑏 𝑇,𝑖𝑚 
Met. transporter (import) 

constitutive expression rate 
0.0625 (µM h-1) 

𝑘𝑐𝑎𝑡,𝑖𝑚,0 Active export turnover rate 
Center value: 

2.923E4 (h-1) 

𝐾𝑀,𝑖𝑚 Active import Michaelis 
constant 

49.00 (µM) 

𝑘𝑠𝑓 TF-M forward sequestration 
rate 

3.345E3 (µM-1 h-1) 

 

  



173 

 

B.2.2 Model Fitting to RBS Library Data 

To determine how well the model works at a single-growth rate, we fit the model to the data 

collected from the aTc sensors with a library of RBS strengths controlling TetR expression (Figure 

3.3B, 3.3C, Appendix B, Table B.6). To do so we fit equations Eq B.8 and Eq B.12 representing 

Gmin and Gmax respectively, to the data. To fit the data, the measured Gmin and Gmax were first 

multiplied by the average growth rate from all strains in the minimum and maximum output 

conditions respectively. This operations converts the measured RFP concentration (RFP/OD) into 

units of expression rate (RFP/OD/h). The measured TetR expression level was corrected for Gmax 

to account for the change in growth rate. Finally, Min is assumed to be the same for all library 

members and is taken to be 1 at the maximum and 0 at the minimum, for the purposes of fitting. 

Four parameters were converted into log space and fitted, bG, aG, KG, and KR. The minimum and 

maximum expression rates were fit simultaneously using Matlab R2020b surface fitting tool 

(cftool) with two inputs (TetR expression and aTc concentration), and one output (biosensor 

protein expression rate). A summary of the fitted parameters is given in Table B.2. The measured 

DR data was not used directly during fitting. Instead, the model prediction for DR was calculated 

from the minimum and maximum outputs of the model and plotted directly for Figure 3.3D. 

To determine whether the model fitting is statistically significant for the relation between 

minimum output and TetR expression rate (Figure 3.3B), we refit the Gmin versus TetR expression 

data with the average value for all the Gmin data (i.e. Gmin is not correlated with TetR expression). 

We conducted an F-test of the residuals and found that our fitted model (Eq S8) provides a 

statistically significant better description of Gmin versus TetR, as compared to a no-correlation 

model (F-Statistic: 12.14; degrees of freedom no-correlation model: 11, degrees of freedom Eq. 

B8: 9, p-value 4.1×10-4).  This supports that our model can correctly capture the relation between 

Gmin and TetR expression rate (bR). 
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Table B.2. Model parameters and fitting to aTc-biosensor, TetR-RBS-library. 

Model (Adapted from Eq B8 and Eq B12)  

µ ⋅ 𝐺 = 𝑏𝐺 + 
𝑎𝐺

(1 + (
µ𝑚𝑖𝑛  ⋅ 𝑇𝑒𝑡𝑅

µ ⋅  𝐾𝐺
) ⋅ (

𝐾𝑅

𝐾𝑅 +  𝑀))

 

Input 

Parameters 
Description Value from experiment (units) 

µ𝑚𝑖𝑛 
Average Growth Rate  
of TetR-RBS-Library 

 at Gmin 

0.4627 (h-1) 

µ𝑚𝑎𝑥 

Average Growth Rate  
of TetR-RBS-Library  

at Gmax 

0.3410 (h-1) 

𝑀𝑚𝑖𝑛 

Internal Target  
Metabolite Concentration 

at Gmin 

0 (Concentration) 

𝑀𝑚𝑎𝑥 

Internal Target  
Metabolite Concentration 

at Gmax 

1 (Concentration) 

TetR 
TetR Expression Strength 
from TetR Expression Strength 

Library 
See Table b.6 

G Biosensor output See Table S6 

Fitted 

Parameters 
Description Fitted Value (units) 

𝑏𝐺  
Biosensor basal expression 

rate 
10^(-1.5729) (RFP/(OD h)) 

𝑎𝐺  Biosensor promoter strength 10^(0.9604) (RFP/(OD h)) 

𝐾𝐺  TF Dissociation constant 10^(-2.9963) (RFP/OD) 

𝐾𝑅 
TF-metabolite dissociation 

constant 
10^(-4.4500) 

(Concentration) 
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B.3. Sensitivity Analysis of Kinetic Model 

 

We used global sensitivity analysis (GSA) to quantify the impact of model parameters on the DR 

and DR-µ dependence (dDR/dµ). We performed GSA by extended Fourier amplitude sensitivity 

test (eFAST) using MATLAB code adapted from previous works (Marino et al., 2008; Hartline et 

al., 2020), to calculate the total-order sensitivity indices for each parameter. Parameter values were 

varied from 0.1- to 10- fold from the parametrized values (with the intermediate value for KM,ex) 

and DR and dDR/dµ were calculated as model outputs. A dummy parameter was incorporated into 

the model which has no effect on output. The sensitivities of each parameter were compared 

against the dummy parameter for significance testing (2-tailed t-test, α = 0.01). The results suggest 

that both DR and dDR/dµ are sensitive to the actuating parameters intrinsic to the biosensor 

promoter (aG, bG, KG) and the sensing parameters related to repressor expression and activity (bR, 

ksf, ksr) but are less sensitive to metabolite transport kinetic parameters (Figure B.2). Overall, both 

DR and dDR/dµ share the same significant parameters, suggesting that tuning DR will also impact 

the DR-growth rate dependence and vice versa.  

B.4. Effect of Time-Varying Target Metabolite Concentration on Dynamic 

Range-Growth Rate Dependence 

For our model and experiments, it was assumed that the extracellular environment and target 

metabolite concentrations are constant and saturating for the biosensors, so that the biosensor 

output could reach a steady-state. These assumptions are valid for several reasons. First, the 

addition of extracellular inducer is very high, at concentrations at or beyond what are typically 

used to achieve full induction. Under these conditions, small reductions in target metabolite are 

unlikely to significantly impact the output of the biosensor. Second, data was collected at early 

exponential growth (O.D. 600 < 0.4), so that the distribution of the target metabolite to each cell 
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remains high over that period. Third, the inducers used are non-metabolizable so their extracellular 

concentration would not be significantly impacted by cells.  

In some cases, the growth of the cell population can impact the extracellular concentration. This 

can happen because the target metabolite is degraded by the cell, or because when cell density is 

high, the relative amount of target metabolite per cell is reduced. In these cases, the DR-µ 

dependence could be affected by changes in the availability of extracellular target metabolite. To 

understand this scenario, we use the model to explore how the DR-µ dependence changes for a 

linearly decreasing extracellular target metabolite concentrations (Figure B.3A). Although the 

extracellular target metabolite concentration is unlikely to change in this way, the biosensor 

outputs Gmin and Gmax are defined as the steady-state protein concentration of the biosensor. Thus, 

the dynamics of the extracellular concentration can be ignored when calculating DR. We model 

biosensor with an aTc-type transport mechanism for extracellular inducer and calculate how the 

DR-µ dependence changes as the target metabolite concentration decreases (Figure B.3B). Our 

model shows that initially as the target metabolite concentration decreases, the DR-µ dependence 

increases, indicating that the DR become more sensitive to growth. Then as the target metabolite 

concentration approaches zero, the DR-µ dependence also goes to zero. To explain this behavior, 

we focus on how Gmax changes over time, since Gmin does not depend on target metabolite 

concentration (Eq S8). Our model shows that Gmax does not decay linearly with time and the rate 

of Gmax decay depends on the growth rate of the cell (Figure B.3C). At low growth rates, Gmax is 

more sensitive to falling extracellular target metabolite concentrations. Because of this, the Gmax 

levels cross, and the DR becomes highly sensitive to growth rate, mostly due to a high Gmin-µ 

dependence. Once the extracellular target metabolite concentrations reach zero, the Gmax, and DR 

become zero, so there is no more DR-µ sensitivity. These results demonstrate a non-linear 
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relationship between DR-µ dependence and extracellular target metabolite concentration, which 

could be important in applications requiring high cell densities or when sensing degradable 

metabolites. 
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Figure B.1. Modeling the impact of passive transport/active export (aTc-like) transport on 

intracellular target metabolite concentration and Min-µ dependence. (A) Total active (red) and 

passive (blue) transport rates at different growth rates at center kdiff and kcat,ex values for 

intermediate KM,ex (i.e. KM,ex ≈ Min). The dotted line shows the growth rate µ0, at which the passive 

and active transport rates are equal. (B) Intracellular target metabolite concentration and. (C) Min-

µ dependence under different parameter space. 
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Figure B.2. Global sensitivity analysis of DR and dDR/dµ to model parameters. Bar plot of 

the total-order sensitivity indices calculated from GSA by eFAST for the (A) Dynamic Range, (B) 

dDR/Dµ. Sensitivities were calculated from 600 samples per search curve over the parameter 

space, and each sampling was repeated 9 times for a high coverage of the parameter space. Bars 

and error-bars represent the average and 1 standard deviation of the total-order sensitivity over the 

9 repeated samplings. The significance of each model parameter was tested against a dummy 

variable by a two-tailed t-test, (*, p < 0.01).  Significant parameters are listed in descending order 

of sensitivity. 
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Figure B.3. Effect of time-varying extracellular target metabolite concentration on DR-µ 

dependence. Model represents an biosensor with an aTc-like transport mechansim. (A) 

Extracellular target metabolite concentration is decrasing over time due to significant consumption 

by the cells. (B) DR-µ dependence over time at an intermediate growth rate as extraceullar target 

metabolite concentrations fall. (C) Maximum biosensor output (Gmax) over time at a slow, 

intermediate, and fast growth rate during decreasing extracellular target metabolite concentrations. 

Parameters used are given in Table B.1 for aTc-type biosensor with a medium KM value. 
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B.5. Growth Conditions, Plasmids, Strains, and Sequences Used in This Study 

 

Table B.3. Medium conditions and growth rates used in this study. 

Medium Condition Growth rate a 

at minimum 

output 

Growth rate at maximum output 

aTc biosensor IPTG biosensor FA biosensor 

75 mM Acetate 0.24 ± 0.02 h-1 0.111  ± 0.001 

h-1 

0.20 ± 0.01 h-1 0.01 ± 0.01 h-1 

20 mM Pyruvate 0.34 ± 0.01 h-1 0.20 ± 0.01 h-1 0.34 ± 0.02 h-1 N.D. 

1% (v/v) Glycerol 0.43 ± 0.02 h-1 0.28 ± 0.02 h-1 0.38 ± 0.01 h-1 0.40 ± 0.02 h-1 

20 mM Sorbitol 0.45 ± 0.01 h-1 0.23 ± 0.02 h-1 0.41  ± 0.01 h-1 N.D. 

15 mM Succinate 0.49 ± 0.03 h-1 0.29 ± 0.02 h-1 0.39 ± 0.01 h-1 N.D. 

1% Glycerol + 7 

Amino Acids 

0.50 ± 0.03 h-1 0.36 ± 0.02 h-1 0.50 ± 0.01 h-1 0.49 ± 0.02 h-1 

20 mM Xylose 0.51 ± 0.02 h-1 0.29 ± 0.02 h-1 0.45 ± 0.01 h-1 N.D. 

0.4 % (w/v) Glucose 0.59 ± 0.05 h-1 

b 

N.D. N.D. 0.65 ± 0.01 h-1 

N.D. Not determined 

a Growth rate at minimum output are averages from all three sensors 

b Glucose medium growth rate at minimum output is from FA-sensor only 
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Table B.4. Plasmids used in this study. 

Plasmid Description Replication 

Origin 

Operon Resistance 

marker 

References 

pS2k-rfp aTc biosensor SC101 Ptet-rfp 

PtetR-tetR 

 

KanR (Lee et al., 

2011) 

pS5k-rfp IPTG 

biosensor 

SC101 PlacUV5-rfp 

PlacI-lacI 

 

KanR (Lee et al., 

2011) 

pSARk-rfp FA biosensor SC101 PAR-rfp 

 

KanR (Zhang et 

al., 

2012) 

pAfadRm1a-

fadR 

fadR over-

expression 

p15A PfadRm1-fadR 

 

AmpR This Study 

pTargetF-

PfadRm1 

Genome 

Editing: 

constitutive 

fadR promoter 

ColE1 PJ23119 -fadR gRNA, 

targeting fadR 

promoter, PfadRm1-

fadR homology arms  

SpecR This Study 

pTargetF- 
ΔfadE 

Genome 

Editing: 

fadE knockout 

ColE1 PJ23119 -fadE gRNA, 

targeting fadE 

coding sequence, 

FadE 5’ and 3’ 

homology arms 

SpecR This Study 

pTargetF-

Ppro4::fadD 

Genome 

Editing: 

constitutive 

fadD promoter 

ColE1 PJ23119 -fadD gRNA, 

targeting fadD 

promoter sequence, 

FadD 5’ and 3’ 

homology arms, 

Ppro4 upstream of 

FadD 

SpecR This Study 

pSk-PTet-rfp-

PJ23110-

RBSLibrary-

tetR 

aTc biosensor 

with Library 

of TetR RBS 

SC101 Ptet-rfp 

PJ23110-tetR 

 

KanR This Study 

pSk-PJ23110-

RBSLibrary-

rfp 

Library of 

TetR RBS 

controlling 

RFP 

SC101 PJ23110-rfp 

 

KanR This Study 
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Table B.5. Strains used in this study. 

Strains Genotype references 

E. coli MG1655 K-12 F– λ– ilvG– rfb-50 rph-1 This study 

aTc biosensor 

strain 

MG1655 pS2k-rfp This study 

IPTG biosensor 

strain 

MG1655 pS5k-rfp This Study 

FA biosensor 

strain 
MG1655 ΔfadE PfadRm1::fadR Ppro4::fadD pSARk-rfp 

pAfadRm1a-fadR 

This Study 

TetR-RBS-

Library 

MG1655 pSk-PTet-rfp-PJ23110-RBSLibrary-tetR This Study 

TetR Expression 

Strength Library 

MG1655 pSk-PJ23110-RBSLibrary-rfp This Study 
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Table B.6. aTc biosensor-TetR RBS library members used in this study. 

RBS 

Sequence 

TetR Expression 

Strength 

 (RFP/OD) a 

GMin  

(RFP/OD) b 

GMax 

(RFP/OD) c 
DR 

GGT 1.07 ± 0.02 0.070 ± 0.002 25.4 ± 0.6 361 ± 16 

ATG 0.74 ± 0.01 0.078 ± 0.004 26.4 ± 0.3 335 ± 13 

GTT 0.452 ± 0.005 0.072 ± 0.003 25.9 ± 0.2 356 ±14 

TGT 0.388 ± 0.005 0.14 ± 0.01 27.0 ± 0.3 186 ±16 

TTC 0.270 ± 0.001 0.16 ± 0.01 25.0 ± 0.1 158 ± 11 

CAC 0.203 ± 0.006 0.187 ± 0.003 24.8 ± 0.1 131 ± 2 

ACT 0.193 ± 0.007 0.116 ± 0.005 29.3 ± 0.6 250 ± 10 

CCC 0.189 ± 0.002 0.210 ± 0.005 24.9 ±0.4 117 ± 1 

CGC 0.19 ± 0.01 0.112 ± 0.004 27.0 ± 0.4 240 ± 6 

CGT 0.180 ± 0.005 0.095 ± 0.004 27.7 ± 0.6 289 ± 9 

ACC 0.161 ± 0.003 0.261 ± 0.004 27.3 ± 0.4 103 ± 1 

ACA 0.124 ± 0.004 0.20 ± 0.01 26.3 ± 1.3 131 ± 11 

a Measured from TetR Expression Strength Library Strains 
b Measured from TetR-RBS-Library Strains at 0 nM aTc 
c Measured from TetR-RBS-Library Strains at 1000 nM aTc 

* Colors correspond to those low (yellow), medium (green), and high (purple) TetR expression 

sensors displayed in Figure 3.4. 
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B.5.1 DNA Sequences of Plasmids Constructed in This Study. 

 

 

pAfadRm1a-fadR. Features: Promoter PfadRm1, blue; Removed FadR operator site, highlight;  

fadR, dark red; 

cttcgatagccaacagaccaccggggagcagcgggtagcatttcagggccatcgccagagtgaaaataaattccgctaccagcaaccagcccgcgac

gaaagggctgatgaggaaaattaacgggtttacgattaagaaaatgatgagggcgagtttgtaccagtcgggggactggcccaaaaaattgcgccat

agcgcgcggccccaggagatctccatgatggtttcccttaccttacaaataatcaatgatgtttttatgtttaaacgcaaagcttaacggtcaggca

ggagtgaggcaagtcttgatagtcaaggggaaagagatgcggaaaatgaagccttgatccctttttcttctttttgtctgctatcagcgtagttagc

cctaatttatgatactgccaactttgttttgctgtgttatggaaatctcactatggtcattaaggcgcaaagcccggcgggtttcgcggaagagtac

attattgaaagtatctggaataaccgcttccctcccgggactattttgcccgcagaacgtgaactttcagaattaattggcgtaacgcgtactacgt

tacgtgaagtgttacagcgtctggcacgagatggctggttgaccattcaacatggcaagccgacgaaggtgaataatttctgggaaacttccggttt

aaatatccttgaaacactggcgcgactggatcacgaaagtgtgccgcagcttattgataatttgctgtcggtgcgtaccaatatttccactattttt

attcgcaccgcgtttcgtcagcatcccgataaagcgcaggaagtgctggctaccgctaatgaagtggccgatcacgccgatgcctttgccgagctgg

attacaacatattccgcggcctggcgtttgcttccggcaacccgatttacggtctgattcttaacgggatgaaagggctgtatacgcgtattggtcg

tcactatttcgccaatccggaagcgcgcagtctggcgctgggcttctaccacaaactgtcggcgttgtgcagtgaaggcgcgcacgatcaggtgtac

gaaacagtgcgtcgctatgggcatgagagtggcgagatttggcaccggatgcagaaaaatctgccgggtgatttagccattcaggggcgataaggat

ccaaactcgagtaaggatctccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgct

ctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatacctagggatatattccgcttcctcgctcactgactcgctacgctc

ggtcgttcgactgcggcgagcggaaatggcttacgaacggggcggagatttcctggaagatgccaggaagatacttaacagggaagtgagagggccg

cggcaaagccgtttttccataggctccgcccccctgacaagcatcacgaaatctgacgctcaaatcagtggtggcgaaacccgacaggactataaag

ataccaggcgtttccccctggcggctccctcgtgcgctctcctgttcctgcctttcggtttaccggtgtcattccgctgttatggccgcgtttgtct

cattccacgcctgacactcagttccgggtaggcagttcgctccaagctggactgtatgcacgaaccccccgttcagtccgaccgctgcgccttatcc

ggtaactatcgtcttgagtccaacccggaaagacatgcaaaagcaccactggcagcagccactggtaattgatttagaggagttagtcttgaagtca

tgcgccggttaaggctaaactgaaaggacaagttttggtgactgcgctcctccaagccagttacctcggttcaaagagttggtagctcagagaacct

tcgaaaaaccgccctgcaaggcggttttttcgttttcagagcaagagattacgcgcagaccaaaacgatctcaagaagatcatcttattaatcagat

aaaatatttctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacgatataagttgttactagtgcttggattctca

ccaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggagttctgaggtcattactggatctatcaacaggagtccaagcgagc

tcgtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccg

tcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgtgaaccacgctcaccggctccagatttatcagc

aataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagta

agtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccg

gttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggc

cgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaacc

aagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgc

tcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatc

ttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttga

atactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaac

aaataggggttccgcgcacatttccccgaaaagtgccacctgacgtc 
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pTargetF-PfadRm1. Features: fadR N20, orange; Homology arms, green;  Removed FadR operator 

site, highlight 

ttgacagctagctcagtcctaggtataatacttatcagcgtagttagccctctgggttttagagctagaaatagcaagttaaaataaggctagtccg

ttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagagtcgaccttcgatagccaacagaccaccggggagcagcgggtag

catttcagggccatcgccagagtgaaaataaattccgctaccagcaaccagcccgcgacgaaagggctgatgaggaaaattaacgggtttacgatta

agaaaatgatgagggcgagtttgtaccagtcgggggactggcccaaaaaattgcgccatagcgcgcggccccaggagatctccatgatggtttccct

taccttacaaataatcaatgatgtttttatgtttaaacgcaaagcttaacggtcaggcaggagtgaggcaagtcttgatagtcaaggggaaagagat

gcggaaaatgaagccttgatccctttttcttctttttgtctgctatcagcgtagttagccctaatttatgatactgccaactttgttttgctgtgtt

atggaaatctcactatggtcattaaggcgcaaagcccggcgggtttcgcggaagagtacattattgaaagtatctggaataaccgcttccctcccgg

gactattttgcccgcagaacgtgaactttcagaattaattggcgtaacgcgtactacgttacgtgaagtgttacagcgtctggcacgagatggctgg

ttgaccattcaacatggcaagccgacgaaggtgaataatttctgggaaacttccggtttaaatatccttgaaacactggcgcgactggatcacgaaa

gtgtgccgcagcttattgataatctcgagttcatgtgcagctccatcagcaaaaggggatgataagtttatcaccaccgactatttgcaacagtgcc

gttgatcgtgctatgatcgactgatgtcatcagcggtggagtgcaatgtcatgagggaagcggtgatcgccgaagtatcgactcaactatcagaggt

agttggcgtcatcgagcgccatctcgaaccgacgttgctggccgtacatttgtacggctccgcagtggatggcggcctgaagccacacagtgatatt

gatttgctggttacggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttggaaacttcggcttcccctggagagagcg

agattctccgcgctgtagaagtcaccattgttgtgcacgacgacatcattccgtggcgttatccagctaagcgcgaactgcaatttggagaatggca

gcgcaatgacattcttgcaggtatcttcgagccagccacgatcgacattgatctggctatcttgctgacaaaagcaagagaacatagcgttgccttg

gtaggtccagcggcggaggaactctttgatccggttcctgaacaggatctatttgaggcgctaaatgaaaccttaacgctatggaactcgccgcccg

actgggctggcgatgagcgaaatgtagtgcttacgttgtcccgcatttggtacagcgcagtaaccggcaaaatcgcgccgaaggatgtcgctgccga

ctgggcaatggagcgcctgccggcccagtatcagcccgtcatacttgaagctagacaggcttatcttggacaagaagaagatcgcttggcctcgcgc

gcagatcagttggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagatgccgctcgccagtcgattggctgagctc

atgaagttcctattccgaagttccgcgaacgcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagtttt

cgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaacc

accgctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtc

cttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgcca

gtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcc

cagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtat

ccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctct

gacttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctg

gccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccga

acgaccgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatat

gctggatcc 

 

 

 

                
       



187 

 

 

pTargetF-ΔfadE. Features: fadE N20, orange; Homology arms, green; 

ttgacagctagctcagtcctaggtataatactagtgatgctggtggagtgcctctgttttagagctagaaatagcaagttaaaataaggctagtccg

ttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagagtcgacctgcagaagcttagatctcgggaggaatgatgtttaag

gcaataacgacagtcgccgctctggtcatcgccaccagtgcaatggcgcaggatgatttaaccattagcagccttgcaaagggcgaaaccaccaaag

ctgcatttaatcagatggtacaagggcataagctgcctgcctgggtgatgaaaggcggtacttatactcccgcacaaaccgtaacgttgggagatga

gacgtatcaggtgatgagcgcgtgcaaaccgcatgactgtggctcgcaacgtatcgctgtgatgtggtccgagaaatctaatcagatgacggggctg

ttctcgactattgatgagaaaacgtcgcaagagaaactcacctggctgaatgtgaacgatgcgctttcgattgatggtaaaacggtgttgttcgcgg

cgttgaccggcagcctggaaaaccatccggatggctttaattttaaataattagcggataaagaaacggagcctttcggctccgttattcatagcac

ctgcccgtacttctcgcttttggcggtatccggtacactgcattttgtctattacatttatgctgaaggatatcctcatgtaccaggatcttattcg

taacgaactgaacgaagcggcggaaacgctggctaactttttaaaagatgacgccaatattcacgccattcagcgcgcggcggtcctgttagcagac

agctttaaagccggtggcaaagtgctttcctgcggcaacggcggttcccattgcgacgctatgcactttgccgaagagttgaccggtcgctaccgtg

aaaaccgtccgggctacccggcgattgctatttctgacgttagtcatatttcctgcgtcggtaatgatttcggtttcaatgatattttctcccgcta

cgttgaagcggtaggtcgcgaaggcgatgtactgctggggatctccacctccggtaactctgcaaacgtgatcaaagcgatcgcagcggcgcgtgag

aagggaatgactcgagttcatgtgcagctccatcagcaaaaggggatgataagtttatcaccaccgactatttgcaacagtgccgttgatcgtgcta

tgatcgactgatgtcatcagcggtggagtgcaatgtcatgagggaagcggtgatcgccgaagtatcgactcaactatcagaggtagttggcgtcatc

gagcgccatctcgaaccgacgttgctggccgtacatttgtacggctccgcagtggatggcggcctgaagccacacagtgatattgatttgctggtta

cggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttggaaacttcggcttcccctggagagagcgagattctccgcgc

tgtagaagtcaccattgttgtgcacgacgacatcattccgtggcgttatccagctaagcgcgaactgcaatttggagaatggcagcgcaatgacatt

cttgcaggtatcttcgagccagccacgatcgacattgatctggctatcttgctgacaaaagcaagagaacatagcgttgccttggtaggtccagcgg

cggaggaactctttgatccggttcctgaacaggatctatttgaggcgctaaatgaaaccttaacgctatggaactcgccgcccgactgggctggcga

tgagcgaaatgtagtgcttacgttgtcccgcatttggtacagcgcagtaaccggcaaaatcgcgccgaaggatgtcgctgccgactgggcaatggag

cgcctgccggcccagtatcagcccgtcatacttgaagctagacaggcttatcttggacaagaagaagatcgcttggcctcgcgcgcagatcagttgg

aagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagatgccgctcgccagtcgattggctgagctcatgaagttcctat

tccgaagttccgcgaacgcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgttccactgagc

gtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcg

gtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtccttctagtgtagc

cgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtc

gtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcga

acgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggca

gggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcg

atttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctcac

atgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgca

gcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatgctggatcc 
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pTargetF-Ppro4::fadD. Features: fadD N20, orange; Homology arms, green;  Terminator 

L3S2P21, purple; Promoter Ppro4, blue; 

ttgacagctagctcagtcctaggtataatactagtccgctgtttctgcattcttagttttagagctagaaatagcaagttaaaataaggctagtccg

ttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagagtcgacctgcagaagcttagatctcggttttctggacccggtgg

atttccgtggacaactggttacggtagtcgggccaatcactggtgcggttgacggcaaaatcggcaatacgccctataaatttatggtgatgcaagt

aacgggttacaaacgttggcatttaacccagcaggtgattatgccgcctcagccgattgatccatggttttatggcggtcgtggctggccctatggc

tacggcggatggggctggtataatcccggccccgcgagagtacaaacagttgtaactgaataattgcttgtttttaaagaaaaagaaacagcctcgg

taccaaattccagaaaagaggcctcccgaaaggggggccttttttcgttttggtcccacagctaacaccacgtcgtccctatctgctgccctaggtc

tatgagtggttgctggataactttacgggcatgcataaggctcggatgatatattcagggagtcgacaacggtttccctctacaaataattttgttt

aactttaacggcatgtatatcatttggggttgcgatgacgacgaacacgcattttagaggtgaagaattgaagaaggtttggcttaaccgttatccc

gcggacgttccgacggagatcaaccctgaccgttatcaatctctggtagatatgtttgagcagtcggtcgcgcgctacgccgatcaacctgcgtttg

tgaatatgggggaggtaatgaccttccgcaagctggaagaacgcagtcgcgcgtttgccgcttatttgcaacaagggttggggctgaagaaaggcga

tcgcgttgcgttgatgatgcctcgagttcatgtgcagctccatcagcaaaaggggatgataagtttatcaccaccgactatttgcaacagtgccgtt

gatcgtgctatgatcgactgatgtcatcagcggtggagtgcaatgtcatgagggaagcggtgatcgccgaagtatcgactcaactatcagaggtagt

tggcgtcatcgagcgccatctcgaaccgacgttgctggccgtacatttgtacggctccgcagtggatggcggcctgaagccacacagtgatattgat

ttgctggttacggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttggaaacttcggcttcccctggagagagcgaga

ttctccgcgctgtagaagtcaccattgttgtgcacgacgacatcattccgtggcgttatccagctaagcgcgaactgcaatttggagaatggcagcg

caatgacattcttgcaggtatcttcgagccagccacgatcgacattgatctggctatcttgctgacaaaagcaagagaacatagcgttgccttggta

ggtccagcggcggaggaactctttgatccggttcctgaacaggatctatttgaggcgctaaatgaaaccttaacgctatggaactcgccgcccgact

gggctggcgatgagcgaaatgtagtgcttacgttgtcccgcatttggtacagcgcagtaaccggcaaaatcgcgccgaaggatgtcgctgccgactg

ggcaatggagcgcctgccggcccagtatcagcccgtcatacttgaagctagacaggcttatcttggacaagaagaagatcgcttggcctcgcgcgca

gatcagttggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagatgccgctcgccagtcgattggctgagctcatg

aagttcctattccgaagttccgcgaacgcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaacgtgagttttcgt

tccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccacc

gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgtcctt

ctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtg

gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccag

cttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccg

gtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgac

ttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggcc

ttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacg

accgagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtatttcacaccgcatatgct

ggatcc 
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pSk-PTet-rfp-PJ23110-RBSLibrary-tetR. Features: Terminator L3S2P21, purple; Promoter 

Bba_J23110, blue; RBS Library, orange; tetR, red; rfp, dark red; Ptet bi-directional promoter, light 

blue. 

ctcggtaccaaattccagaaaagaggcctcccgaaaggggggccttttttcgttttggtcctttacggctagctcagtcctacgtacaatgctagct

ttaagaaggNNNtatacatatgatgtctagattagataaaagtaaagtgattaacagcgcattagagctgcttaatgaggtcggaatcgaaggttta

acaacccgtaaactcgcccagaagctaggtgtagagcagcctacattgtattggcatgtaaaaaataagcgggctttgctcgacgccttagccattg

agatgttagataggcaccatactcacttttgccctttagaaggggaaagctggcaagattttttacgtaataacgctaaaagttttagatgtgcttt

actaagtcatcgcgatggagcaaaagtacatttaggtacacggcctacagaaaaacagtatgaaactctcgaaaatcaattagcctttttatgccaa

caaggtttttcactagagaatgcattatatgcactcagcgctgtggggcattttactttaggttgcgtattggaagatcaagagcatcaagtcgcta

aagaagaaagggaaacacctactactgatagtatgccgccattattacgacaagctatcgaattatttgatcaccaaggtgcagagccagccttctt

attcggccttgaattgatcatatgcggattagaaaaacaacttaaatgtgaaagtgggtcttaagacgtcggaattgccagctggggcgccctctgg

taaggttgggaagccctgcaaagtaaactggatggctttcttgccgccaaggatctgatggcgcaggggatcatgatctgatcaagagacaggatga

ggatcgtttcgcatgattgaacaagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaa

tcggctgctctgatgccgccgtgttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgca

ggacgaggcagcgcggctatcgtggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgcta

ttgggcgaagtgccggggcaggatctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgc

ttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatct

ggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgat

gcctgcttgccgaatatcatggtggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgt

tggctacccgtgatattgctgaagagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgc

cttctatcgccttcttgacgagttcttctgagcgggactctggggttcgagagctcgcttggactcctgttgatagatccagtaatgacctcagaac

tccatctggatttgttcagaacgctcggttgccgccgggcgttttttattggtgagaatccaagcactagggacagtaagacgggtaagcctgttga

tgataccgctgccttactgggtgcattagccagtctgaatgacctgtcacgggataatccgaagtggtcagactggaaaatcagagggcaggaactg

ctgaacagcaaaaagtcagatagcaccacatagcagacccgccataaaacgccctgagaagcccgtgacgggcttttcttgtattatgggtagtttc

cttgcatgaatccataaaaggcgcctgtagtgccatttacccccattcactgccagagccgtgagcgcagcgaactgaatgtcacgaaaaagacagc

gactcaggtgcctgatggtcggagacaaaaggaatattcagcgatttgcccgagcttgcgagggtgctacttaagcctttagggttttaaggtctgt

tttgtagaggagcaaacagcgtttgcgacatccttttgtaatactgcggaactgactaaagtagtgagttatacacagggctgggatctattctttt

tatctttttttattctttctttattctataaattataaccacttgaatataaacaaaaaaaacacacaaaggtctagcggaatttacagagggtcta

gcagaatttacaagttttccagcaaaggtctagcagaatttacagatacccagatcacccgggaaaaggactagtaattatcattgactagcccatc

tcaattggtatagtgattaaaatcacctagaccaattgagatgtatgtctgaattagttgttttcaaagcaaatgaactagcgattagtcgctatga

cttaacggagcatgaaaccaagctaattttatgctgtgtggcactactcaaccccacgattgaaaaccctacaaggaaagaacggacggtatcgttc

acttataaccaatacgctcagatgatgaacatcagtagggaaaatgcttatggtgtattagctaaagcaaccagagagctgatgacgagaactgtgg

aaatcaggaatcctttggttaaaggctttgagattttccagtggacaaactatgccaagttctcaagcgaaaaattagaattagtttttagtgaaga

gatattgccttatcttttccagttaaaaaaattcataaaatataatctggaacatgttaagtcttttgaaaacaaatactctatgaggatttatgag

tggttattaaaagaactaacacaaaagaaaactcacaaggcaaatatagagattagccttgatgaatttaagttcatgttaatgcttgaaaataact

accatgagtttaaaaggcttaaccaatgggttttgaaaccaataagtaaagatttaaacacttacagcaatatgaaattggtggttgataagcgagg

ccgcccgactgatacgttgattttccaagttgaactagatagacaaatggatctcgtaaccgaacttgagaacaaccagataaaaatgaatggtgac

aaaataccaacaaccattacatcagattcctacctacataacggactaagaaaaacactacacgatgctttaactgcaaaaattcagctcaccagtt

ttgaggcaaaatttttgagtgacatgcaaagtaagtatgatctcaatggttcgttctcatggctcacgcaaaaacaacgaaccacactagagaacat

actggctaaatacggaaggatctgaggttcttatggctcttgtatctatcagtgaagcatcaagactaacaaacaaaagtagaacaactgttcaccg

ttacatatcaaagggaaaactgtccatatgcacagatgaaaacggtgtaaaaaagatagatacatcagagcttttacgagtttttggtgcattcaaa

gctgttcaccatgaacagatcgacaatgtaacagatgaacagcatgtaacacctaatagaacaggtgaaaccagtaaaacaaagcaactagaacatg

aaattgaacacctgagacaacttgttacagctcaacagtcacacatagacagcctgaaacaggcgatgctgcttatcgaatcaaagctgccgacaac

acgggagccagtgacgcctcccgtggggaaaaaatcatggcaattctggaagaaatagcgctttcagccggcaaaccggctgaagccggatctgcga
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ttctgataacaaactagcaacaccagaacagcccgtttgcgggcagcaaaacccgtaccctaggtataaacgcagaaaggcccacccgaaggtgagc

cagtgtgactctagtagagagcgttcaccgacaaacaacagataaaacgaaaggcccagtctttcgactgagcctttcgttttatttgatgcctgga

gatccttactcgagtttggatccttaagcaccggtggagtgacgaccttcagcacgttcgtactgttcaacgatggtgtagtcttcgttgtgggagg

tgatgtccagtttgatgtcggttttgtaagcacccggcagctgaaccggttttttagccatgtaggtggttttaacttcagcgtcgtagtgaccacc

gtctttcagtttcagacgcattttgatttcacctttcagagcaccgtcttccgggtacatacgttcggtggaagcttcccaacccatggtttttttc

tgcataaccggaccgtcggacgggaagttggtaccacgcagtttaactttgtagatgaactcaccgtcttgcagggaggagtcctgggtaacggtaa

caacaccaccgtcttcgaagttcataacacgttcccatttgaaaccttccgggaaggacagtttcaggtagtccgggatgtcagccgggtgtttaac

gtaagctttggaaccgtactggaactgcggggacaggatgtcccaagcgaacggcagcggaccacctttggtaactttcagtttagcggtctgggta

ccttcgtacggacgaccttcaccttcaccttcgatttcgaactcgtgaccgttaacggaaccttccatacgaactttgaaacgcatgaactctttga

taacgtcttcgctactcgccatatgtatatctccttcttaaaagatcttttgaattcttttctctatcactgatagggagtggtaaaataactctat

caacgatagagtgtcaacaaaaattaggaatta 

 

 

 

pSk-PJ23110-RBSLibrary-rfp. Features: Terminator L3S2P21, purple; Promoter Bba_J23110, 

blue; RBS Library, orange; tetR first 9 codons, red; rfp, dark red. 

ctcggtaccaaattccagaaaagaggcctcccgaaaggggggccttttttcgttttggtcctttacggctagctcagtcctacgtacaatgctagct

ttaagaaggNNNtatacatatgatgtctagattagataaaagtaaagcgagtagcgaagacgttatcaaagagttcatgcgtttcaaagttcgtatg

gaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaag

gtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacct

gaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagac

ggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccg

aacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccac

ctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaa

cagtacgaacgtgctgaaggtcgtcactccaccggtgcttaagacgtcggaattgccagctggggcgccctctggtaaggttgggaagccctgcaaa

gtaaactggatggctttcttgccgccaaggatctgatggcgcaggggatcatgatctgatcaagagacaggatgaggatcgtttcgcatgattgaac

aagatggattgcacgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgt

gttccggctgtcagcgcaggggcgcccggttctttttgtcaagaccgacctgtccggtgccctgaatgaactgcaggacgaggcagcgcggctatcg

tggctggccacgacgggcgttccttgcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcagg

atctcctgtcatctcaccttgctcctgccgagaaagtatccatcatggctgatgcaatgcggcggctgcatacgcttgatccggctacctgcccatt

cgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaagccggtcttgtcgatcaggatgatctggacgaagagcatcaggggctc

gcgccagccgaactgttcgccaggctcaaggcgcgcatgcccgacggcgaggatctcgtcgtgacccatggcgatgcctgcttgccgaatatcatgg

tggaaaatggccgcttttctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctga

agagcttggcggcgaatgggctgaccgcttcctcgtgctttacggtatcgccgctcccgattcgcagcgcatcgccttctatcgccttcttgacgag

ttcttctgagcgggactctggggttcgagagctcgcttggactcctgttgatagatccagtaatgacctcagaactccatctggatttgttcagaac

gctcggttgccgccgggcgttttttattggtgagaatccaagcactagggacagtaagacgggtaagcctgttgatgataccgctgccttactgggt

gcattagccagtctgaatgacctgtcacgggataatccgaagtggtcagactggaaaatcagagggcaggaactgctgaacagcaaaaagtcagata

gcaccacatagcagacccgccataaaacgccctgagaagcccgtgacgggcttttcttgtattatgggtagtttccttgcatgaatccataaaaggc

gcctgtagtgccatttacccccattcactgccagagccgtgagcgcagcgaactgaatgtcacgaaaaagacagcgactcaggtgcctgatggtcgg

agacaaaaggaatattcagcgatttgcccgagcttgcgagggtgctacttaagcctttagggttttaaggtctgttttgtagaggagcaaacagcgt

ttgcgacatccttttgtaatactgcggaactgactaaagtagtgagttatacacagggctgggatctattctttttatctttttttattctttcttt

attctataaattataaccacttgaatataaacaaaaaaaacacacaaaggtctagcggaatttacagagggtctagcagaatttacaagttttccag
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caaaggtctagcagaatttacagatacccagatcacccgggaaaaggactagtaattatcattgactagcccatctcaattggtatagtgattaaaa

tcacctagaccaattgagatgtatgtctgaattagttgttttcaaagcaaatgaactagcgattagtcgctatgacttaacggagcatgaaaccaag

ctaattttatgctgtgtggcactactcaaccccacgattgaaaaccctacaaggaaagaacggacggtatcgttcacttataaccaatacgctcaga

tgatgaacatcagtagggaaaatgcttatggtgtattagctaaagcaaccagagagctgatgacgagaactgtggaaatcaggaatcctttggttaa

aggctttgagattttccagtggacaaactatgccaagttctcaagcgaaaaattagaattagtttttagtgaagagatattgccttatcttttccag

ttaaaaaaattcataaaatataatctggaacatgttaagtcttttgaaaacaaatactctatgaggatttatgagtggttattaaaagaactaacac

aaaagaaaactcacaaggcaaatatagagattagccttgatgaatttaagttcatgttaatgcttgaaaataactaccatgagtttaaaaggcttaa

ccaatgggttttgaaaccaataagtaaagatttaaacacttacagcaatatgaaattggtggttgataagcgaggccgcccgactgatacgttgatt

ttccaagttgaactagatagacaaatggatctcgtaaccgaacttgagaacaaccagataaaaatgaatggtgacaaaataccaacaaccattacat

cagattcctacctacataacggactaagaaaaacactacacgatgctttaactgcaaaaattcagctcaccagttttgaggcaaaatttttgagtga

catgcaaagtaagtatgatctcaatggttcgttctcatggctcacgcaaaaacaacgaaccacactagagaacatactggctaaatacggaaggatc

tgaggttcttatggctcttgtatctatcagtgaagcatcaagactaacaaacaaaagtagaacaactgttcaccgttacatatcaaagggaaaactg

tccatatgcacagatgaaaacggtgtaaaaaagatagatacatcagagcttttacgagtttttggtgcattcaaagctgttcaccatgaacagatcg

acaatgtaacagatgaacagcatgtaacacctaatagaacaggtgaaaccagtaaaacaaagcaactagaacatgaaattgaacacctgagacaact

tgttacagctcaacagtcacacatagacagcctgaaacaggcgatgctgcttatcgaatcaaagctgccgacaacacgggagccagtgacgcctccc

gtggggaaaaaatcatggcaattctggaagaaatagcgctttcagccggcaaaccggctgaagccggatctgcgattctgataacaaactagcaaca

ccagaacagcccgtttgcgggcagcaaaacccgtaccctaggtataaacgcagaaaggcccacccgaaggtgagccagtgtgactctagtagagagc

gttcaccgacaaacaacagataaaacgaaaggcccagtctttcgactgagcctttcgttttatttgatgcctggagatccttactcgagtttggatc

cgtcaacaaaaattaggaatta 
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Appendix C: Supplemental Information for “Transient Antibiotic 

Tolerance Triggered by Nutrient Shifts from Gluconeogenic Carbon 

Sources to Fatty Acid” 
 

Appendix C contains supplemental information for Chapter 4. 

C.1 Chapter 4 Supplemental Figures 

 

 

Figure C.1. FadD accumulation dynamics in the presence of ampicillin after nutrient shift. 

(A) Time course of YFP/OD600 from FadD-YFP fusion (colored line, left axis) and OD600 (black 

line, right axis) after switches from carbon sources to FA with ampicillin, n = 3, Error Bars 
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represent SEM. The dotted line indicates the FadD threshold as determined in Figure 4.3B, OD600 

data normalized to the OD600 at the tolerance time determined by OD600. (B) Correlation between 

tolerance time and time for FadD to accumulate to the FadD threshold (accumulation time) in the 

presence of ampicillin. Tolerance time data calculated from data in Figure 4.2B. Dashed line is a 

linear fit. (C) Correlation between FadD accumulation time in the presence and absence of 

ampicillin. Dashed line is linear fit to data. 

 

 

 

Figure C.2. Single-cell distribution of acyl-CoA biosensor activity during pyruvate to FA 

shifts. (A) Single-cell distribution of acyl-CoA biosensor activity during co-utilization of FA and 

pyruvate at different ratios. A single representative distribution is shown per condition, n = 10,000 

per distribution. All distributions are unimodal, with the mean shifting higher for higher fractions 

of FA. (B) Time course single-cell distribution of acyl-CoA biosensor activity after shift from 

pyruvate to FA with ampicillin. A single representative distribution is shown per time point, n = 

10,000. All distributions are monomodal, with mean biosensor activity increasing over time after 

shift to FA. The acyl-CoA biosensor kinetics after the shift are consistent with the FadD kinetics 

measured on plate reader (Figure C.1, pyruvate). 
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Figure C.3. Pre-shift relative transcription levels for aceB and fadD genes. mRNA levels of 

genes measured from steady state cultures growing in glycerol (left, yellow), pyruvate (middle, 

green), or FA, (right, blue). Transcription levels are relative to pre-shift growth in glycerol. n = 3 

biological replicates, Error bars represent standard deviation. Stars indicate significant change in 

transcription compared to glycerol, two-tailed t-test (*, p < 0.05, *** p <0.001)  
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Figure C.4. FadD accumulation dynamics in the presence of ampicillin after nutrient shift 

with pre-shift glyoxylate. Time course of YFP/OD600 from FadD-YFP fusion (colored line, left 

axis) and OD600 (black line, right axis) after shifts from a glyoxylate supplemented gluconeogenic 

carbon source to FA with ampicillin (not supplemented with glyoxylate), n = 3, Error Bars 

represent SEM. The dotted line indicates the FadD threshold as determined in Figure 4.3B, OD600 

data is normalized to the OD600 at the tolerance time determined by OD600 (Note: Normalized 

OD600 serves only as approximate measure of cell survival, since OD cannot accurately determine 

the fraction of live and dead cells). 
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C.2 Chapter 4 Supplemental Tables 

Table C.1. Fitted parameters for two-population Gompertz model. 

Model parameters are given along with their 95% confidence intervals, N.D.: Not Determined 

Pre-Shift Medium Tolerance Time (τ) 

(hours) 

Transient Tolerant 

Killing Rate (μTT) 

(hour-1) 

Persister Killing 

Rate (μTT) 

(hour-1) 

Log10 Persister 

Fraction (log10(p)) 

4mM FA 0.9 ± 0.3 1.25 ± 0.22 0.076 ± 0.011 -4.1 ± 0.2 

24 mM Acetate 3.3 ± 0.4 0.62 ± 0.09 0.122 ± 0.014 -2.9 ± 0.2 

18 mM Malate 4.7 ± 0.6 0.43 ± 0.05 0.053 ± 0.023 -4.3 ± 0.4 

18 mM Succinate 6.0 ± 0.8 0.59 ± 0.14 0.101 ± 0.020 -3.1 ± 0.3 

24 mM Glycerol 7.8 ± 2.2 1.22 ± 11.91 0.167 ± 0.025 -1.9 ± 0.3 

24 mM Pyruvate 44.0 ± 3.2 0.13 ± 0.04 0.015 ± 0.008 -3.2 ± 0.4 

23.8 mM Glycerol, 

0.03 mM FA 2.7 ± 0.4 0.68 ± 0.07 N.D. N.D. 

23.3 mM Glycerol, 

0.11 mM FA 1.7 ± 0.4 1.06 ± 0.23 0.249 ± 0.156 -3.2 ± 0.9 
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Table C.2. Strains, plasmids, and primers used in this study. 

Strain Genotype Source or 

Reference 

NCM3722 (WT) F+ CGSC#:12355 

Acyl-CoA-Biosensor 

Strain 

NCM3722 pSARk-yemGFP This work 

FadD-YFP Strain NCM3722 Φ(fadD-YFP) This work 

 

Plasmids Genotype Source 

pSARk-yemGFP SC101 ori, KANR, PAR-yemgfp This work 

pTargetF-FadD-YFP colE1 ori, SPECR,  This work 

 

Cloning primers Sequence Source 

yemGFP_F TTCAAAAGATCTTTTAAGAA 

GGAGATATACATATGTCTAA 

AGGTGAAGAATTATTCAC 

This work 

yemGFP_R GAGTTTGGATCCTTATTTGTA 

CAATTCATCCATACC 

This work 

pTargetF_FadDN20_F GGCATTGGTCTCGGACTTAAC 

GCTCGTTTTAGAGCTAGAAAT 

AGCAAGTTAAAATAA 

This work 

pTargetF_FadDN20_R TTCCACGGTCTCCCCAGATCT 

AAGCTTCTGCAGG 

This work 

pTargetF_FadD_ 

upstream_F 

TTCCACGGTCTCCCTGGTTTTA 

ACGTCTATCCCAAC 

This work 

pTargetF_FadD_ 

upstream_16L_part1_R 

CCGCCGCCGTTAGAGGGAGTG 

CTACCACCGGCTTTATTGTCCA 

CTTTGCC 

This work 

pTargetF_FadD_ 

upstream_16L_part2 

ACAGCTGGTCTCCCTACCACCG 

CTGCCGCTGCCGTCGTCGCCGC 

CGCCGTTAGAGGG 

This work 

pTargetF_YFP_F ACAGCTGGTCTCCGTAGCAAAG 

GTGAAGAACTGTTCAC 

This work 

pTargetF_YFP_R TTCCACGGTCTCCCATTATTTAT 

ACAGTTCGTCCATACCC 

This work 

pTargetF_FadD_ 

downstream_F 

TTCCACGGTCTCGAATGAGCGT 

TAAGTCAGTCG 

This work 

pTargetF_FadD_ 

downstream_R 

TTCCACGGTCTCGAGAACCCCA 

GCTGCGGGTAA 

This work 

pTargetF_ 

Backbone_F 

TTCCACGGTCTCGTTCTCGAGTT 

CATGTGCAGC 

This work 

pTargetF_ 

Backbone_R 

GGCATTGGTCTCGAGTCAGTCG 

TCAACTAGTATTATACCTAGGACTGAGC 

This work 
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Table C.3. DNA sequences of plasmids and strains constructed in this study. 

   

qPCR primers Sequence Source or 

Reference 

gyrA_F GTCGTGGCGGGAAAGGTAAA  

gyrA_R CGGCTGGAGAAGCACAGAA  

aceB_F ACCTTGTGATGGTGAACGCA  

aceB_R TCCACTGCCAGATCGAGGTA  

fadD_F CCGATCAACCTGCGTTTGTG  

fadD_R TTCTTCAGCCCCAACCCTTG  

DNA Sequence Feature Notes 

pSARk-

yemGFP 

aaaatttatcaaaaagagtgttgactatctggtacgaccagatgatacttagattcat

ctggtacgaccagataccgaattcaaaagatcttttaagaaggagatatacatatgtc

taaaggtgaagaattattcactggtgttgtcccaattttggttgaattagatggtgat

gttaatggtcacaaattttctgtctccggtgaaggtgaaggtgatgctacttacggta

aattgaccttaaaatttatttgtactactggtaaattgccagttccatggccaacctt

agtcactactttaacttatggtgttcaatgtttttctagatacccagatcatatgaaa

caacatgactttttcaagtctgccatgccagaaggttatgttcaagaaagaactattt

ttttcaaagatgacggtaactacaagaccagagctgaagtcaagtttgaaggtgatac

cttagttaatagaatcgaattaaaaggtattgattttaaagaagatggtaacatttta

ggtcacaaattggaatacaactataactctcacaatgtttacatcatggctgacaaac

aaaagaatggtatcaaagttaacttcaaaattagacacaacattgaagatggttctgt

tcaattagctgaccattatcaacaaaatactccaattggtgatggtccagtcttgtta

ccagacaaccattacttatccactcaatctaaattatccaaagatccaaacgaaaaga

gagaccacatggtcttgttagaatttgttactgctgctggtattacccatggtatgga

tgaattgtacaaataaggatccaaactcgagtaaggatctccaggcatcaaataaaac

gaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgc

tctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatacctag

ggtacgggttttgctgcccgcaaacgggctgttctggtgttgctagtttgttatcaga

atcgcagatccggcttcagccggtttgccggctgaaagcgctatttcttccagaattg

ccatgattttttccccacgggaggcgtcactggctcccgtgttgtcggcagctttgat

tcgataagcagcatcgcctgtttcaggctgtctatgtgtgactgttgagctgtaacaa

gttgtctcaggtgttcaatttcatgttctagttgctttgttttactggtttcacctgt

tctattaggtgttacatgctgttcatctgttacattgtcgatctgttcatggtgaaca

gctttgaatgcaccaaaaactcgtaaaagctctgatgtatctatcttttttacaccgt

tttcatctgtgcatatggacagttttccctttgatatgtaacggtgaacagttgttct

acttttgtttgttagtcttgatgcttcactgatagatacaagagccataagaacctca

gatccttccgtatttagccagtatgttctctagtgtggttcgttgtttttgcgtgagc

catgagaacgaaccattgagatcatacttactttgcatgtcactcaaaaattttgcct

caaaactggtgagctgaatttttgcagttaaagcatcgtgtagtgtttttcttagtcc

gttatgtaggtaggaatctgatgtaatggttgttggtattttgtcaccattcattttt

atctggttgttctcaagttcggttacgagatccatttgtctatctagttcaacttgga

aaatcaacgtatcagtcgggcggcctcgcttatcaaccaccaatttcatattgctgta

agtgtttaaatctttacttattggtttcaaaacccattggttaagccttttaaactca

tggtagttattttcaagcattaacatgaacttaaattcatcaaggctaatctctatat

ttgccttgtgagttttcttttgtgttagttcttttaataaccactcataaatcctcat

agagtatttgttttcaaaagacttaacatgttccagattatattttatgaattttttt

aactggaaaagataaggcaatatctcttcactaaaaactaattctaatttttcgcttg

agaacttggcatagtttgtccactggaaaatctcaaagcctttaaccaaaggattcct

gatttccacagttctcgtcatcagctctctggttgctttagctaatacaccataagca

ttttccctactgatgttcatcatctgagcgtattggttataagtgaacgataccgtcc

gttctttccttgtagggttttcaatcgtggggttgagtagtgccacacagcataaaat

tagcttggtttcatgctccgttaagtcatagcgactaatcgctagttcatttgctttg

aaaacaactaattcagacatacatctcaattggtctaggtgattttaatcactatacc

aattgagatgggctagtcaatgataattactagtccttttcccgggtgatctgggtat

ctgtaaattctgctagacctttgctggaaaacttgtaaattctgctagaccctctgta

aattccgctagacctttgtgtgttttttttgtttatattcaagtggttataatttata

Blue: pAR promoter 

Green: yemGFP 
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gaataaagaaagaataaaaaaagataaaaagaatagatcccagccctgtgtataactc

actactttagtcagttccgcagtattacaaaaggatgtcgcaaacgctgtttgctcct

ctacaaaacagaccttaaaaccctaaaggcttaagtagcaccctcgcaagctcgggca

aatcgctgaatattccttttgtctccgaccatcaggcacctgagtcgctgtctttttc

gtgacattcagttcgctgcgctcacggctctggcagtgaatgggggtaaatggcacta

caggcgccttttatggattcatgcaaggaaactacccataatacaagaaaagcccgtc

acgggcttctcagggcgttttatggcgggtctgctatgtggtgctatctgactttttg

ctgttcagcagttcctgccctctgattttccagtctgaccacttcggattatcccgtg

acaggtcattcagactggctaatgcacccagtaaggcagcggtatcatcaacaggctt

acccgtcttactgtccctagtgcttggattctcaccaataaaaaacgcccggcggcaa

ccgagcgttctgaacaaatccagatggagttctgaggtcattactggatctatcaaca

ggagtccaagcgagctctcgaaccccagagtcccgctcagaagaactcgtcaagaagg

cgatagaaggcgatgcgctgcgaatcgggagcggcgataccgtaaagcacgaggaagc

ggtcagcccattcgccgccaagctcttcagcaatatcacgggtagccaacgctatgtc

ctgatagcggtccgccacacccagccggccacagtcgatgaatccagaaaagcggcca

ttttccaccatgatattcggcaagcaggcatcgccatgggtcacgacgagatcctcgc

cgtcgggcatgcgcgccttgagcctggcgaacagttcggctggcgcgagcccctgatg

ctcttcgtccagatcatcctgatcgacaagaccggcttccatccgagtacgtgctcgc

tcgatgcgatgtttcgcttggtggtcgaatgggcaggtagccggatcaagcgtatgca

gccgccgcattgcatcagccatgatggatactttctcggcaggagcaaggtgagatga

caggagatcctgccccggcacttcgcccaatagcagccagtcccttcccgcttcagtg

acaacgtcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgatagccgcg

ctgcctcgtcctgcagttcattcagggcaccggacaggtcggtcttgacaaaaagaac

cgggcgcccctgcgctgacagccggaacacggcggcatcagagcagccgattgtctgt

tgtgcccagtcatagccgaatagcctctccacccaagcggccggagaacctgcgtgca

atccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcatga

tcccctgcgccatcagatccttggcggcaagaaagccatccagtttactttgcagggc

ttcccaaccttaccagagggcgccccagctggcaattccgacgtc 

pTargetF-

fadD-YFP 

tgacgactgacttaacgctcgttttagagctagaaatagcaagttaaaataaggctag

tccgttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagag

tcgacctgcagaagcttagatctggttttaacgtctatcccaacgagattgaagatgt

cgtcatgcagcatcctggcgtacaggaagtcgcggctgttggcgtaccttccggctcc

agtggtgaagcggtgaaaatcttcgtagtgaaaaaagatccatcgcttaccgaagaga

gcttagtgactttttgccgccgtcagctcacgggatacaaagtaccgaagctggtgga

gtttcgtgatgagttaccgaaatctaacgtcggaaaaattttgcgacgagaattacgt

gacgaagcgcgcggcaaagtggacaataaagccggtggtagcactccctctaacggcg

gcggcgacgacggcagcggtggtagcaaaggtgaagaactgttcaccggcgttgtgcc

aattctggttgagctggatggtgacgtgaatggccacaaattttccgtgtctggtgaa

ggcgagggtgatgctacttatggcaaactgactctgaaactgatctgtaccaccggca

aactgcctgttccgtggccaactctggtcactactctgggttacggcgtgcagtgttt

tgcgcgttacccggatcacatgaaacagcatgacttcttcaaatctgccatgccggaa

ggctatgtccaagaacgtacgatctttttcaaggacgacggcaactataaaacccgtg

ccgaagttaaattcgagggtgacaccctggttaaccgcatcgaactgaaaggcattga

cttcaaagaggacggcaacattctgggtcacaagctggaatacaactacaactcccac

aacgtttacattactgctgacaagcagaaaaacggcatcaaagcaaacttcaagatcc

gtcacaacattgaagatggtggcgtacagctggcagatcactaccagcagaacactcc

aatcggtgatggcccagtactgctgccagataaccattacctgtcctaccagagcaaa

ctgtctaaagacccgaacgaaaaacgtgaccacatggtactgctggaatttgttaccg

cggcaggcattaccctgggtatggacgaactgtataaataatgagcgttaagtcagtc

gtcagacgccggttaatccggcgttttttttgacgcccactaaagagaaaacaatttg

aattaccaaatgattaccacggacgatgcgctggcttctttgtgtgaagccgtccgtg

cctttccggcgatagccctggatactgaatttgttcgtacgcgcacttattacccgca

gctggggttctcgagttcatgtgcagctccatcagcaaaaggggatgataagtttatc

accaccgactatttgcaacagtgccgttgatcgtgctatgatcgactgatgtcatcag

cggtggagtgcaatgtcatgagggaagcggtgatcgccgaagtatcgactcaactatc

agaggtagttggcgtcatcgagcgccatctcgaaccgacgttgctggccgtacatttg

tacggctccgcagtggatggcggcctgaagccacacagtgatattgatttgctggtta

cggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttgga

aacttcggcttcccctggagagagcgagattctccgcgctgtagaagtcaccattgtt

gtgcacgacgacatcattccgtggcgttatccagctaagcgcgaactgcaatttggag

aatggcagcgcaatgacattcttgcaggtatcttcgagccagccacgatcgacattga

tctggctatcttgctgacaaaagcaagagaacatagcgttgccttggtaggtccagcg

gcggaggaactctttgatccggttcctgaacaggatctatttgaggcgctaaatgaaa

ccttaacgctatggaactcgccgcccgactgggctggcgatgagcgaaatgtagtgct

tacgttgtcccgcatttggtacagcgcagtaaccggcaaaatcgcgccgaaggatgtc

gctgccgactgggcaatggagcgcctgccggcccagtatcagcccgtcatacttgaag

ctagacaggcttatcttggacaagaagaagatcgcttggcctcgcgcgcagatcagtt

ggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagat

gccgctcgccagtcgattggctgagctcatgaagttcctattccgaagttccgcgaac

gcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaac

gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttg

Blue: fadD N20, 

Red: fadD homology 

arms, 

Purple: Glycine-

Serine rich linker; 

Yellow: YFP 
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agatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctacca

gcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggct

tcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccacca

cttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtg

gctgctgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttac

cggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttgga

gcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacg

cttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggag

agcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtt

tcgccacctctgacttgagcgtcgatttttgtgatgctcgtcaggggggcggagccta

tggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttg

ctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccgcctt

tgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagc

gaggaagcggaagagcgcctgatgcggtattttctccttacgcatctgtgcggtattt

cacaccgcatatgctggatccttgacagctagctcagtcctaggtataatactagt 

NCM3722 

Φ(fadD-YFP) 

fadD genome 

region 

ttgcttgtttttaaagaaaaagaaacagcggctggtccgctgtttctgcattcttacg

gtaaagataaaaataaatagtgacgcgcttcgcaaccttttcgttgggtaattatcaa

gctggtatgatgagttaatattatgttaacggcatgtatatcatttggggttgcgatg

acgacgaacacgcattttagaggtgaagaattgaagaaggtttggcttaaccgttatc

ccgcggacgttccgacggagatcaaccctgaccgttatcaatctctggtagatatgtt

tgagcagtcggtcgcgcgctacgccgatcaacctgcgtttgtgaatatgggggaggta

atgaccttccgcaagctggaagaacgcagtcgcgcgtttgccgcttatttgcaacaag

ggttggggctgaagaaaggcgatcgcgttgcgttgatgatgcctaatttattgcaata

tccggtggcgctgtttggcattttgcgtgccgggatgatcgtcgtaaacgttaacccg

ttgtataccccgcgtgagcttgagcatcagcttaacgatagcggcgcatcggcgattg

ttatcgtgtctaactttgctcacacactggaaaaagtggttgataaaaccgccgttca

gcacgtaattctgacccgtatgggcgatcagctatctacggcaaaaggcacggtagtc

aatttcgttgttaaatacatcaagcgtttggtgccgaaataccatctgccagatgcca

tttcatttcgtagcgcactgcataacggctaccggatgcagtacgtcaaacccgaact

ggtgccggaagatttagcttttctgcaatacaccggcggcaccactggtgtggcgaaa

ggcgcgatgctgactcaccgcaatatgctggcgaacctggaacaggttaacgcgacct

atggtccgctgttgcatccgggcaaagagctggtggtgacggcgctgccgctgtatca

catttttgccctgaccattaactgcctgctgtttatcgaactgggtgggcagaacctg

cttatcactaacccgcgcgatattccagggttggtaaaagagttagcgaaatatccgt

ttaccgctatcacgggcgttaacaccttgttcaatgcgttgctgaacaataaagagtt

ccagcagctggatttctccagtctgcatctttccgcaggcggtgggatgccagtgcag

caagtggtggcagagcgttgggtgaaactgaccggacagtatctgctggaaggctatg

gccttaccgagtgtgcgccgctggtcagcgttaacccatatgatattgattatcatag

tggtagcatcggtttgccggtgccgtcgacggaagccaaactggtggatgatgatgat

aatgaagtaccaccaggtcaaccgggtgagctttgtgtcaaaggaccgcaggtgatgc

tgggttactggcagcgtcccgatgctaccgatgaaatcatcaaaaatggctggttaca

caccggcgacatcgcggtaatggatgaagaaggattcctgcgcattgtcgatcgtaaa

aaagacatgattctggtttccggttttaacgtctatcccaacgagattgaagatgtcg

tcatgcagcatcctggcgtacaggaagtcgcggctgttggcgtaccttccggctccag

tggtgaagcggtgaaaatcttcgtagtgaaaaaagatccatcgcttaccgaagagtca

ctggtgactttttgccgccgtcagctcacgggatacaaagtaccgaagctggtggagt

ttcgtgatgagttaccgaaatctaacgtcggaaaaattttgcgacgagaattacgtga

cgaagcgcgcggcaaagtggacaataaagccggtggtagcactccctctaacggcggc

ggcgacgacggcagcggtggtagcaaaggtgaagaactgttcaccggcgttgtgccaa

ttctggttgagctggatggtgacgtgaatggccacaaattttccgtgtctggtgaagg

cgagggtgatgctacttatggcaaactgactctgaaactgatctgtaccaccggcaaa

ctgcctgttccgtggccaactctggtcactactctgggttacggcgtgcagtgttttg

cgcgttacccggatcacatgaaacagcatgacttcttcaaatctgccatgccggaagg

ctatgtccaagaacgtacgatctttttcaaggacgacggcaactataaaacccgtgcc

gaagttaaattcgagggtgacaccctggttaaccgcatcgaactgaaaggcattgact

tcaaagaggacggcaacattctgggtcacaagctggaatacaactacaactcccacaa

cgtttacattactgctgacaagcagaaaaacggcatcaaagcaaacttcaagatccgt

cacaacattgaagatggtggcgtacagctggcagatcactaccagcagaacactccaa

tcggtgatggcccagtactgctgccagataaccattacctgtcctaccagagcaaact

gtctaaagacccgaacgaaaaacgtgaccacatggtactgctggaatttgttaccgcg

gcaggcattaccctgggtatggacgaactgtataaataatgagcgttaagtcagtcgt

cagacgccggttaatccggcgttttttttgacgcccactaaagagaaaacaat 

Red: fadD CDS 

Purple: Glycine-

Serine rich linker; 

Yellow: YFP 
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