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ABSTRACT OF THE DISSERTATION

Understanding Control of Metabolite Dynamics and Heterogeneity
by
Christopher John Hartline
Doctor of Philosophy in Energy, Environmental & Chemical Engineering
Washington University in St. Louis, 2022

Professor Fuzhong Zhang, Chair

Microbes live in complex and continually changing environments. Rapid shifts in nutrient
availability are a common challenge for microbes, and cause changes in intracellular metabolite
levels. Microbial response to dynamic environments requires coordination of multiple levels of
cellular machinery including gene expression and metabolite concentrations. This coordination is
achieved through metabolic control systems, which sense metabolite concentrations and direct
cellular activity in response. Several reoccurring control architectures are found throughout diverse
metabolic systems, which suggests underlying evolutionary advantages for using these control
systems to coordinate metabolism. One common, yet understudied, control architecture is the
positive feedback metabolite uptake loop, which features a metabolite responsive-transcription
factor (MRTF) that activates genes necessary to uptake its cognate metabolite. Understanding the
design principles behind these complex metabolic control systems is a fundamental issue across
many biological sub-disciplines since metabolism is a central feature of cellular behavior.

The goal of this dissertation is to elucidate how the architecture and parameters of a MRTF-based
control system shape metabolite dynamics and heterogenous metabolic response to changing

nutrient environments. This dissertation focuses on the Escherichia coli fatty acid degradation

Xii



system, which employs the positive feedback uptake loop architecture. The function and
performance of these control systems to three common metabolic tasks was evaluated. First, after
a nutrient depletion, microbes must rapidly turn off metabolic pathways to conserve resources.
Second, microbes must maintain sensing ability in the face of metabolic conditions which impact
cellular growth rate. Finally, upon abrupt shifts between nutrients, microbes must shift metabolic
resources to uptake the new nutrient or otherwise cease growth. This shifting process can be
heterogenous, with a sub-population which maintains a non-growing state that confers tolerance
to antimicrobial compounds. Taken together, this work provides deeper understanding of the
design principles for the control of metabolite dynamics and heterogeneity for applications in

metabolic engineering and synthetic biology.
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Chapter 1: Introduction

This chapter contains text and figures published as:

Hartline, C.J.*, Schmitz, A.C.*, Han, Y.*, and Zhang, F. (2021). Dynamic control in metabolic
engineering: Theories, tools, and applications. Metab. Eng. 63, 126-140.
doi:10.1016/j.ymben.2020.08.015.

and

Schmitz, A. C.*, Hartline, C. J.*, and Zhang, F. (2017). Engineering microbial metabolite
dynamics and heterogeneity. Biotechnol. J. 12, 1700422. doi:10.1002/biot.201700422.

Reprinted with permission.

*Authors contributed equally to work.

Microbes are highly adaptive living creatures capable of self-replication and complex
chemistry. These properties make microbes a potentially useful tool in solving complex
environmental challenges. For example, engineering microbes for chemical production is a
growing field which has enabled the renewable synthesis of a wide range of target products
including fuels (Jiang et al., 2017, 2018; Bai et al., 2019), polymer precursors (Bowen et al., 2016;
Zheng et al., 2020), medicines and nutraceuticals (Yuan and Alper, 2019; Rahmat and Kang,
2020), flavors and fragrances (Chen et al., 2020), and even metallic nanoparticles (Reed and Alper,
2018). Despite these promising starts, commercial production of these compounds in industrial
scales has been lagging, largely due to the inability of the engineered strains to maintain stable

performance at large scales while meeting stringent titer, rate, and yield (TRY) requirements



(Wehrs et al., 2019). Similar to how control systems in chemical processes can improve
performance and safety metrics (Ng and Stephanopoulos, 1996), incorporating genetic control
systems to sense and control microbial metabolite concentrations is beginning to be explored as a

method to improve microbial production of chemicals.

At the same time, microbes can adapt to and replicate in the human body and cause disease.
Bacterial infection due antimicrobial resistant bacteria are thought to contribute to at least 700,000
deaths annually as of 2016, and some estimates that number will grow to 10 million annually by
2050 without action to limit the spread of antimicrobial resistance in bacteria (O’Neill, 2016;
Theriault et al., 2021). Ongoing research into antimicrobial resistance mechanism have shown the
importance of metabolism in providing protection against antimicrobial compounds (Amato et al.,
2014; Stokes et al., 2019). Microbes have evolved natural metabolite-sensing control systems
which allow them to sense changes in their environment and tune metabolism in response. These
control systems can drive metabolism to enhance growth in fluctuating environments (Nguyen et
al., 2021), reduce growth to protect against toxic compounds (Peng et al., 2015), and can even
activate disease-causing phenotypes under varying metabolic conditions (Abu Kwaik and
Bumann, 2013). Additionally, these control systems are implemented through stochastic molecular
mechanisms which allow a population of cells to display a range of responses to their environment.
These diversified responses of microbes to their environment can make treatment of disease more

challenging.

Because metabolism is central to many aspects of microbial life, understanding how cells
control their metabolite concentrations over time (called ‘metabolite dynamics’) and the variation

of metabolite concentration in a population of cells (called ‘metabolite heterogeneity’) is critical



to many fields of microbiology including the development of advanced microbial chemical

synthesis platforms and the treatment of disease caused by microbes.

1.1 Metabolite Dynamics in Natural and Engineered Microbes

1.1.1 Overview of Metabolite Dynamics
Microbial function relies on thousands of molecular components constituting a complex

network of gene-protein-metabolite interactions. These systems display a wide range of temporal
responses which are difficult to understand based on knowing the presence of molecular
interactions alone (Tyson and Novak, 2020). Because of these complexities, biologists from a
broad range of disciplines have begun to adopt language and ideas from the mathematical analysis
of dynamical systems and control theory to aid in analyzing and designing network interactions in
biological systems (He et al., 2016; Vecchio et al., 2016). At the heart of these analyses is the
conversion of a map of network interactions into a set of ordinary differential equations of the

form:

dx_f d
= =00 +d®

Here, X is a vector representing the metabolic state of the cell, which is the concentration of all
molecular species being analyzed. The time derivative of x represents the rate of change of those
molecular species. Thus, the temporal change in each species depends both on the current
metabolic state, and on the specific molecular interactions which map the current state into a rate
of change for the concentration of each molecular species. Additionally, an external disturbance d
can be introduced which impacts the temporal evolution of the systems. This framework has been

widely successful in describing the how gene networks respond to stimuli (Smolen, 2000; Tegner



et al., 2003; Dayarian et al., 2009) and have been used in the development of novel gene-protein

interactions for controlling microbial behavior (Kelly et al., 2018; Aoki et al., 2019).

Metabolite dynamics focuses on how metabolite concentrations inside the microbial cell
change over time. Metabolite dynamics occur when there is an imbalance in the rate of production
and consumption of a metabolite which causes a net change in the metabolite concentration over
time, i.e. dx/dt # 0. Several factors can lead to this imbalance, particularly the presence of a new
disturbance such as a change in the external concentration of one or more metabolites. If the
metabolic network is asymptotically stable, the system will eventually reach a steady-state
condition where there is no net change in metabolite concentrations. Analysis of the metabolite
dynamics can reveal several key properties of the system which affect its biological function. As
examples, the rate of convergence to a steady state (Liu and Zhang, 2018), the existence of multiple
steady states (Venturelli et al., 2012), oscillations in metabolite concentrations (Fung et al., 2005),
and the presence of delays and overshoots (Novak and Tyson, 2008) are all important properties
of metabolite dynamics. These properties can impact cell growth, productivity, and response and
therefore are key metrics of analyzing performance. Additionally, the use of optimality principles
can be included in the analysis to uncover trade-offs and design principles in controlling metabolite
dynamics in both natural and engineered control systems (Chubukov et al., 2012; Oyarzin and
Stan, 2013). These many lines of analysis can provide deeper insight into the biological role of
evolved gene-protein-metabolite interactions, as well as the design of new interactions to enhance

metabolite productivity in fermentations.

1.1.2 Metabolite Dynamics Affect Fitness of Natural Microbes
Metabolite dynamics serve as a driver of cellular response to the environment (Gerosa and

Sauer, 2011), rather than simply being an output of cellular functions. These driving mechanisms

4



occur at all levels of cellular function including transcription, translation, and post-translation. At
the transcriptional level, metabolites can directly drive cell adaptations through metabolite-
responsive transcription factors (MRTFs) to continuously control gene expression profiles. Nearly
half of all transcription factors in E. coli are regulated directly through binding to metabolites
(Madan Babu, 2003; Krishna et al., 2007). Changes in metabolite availability often dive changes
in expression of metabolite-specific pathways, to allocate more resources to that metabolite’s
catabolism or anabolism. Well known examples include lacl and araC, which strongly upregulate
lactose and arabinose catabolic pathways, respectively, when these sugars are available
intracellularly. Other MRTFs more globally coordinate many metabolic processes and genes, such
as Lrp, which upregulates up to 10% of E. coli genes, including amino acid biosynthesis and

catabolism and pili synthesis in response to leucine (Tani et al., 2002).

In addition to binding MRTFs, metabolite binding to RNA aptamers is gaining recognition
as an important way in which metabolites drive cell response through regulation of protein
translation, which can drive changes in metabolite concentrations in some cases (Barrick et al.,
2004; Mandal et al., 2004; Serganov et al., 2008). For example, a wide-spread guanidine
responsive ykkC riboswitch is found in urea carboxylases, arginases, nitrate/sulfate/bicarbonate
transporters, and in small multidrug resistance efflux pumps (Nelson et al., 2017). This riboswitch
senses the concentration of guanidine, and increases export if concentrations are too high to
prevent cytotoxicity. Thus, metabolite dynamics drive changes in protein abundance through

diverse transcription and translation control mechanisms.

Upon entering new environmental conditions, the expression of new proteins can take
several minutes, while the dilution of old proteins through cell growth can take several hours.

Additionally, intrinsic noise in transcription and translation can create cell-to-cell differences
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protein abundance which cannot be avoided (Kochanowski et al., 2015). Thus, microbes have also
evolved fast responding mechanisms for controlling metabolic flux in response to metabolite
changes (Kochanowski et al., 2013). Metabolites can affect flux through allosteric control
mechanisms by binding directly to enzymes to affect their kinetic properties. A particularly
striking example is in the control of TCA cycle anaplerosis (Xu et al., 2012). Here,
phosphoenolpyruvate is accumulated by shutting down activity of PEP carboxylase through
depletion of fructose-1,6-bisphosphate, which acts as an allosteric activator of PEP carboxylase.
Disruption of this allosteric mechanism through point mutation disrupts growth when glucose
availability oscillates (Xu et al., 2012), which demonstrates the necessity of these fast mechanisms
for adaptation to fluctuating environments. Despite several well-known examples, systematic
identification of allosteric metabolite-protein interactions with biological function is difficult due
to their highly transient nature, and the current mapping of allosteric metabolite-protein
interactions is likely far from completion (Ledezma-Tejeida et al., 2021). Nonetheless, recent
advances in proteomic methods have enable the identification of hundreds of novel interactions
between metabolites and enzymes (Li et al., 2010; Link et al., 2013; Feng et al., 2014; Diether et

al., 2019).

In addition to direct interaction with proteins, metabolites can trigger post-translational
modifications though enzyme phosphorylation and acetylation which alter the kinetic activity of
metabolic enzymes (Kochanowski et al., 2015). Like direct allosteric interactions, post-
translational modifications are rapid and reversable, but most often catalyzed by a metabolite
sensor with kinase or acetyltransferase activity. A well-known example of this is the isocitrate
dehydrogenase (ICD) kinase, AceK in E. coli, which directs isocitrate between the glyoxylate

shunt, or the full TCA cycle through both phosphorylation/dephosphorylation of ICD (Walsh and



Koshland, 1985). AceK is thought to sense the abundance of ATP/ADP to switch between TCA
cycle and glyoxylate shunt (Zheng and Jia, 2010), thus allowing a robust tuning of the rates of the
two pathways (Shinar et al., 2009). Deactivation of AceK phosphatase activity causes growth
arrest on acetate (LaPorte et al., 1985), showing that this control mechanism is necessary to
correctly balance the activity of the two pathways. Until recently, only a small number of these
post-translational control mechanisms have been identified, but recent work has shown that post-
translational modification of enzymes is widespread in bacteria metabolism (Brunk et al., 2018;
Schastnaya et al.,, 2021). Systematic identification of these control mechanisms, and the
metabolites which drive them is likely to be an ongoing challenge. Altogether, these diverse and
wide-spread metabolite sensing and control mechanisms demonstrate the importance of

controlling metabolite dynamics to the growth and fitness of bacteria.

1.1.3 Metabolite Dynamics Affects Productivity of Engineered Microbes
Metabolite dynamics are also important to consider in industrial fermentations. Cells face

two types of environmental variations during batch processes: slow global environmental changes
due to process progression, and local environmental heterogeneity. Traditionally, cellular
productivity is optimized for production in a single environment and at either exponential or
stationary growth phase, which leads to sub-optimal productivity as the environment or cell growth
phase changes during a production process (Gadkar et al., 2005; Anesiadis et al., 2008). Due to
the difficulty in maintaining a homogenous environment in a large fermenter, cells can pass
through regions with varied microenvironments, for instance different pH and different oxygen or
substrate concentrations (Lara et al., 2006; Nadal-Rey et al., 2021). These disturbances result is
changes in internal metabolite concentrations and affect bioproduction. Controlling metabolite

dynamics can address these challenges by altering output of both natural and engineered metabolic



pathways in response to environmental changes, which has been done through the dynamic
regulation of fatty acid ethyl ester and fatty acid producing pathways to achieve high productivity

and yield (Zhang et al., 2012a; Xu et al., 2014; Liu et al., 2015).

Production of some chemicals through metabolic engineering can be suboptimal, or even
infeasible without controlling metabolite dynamics, particularly if the engineered pathway
significantly impacts cell growth. In some cases, a two-stage metabolic switch can be used to
decouple the competing tasks of biomass accumulation and metabolite overproduction (Burg et
al., 2016). In this mode of dynamic metabolic engineering, metabolism is optimized for biomass
accumulation in the first stage, while product formation is optimized during the second stage. Early
work showed that glycerol production in E. coli could be improved by 30% using this two-stage
strategy (Gadkar et al., 2005). Continuous sensing and control of metabolite production pathways
can also be used to balance metabolite production and cell toxicity for improved production
metrics, as demonstrated in the production of pinene in E. coli (Dunlop et al., 2010; Siu et al.,
2018). In this system, toxic pinene accumulation was sensed through a stress response TF MexR,
which increased expression of pinene efflux pumps whenever pinene accumulated too much. This
was shown to enhance tolerance to pinene production over a wide range of system parameter
values (Siu et al., 2018). Thus, from both fundamental science and metabolic engineering

perspectives, it is important to understand and have the ability to control metabolite dynamics.

1.2 Metabolite Heterogeneity in Natural and Engineered Microbes

1.2.1 Overview of Metabolite Heterogeneity
Genetically identical microbes display phenotypic heterogeneity even in identical

environment, due to many inherent stochastic processes governing cell biology. For example,

random segregation of molecules between daughter cells, stochastic gene expression, stochastic
8



translation machinery concentration, and stochastic enzyme catalysis are all sources of
heterogeneity within a microbe. Because of the highly interconnected network of gene-protein-
metabolite interactions, these sources of heterogeneity can propagate to cell-to-cell differences in
metabolite concentrations. The extent and consequences of metabolite heterogeneity to microbial
biology have only been recently revealed experimentally due to difficulties in analyzing metabolite
concentrations at single cells, particularly during cell growth (Mustafi et al., 2012; Ibafez et al.,

2013; Zenobi, 2013; You et al., 2015).

The study of metabolite heterogeneity focuses on quantifying and modeling the shape of
the distribution of metabolite concentrations across a population of cells. Important metrics are the
mean and standard deviations of the population (Kiviet et al., 2014), the frequency of outliers with
extremely altered metabolism (Hare et al., 2021), and the presence of multimodality (Guantes et
al., 2016). Several methods for modeling and simulating metabolite heterogeneity have been put
forward (Levine and Hwa, 2007; Thomas et al., 2011; Oyarzun et al., 2015; Ray et al., 2016). A
popular starting point for modeling metabolite heterogeneity involves setting up a chemical master
equation to keep track of the number and fluctuations of metabolites and other compounds over
time, which can then be simulated by the Gillespie algorithm, or approximated used a tau-leaping
method (Gillespie, 2007). However, this approach has difficulties due to the many timescales
involved in production and consumption of intracellular metabolites (Tonn et al., 2019). Thus,
frameworks for analyzing metabolite heterogeneity and its connection with gene-protein-

metabolite network structures is an active field of research.

1.2.2 Metabolite Heterogeneity Affects Fitness of Natural Microbes
Variation of single cell metabolite concentration affects the collective behavior of a culture,

even under constant environments. Flux balance analysis using experimentally measured single-
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cell protein copy numbers (Taniguchi et al., 2010) predict that there is a large variation on single
cell metabolic activities, that could lead to single cell growth rate variation as much as five-fold
(Labhsetwar et al., 2013). Furthermore, experimentally measured coefficient of variation (CV)
(standard deviation divided by mean) of single cell growth rate ranges from 0.2 to 0.4 (Kiviet et
al., 2014). Both the size and the frequency of growth rate fluctuation is likely caused by

fluctuations in the concentration of cellular components, including metabolites.

Metabolite heterogeneity can also play a larger role in fluctuating environments, especially
in rapidly switching environments. Under these rapidly varying conditions, microbial populations
may maintain multiple sub-populations with different metabolic pathways active, so that some
cells are always optimized from growth upon environmental changes (Grimbergen et al., 2015).
The potential benefit of this bet-hedging, or stochastic switching, strategy was demonstrated in
galactose utilization network of Saccharomyces cerevisiae, where cells were engineered to
randomly activate galactose pathways at different rates (Acar et al., 2008). It was found that
populations which had frequent random switching grew faster under rapid fluctuations between
galactose and glucose, as compared to populations with less frequent random switching.
Phenotypic heterogeneity has also been observed upon diauxic shifts from glucose to many carbon
sources in many microbial species (Boulineau et al., 2013; New et al., 2014; Solopova et al., 2014).
For example, in Lactococcus lactis undergoing diauxic shift from glucose to cellobiose, only a
small fraction of the population activated cellobiose consumption pathways once glucose was
depleted, while the remaining fraction stopped growth (Solopova et al., 2014). Moreover, the size
of fraction which transitioned to cellobiose was smaller if initial glucose concentrations were
higher, which suggests cell’s ability to adapt depends on their initial metabolic environment and

potentially their initial metabolism. This phenomenon of responsive diversification, where a
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population of adapted and non-adapted cells emerge from a single population, was also observed
in E. coli during rapid nutrient shifts from glucose to fumarate (Kotte et al., 2014). Many factors
potentially affect the size of the heterogeneity in switching times between nutrient sources
including cell-to-cell differences in transcriptional activity, sensing components, or stochastic
difference in metabolic pathways prior to switching (Schwabe and Bruggeman, 2014;
Radzikowski et al., 2016; Chu, 2017; Barthe et al., 2020). For example, in the case of L. lactis
transition to cellobiose, knockout of the stringent response gene relA increased the number of cells
which transition (Solopova et al., 2014), implicating a role for the stringent response mechanisms
and its key metabolite signal, (p)ppGpp (Magnusson et al., 2005), in governing switching times

and frequency.

Metabolic heterogeneity has also been shown to underly some mechanisms bacterial
persistence (Amato et al., 2014). Bacterial persistence allows a sub-population of bacteria to
tolerate to antibiotic treatment (Balaban et al., 2019), which could be one mechanism that leads to
recurrent infection in a clinical setting (Michiels et al., 2016). Persistence is a phenotype typically
associated with transient metabolic dormancy (Wood et al., 2013) which slows the activity of many
growth-related processes which are traditionally targeted by antibiotics. After persistence, cells
can regrow and generate a new population, where again only a few cells are persisters, indicating
that the persister phenotype is not inherited and that underlying stochastic process play a role in
triggering persistence (Harms et al., 2016). Stochastic expression of toxin-antitoxin systems, which
can trigger elevated levels of the signaling metabolite ppGpp are one mechanism by which cells
enters persister state (Ronneau and Helaine, 2019). ppGpp shuts down transcription and
translation, thus acting as a general signaling mechanism for cells to become dormant (Pacios et

al., 2020). However, while knocking out genes responsible for ppGpp synthesis reduces persister
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levels, it does not prevent persisters (Nguyen et al., 2011). Reduced ATP concentrations have also
been associated with elevated persistence (Conlon et al., 2016; Manuse et al., 2021), independent
of the formation of ppGpp (Shan et al., 2017). However, low ATP is also associated with slow
growth, which may partially account for increased antibiotic tolerance, and therefore may not be
a trigger of persistence (Pacios et al., 2020). Rapid nutrient shifts and diauxic shifts from glucose
to fumarate, glycerol, and succinate also trigger elevated levels of persistence to multiple
antibiotics (Amato et al., 2013; Amato and Brynildsen, 2014, 2015; Radzikowski et al., 2016). For
example, in the case of glucose to fumarate shifts in E. coli, nearly all cells become persisters after
the switch, and those cells activated several stress response genes which could give cells protection
against antibiotics (Radzikowski et al., 2016). It was proposed that the ultimate cause of entry into
persistence was a flux limitation in central metabolism, and cell-to-cell differences in the activity
of fructose-1,6-bisphosphatase (Fbp) may explain why some cells adapt and others become
persisters (Radzikowski et al., 2016). This view was later supported by observations of large
heterogeneity in the expression of TCA cycle enzymes, where stochastically low TCA expression
was associated with elevated tolerance to ciprofloxacin (Zalis et al., 2019). This evidence shows
that, while there are likely many contributing factors to bacterial persistence, heterogeneity in
metabolism is a central feature of persistence, which warrants further experiment into identifying
the potential metabolite and metabolic triggers which explain cell-to-cell differences in entry and

exit from the persistence phenotype.

1.2.3 Metabolite Heterogeneity Affects Cellular Productivity
While heterogeneity in bioreactor conditions has been shown to impact bioproduction, the

importance of metabolite heterogeneity is only beginning to be recognized. Large cell-to-cell

variation on productivity of engineered microbes was observed in the biosynthesis of 5°-
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pyrophospate in E. coli (You et al., 2015), the production of free fatty acids (FFA) in E. coli (Xiao
et al., 2016), and the production of L-valine, L-leucine, and L-isoleucine in Corynebacterium
glutamicum (Mustafi et al., 2012). The size of metabolite variation was quantified in an engineered
FFA-producing E. coli strain, where the mean FFA concentration between four isolated
subpopulations was as large as ninefold (Xiao et al., 2016). This heterogeneity strongly affects
the ensemble FFA titer and productivity as more than half of the FFA was produced from a
subpopulation consisting of only 15% of the bacteria. The rest of the population consumed nutrient
without producing a high concentration of FFA. Low producing cells probably devote more
resources to growth, thus dominating the culture over time, leading to an overall decrease in
productivity as demonstrated by bimodal L-valine production in C. glutamicium (Mustafi et al.,
2014). On the other hand, single cell modeling of intracellular resource competition shows that the
expression of competing metabolic pathways may be positively correlated at the single cell level
(Han and Zhang, 2020). This would suggest that cells with higher expression of metabolite
producing pathways could potentially be the faster growing cells in the population as well. Overall,
these findings demonstrate that it is essential to understand the multifaceted contributions to

metabolite heterogeneity and to develop methods to control it in engineered cells.

1.3 Metabolic Control Systems

Given the importance of metabolite concentrations to microbial metabolism, propagation,
and survival, cells have evolved control mechanisms which shape the metabolite dynamics and
heterogeneity to enhance their overall fitness in their environments (Chin et al., 2008). While
metabolite concentrations are dependent on the whole gene-protein-metabolite network, smaller

metabolic control systems are used to interact with metabolites directly. These metabolic control
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systems require two main components. First, a sensing component is necessary to measure the
intracellular concentration of a metabolite. Second, an actuating component is necessary to receive
the information about metabolite concentration and affect cellular activity in response. These
components can be within one molecule, for example in enzyme allostery, which senses metabolite
concentration at the allosteric site and actuates a change in enzyme activity. The sensing and
actuating can also rely on multiple molecular components, such as in transcriptional control of a

gene by MRTFs.

The molecular control systems found in natural systems use a small number of recurrent
functional motifs across a wide variety of pathways (Alon, 2007). These network motifs, or
regulatory architectures, often have similar functional roles in the pathways in which they appear.
System parameters, which are the strengths and rates of interactions between molecular species,
also affect overall system performance. Regulatory architecture and parameters are evolved
together to achieve optimal dynamic response to environmental changes (Zaslaver et al., 2004;
Chubukov et al., 2012). Because these systems are used in disparate pathways, biologists are
interested in the functional advantages these architectures give to microbes which drives the
convergent evolution of these functional motifs. These insights are similarly important to engineers
to endow newly designed metabolic pathways with these advantages. In the next section, we will
review negative and positive feedback motifs, and their consequences to metabolite dynamics and

heterogeneity.

1.3.1 Negative Feedback Control
Negative feedback is a critical control methodology across many engineering disciplines

for increasing robustness and tuning response times (Vecchio et al., 2016) and is similarly found
in the control of a number of natural metabolic pathways (Chubukov et al., 2014). For a negative
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metabolic feedback system, the metabolite concentration acts as a signal, and actuates pathway
activities to counteract changes in the metabolite concentrations. An example of a negative
feedback architecture is in product feedback inhibition (PFI) where the final metabolite of a
pathways allosterically inhibits the activity of the enzymes that produce it. Incorporating negative
feedback architectures has been analyzed to enhance performance in several common problems
faced by microbes with both natural and engineered metabolic networks.

A common task microbes face is to switch on transcriptional expression of pathway
enzymes in response to a metabolite, through an MRTF. In both natural and engineered metabolic
systems, rapid response to a switching metabolite concentration is desired because it allows
microbes to quickly adapt to changing conditions or reach a productive metabolic state more
rapidly. In controlling transcription, switching on pathway expression using an open loop (OL)
architecture in response to an input metabolite is generally slow. It was found that for an OL
architecture, it takes 2.48 cell cycles for the pathway metabolite concentration to rise to 50% of its
steady-state concentration (defined as the metabolite rise-time) after addition of a signaling
metabolite. Liu et al. built and studied three closed loop feedback systems of different
architectures: a negative gene loop (NGL), a negative metabolic loop (NML), and a negative
layered metabolic loop (NLML) (Liu and Zhang, 2018). While all three loops had some ability to
decrease the rise-time for pathways metabolite concentrations compared to the OL, the NLML,
where metabolite concentration is feedback through a genetic inverter then an enzyme controller,
was capable of dramatically accelerating rise-times by 11.8-fold. However, this rapid increase in
rise-time was accompanied by a large metabolite concentration overshoot, where metabolite
concentration rises above the steady-state before settling. Through tuning the many parameters, it

was found that for NLML, faster rise times were generally correlated with larger overshoots. Using
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a high maximum promoter strength of the genetic inverter and a low threshold of the enzyme
controller were found to be the most efficient for decreasing the rise-time. However, large
overshoots may not be desirable for many microbes or engineers because pathway resources may
be wasted on producing enzymes that are not being used. In these cases, an NML architecture
could be more appropriate to accelerate metabolite dynamics (1.9-fold) without an accompanying

overshoot.

A second kind of task for microbes is to be robust against microbial environmental
perturbations and genetic perturbations (e.g. mutations) which affect metabolism. Environment
perturbations can cause major concentration changes for metabolites necessary for growth
(Kresnowati et al., 2006; Taymaz-Nikerel et al., 2013). Transcription-level metabolite feedback
was shown to help make metabolite levels less sensitive to these metabolic fluctuations (Oyarzun
and Stan, 2012; Oyarzun and Stan, 2013). Using strong, tight promoters allowed the system to
further minimize the decrease in product concentration, however, strong promoters could also lead
to oscillatory dynamics. Negative feedback in pathways also allows microbes to be more robust to
both changes in the microbial environment and changes in system parameters due to mutation. For
example, parameter sensitivity analysis of the pinene production-efflux system showed that
including negative feedback system reduced the sensitivity of pinene production to system
parameters variation (Dunlop et al., 2010; Harrison and Dunlop, 2012). This robustness was
verified by constructing a library of pinene export feedback systems, which showed several
members with enhanced pinene tolerance, despite having varying promoter strengths and number
of TF binding sites in the promoter (Siu et al., 2018). These results highlight how incorporating
negative feedback control into pathway design can make the system more robust to bother

environmental and genetic perturbation.
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Finally, negative feedback has been explored as a mechanism to reduce the amount of
metabolite heterogeneity (Borri et al., 2015, 2016; Oyarzin et al., 2015). In these papers, a
metabolic enzyme is continuously controlled by a promoter and the enzyme converts a substrate
into a final product. Two main feedback loop architectures have been considered: enzyme
autoregulation or end-product feedback. Compared to a constitutive system with an identical mean
product level, both enzyme autoregulation and end-product feedback could always reduce
metabolite noise, with stronger feedback leading to stronger noise reduction (Borri et al., 2015).
Additionally, feedback sensitivity was identified as a critical parameter to achieve large noise
reduction for a wide range of promoters and feedback strengths (Borri et al., 2015, 2016; Oyarzun

etal., 2015).

These several advantages of incorporating negative feedback demonstrate their utility in
enhancing the performance some metabolic pathways. However, these studies thus far have been
limited to regulation of linear pathways, and primarily focus on control at the transcriptional level.
Thus, more work is needed to understand the roles of negative feedback in pathways with branches

and loops, and at the post-transcriptional level, which are also common in metabolism.

1.3.2 Positive Feedback Control
Biology makes extensive used of positive feedback in the control of a number of

transcription, cell signaling and metabolic networks (Mitrophanov and Groisman, 2008; Tiwari et
al., 2011). For positive feedback systems, changes in the metabolite’s intracellular concentration
work to promote further changes in the concentration. Thus, while negative feedback is associated
with improving the stability of a network, positive feedback generally promotes instability
(Cinquin and Demongeot, 2002). While this is typically considered problematic in the design of
chemical engineering control system (Morud and Skogestad, 1994), biology uses this property to
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ensure robust state switching (Freeman, 2000) and to maintain memory of past conditions (Acar

et al., 2005), which is important in maintaining differentiated cells.

Positive feedback is necessary for systems to exhibit bistability, which is the existence of
multiple steady states for a given parameter value or external metabolite concentration. Induction
of the lactose catabolism system in E. coli has been shown to exhibit bistability when induced non-
metabolizable inducers such as TMG (Novick and Weiner, 1957; Ozbudak et al., 2004). In this
case, individual cells either fully activate lactose utilization networks or not, leading to large cell-
to-cell differences in enzyme concentrations, and potentially metabolite concentrations. Thus,
bistability can help to generate the multiple populations needed for metabolic bet-hedging, where
different cells have different uptake rates of extracellular nutrients. Another general property of
bistable systems is hysteresis, a memory-like property where the threshold of the signal output
response curve is different depending on the recent history of the input signal (Ferrell, 2002).
Hysteresis can allow the internal metabolite signal to be reduced without switching metabolic
states. Additionally, hysteresis enables a slow response to metabolite concentrations signals that
are near the switching threshold (Tiwari et al., 2011). This property allows bistable switches to
filter out mild, transient changes in the metabolite concentrations which may be typical of a
microbe’s natural environment or Of heterogenous bioreactors. Several positive feedback
architectures for generating bistable metabolite uptake rate have been explored (Oyarzun and
Chaves, 2015). It was found that using an activator-repressor topology, where the metabolite
activates its own uptake and represses its consumption, had the largest parameter space for

generating bistability.

While bistability is an interesting possibility for positive feedback systems, not all positive

feedback systems are bistable. For example, while the lac operon can be bistable using non-
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metabolizable inducer, bistability is has not been observed using the native inducer, lactose
(Zander et al., 2017). Additionally, although activator-repressor topologies have the highest
potential for bistability, no natural metabolic systems have been identified which use this topology
(Krishna et al., 2007). In contrast, many cellular uptake systems, including the lactose system,
have positive feedback in metabolite uptake, coupled with negative feedback in metabolite
consumption. These systems have much smaller bistable parameter regions (Krishna et al., 2007;
Oyarzun and Chaves, 2015), suggesting that the metabolite uptake systems may not benefit from
bistability. Coupling positive feedback with negative feedback in metabolic systems without
bistability may help efficiently allocate metabolic resources (Krishna et al., 2007; Zander et al.,
2017) in response to extracellular environment nutrients, which can potentially explain its wide

adoption.

1.4 Metabolic Control System for Fatty Acid Metabolism

Fatty acids (FAs) are critical metabolites in microbial metabolism and serve diverse
functional roles. Fatty acids in phospholipids serve as the primary component of cellular
membranes in both bacteria and eukaryotic domains (Lombard et al., 2012). The FA composition
of those membranes plays an important role in surviving under different conditions, for example
by increasing the ratio of cyclopropane FAs under stationary phase and acidic conditions (Cronan,
1968; Shabala and Ross, 2008) or by increasing unsaturated FA content under low temperature
(Marr and Ingraham, 1962; de Mendoza et al., 1983). FAs also serve as a highly reduced, high
energy carbon source, with an estimated ATP yield of ~100 per molecule, compared to ~30 ATP
per molecule for glucose. Finally, it is becoming more evident that FAs and their catabolism play

complex roles in regulating disease states, including both in promoting and inhibiting growth of
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infectious bacteria (Gullett et al., 2019; Kengmo Tchoupa et al., 2022), in triggering inflammation
and immune response (Hosomi et al., 2020), in microbial survival of antibiotic treatment (du Preez
and Loots, 2012), and even in promoting proliferation of cancer cells (Carracedo et al., 2013).
Given the many roles of FAs in biology, understanding how microbes regulate their dynamic
response to exogenous FAS is a necessary step in unraveling how these processes contribute to

microbial growth and disease.

1.4.1 FadR as Master Regulator of Fatty Acid Catabolism in E. coli
In aerobic conditions, E. coli can grow on long chain FAs as a sole carbon source.

Catabolism of FA proceeds by primarily by the aerobic B-oxidation pathway, which yields two
carbon units in the form of acetyl-CoA for use in central metabolism, and yields reduced NADH
and flavoproteins (Nunn, 1986). Several TFs are involved in the transcriptional regulation of j3-
oxidation, including global regulators ArcA and CRP which coordinate FA degradation with the
metabolic state of the cell (Cho et al., 2006). However, the primary transcriptional regulator of FA
degradation is FadR, which represses transcription of the p-oxidation genes in the absence of

exogenous FAs.

As a first step in sensing exogenous FAs, FAs must be transported intracellularly by FadL
and FadD. FadL is responsible for transporting FAs across the outer membrane. FadD
simultaneously transports fatty acids across the inner membrane, and activates FAs to acyl-CoA
through ATP-dependent ligation to free coenzyme A (Weimar et al., 2002). FadR represses
transcription of these genes through binding to operator sites to block transcription (Xu et al.,
2001). However, binding of acyl-CoAs to FadR antagonizes its DNA binding activity (Henry and
Cronan, 1992), thus allowing transcription of fadl and fadD. In this way, a positive feedback loop
is formed, with acyl-CoAs activating fadD expression via FadR to promote further conversion of
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FA to acyl-CoA. This regulatory logic of positive feedback in metabolite uptake is common in
several E. coli systems, including the well-studied lactose uptake system. For a list of systems in

E. coli displaying this regulatory logic, see Appendix A Table A.1.

Once FAs are activated to acyl-CoA, they are primarily degraded by the B-oxidation
enzymes FadE, FadA, and FadB. Transcription of these enzymes is repressed by FadR when acyl-
CoA concentration is low. The activity of these three enzymes removes two-carbon subunits from
the acyl-chain, progressively shortening it. Assays of purified FadR show that FadR binding
activity is not antagonized by acyl-CoAs shorter than 12 carbon units (DiRusso et al., 1992). Thus,
these enzymes reduce the intracellular concentrations of the FadR-antagonizing acyl-CoAs,
forming a negative feedback loop on acyl-CoA concentration. Overall, the regulation of the acyl-
CoA concentration by FadR and the B-oxidation pathway forms a coupled positive and negative
feedback loop which shares regulatory logic with other pathways, including the lactose
degradation pathway. In contrast to the lac operon, transcription of the acyl-CoA forming (fadD)
and degradation (fadE, fadAB) genes occurs from different operons, which allows for differential

regulation of each of these pathways.

FadR also activates the expression of ICIR, a TF which represses expression of the
glyoxylate shunt operon aceBAK (Gui et al., 1996). Since degradation of FA produces only two
carbon unit molecules of acetyl-CoA, bypass of the oxidation steps in the TCA cycle is required
to direct carbon towards gluconeogenesis and biomass production, which is performed by the
glyoxylate shunt enzymes AceB and AceA (Dolan and Welch, 2018). Acyl-CoAs activate
expression of the glyoxylate shunt via FadR and IcIR, which prepares the central metabolism for

increased acetyl-CoA concentrations. Thus, FadR not only regulates FA degradation directly, but
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also coordinates central metabolism for incorporation of FA into biomass (Clark and Cronan,

2005).

1.4.2 FadR as a Global Regulator in Response to Exogenous FA
As a transcriptional regulator, FadR has many unique regulatory activities beyond

controlling expression of FA degradation pathways. First, FadR also acts global activator of FA
biosynthesis (Campbell and Cronan, 2001). FA operator sites have been identified in all FA
biosynthesis genes (My et al., 2015). FadR activation of these genes occurs when FadR is bound
to the operator site, but this binding is again antagonized by acyl-CoAs. In this way, FadR acts as
a global switch between FA biosynthesis in the absence of exogenous FAs, to FA degradation in
the presence of FAs (Cronan and Subrahmanyam, 1998). Overexpression of FadR upregulates
many FA biosynthesis genes, leading to an increase in total FA biosynthesis (Zhang et al., 2012b).
Overexpression of FadR more strongly upregulates expression of fabB and fabF, which are
involved in unsaturated FA biosynthesis, than other FA biosynthesis genes, leading to an increase
in the fraction of unsaturated FAs in the cell membrane (Zhang et al., 2012b). Additionally,
deletions of FadR strongly reduce the expression of fabA, another gene involved in unsaturated
FA biosynthesis, and reduce the overall fraction of unsaturated FAs in the membrane (Nunn et al.,
1983; Henry and Cronan, 1991). Thus, FadR also plays a role in regulating the ratio of saturated
to unsaturated FAs in the membrane through its differential regulation of FA biosynthesis genes

(DiRusso et al., 1999; My et al., 2015).

Interestingly, FadR has also been shown to repress the universal stress protein uspA
(Farewell et al., 1996). While the function of UspA is unknown, it is strongly upregulated under
stress conditions including starvation of nutrients and addition of toxic agents like heavy metals,
oxidants, acids, and antibiotics (Nystrom and Neidhardt, 1992). Addition of extracellular FA
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increases UspA expression during exponential growth, but the role of UspA in FA metabolism is
not known (Cronan and Subrahmanyam, 1998). But given this evidence, FadR may play a role in

stress response through regulation of uspA.

More recently, FadR has been discovered as a regulator of pathogenicity genes in
enterohemorrhagic E. coli (EHEC). EHEC rely on the a type Il secretion system, encoded in the
Locus of Enterocyte Effacement (LEE), to colonize the human intestine (Hartland et al., 2002).
Screening a library of E. coli TF knockouts transformed with the LEE pathways revealed that FadR
acts as a repressor of the LEE pathway, potentially through repression of LEE1 which is a activator
of the other pathogenicity genes (Pifer et al., 2018). Further work on this pathway demonstrated
that FadR more likely acts as an activator of LEE, not a repressor, and that expression from the
LEE locus is reduced by the presence of exogenous FA (Ellermann et al., 2021). These regulations
by FadR partially coordinate bacterial virulence in response to the host metabolism and to disease

progression, establishing another major role of FadR regulation in E. coli.

These diverse regulatory roles of FadR make it a unique global regulator of FA
degradation, biosynthesis, stress response, and virulence in E. coli. At the core of these regulations
is the metabolite uptake positive feedback loop architecture, which allows coordination of these
functions with the presence of exogenous FAs. Although this core architecture is similar to other
pathways found in E. coli, the necessity of coordinating these multiple functions through a single
regulatory may place unique constraints on the dynamics of the control system. Thus,
understanding the control of metabolite dynamics and heterogeneity in the FA uptake and
degradation system is a critical, yet unexplored, step in understanding the multi-pathway dynamic

response of E. coli to FAs in its environment.
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1.5 Dissertation Overview

This primary objective of this dissertation is to elucidate how the architecture and
parameters of a MRTF-based metabolic control system impact the metabolite dynamics and
heterogeneity in response to fluctuating and diverse metabolic environments. This dissertation
focuses on the metabolite uptake positive feedback loop, a common architecture employed for the
uptake of many metabolites in E. coli. The FA uptake system is studied as a representative
example, due to its biological importance in controlling multiple beyond FA degradation,

including FA biosynthesis, stress response, and E. coli virulence.

In Chapter 2, we examine how regulatory architecture and parameters of the FA uptake
control system contribute to accelerating pathway recovery after extracellular FA is depleted. Fast
recovery of nutrient degradation pathways after nutrient depletion is generally beneficial to cell
survival by preventing waste of metabolic resources. We demonstrate that fast recovery can be
achieved by rapid release of transcription factor from a metabolite-sequestered complex. This
release depends on the rate of metabolite consumption and exposure time to FA. Further, we
construct strains with re-wired architecture and demonstrate the benefits of negative autoregulation

in controlling recovery time and overall resource usage.

In Chapter 3, we explore how changes in growth rate affect the minimum output, maximum
output, and dynamic range of a MRTF-based biosensor. High dynamic range is a critical parameter
in many biosensing applications to achieve good external control of metabolic pathways. We
develop a kinetic model to explore how tuning the parameters of the biosensor impact the dynamic

range growth rate dependence and find that there is strong coupling between the dynamic range
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and its growth rate dependence. Additionally, we find that the transport and enzymatic catalysis

mechanisms of the metabolite inducer shape the dynamic range-growth rate dependence.

In Chapter 4, we examine to role of positive feedback in the FA uptake control system in
contributing to B-lactam tolerance in response to sudden nutrient shifts from gluconeogenic carbon
to FA. Tolerance to antibiotics can be problematic in the treatment of microbial infections and can
lead to the rise of antibiotic resistance. We find that cells exhibit a transient antibiotic tolerance
after the switch and that the length of this transient tolerance is correlated with the time it takes to
the accumulation of FadD enzymes. Thus, our results show that positive feedback in metabolism
is not sufficient to trigger persistence but can instead controls the period of antibiotic tolerance

after a nutrient shift.

Finally, in Chapter 5 the conclusions of this dissertation are summarized and possible
future directions for research efforts in understanding and designing metabolic control systems are
explored. Taken together, this dissertation provides a significant advance in understanding how
microbes control metabolite dynamics and heterogeneity in the face of several kinds of
environmental fluctuation. These advances expand our ability to design new metabolic control
systems for use in metabolic engineering and synthetic biology applications, as well as deepen our

knowledge of E. coli response to extracellular nutrients and FAs.
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Chapter 2 Abstract

Microbes adapt their metabolism to take advantage of nutrients in their environment. Such
adaptations control specific metabolic pathways to match energetic demands with nutrient
availability. Upon depletion of nutrients, rapid pathway recovery is key to release cellular
resources required for survival in the new nutritional condition. Yet little is known about the
regulatory strategies that microbes employ to accelerate pathway recovery in response to nutrient
depletion. Using the fatty acid catabolic pathway in Escherichia coli, here we show that fast
recovery can be achieved by rapid release of a transcriptional regulator from a metabolite-
sequestered complex. With a combination of mathematical modelling and experiments, we show
that recovery dynamics depend critically on the rate of metabolite consumption and the exposure
time to nutrient. We constructed strains with re-wired transcriptional regulatory architectures that
highlight the metabolic benefits of negative autoregulation over constitutive and positive

autoregulation. Our results have wide-ranging implications for our understanding dynamic
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metabolic adaptations and guiding the design of gene circuitry for synthetic biology and metabolic

engineering.

2.1 Introduction

Bacteria constantly adapt to changing environments by coordinating multiple levels of their
intracellular machinery. Metabolic regulation provides a control layer that adapts catabolic activity
to nutritional conditions. Such regulation relies on a complex interplay between gene expression
and metabolic pathways (Piazza et al., 2018). In the case of catabolic pathways, genes for nutrient
uptake and consumption need to be upregulated when the specific nutrient is available in the
environment. Failure to quickly increase pathway capacity may result in missed metabolic resource
opportunity and a potential cost on fitness (Lambert et al., 2014) and population survival (Amato
et al., 2013; Kotte et al., 2014; Solopova et al., 2014). Conversely, upon nutrient depletion, the
expression of catabolic enzymes is wasteful and leads to a suboptimal use of biosynthetic resources

(Dekel and Alon, 2005; Kalisky et al., 2007).

Metabolite-responsive transcription factors are a widespread regulatory mechanism in
microbes. Upon sensing nutrient availability, they trigger changes in enzyme expression and
metabolic flux (Kotte et al., 2010). This strategy has been shown to control the dynamics of
pathway upregulation in various ways (Alon, 2007; Chin et al., 2008; Chubukov et al., 2012). For
example, negative autoregulation of transcription factors can speed the response time of gene
expression (Rosenfeld et al.,, 2002) and feedback circuits based on metabolite-responsive
transcription factors have been demonstrated to accelerate metabolite responses (Liu and Zhang,

2018). While much of the literature has focused on the control of activation dynamics upon nutrient
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induction, little is known on how these regulatory mechanisms shape pathway recovery after

depletion of nutrients.

Here we study a common regulatory architecture found in over a dozen bacterial nutrient
uptake systems (Keseler et al., 2017) (Figure 2.1A; see also Appendix A, Table A.1). When a
nutrient is absent from the environment, a metabolite-responsive transcription factor (MRTF)
represses the expression of uptake and catabolic enzymes. When the nutrient is present, the nutrient
is internalized and sequesters the transcription factor via reversible binding, thus preventing gene
repression. This causes an upregulation of metabolic enzyme genes and an increase in the rate of
nutrient import and utilization. A common feature of these control systems is the presence of
negative autoregulation of the transcription factor (Appendix A, Table A.1). After nutrient
depletion, the MRTF must recover its repressive activity on the catabolic pathway genes to rapidly
shut down pathway activity, yet it is unclear what components of the regulatory system help to

accelerate the recovery dynamics.

Using the Escherichia coli fatty acid catabolic pathway as a model system, we took a
theoretical-experimental approach to study its recovery dynamics in response to a nutrient shift
from an ON state to an OFF state. As illustrated in Figure 2.1B, these two states are defined as an
environment with and without the presence of oleic acid as carbon source, respectively. In the ON
state, oleic acid is imported as fatty acyl-Coenzyme A (acyl-CoA) which binds to the transcription
factor FadR and sequesters it into a complex. This acyl-CoA sequestration releases FadR from its
cognate DNA elements (Cronan, 1997), which relieves the repression of the uptake gene fadD and
thus accelerates the import of oleic acid. We found that upon depletion of oleic acid, repression by
FadR is recovered via its rapid release from the sequestered complex, which in turn is driven by

consumption of acyl-CoA. We further found that the architecture of FadR autoregulation affects

41



the maintenance of a sequestered pool of FadR. In particular, negative autoregulation enables a
large sequestered-transcription factor (TF) pool during the ON state and, at the same time, a
reduced biosynthetic cost in the OFF state. Our results shed light on the regulatory mechanisms
that allow cells to rapidly adapt to environmental shifts and provide insights for the design of gene
circuits in synthetic biology and metabolic engineering, where strain performance is sensitive to

nutrient fluctuations and inhomogeneities typical of large-scale fermentations.
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Figure 2.1. General architecture of a bacterial nutrient uptake system. (A) Regulation of
nutrient uptake by a metabolite-responsive transcription factor, a ubiquitously observed control
system in bacteria (Table A.1). (B) We use the Escherichia coli fatty acid uptake as a model
system. The ON state is defined by induction at a constant level of oleic acid, which is imported
as acyl-CoA by uptake enzyme FadD. Acyl-CoA sequesters the transcription factor FadR, which
derepresses expression of the uptake enzyme. The OFF state is defined by the washout of oleic
acid after some time (to) in the ON state. The release of sequestered FadR recovers its repression
on FadD synthesis. FadR is also subject to negative autoregulation. (C) Schematic of the
experiments and simulations in this work, with defined exposure time to oleic acid (green area)
and with recovery time of FadD levels in the OFF state (ts0) defined as the time to reach to halfway
between the maximum and minimum concentrations.
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2.2 Results

2.2.1 Recovery Dynamics in the Fatty Acid Uptake System
To study the recovery dynamics of fatty acid uptake, we built a kinetic model based on

four core components of the regulatory system: FadD (D), free FadR (R), acyl-CoA (A) and
sequestered FadR (aR). The model represents cells growing at a fixed growth rate with oleic acid
at a fixed concentration in the media. We simulated the recovery dynamics by mimicking the three
stages in our experimental setup: preculture without oleic acid, response to induction in the ON
state, and recovery in the OFF state. During preculture, we ran the model to steady state in the
absence of oleic acid and then initiated simulations of the ON state from the steady state achieved
in preculture, with a fixed concentration of oleic acid for a defined exposure time. The
concentrations achieved at the end of the ON state were used as initial conditions for the OFF state,
which was simulated without oleic acid until the system recovers to the steady state in preculture

(Figure 2.1C).

We defined two metrics to quantify the recovery dynamics after the switch from ON to
OFF state (Figure 2.1C). First, we define the recovery time as the time taken for FadD to decrease
to halfway between its maximum and minimum steady-state value after nutrient depletion (zso)
(Figure 2.1C). Second, we defined the metric # as the proportion of free FadR released from the

sequestered complex after one doubling time, shown in equation 2.1:

_ FadRpr — FadRpr_new (Eq. 2.1)
= FadRpr
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where FadRpr and FadRpr-new are the concentrations of free FadR and newly expressed FadR in
the OFF state after one doubling time (DT). This definition allows us to quantify the contribution

of free FadR released from the sequestered pool to the recovery dynamics.

Since pathway recovery depends on the system state at the time of the ON to OFF switch,
we used the kinetic model to study the relation between the initial conditions at the time of the
switch and the recovery dynamics. To this end, we studied the impact of exposure time to oleic
acid during the ON state, as well as the amount of acyl-CoA-consuming enzyme. We simulated
the OFF-state dynamics for 2,500 combinations of 50 acyl-CoA-consuming enzyme
concentrations and 50 exposure times, and calculated zso and # for each. The simulation results of
the OFF-state dynamics (Figure 2.2A) suggest that the 750 decreases with increasing concentrations
of consuming enzyme, while the amount of released FadR (#) increases with both the consuming
enzyme and the exposure time. Further simulations suggest that when exposure time increases, the
pool of acyl-CoA accumulates further, with a rise time from 8.5 to 10 h, for levels of consuming
enzyme from 100 uM and 6 uM (Appendix A, Figure A.2B). This larger pool takes a longer time
to be consumed in the OFF state (Appendix A, Figure A.2A) and so delays the release of FadR
from the complex. This results in a longer recovery time (details in Appendix A, Section A.3 and
Figure A.2). Model simulations also reveal a strong inverse relation between zso and # (Figure
2.2B), indicating that the release of FadR from sequestration by acyl-CoA provides a mechanism
for cells to achieve rapid recovery during nutrient depletion. Further, the sensitivity of this inverse
relation increases when cells are exposed to a longer ON state. Simulations show that longer cell
exposure times to oleic acid increase the pool of sequestered FadR (Appendix A, Figure A.2).
Consequently, in the OFF state, more FadR can be released from sequestration than with new FadR

synthesis, thus increasing the sensitivity of zso changes in the amount of released FadR.
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Figure 2.2. Nutrient exposure time and speed of metabolite consumption in the OFF state
shape the recovery time. (A) Predicted recovery time (zs0) and proportion of free FadR released
from sequestration after one doubling time (7) for variations in the amount of consuming enzyme
and nutrient exposure time. (B) Inverse relation between the proportion of released FadR (7) and
predicted recovery time. (C) Simulated time course of FadD concentration in OFF state and
predicted recovery times for increasing concentration of acyl-CoA consuming enzyme. (D)
Measured time course of fadD expression when switching from ON to OFF state for strains with
low (AfadE mutant reporter) and high (WT reporter) concentration of acyl-CoA consuming
enzyme. Strains were switched from M9G plus 1 mM oleic acid to M9G media at time zero. Error
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bars represent standard error of the mean (SEM) of the results from biological triplicates (n = 3).
Recovery times were calculated from exponential fits to each of the triplicate time course data
(inset). Error bars represent SEM of the results from biological triplicates (n = 3). (E) Time course
simulations of FadD induction and recovery dynamics, and predicted recovery times, for
increasing exposure times. (F) Measured time course of fadD expression from the WT reporter
strain grown for 3, 6 and 9 hours of exposure to oleic acid (M9G plus 1 mM oleic acid) and then
switched to an OFF state (M9G). Error bars represent the SEM of the results from biological
triplicates (n = 3). Recovery times were again calculated from exponential fits, with error bars
indicating the SEM of the results from triplicate (n = 3).

To verify the model predictions, we sought to experimentally perturb # through two
complementary strategies, as follows: (i) by engineering strains with different amounts of acyl-
CoA consuming enzymes, and (ii) by manipulating the exposure time to oleic acid. We first
constructed a reporter strain with a decreased rate of consumption of acyl-CoA, the AfadE mutant
reporter strains (see Appendix A, Table A.4 and Table A.5), where we deleted the fadE gene
encoding the second step of the fatty acid B-oxidation pathway. This prevents metabolization of
acyl-CoA by B-oxidation and leaves membrane incorporation (catalyzed by enzyme PIsB) as the
only pathway for acyl-CoA consumption. We measured fadD expression dynamics after switching
the strains from the ON state (M9G + 1mM oleic acid media) to OFF state (M9G media) using a
red fluorescent protein (RFP) reporter fused downstream of the fadD promoter. The fadE knockout
strain displayed a slower recovery than the wild type, with ~60% increase in recovery time (Figure
2.2D), confirming our theoretical prediction shown in Figure 2.2C. The measured increase in
recovery time entails an increased expenditure of biosynthetic resources to import a metabolite

that is no longer present in the environment.

Next, we measured the fadD recovery dynamics after switching the cultures from growth

with 3, 6, and 9 hours of exposure time in the ON state. As predicted from the model in Figure
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2.2E, the measured recovery time decreased for an increase in exposure time (Figure 2.2F).
However, we observe that recovery time is not decreased further beyond 6 hours of exposure to
oleic acid. We speculate that faster recovery is counteracted by the delay of having to consume a
higher level of accumulated acyl-CoA, or because the maximum level of sequestered FadR may

already have been achieved at 6 hours.

2.2.2 Impact of Autoregulatory Architecture on Recovery Dynamics
Among the uptake systems in E. coli with the architecture of Figure 2.1A, we found that

the majority have a transcriptional regulator that represses its own expression, few systems have
constitutive expression of the regulator, and no systems display positive autoregulation (see
Appendix A, Table A.1). To better understand the salient features of each regulatory architecture
and how they affect recovery dynamics, we built variants of our kinetic model with FadR under
constitutive expression and positive or negative autoregulation (details in 2.4 Materials and
Methods). Simulations of the recovery dynamics in the OFF state for varying exposure times in
the ON state suggest that these architectures behave similarly for short exposure times (< 1 hour),
quickly sequestering all the free FadR (Figure 2.3A, top). For longer exposure times (>1 hour),
model simulations suggest important differences in the dynamics of sequestered FadR among the
various modes of autoregulation. Negative autoregulation shows an accumulation of sequestered
FadR, while positive autoregulation leads to an overall depletion of sequestered FadR. Constitutive

expression causes the total level of FadR to be maintained at a constant level (Figure 2.3A).

To elucidate whether these predicted trends are a consequence of the model parameters or are
inherently determined by the autoregulatory architecture, we analyzed the model and found
relations for the change in steady-state concentrations of total FadR (AR7) in each autoregulatory
architecture (the details of derivation are in Appendix A, Section A.5), as follows: negative
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autoregulation ARt > 0; positive autoregulation ARt < 0; constitutive expression, ARt = 0. These

relationships are valid for any combination of positive parameters, and therefore, the long-term

trends observed in Figure 2.3A are structural properties of the model.

To determine the effect of the three regulatory architectures on the recovery time, we
simulated the recovery dynamics of each architecture for various exposure times and calculated
the recovery time (Figure 2.3A, bottom). We observe that the overall relation between recovery
time and exposure time is similar across the three architectures (Figure 2.3A bottom inset).
However, for positive autoregulation, we found recovery to be significantly slower for a wide
range of exposure times. To test this prediction, we engineered an E. coli strain with positively
autoregulated FadR expression by replacing the native fadR promoter with one that activated by
FadR (Pradrpo) (see Appendix A, Section A.6, Table A.4), and a Pr.dp reporter plasmid. The
positively autoregulated reporter strain (PA reporter) (Appendix A, Section A.6, Tables A.5, A.6)
was grown in the ON state (M9G medium plus 1 mM oleic acid) and then rapidly switched to the
OFF state (M9G medium) after 3, 6 and 9 hours. We measured the fadD expression dynamics (see
time course dynamics in Appendix A, Section A.6, Figure A.3), and calculated the respective
recovery times (Figure 2.3B). Consistent with the trend predicted from the model, the recovery
times for the positively autoregulated strain increased with the exposure time to oleic acid in the

ON state (Figure 2.3C).
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Figure 2.3. Impact of regulatory architecture on the recovery time after nutrient depletion.
(A) Top, simulated steady-state concentrations of sequestered (thick line) and total (thin line) FadR
for various times spent in the ON state for three regulatory architectures of FadR; constitutive
expression (black line) is represented by a blunt line. Bottom, predicted recovery times for each
architecture. (B) Measured recovery times in the WT (WT reporter) and positively autoregulated
strain (PA reporter), (Appendix A, Tables A.3B and A.4) for 3, 6 and 9 hours of exposure in ON
state. Recovery times were calculated from exponential fits to each of the triplicate time course
data (see Appendix A, Section A.6 and Figure A.3), and error bars represent SEM of the calculated
values (n=3). (C) Schematics illustrating how negative and positive autoregulation affect the build-
up of sequestered FadR in the ON state.

2.2.3 Negative Autoregulation Provides a Resource-Saving Recovery Strategy
The results from the above-described autoregulation relationship suggest that constitutive

expression and negative autoregulation can both maintain large amounts of sequestered FadR for
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long exposure times to oleic acid. Our earlier results showed that longer exposure times lead to
larger pool of sequestered FadR (Appendix A, Figure A.2D), which enables a faster recovery time
(Figure 2.2E and 2.2F). We thus asked which system parameters influence the steady-state pool
size of sequestered FadR in these two architectures. We found that for high concentrations of oleic
acid, the steady-state concentration of sequestered FadR in the ON state is given by Equations 2.2

and 2.3 (details in Appendix A, Section A.7):

Negative autoregulation: limaR = CL—” (Eg.2.2)
Constitutive expression: limaR = % (Eq. 2.3)

where A and aR are the steady-state concentrations of acyl-CoA and sequestered FadR,
respectively, and an and p¢ are the promoter strengths in each case. These results suggest that at
high oleic acid concentrations, the amount of sequestered FadR scales linearly with the strength of
its own promoter. In simulations of both architectures in the ON state induced with high
concentration of oleic acid (1 mM) and various promoter strengths, we found that increasing
promoter strength both increases the amount of sequestered FadR in the ON state and decreases

the recovery time (Figure 2.4A).

The results in Figure 2.4A also suggest that through tuning of fadR promoter strength, in
principle, constitutive expression and negative autoregulation can produce the same recovery time.
We thus sought to identify potential benefits of one architecture over the other in terms of the
recovery dynamics in the OFF state. Since production of FadR entails a biosynthetic cost, we
compared both regulatory architectures in terms of the cost of FadR synthesis. From time course
simulations of FadR synthesis rates in the ON and OFF states (Figure 2.4B), we computed the total

amount of synthesized FadR for increasing fadR promoter strengths by integrating the area under
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the curves (Figure 2.4C). Our results show that both architectures require identical biosynthetic
costs for FadR in the ON state, but negative autoregulation leads to a reduced biosynthetic cost for

FadR in the OFF state compared to constitutive expression (Figure 2.4C).
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Figure 2.4. Comparison of recovery dynamics in constitutive expression and negative
autoregulation. (A) Simulated recovery times for variations in the strength of FadR’s own
promoter, with the two architectures achieving the same recovery times. (B) Time course
simulations of FadR synthesis rates for 48 hours in the ON state (1 mM oleic acid) and OFF state,
for increasing promoter strengths; the yellow curve represents the response with the fitted promoter
strength value (Appendix A, Table A.2). To ensure fair comparison, promoter strengths were
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chosen to achieve the same recovery time in the two architectures. (C) Cost of FadR synthesis for
increasing concentrations of sequestered FadR, modified by changes to fadR promoter strength.
Circles correspond to costs associated to simulations shown in (B). Details of the simulations are
in Section 2.4 Materials and Methods.

2.3 Discussion

In this paper, we combined mathematical modelling and experiments to study metabolic
pathway recovery upon depletion of a nutrient. Changes in nutrient conditions trigger
transcriptional programs that adapt cell physiology (Chubukov et al., 2014) to meet the cellular
energy budget (WeiRe et al., 2015). We chose the regulation of fatty acid uptake in E. coli as our
model system, as it was representative of a widely conserved transcriptional program for
controlling the uptake of nutrients in bacteria (see Appendix A, Table A.1). We show that fast
recovery after nutrient depletion can be achieved by rapid release of a transcriptional regulator
from a metabolite-sequestered complex. In particular, a sizable contribution of FadR rapidly made
available after oleic acid depletion came from its release from its sequestered complex form (aR),
as opposed to new synthesis. The rapid availability of FadR quickly recovers its inhibition on the
fad regulon and so shortens the recovery time. Furthermore, our model simulations and
experiments have demonstrated that increasing the amount of FadR stored in complex form during
nutrient exposure and fast consumption of acyl-CoA (the sequestering metabolite) facilitate a

speedy recovery in the OFF state.

Our model simulations show that pathway recovery is delayed by high intracellular acyl-
CoA concentrations, which slow the release of free FadR from stored complex until those high

concentrations are reduced. This delay occurs because FadR is only able to sense the intracellular
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metabolite concentrations, which can remain high even when extracellular metabolite
concentrations are low. During this delay, wasteful expression of the uptake pathway continues
despite the absence of oleic acid in the environment. Previous research has shown that upon
nutrient induction, metabolite dynamics tend to lag behind slow upregulation of metabolic
enzymes (Liu and Zhang, 2018). In contrast, here we find that after inducer depletion, the recovery
of metabolic enzymes back to their downregulated state lags behind the metabolite dynamics. This
has important implications for designing synthetic control circuits which utilize non-metabolizable
inducers  such as  isopropyl-B-D-thiogalactopyranoside  (IPTG) or  methyl-B-D-
thiogalactopyranoside (TMG). Without consumption of the inducer, the postinduction recovery
response will be slow and may cause a dramatic drain of cellular resources. Our simulations of the
relation between sequestered FadR and recovery time suggest that this inherent lag can be
compensated for by storing and releasing higher amounts of TFs, which highlights the benefits of

maintaining a sequestered pool of FadR.

Further mathematical analyses revealed principles that explain how autoregulation shapes the
recovery time. We found that systems with only negative autoregulation and constitutive
expression can maintain the pool of sequestered FadR needed for a rapid recovery. In contrast, we
found that positive autoregulation loses this storage over time, resulting in a reduced availability
of FadR after nutrient depletion and slower recovery times. We additionally found that negative
autoregulation of the transcription factor reduces the total biosynthetic cost of for FadR in a full
ON-OFF-state cycle as compared to using constitutive expression. This occurs because both
systems need to maintain the same level of sequestered FadR in the ON state in order to achieve
the same recovery time, but only negative autoregulation allows FadR synthesis to be

downregulated in the OFF state. Thus, negative autoregulation provides a resource-saving strategy
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for controlling the recovery dynamics compared to constitutive expression. We found that the
transcriptional regulators in 13 out of 18 nutrient uptake systems have negative autoregulation (see
Appendix A, Table A.1), suggesting an evolutionary pressure for a resource-saving control
strategy. Past studies in the literature have found that expression under negative autoregulation can
decrease response times in gene expression (Rosenfeld et al., 2002), linearize dose-response in
responsive systems (Madar et al., 2011), and even speed up metabolic dynamics (Liu and Zhang,
2018). In addition to these properties, we find that negative autoregulation enables rapid and more

resource-saving metabolic recovery to nutrient depletion.

Recent efforts in synthetic biology focus on engineering gene control circuits to manipulate
microbial metabolism (Gupta et al., 2017a; Liu et al., 2018; Lv et al., 2019). One key goal of such
control systems is to rapidly turn off metabolic pathways in response to metabolic signals (Gupta
et al., 2017b; Harder et al., 2018; Moser et al., 2018). Our results provide core design principles
for engineered metabolic systems with tunable response to nutrient depletions, which could be
used as a pathway control tool in bioreactors. Our experiments and simulations reveal that the
recovery time can be simply tuned through well-established promoter engineering techniques
(Alper et al., 2005; Zhang et al., 2012; Mannan et al., 2017). Further, we identify regulatory
architectures with differing dynamic responses to nutrient depletion, which provides further
avenues for tuning system response to the highly dynamic and heterogeneous environments typical
of large-scale fermenters. These design rules can be readily applied to mitigate against deleterious

nutrient fluctuations found in metabolic engineering applications.
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2.4 Materials and Methods

2.4.1 Materials
Phusion DNA polymerase, T4 DNA ligase, restriction enzymes, and Teknova 5x M9

minimal salts were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Gel
purification and plasmid miniprep kits were purchased from iNtRON Biotechnology (Lynnwood,
WA, USA.). Oligonucleotides were synthesized by Integrated DNA Technologies (Coralville, 1A,

USA). All other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA.)

2.4.2 Plasmids, Strains, and Genome Modifications
A list of plasmids used along with promoter sequences in this study is provided in

Appendix A, Section A.4, Tables A.4 and A.5). E. coli DH10p was used for plasmid construction.
The plasmid pSfadDk-rfp was constructed by cloning the fadD promoter (500 bp upstream of its
translation start site) into the 5’ of a rfp gene in a BglBrick vector, pBbSk-rfp (Lee et al., 2011)
using Golden Gate DNA Assembly (Engler et al., 2008). The positively autoregulated fadR strain
was engineered by replacing fadR’s native promoter with a FadR-activated promoter Pragrpo Via
CRISPR-Cas9 genome editing (Jiang et al., 2015). Detailed engineering methods and the

characterization of the Pradrpo promoter are described in Appendix A Section A.6.

Three reporter strains were created to measure expression dynamics from the fadD promoter.
These strains were created by transforming plasmid pSfadDk-rfp into either the wild-type DH1
strain, DH1(AfadE), or an engineered strain with positively autoregulated fadR, resulting in wild-

type (WT) reporter, AfadE mutant reporter, and PA reporter, respectively.

2.4.3 Media Conditions
All strains were grown from single colonies and cultivated overnight in Luria-Bertani (LB)

medium before experiments. For OFF State culture conditions, cells were grown in M9 minimal
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medium (Liu et al., 2015) supplemented with 1% glycerol and 0.5% Tergitol NP-40 solution
(M9G). For ON state culture conditions, cells were grown in M9G plus 1 mM oleic acid
(M9G+OA). All cultures were supplemented with appropriate antibiotic selection (50 mg/L

kanamycin, 100 mg/L ampicillin).

2.4.4 Assays of fadD Expression Dynamics
To measure the recovery dynamics, reporter strains were grown in 3 mL M9G+OA for 24

to 48 hours at exponential-growth state. To rapidly switch nutrients, cells were centrifuged (5,500
relative centrifugal force [rcf], 2 minutes) and washed twice in M9G. Cultures were then diluted
in M9G medium to an optical density at 600 nm (ODeoo) of 0.08 and transferred to a Falcon 96-
Well imaging microplate (Corning, NY, USA). The microplate was then incubated in an Infinite
F200 Pro plate reader (Tecan, Mannedorf, Switzerland) at 37°C with constant shaking. To
maintain exponential growth during measurement, cultures were diluted by a factor of 5 for three
times during incubation. Kinetic measurements of cell density (absorbance at 600 nm) and RFP
fluorescence (excitation: 584 + 9 nm, emission: 620 + 20 nm) were taken every 900 seconds until
all diluted cultures reached stationary phase. Fluorescence from water in the same 96-well plate
was used as the background and was subtracted from all fluorescence measurements. The
background-corrected fluorescence was later normalized by cell density. To calculate the recovery
time, the average of three biological replicates were fitted to an exponential curve, shown in

equation 2.4:

F=aXx e+ (Eq. 2.4)
where F is the background-corrected, cell-density-normalized fluorescence. The recovery time

was calculated as zs0 = In(2)/b.
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For switches after defined times in the ON state, cultures were first grown in exponential
growth phase for 24 to 28 hours in M9G. Samples from these cultures were then centrifuged (5,500
rcf, 2 minutes) and suspended in M9G+OA with an initial ODggo of 0.08 and cultivated in 96-well

plates for various amount of time as indicated.

2.4.5 Kinetic Model of Fatty Acid Uptake
To study the system dynamic response to oleic acid exposure (ON state) and its recovery

(OFF state) (Figure 2.1C), we built a kinetic model of the fatty acid uptake system. We define the
model as a system of ordinary differential equations (ODEs) describing the rate of change of each

species, shown in equations 2.5 to 2.8:

dR Eq. 2.
EzPR(R,pr)—kf-R-A2+kr-aR—u-R (. 2.5)
dD ap
= b  _,.D Eq. 2.6
it Pt Ty, B2 M (Eq. 2.6)
dA _ kcat,D'OA kcat,B'A 2
dt = Kyp+ 04 Kop + A B—2-(kf-R-A*+k,-aR)—pu  (Eq.2.7)
<A
daR
W=kf-R-A2—kr-aR—,u-aR (Eq28)

where R, D, A and aR represent the concentrations of transcription factor FadR, uptake enzyme
FadD, internalized fatty acid acyl-CoA, and sequestered complex acyl-CoA-FadR, respectively
(Figure 2.1B). The reversible sequestering of one FadR dimer by two acyl-CoA molecules
(stoichiometry as defined in (van Aalten et al., 2000)) is modeled as mass-action Kkinetics in the
term ksRA? — k,aR. The term Pr(R, p,) represents the expression and autoregulation of the fadR

promoter. To model FadR negative autoregulation for the wild-type strain, we use equation 2.9:
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Prn bn+1+Kn~R

To fit model parameters, we first extended the model to emulate batch culture experiments
and then used least-squares fitting of simulations to time course measurements of RFP
fluorescence expressed under an fadD promoter, from the AfadE mutant strain, in various
concentrations of oleic acid (see details in Appendix A, Section A.2 and Table A.2). The fitting
results are illustrated in Figure A.1, and the parameter values are reported in Table A.2B. These
values were used throughout the study, unless otherwise stated. To understand the impact of model
parameters on the recovery time, we performed global parameter sensitivity analysis (details in
Appendix A, Section A.7 and Figure A.4). To model the strains with positive autoregulation and

constitutive expression of FadR, we use equations 2.10 and 2.11:

p —p 4 KR (Eq. 2.10)
Re =P T14+K,-R
Pre = Pc (Eq. 2.11)

2.4.6 Model Simulations
The model was solved with the MATLAB R2018a ODE solver suite. To simulate the ON

state, simulations were initialized using the steady-state values achieved from simulations of the
preculture (oleic acid [OA] concentration 0 uM), and a constant oleic acid concentration was set
to 1,000 M. Simulations were then run for a defined exposure time. To simulate the OFF state,
the system was initialized from the state achieved at the end of the ON state, and the oleic acid
concentration was set to 0 uM. Simulations were then run to steady state, and recovery times were

calculated as the time from the start of the OFF state until FadD reached halfway between its initial
58



value and minimum steady-state value. To calculate the cost of FadR synthesis in the ON and OFF
states (Figure 2.4C), we integrated simulations of the FadR synthesis rate over 48 hours in each

state.

In Figure 2.3, for fair comparison, model parameters are set such that the steady-state
concentration of FadR is the same for all three architectures prior to switching to the ON state.
Likewise, in Figure 2.4B and 2.4C for fair comparison, fadR promoter strengths for both
architectures were set to achieve same concentration of sequestered FadR in the ON state (and thus

equal recovery times).

2.5 Supplemental Information

Table A.1- A.6, Figures A.1-A.4, and Appendix Sections A.1-A.9 can be found in Appendix A.
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Chapter 3: The Growth Dependent Design Constraints of
Transcription-Factor-Based Metabolite Biosensors

This chapter contains text and figures published as:

Hartline C.J., Zhang, F. (2022). The growth dependent design constraints of transcription-factor-
based metabolite biosensors. ACS Synth. Biol. doi: 10.1021/acssynbio.2c00143

Reprinted with permission.

Chapter 3 Abstract

Metabolite biosensors based on metabolite-responsive transcription factors are key synthetic
biology components for sensing and precisely controlling cellular metabolism. Biosensors are
often designed under laboratory conditions but are deployed in applications where cellular growth
rate differs drastically from its initial characterization. Here we asked how growth rate impacts the
minimum and maximum biosensor outputs and the dynamic range, which are key metrics of
biosensor performance. Using Lacl, TetR, and FadR-based biosensors in Escherichia coli as
models, we find that the dynamic range of different biosensors have different growth rate
dependencies. We developed a kinetic model to explore how tuning biosensor parameters impact
the dynamic range growth rate dependence. Our modeling and experimental results revealed that
the effects to dynamic range and its growth rate dependence are often coupled, and the metabolite
transport mechanisms shape the dynamic range-growth rate response. This work provides

Systematic understanding on biosensor’s performance under different growth rates, which will be
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useful for predicting biosensor’s behavior in broad synthetic biology and metabolic engineering

applications.
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3.1 Introduction

Metabolite-responsive transcription factor (MRTF)-based biosensors have broad
applications in synthetic biology and metabolic engineering, ranging from metabolic detection
(Layton et al., 1998; Xu et al., 2013; Rogers and Church, 2016; Xiao et al., 2017) screening and
selecting for high-metabolite-producing strains (Raman et al., 2014; Cheng et al., 2018; Bentley
et al., 2020), dynamic metabolic control (Liu et al., 2015b; Schmitz et al., 2017; Liang et al., 2020;
Wau et al., 2020; Hartline et al., 2021; Verma et al., 2022), to strain functional evolution (Chou and
Keasling, 2013; Xiao et al., 2016). Nature has evolved various MRTFs that can be harnessed to
create biosensors for a wide range of metabolites (Li et al., 2015; Liang et al., 2015; Liu et al.,
2015a; Thompson et al., 2019; Hanko et al., 2020). Protein engineering and directed evolution of
MRTF have further expanded the range of compounds which can be detected (Taylor et al., 2016;
Koch et al., 2019; Flachbart et al., 2021). Additionally, promoters regulated by MRTFs can be
engineered to tune sensitivity and dynamic range (Chen et al., 2018; Dabirian et al., 2019),
enabling precise control of biosensor’s performance (Mannan et al., 2017; Liu et al., 2018). These
biosensors can be further layered to create complex circuits (Lo et al., 2016; Zhou et al., 2021),

which require a well-defined performance for correct operation (Brophy and Voigt, 2014).

Most MRTF-based biosensors were designed and tested in well-defined laboratory
conditions using rich growth media. These biosensors were often characterized using fluorescent
proteins whose expression has little burden to growth and other cellular processes. However,
during applications, biosensors are often deployed in different growth environments and used to
control burdensome genes that affect cell growth rate. Changes in cell growth rate has been shown
to impact several cellular parameters including plasmid copy numbers (Klumpp, 2011), ribosome

concentration and mass fraction (Scott et al., 2014), transcription factor abundance and
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concentration (Schmidt et al., 2016), and gene expression rate (Klumpp et al., 2009; Klumpp and
Hwa, 2014), and average cellular volume (Volkmer and Heinemann, 2011; Taheri-Araghi et al.,
2015). Biosensor operation relies on these shared cellular resources, so changes in cell growth rate
will unavoidably affect the expression of MRTF and its regulated genes. Additionally, cell growth
dilutes all molecular components as the volume of the cell increases (Figure 3.1A), so faster growth
may lead to a net reduction in the concentration of molecules needed for biosensor operation
(Klumpp et al., 2009; Hintsche and Klumpp, 2013). Thus, when cell growth rate changes, it may
significantly alter a sensor’s behavior, leading to undesirable performance. For example, in two-
stage dynamic metabolic control, engineered microbial cells need to shift from a high-growth
phase to a low-growth production phase (Hartline et al., 2021). Biosensors used in two-stage
dynamic metabolic control have to be optimized to perform under both growth conditions (Qian

etal., 2017; Moreb et al., 2020).

Many MRTF-based biosensors, use a repressed-repressor architecture (Canton et al., 2008;
Lee et al., 2011). In this architecture, the MRTF represses gene expression from its cognate
promoter in the absence of its target metabolite, but its expression repression activity is
antagonized by the presence of a specific intracellular metabolite (Figure 3.1A). The output of a
biosensor is the steady-state expression level of the controlled gene at a particular target metabolite
concentration (Figure 3.1B). A sensor’s behavior can be characterized by its minimum output in
the absence of target metabolite, its maximum output under a saturating concentration of
extracellular target metabolite, and its dynamic range (DR) which is defined as the ratio of the
maximal increase in biosensor output relative to the its minimum output (Figure 3.1B) (Mannan
et al., 2017). In real applications, it is often desirable to keep a low minimum output to prevent

unwanted gene expression in the absence of target metabolite (Anthony et al., 2004), a high
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maximum output to reach high signal-to-noise ratios (Nevoigt et al., 2007), and a large DR.
Previous studies have shown how TF-repressed gene expression varies under different cell growth
rates (Klumpp et al., 2009), yet, little is known about how growth rate affects a biosensor’s
behavior. Experimentally characterizing biosensor’s behavior under a wide range of growth rates,
for example by growing the biosensor in medium with different nutrient conditions both with and
without the target metabolite, is labor intensive. Thus, it would be beneficial to develop
quantitative models to understand how biosensor operation is impacted by growth rate to avoid

undesirable sensor performance due to the change of growth rate.

In this work, we use three repressed-repressor type of biosensors to explore the effect of
growth rate to sensor behavior. Interestingly, we found that while all sensors displayed both
decreasing minimum and maximum outputs, the DR could have either a positive or negative
growth rate dependence. By integrating experimental data with kinetic modeling, we provide a
mathematical framework to reveal biosensor’s behavior under changing growth conditions. We
show how different parameters of the biosensor promoter and TF expression can lead to either a
positive or negative dynamic range-growth rate (DR-u) dependence. Additionally, our results
show how growth rate-dependent membrane transport mechanisms of the target metabolite shape
the overall DR-p dependence. Our model and experimental results demonstrate a coupling
between DR and sensitivity of DR to changes in growth rate for most biosensor designs, which
implies a trade-off between high DR and low sensitivity objectives. Altogether our work provides
a framework for tuning or predicting a biosensor’s behavior under varying growth conditions,

which will be useful for a wide range of biosensor applications in synthetic biology.
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Figure 3.1. Molecular components contributing to the operation of a metabolite-responsive
transcription factor (MRTF)-based biosensor. (A) Schematic of general components
contributing to overall biosensor response. Extracellular metabolite enters the cell, becoming
intracellular metabolite. Intracellular metabolite represses the DNA-binding activity of the MRTF.
The MRTF represses the biosensor’s promoter, which controls the expression of a reporter protein.
All components are universally affected by growth rate through dilution as the cell volume
expands. (B) Minimum output, maximum output, and dynamic range (DR) are critical parameters
characterizing the dose-response curve of a MRTF-based biosensor.
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3.2 Results

3.2.1 Growth Rate Dependence of Biosensor Dynamic Range
To study the relationship between sensor DR and cell growth rate of MRTF-based

biosensors, we first tested three TF-promoter systems with a repressed-repressor architecture,
TetR-Pret (Figure 3.2A), Lacl-Piacuvs (Lee et al., 2011) (Figure 3.2B), and FadR-Par (Zhang et al.,
2012a; Liu and Zhang, 2018; Hartline et al., 2020) (Figure 3.2C) that sense extracellular chemicals
anhydrotetracycline (aTc), isopropyl p-D-1-thiogalactopyranoside (IPTG), and fatty acid (FA),
respectively. All these three sensors have been commonly used for various applications (Lee et al.,
2011; Zhang et al., 2012a). For each biosensor, we used a red fluorescent protein (RFP) as a
reporter. Each biosensor construct was cloned into plasmids with the stringently regulated SC101
origin of replication to reduce copy number variation due to changes in growth rate (Klumpp,
2011; Jahn et al., 2016). Additionally, for the FA-sensor, native regulations of the fadR and fadD
genes were removed, and fadE was knocked-out to prevent FA from being used as a carbon source
for growth through B-oxidation (Hartline et al., 2020). Thus, all three target metabolites are

primarily non-metabolizable activators of the biosensor output gene.

To manipulate cellular growth rate, biosensor cells were grown in minimal medium
supplemented with different commonly-used carbon sources (You et al., 2013) including acetate,
pyruvate, glycerol, sorbitol, succinate, glycerol with amino acids, and xylose. These differing
media conditions supported a range of growth rates from 0.24-0.51 h'! (see Appendix B, Table B.3
for a summary of media conditions and growth rates). To quantify the effect of growth rate on
DR, sensor minimum and maximum outputs were measured under exponential growth phase under
different media conditions either without or with high concentrations of the target metabolites,

respectively. The target metabolite concentrations used for aTc (1000 nM) (Lee et al., 2011), IPTG
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(2 mM) (Mannan et al., 2017), and FA (4 mM) (Zhang et al., 2012a) were previously shown to
saturate the output of these biosensors. Our results show that both minimum and maximum outputs
decreased with increasing growth rate for all three sensors (Figure 3.2D, 3.2E, 3.2F). At saturated
target metabolite concentration (i.e. maximum output) a sensor’s promoter is equivalent to a strong
constitutive promoter, while in the absence of the target metabolite (i.e. minimum output), a
sensor’s promoter is equivalent to a repressor repressed promoter. Previous studies have shown
that protein concentration under the control of either a constitutive promoter or a repressor
controlled promoter decreases with increasing growth rates (Klumpp et al., 2009). Thus, our
observations are consistent with previous studies. Additionally, we observe that cell growth rates
in maximum output are always lower than in minimum output (Figure 3.2D, 3.2E, 3.2F),
suggesting growth burden from activation of these sensors, even when they were only used to
express an RFP reporter protein. These observations clearly demonstrated the influence of cell
growth rate to sensor output as well as the effect of sensor’s function to cell growth, which cannot

be ignored during biotechnology applications (Han and Zhang, 2020a, 2020b).

We next calculated the DR of each biosensor under different growth rates. Interestingly,
the aTc and IPTG sensors displayed an increasing DR with increasing growth rate (Figure 3.2G,
3.2H), while the FA sensor showed a decreased DR with increasing growth rate. Our results
showed that for aTc and IPTG sensors, although both the minimum and maximum outputs
decreased with growth rate, the minimum output decreased more rapidly than the maximum
output, thus leading to a relative increase in the ratio of the two, as quantified by the DR. In
contrast, the FA strain has a negative DR trend with increasing growth rate (Figure 3.21) because
the maximum output decreased more rapidly than the minimum output for this system. One major

difference between the aTc/IPTG biosensors, and the FA biosensors is that FA transport requires
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the protein FadD to enter the intracellular space, whereas aTc and IPTG can diffuse into the cell
(Figure 3.2A, 3.2B, 3.2C). The concentration of these transport proteins is growth-dependent,
particularly since FadD is expressed from a constitutive promoter (Klumpp et al., 2009), which
may contribute to the rapid decline in maximum biosensor output at higher growth rates. Thus,
these results suggest that although all three biosensors have the same general architecture, their

DR-u dependency are different and may be a tunable property of biosensors.
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Figure 3.2. Minimum output, maximum output, and dynamic range of Ptet, Piacuvs, and Par
biosensors at different growth rates. (A-C) Schematic of cellular interactions for the (A) TetR-
based biosensor, (B) Lacl-based biosensor and (C) FadR-based biosensor. (D-F) Minimum (top)
and maximum (bottom) output of the biosensor at different growth rates for (D) TetR, (E) Lacl,
and (F) FadR-based biosensors. (G-1) Calculated dynamic range of biosensor at different growth
rates for (G) TetR, (H) Lacl, and (I) FadR-based biosensors. Error bars are S.D. of biological
replicates, n=3. Dashed line: Line of best fit.
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To gain further insights into the different DR-p dependencies, we developed a kinetic
model to describe the intracellular concentration of the biosensor’s output protein (G) and the
intracellular concentrations of TF repressor (R) and target metabolite (M) at different growth
rates. The volumetric production rate of each species is balanced by the dilution due to cellular
volume expansion during cell growth. Additionally, transport of the target metabolite across cell
membrane via either passive transport by diffusion or enzyme-facilitated active transport were also
considered. For active transport, the concentration of protein transporters can also be affected by

dilution due to cell growth. For a detailed description of the model, see Appendix B, Section B.1.

In the absence of the target metabolite, an analytical solution can be derived to describe the

minimum output (Gmin) at steady state (see Appendix B, Section B.1.2 for details):

1
Gmin = ;(bc + =t ) (Eq. 3.1)

KG[L

where p represents cell growth rate. Parameters bg, ag, and Kg are intrinsic to the biosensor
and describe the basal expression level, the strength of activated expression, and the MRTF-
promoter dissociation constant, respectively. While the production rate of the MRTF is constant
with growth, the total concentration of MRTF (R = br / W) is decreasing due to dilution by cell
growth (see Appendix B, Section B.1.1 and B.1.2 for details). Because both the biosensor output
protein (G) and its repressor (R) are being diluted by growth, we calculate the dependence of Gmin

on W to understand the combined effect:

d _ -1 a
d_u(Gmin) - F(b(} + (1+K£’i)2> (Eq 32)
GH
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The dependence of Gmin On [ is negative for all parameter values. Thus, Gmin always
decreases with growth rate, and is consistent with our experimental observation for all three
biosensors (Figure 3.2D, 3.2E, 3.2F). The dependence of maximum output and DR on growth rate

depend on sensor parameters and are not monotonic. A biosensor’s DR can be described as:

aghbr Min
Ken (a +b +biR)(K +M +bRKR)
GTYG Kgi R In Kol

DR =

(Eq. 3.3)

where Kr represents the dissociation constant between the target metabolite and MRTF. Finally,
Min describes the intracellular target metabolite concentration which can also be a function of the
growth rate, depending on the target metabolite’s transport kinetics. To understand how the model
parameters affect the DR-u dependency, we next calculate the derivative of DR with respect to

growth rate p (ADR/d):

d

. (bGKRbR

2
M; beb b
—(ag+bg)(Kr+Miy) |+K ‘”(a +ho+-8 R)( +—R)
Kg2 12 (agtbg) (KR m)) R \ 36 b6 ) (B g,

2 2
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(Eq. 3.4)

Our modeling result suggests that depending on the parameter values of a biosensor and its
intracellular target metabolite concentration, dDR/du can be either positive (increasing with

growth rate) or negative (decreasing with growth rate), depending on the sign of S:

bGKRrbR®
Kg?u?

S =My, ( — (ag+be) (Kn+Min) ) + Ke 22 (ag b +5222) (1 + 22) (9. 35)

3.2.2 Tuning DR-u Dependence Through TF Expression

To understand how sensor parameters affect the growth dependence of Gmin, Gmax, and DR
(i.e. dDR/dp), we first targeted to the aTc-inducible sensor and tuned the production rate of the
MRTF repressor TetR (i.e. br). According to our model, both Gmin and Gmax Should decrease with

br at a fixed growth rate, regardless of other parameters (see Equation 3.1 and Appendix B,
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Equation B.12)). Experimentally, we placed TetR under the control of a constitutive promoter and
a library of RBS with different strengths to vary the TetR production rate (Figure 3.3A), while not
changing the promoter or RBS sequence of the biosensor output gene. When growing the library
of cells at a fixed growth rate (in glycerol minimal medium), both Gmin and Gmax decreased with
increasing TetR levels for 3.7- and 1.2-fold change across the library, respectively (Figure 3.3B,
3.3C), which matches our analytical model predictions (Figure 3.3E, 3.3F).Our model also shows
that Gmin is sensitive to changes in TetR production rate at low levels of TetR, while it becomes
less sensitive at higher TetR levels (Figure 3.3E), which matches our observation of high
sensitivity in Gmin to TetR expression when TetR is low (Figure 3.3B). We further observe that
under our experimental parameter regime, Gmin IS more sensitive to changes in TetR production
rate than Gmax (Figure 3.3B, 3.3C), thus affecting DR mostly by lowering the leaky expression
level and leading to an increasing DR (Figure 3.3D), consistent with model prediction (Figure
3.3G). Additionally, we fit our model to the experimentally measured TetR expression, Gmin and
Gmax (see Appendix B, Section B.2.2 for details). From the fitted model, we calculated the DR and
observed a good agreement between the model and the observed DR-TetR expression trend (R? =
0.49). Overall, these experimental observations are qualitatively consistent with numerical

simulations with increasing br values and with model fitting, thus validating our model.
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Figure 3.3. Tuning biosensor DR through changing TetR expression level at a constant
growth rate. (A) Schematic of the TetR gene used to tune TetR expression level (br). The TetR
level was varied by using a library of TetR genes with different RBS strengths. (B-D)
Experimentally measured (B) minimum biosensor output, Gmin, (C) maximum biosensor output
Gmax, and (D) dynamic range of TetR RBS library members with varying TetR expression levels.
Error bars represent S.D., n=3. RBS sequences and their corresponding TetR expression levels,
Gmin, Gmax, and DR are given in Appendix B, Table B.6. Solid line is fit of model to the
experimental data (details in Appendix B, Section B.2.2) (E-F) Numerical model simulations of
(E) minimum output, (F) maximum output, and (G) DR for different values of br. Parameter
values and ranges are given in Appendix B, Table B.1.
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We next measured how Gmin, Gmax, and DR change with growth rate under different TetR
production rate (Figure 3.4A). According to Equation 3.2, as br increases, the dependence of Gmin
on W is expected to be less negative. Experimentally, we indeed observed a less negative slope on
the Gmin-H plot with a higher TetR expression (Figure 3.4B). This result indicates that when TetR
production is insufficient (low TetR production), leaky expression becomes worse at lower growth
rates, while a high TetR production rate can make the sensor less leaky across a wide growth rate
range. The dependence of Gmax On growth rate was negative and had similar slope for low and
medium TetR production rates and a reduced slope at high TetR production rates (Figure 3.4C).
This result indicates that at high TetR expression, maximal induction may not be achieved at lower
growth rates. Finally, Equation 3.5 predicts that lowering the TetR production rate br should
reduce the DR-u dependence, changing it towards a negative regime. Our experimental results
indeed showed a less positive dDR/du value at a lower TetR production rate (Figure 3.4D).
Overall, our result showed that for aTc biosensor, a high TetR production rate provides high DR,

however at a cost of higher growth dependence.
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Figure 3.4. The growth rate dependence of DR for TetR-based biosensors with varying TetR
production rates. (A) Three TetR operons with different RBS strength to produce TetR at low
(yellow), medium (green), and high (purple) levels. (B) Minimum biosensor output at varying
growth rate for each library member (left) and the dependence of minimum output on growth rate
(right). (C) Maximum biosensor output at varying growth rate for each library member (left) and
the dependence of the maximum output on growth rate (right). (D) DR at varying growth rate for
each library member (left) and the dependence of DR on growth rate (right). dGmin/dp and
dGmax/du are normalized to the average Gmin and Gmax, respectively, from all data. Error bars of
individual data points are S.D., n=3. Error bars for Gmin, Gmax, and DR-p dependence are standard
error of the slope. A Student’s t-test was conducted between each pair of growth rate dependence
data, stars indicate significant difference (N.S., not significant; * p < 0.05; ** p < 0.01; *** p <
0.001).
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3.2.3 Metabolite Transport Affects DR-u Dependence
Our experimental results on the aTc sensor showed that DR increased with both growth

rate and TetR production rate. We next examine which parameter space can simultaneously
support these trends and whether such trends can inform us on the parameters of the target
metabolite transport mechanism. An extracellular target metabolite can enter or exit a cell via
either passive transport (metabolite concentration gradient related) or protein-facilitated active
transport (growth rate related), or a combination of both mechanisms. If passive transport is the
only mechanism, the intracellular target metabolite concentration is mostly determined by
extracellular target metabolite concentration and has little influence from growth rate. In this case,
our mathematical analysis indicates that sensor DR cannot increase with both growth rate and
MRTF production rate (see Appendix B, Section B.1.3). On the other hand, DR can increase with
growth rate and MRTF production rate if intracellular aTc concentrations are also increasing with
growth rate (see Appendix B, Section B.1.3). One way this could occur is when aTc membrane
transport involves proteins whose steady state concentration is regulated by growth rate via cell
dilution. Indeed, previous studies demonstrated that aTc can be exported by the AcrAB-TolC
multi-drug efflux pump (Le et al., 2006), and demonstrate that the expression of acrAB is elevated
at lower growth rates (Rand et al., 2002). Together, this may lead to reduced aTc concentrations
at low growth rates due to elevated efflux. To elucidate this mechanism, we incorporated both
passive transport and active export to our model (Figure 3.5A) and explored the parameter space
that provides positive dependence of DR on both growth rate and TetR production rate. When
active export is incorporated in the model, intracellular target metabolite becomes growth-
dependent, which causes the gradient-dependent passive export to also be growth-dependent
(Appendix B, Figure B.1A). Both passive and active transport rates were varied over 4-orders of

magnitude to explore a large parameter space, starting from parameter settings where the target
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metabolite’s passive and active export rates are equal and considering different target metabolite
concentration regimes (Min » Kmex, Min = Km,ex, OF Min « Kmex, Appendix B, Figure B.1A). Our
parameter space covers three modes of target metabolite export, where metabolite export is
primarily through the active pathway, the passive pathway, or a mix of both active and passive
pathways (Figure 3.5B). Modeling results show that sensor DR increased as passive transport rate
increased and active export decreased (Figure 3.5C). This is because intracellular target
metabolite concentration is high when the passive transport rate is higher than the active export
rate (Appendix B, Figure B.1B). Interestingly, when active export rate is similar to or higher than
passive transport rate, DR is more likely to positively correlate with growth (Figure 3.5D). And
when active export rate is lower than passive transport rate, DR is more likely to positively
correlate with TetR production rate (Figure 3.5E). As a result, DR can positively correlate with
both cell growth and TetR production rate only when active export rate is similar to passive import
(Figure 3.5F). Our modeling results further show that dMin/dp strongly increases when active
export rate is similar to passive import (Appendix B, Figure B.1C), which is a necessary condition
to observe simultaneous positive correlation for DR with cell growth and TetR production rate
(see Appendix B, Section B.1.3). Thus, the aTc biosensor used in our experiments likely fall into

this parameter range.
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Figure 3.5. Modeling the impact of passive and active transport mechanism on DR-growth
rate dependence for aTc-type biosensors. (A) Diagram of transport reactions including passive
import of metabolite by diffusion and active export facilitated by a protein transporter. (B) Ratio
of active to passive export rates, (C) Calculated DR, (D) dDR/dy, (E) dDR/dbr, and (F) Parameter
region where both dDR/du and dDR/dbr, under different parameter space. The parameters kgt and
Keatex Were increased to increase passive and active transport rate, respectively. Kwvex was varied to
represent three scenarios where its value is either greater, similar, or smaller than the intracellular
target metabolite concentration (Min). See Appendix B, Figure B.1 and Section B.2.1 for details.
Parameters values are given in Appendix B, Table B.1.
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In contrast to the aTc sensor, many chemicals cannot diffuse across cell membrane
passively, but solely rely to protein transporters and enzyme conversion to turn on the sensor. For
example, the FA sensor requires a membrane-associated acyl-CoA synthase to convert
extracellular FA into intracellular acyl-CoA, which binds to FadR, the MRTF, to turn on reporter
expression. Thus, to understand the FA sensor, we modified our model to include both enzyme-
based import and export mechanisms without passive transport (Figure 3.6A). Similar to the aTc
model, DR increases when the active import rate is higher than export rate (Figure 3.6B), leading
to higher intracellular target metabolite (acyl-CoA) concentration (Figure 3.6C). In contrast to
aTc-type of sensors, the DR of FA-type of sensors has a negative dependence on cell growth when
import rate is higher than export rate, which should occur under most cases since faster target
metabolite import is necessary for high biosensor induction (Figure 3.6D). Thus, these modeling
results are consistent with our experimental results. Additionally, when import is higher than
export, the intracellular target metabolite growth dependence (dMin/dp) is strongly negative
(Figure 3.6E) indicating a large potential drop in the maximum biosensor output at higher growth

rates, which is also consistent with experiments.
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Figure 3.6. Modeling the impact of active transport mechanism on DR-growth rate
dependence for FA-type biosensors. (A) Diagram of transport reactions. Target metabolite
transport only occurs by protein-facilitated active mechanisms. (B) Model simulated DR under
different import and export rates. All other parameters are held constant and are given in Appendix
B, Table B.1. (C) Intracellular target metabolite concentration (Min), (D) DR-u dependence, and
(E) intracellular metabolite-u dependence, under different parameter space.

3.2.4 DR and DR-p Are Sensitive to Similar Parameters
Thus far, our modeling and experimental results have shown good qualitative agreement

and have predicted the effects of br and transport mechanisms on both DR and DR-p dependence.
In order to gain a deeper understanding of the other parameters effects on DR and DR-u
dependence, we conducted a global parameter sensitivity analysis, for a transport mechanism with
both passive and active transport (Appendix B, Section B.3). Our results show that both the DR
(Appendix B, Figure B.2A) and dDR/du (Appendix B, Figure B.2B) are most sensitive to
parameters intrinsic to the biosensor (ag, bg, and Kg), the MRTF expression level, and parameters
in MRTF-metabolite interaction (br, ksr, kst). The similarity in parameter sets which strongly affect
DR and dDR/dpu suggest both are tightly coupled. These results are consistent with our observation
of the TetR system where increasing TetR production rate tuned both the DR and the DR-p

dependence in the same direction.
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3.3 Discussion

Change in cellular growth rate often affects the performance of biosensors and cause
problems when using biosensors in a different nutrient or environment (Cardinale and Arkin,
2012). In this work, we characterized the growth-rate dependent behavior of three commonly-used
MRTF-based biosensors through changing the growth medium of the biosensors. Our results show
that DR of the aTc-TetR and IPTG-Lacl sensors have positive correlations with cell growth rate.
In industrial-scale bioreactor settings where growth rates are typically lower than that in rich
medium of lab settings, these sensors will have lower DRs and leakier expression before induction
(Figure 3.2D, 3.2E) (Hollinshead et al., 2014; Nadal-Rey et al., 2021). Thus, these sensors may
not be suitable for controlling toxic genes or burdensome pathways whose leaky expression can
cause undesirable mutations to deactivate the strain’s function. In contrast, DR of the FA-FadR
biosensor has a negative correlation with cell growth rates. A higher DR at lower growth rate can
benefit the sensor’s application, although its leaky expression was also high at lower growth rate

(Figure 3.2F).

In this work we used a simplified kinetic model for understanding the DR-p dependency.
The core modeling approach expands upon previous phenomenological models which were
successful in capturing design constraints between various tunable molecular interactions and
biosensor dose-response parameters (Mannan et al., 2017). We extended these phenological
models with Kinetic interactions between TF and intracellular target metabolite, as well as
metabolite transport, which have been shown to capture key dynamic features of bacterial response
to external metabolites (Hartline et al., 2020). Many of the model parameters are related to key
biological processes that can be tuned experimentally to optimize a sensor’s performance, such as

the TF-operator interactions (Hao et al., 2014; Chen et al., 2019) and the presence of exporters
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(Diao et al., 2016; De Paepe et al., 2017). Our model captures new design constraints for tuning
DR across growth rates. For example, while the DR can be increased by reducing the minimum
output through a stronger binding of the MRTF to the biosensor promoter, our model predicts this
can result in a reduction of the maximum output at some growth rates, because there is a limit to
how much the sensor promoter can be activated by the intracellular target metabolite. Thus, once
model parameters are characterized at a single growth rate, the model can be used to predict the
change in DR under different medium compositions by measuring the growth rate, allowing
engineers to check for a potential loss of sensor performance without the need for lengthy
experimental re-characterization of the biosensor at different growth rates or under different
growth mediums. Additionally, while our results focus on biosensor’s with a repressed-repressor
architecture, previous phenomenological models (Mannan et al., 2017) can be similarly extended
following our procedures to identify growth-dependent design constraints for other biosensor

architectures, such as the commonly used activated-activator architecture.

Importantly, our model also highlights some fundamental couplings in biosensor’s
performance across varying growth rates, which are important when engineering a MRTF-based
sensor. For both types of sensors explored in this study, strategies in increasing the DR always led
to stronger growth rate dependence of DR (regardless of whether the dependence is positive or
negative), thus making the DR more sensitive to changes in growth (Figure 3.4D, Figure 3.5,
Figure 3.6). Therefore, there is a trade-off between high DR and low DR-pu sensitivity, which is
important in applications when the value of the DR itself is critical. As an example, MRTF-based
biosensors used for high-throughput screening usually require high DRs to reduce the
identification of false-positive and false-negative strains (Lin et al., 2017; Dabirian et al., 2019).

However, a sensor with too high of a DR also has high DR-u sensitivity, which will lead to a high
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false-hit rate when screening under different conditions. Thus, reducing DR in exchange for a less

sensitive DR-J dependence may present a better strategy in sensor design.

Additionally, our model suggests that transport of the target metabolite plays important
roles in the growth rate dependence of DR. Different biosensors with similar underlying
parameters can show different DR-p dependencies. For biosensors the target metabolite’s transport
is controlled by passive diffusion and active export (e.g. aTc), there is a narrow parameter region
where increasing TF expression can improve DR while also maintaining a positive DR-u
dependence (Figure 3.5E). In contrast, for biosensors where internal metabolite levels are
controlled solely by enzymes (e.g. FA), the metabolite-p dependence is negative over a large
parameters space, so DR cannot be improved by increasing TF levels without leading to a more
negative DR-u dependence under these conditions. Thus, our model highlights metabolite
transport or production as an important consideration for understanding the impact of growth on a

sensor’s DR.

MRTF-based biosensors are key components of synthetic biology systems and enable a
diverse range of sensing applications. These applications require sensors with robust and
predictable operation under a wide range of nutrient conditions and growth environments. Our
work has uncovered new design considerations and trade-offs for metabolite biosensors under
changing growth conditions, which will be found useful for a wide range of metabolic engineering

and synthetic biology applications.
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3.4 Methods

3.4.1 Materials
Phusion polymerase, restriction enzymes, and T4 ligase were purchased from Thermo Fisher

Scientific (Waltham, MA, U.S.A.). DNA primers were synthesized by Integrated DNA
Technologies (Coralville, 1A, U.S.A.). DNA plasmid miniprep kits were purchased from iNtRON
Biotechnology (Burlington, MA, U.S.A). All other reagents were purchased from Sigma-Aldrich

(St. Louis, MO, U.S.A))

3.4.2 Plasmids and Strains
E. coli MDS42pdu (Csorgd et al., 2012) was used to clone and isolate plasmids. E. coli MG1655

was used to host biosensor plasmids. All plasmids were constructed through PCR amplification
and standard Golden-Gate DNA assembly techniques. Plasmids were transformed into electro-
competent strains by electroporation and selected on LB agar plates with corresponding antibiotics
(ampicillin, 100 mg/L; kanamycin, 50 mg/L; streptomycin 100 mg/L). Plasmids (Appendix B,
Table B.4), strains (Appendix B, Table B.5), and sequences of constructed plasmids are given in

Appendix B, Section B.5.

3.4.3 FA Biosensor Construction
The FA-FadR biosensor was created in strain MG1655 by modifying a previous FA sensor

(Hartline et al., 2020). These modifications include the deletion of fadE, replacement of fadD’s
native promoter with a constitutive promoter Ppros to deactivate the positive feedback loop in FA
transport (Hartline et al., 2020), and deletion of the negative autoregulation of FadR (Zhang et al.,
2012b). These genome modifications were performed using CRISPR-Cas9 following previous
methods (Jiang et al., 2015, 2017) using pTargetF plasmids as listed in Appendix B, Table B.4.

The sequence of Ppros Was taken from a library of insulated constitutive promoters (Davis et al.,
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2011) and constructed from PCR of overlapping primers. Deletion of the negative autoregulation
of FadR was done by replacing fadR’s native promoter with the constitutive Ptadrm1 (Appendix B,
Section B.5.1). Additionally, the constitutively controlled fadR was cloned to the pA6a BglBrick

plasmid, resulting in plasmid pAfadRm1la-fadR (Appendix B, Section B.5.1 for full sequence).

3.4.4 TetR RBS Library Construction
A library of plasmids with varying TetR RBS strength (namely pSk-Pret-rfp-Pi23110-RBSLibrary-

tetR) was constructed by introducing a terminator, followed by the constitutive Bba J23110
promoter, followed by an RBS 3’ of pTetR promoter and 5° of the TetR coding sequence on a
pS2k-rfp plasmid. Terminator and promoter were constructed from overlapping primers. The RBS
library was then introduced by primers with degenerate nucleotide sequences. To evaluate the RBS
strength, we constructed another plasmid library, namely pSk-Pj23110-RBSLibrary-rfp, by
replacing the tetR gene of pSk-Pj23110-RBSLibrary-tetR with rfp. This library was constructed by
individually amplifying the promoter, RBS sequence and first 30 codons of the TetR coding
sequence from aTc-biosensor-TetR-RBS-library members which had characterized minimum and
maximum outputs. These sequences were then individually cloned 5” of rfp and introduced to a
BglBrick backbone with SC101 origin and kanamycin resistance. The final constructed sequences
are shown in Appendix B, Section B.5.1. A list of the tested RBS sequences is given in Appendix

B, Table B.6.

3.4.5 Cell Growth and Induction Conditions
Cells were cultivated in different growth media following previous protocols (Basan et al., 2020;

Hartline et al., 2022). Specifically, single colonies from an overnight Luria-Bertani (LB) plate
were cultivated for 3-5 hours in LB medium (225 rpm, 37 °C) supplemented with appropriate

antibiotic. Cells were then washed twice by centrifugation (4500 rcf, 3 minutes) into M9 minimal
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medium supplemented with 1% (w/v) glycerol and diluted to ODeoo ~0.04 and grown overnight.
Overnight cultures were again washed in M9 media without supplemented carbon. To achieve
different growth rates, washed cells were transferred to M9 media supplemented with the
following nutrient sources: 75 mM sodium acetate, 20 mM sodium pyruvate, 1% Glycerol, 20 mM
sorbitol, 15 mM sodium succinate, 1% glycerol + 7 amino acids (0.8 mM Glycine, 0.2 mM
Histidine, 0.4 mM isoleucine, 0.8 mM leucine, 0.4 mM lysine, 0.2 mM methionine, 0.4 mM
phenylalanine), 20 mM xylose. For the FadR-based biosensor only, media was supplemented with
0.5% Tergitol NP-40 and the following nutrient sources were used: 75 mM sodium acetate, 1%
glycerol, 1% glycerol+7 amino acids, and 0.4% glucose. A summary of growth rates achieved for
each media condition is given in Appendix B, Table B.3. To induce biosensor activity, 1000 nM
anhydrotetracycline (aTc), 1 mM isopropyl B-D-1-thiogalactopyranoside (IPTG), and 4 mM of

sodium oleate, were added to the media for the aTc, IPTG, and FA sensors, respectively.

3.4.6 Biosensor Growth Rate, Minimum, Maximum, and Dynamic Range Assays
Cells growing in different carbon sources, with or without the sensor metabolite were diluted to

ODesoo at ~0.0007. Exponentially growing cells were transferred to a Falcon 96-Well Imaging
Microplate (Corning, NY, U.S.A.)). An Infinite F200PRO plate reader (TECAN, Ménnedorf,
Switzerland) was used to take automated ODsoo and red fluorescence measurements (Excitation:
584+9 nm, Emission: 620£20 nm) every 15 minutes with constant shaking at 37°C. Following
previously established procedures for calculating growth rate (Basan et al., 2020; Hartline et al.,
2022) and biosensor output (Mannan et al., 2017), growth rate was calculated as the slope of
natural log(ODeoo) from ODego 0.1 to 0.4. RFP values were normalized by the ODeoo, and the

minimum and maximum RFP/OD values were calculated as the average of RFP/OD measurements
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over the same ODegoo range (0.1-0.4). The dynamic range was calculated from the minimum and

maximum outputs measured from the same biological replicate (colony).

3.4.7 TetR RBS library characterization. Colonies of freshly transformed aTc-biosensor-
TetR-RBS-library members were picked and grown following the cell growth and induction
methods in M9 media supplemented with 1% glycerol. The minimum, maximum, and dynamic
range of several colonies were measured, and colonies with different dynamic range were chosen
for further characterization. The RBS sequence was determined by Sanger sequencing to confirm
uniqueness of tested library members and duplicate members were combined. The minimum,
maximum, and DR of the sequence verified library members were then re-measured with
biological triplicates in 1% glycerol medium. To get the TetR expression level, TetR expression
library members were individually constructed, and then also grown in M9 with 1% glycerol, and
the growth rate and steady state RFP/OD were measured by plate reader. A summary of the RBS
sequences characterized, and their TetR expression level, minimum and maximum outputs is

provided in Appendix B, Table B.6.

3.4.8 Dynamic Range Modeling and Simulations
Details of the model development and parameterizations are given in supplementary

information. Kinetic model simulations were performed using MATLAB 2020B odel5s (The
Mathworks, Natick, MA, U.S.A.) from initial conditions where the concentration each species is
zero. Simulations were run for 10° seconds to reach steady state, and the end point of each
simulation was used as the model output. To obtain the model minimum and maximum outputs,
the model was run with either 0 uM or 4000 uM extracellular target metabolite (Mex), respectively.

dDR/dbr was calculated directly from the simulations using Equation (S21), dDR/du was
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calculated numerically using a 5-point central difference formula by running 5 simulations at

nearby u (equally spaced on the range p £0.0039).

3.5 Supplemental Information

Table B.1- B.6, Figures B.1-B.3, and Appendix Sections B.1-B.5 can be found in Appendix B.

3.5.1 Abbreviations
anhydrotetracycline, aTc; dynamic range, DR; Dynamic range-growth rate, DR-; fatty acid, FA;

isopropyl B-D-1-thiogalactopyranoside, IPTG; metabolite-responsive transcription factor, MRTF.
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Chapter 4 Abstract

Nutrient shifts from glycolytic to gluconeogenic carbon sources can create large sub-populations
of extremely antibiotic tolerant bacteria, called persisters. Positive feedback in Escherichia coli
central metabolism was believed to play a key role in the formation of persister cells. To examine
whether positive feedback in nutrient transport can also support high persistence to f-lactams, we
performed nutrient shifts for E. coli from gluconeogenic carbon sources to fatty acid (FA). We
observed tri-phasic antibiotic killing kinetics characterized by a transient period of high antibiotic
tolerance, followed by rapid killing then a slower persister-killing phase. The duration of transient
tolerance (3-44 hours) varies with pre-shift carbon source and correlates strongly with the time
needed to accumulate the FA degradation enzyme FadD after the shift. Additionally, FadD
accumulation time and thus transient tolerance time can be reduced by induction of the glyoxylate
bypass prior to switching, highlighting that two interacting feedback loops simultaneously control
the length of transient tolerance. Our results demonstrate that nutrient switches along with positive
feedback are not sufficient to trigger persistence in a majority of the population, but instead triggers

only a temporary tolerance. Additionally, our results demonstrate that the pre-shift metabolic state
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determines the duration of transient tolerance and that supplying glyoxylate can facilitate antibiotic

killing of bacteria.

4.1 Introduction

Antibiotic tolerance describes the ability of bacteria to survive longer periods of antibiotic
treatment while remaining genetically susceptible to antibiotic killing (Meylan et al., 2018).
Heterotolerance, or persistence, is a special case of antibiotic tolerance where only a sub-
population of an isogenic culture displays antibiotic tolerance, leading to a biphasic antibiotic
killing kinetics—a rapid Kkilling phase for the susceptible subpopulation followed by a slow killing
phase for the tolerant population. Tolerance and persistence have been suspected as an important
cause of recurrent and recalcitrant bacterial infections, particularly when the disease-causing
bacterium appears to remain susceptible to antibiotic killing during in vitro assays (Ojha et al.,
2008; Mulcahy et al., 2010; Fauvart et al., 2011; Morrison et al., 2020). Further, tolerance can
promote the ability of bacteria to acquire antibiotic resistance (Levin-Reisman et al., 2017;
Windels et al., 2019; Liu et al., 2020), which reduces antibiotic efficacy in clinical settings and is
contributing to an impending global public health crisis (Aslam et al., 2018; Talebi Bezmin Abadi
et al., 2019). These public health problems have led to increased interest in understanding

antibiotic tolerance mechanisms in microbes.

The degree of metabolic activity has been deeply explored as a central feature of antibiotic
tolerance and persistence (Shah et al., 2006; Amato et al., 2014; Lopatkin et al., 2019). Increased
antibiotic tolerance is observed in metabolic environments where cells are slowly growing or non-

growing, including in stationary phase and biofilms (Gilbert et al., 1990; Joers et al., 2010; Orman
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and Brynildsen, 2015). Genomic screens for antibiotic tolerance genes have identified several
mutations in metabolic pathways which vary the frequency of antibiotic tolerant cells (De Groote
et al., 2009; Bernier et al., 2013). These mutations affecting metabolic genes may contribute to
antibiotic resistance under repeated antibiotic selection (Zampieri et al., 2017; Lopatkin et al.,
2021). Additionally, antibiotic tolerant cells were shown to have lower levels of ATP (Shan et al.,
2017; Manuse et al., 2021), increased levels of alarmones (Hauryliuk et al., 2015; Svenningsen et
al., 2019), and reduced translation (Gefen et al., 2008). These metabolic mechanisms alter the
efficacy of antibiotics, leading to the prolonged survival of antibiotic tolerant cells (Stokes et al.,
2019). Persistence has an additional requirement of maintaining a sub-population of tolerant cells
while the remainder of the population is antibiotic susceptible (Balaban et al., 2019). Thus, several
stochastic mechanisms for generating and maintaining low metabolic activity, particularly
stochastic induction of toxin-antitoxin pairs and stochastic accumulation of (p)ppGpp, have been
explored in connection with persistence (Balaban, 2004; Germain et al., 2015; Schmitz et al., 2017;

Svenningsen et al., 2019; Evans and Zhang, 2020).

Nutrient shifts are one of the mechanisms that has been shown to produce increased sub-
populations of antibiotic tolerant cells (Radzikowski et al., 2017). During a nutrient shift, bacteria
need to adjust their metabolic activities for different nutrient sources. The ability to generate
tolerant subpopulation during metabolic adjustment may have evolutionary benefits to the entire
population (Van Boxtel et al., 2017). Diauxic shifts from glucose to fumarate, glycerol, and
succinate have been shown to result in bi-phasic killing kinetics with elevated levels of Escherichia
coli persisters to both ofloxacin (Amato et al., 2013; Amato and Brynildsen, 2014) and ampicillin
(Amato and Brynildsen, 2015) antibiotics. Similarly, complete shifts from glucose to fumarate

resulted in an apparent mono-phasic killing kinetics with a large population of extremely slow
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growing E. coli cells that were tolerant to many antibiotics with diverse mechanisms of action
(Radzikowski et al., 2016), while only a small fraction of cells were able to resume growth on
fumarate (Kotte et al., 2014). It was proposed that bistability in a positive feedback loop involving
a phosphoenolpyruvate (PEP) flux sensor and the enzyme fructose-1,6-bisphosphatase (Fbp) was
responsible for creating a two-population response to nutrient shifts. Positive feedback has been
highlighted for its ability to increase cell-to-cell variability in gene networks and produce
bistability, and can be an important mechanism in maintaining cells in the persister state (Eldar
and Elowitz, 2010). Many metabolic regulatory networks are also controlled by positive feedback
loops, particularly in the uptake of carbon sources such as carbohydrates (e.g. lactose, arabinose,
xylose, glycerol) and fatty acids (FAs) from the environment (Weissenborn et al., 1992; Song and
Park, 1997; Cronan and Subrahmanyam, 1998; Ferrandez et al., 2000; Ozbudak et al., 2004;
Megerle et al., 2008; Hartline et al., 2020). However, it is not known whether the prevalent
feedback loops in nutrient uptake can commonly lead to elevated levels of persistence during

nutrient shifts.

In this work, we studied E. coli nutrient transition to FA because both FA transport and
catabolic pathways are regulated by a positive feedback loop. Recent work in pathogenic bacteria
has highlighted that utilization of exogenous FAs from the host environment plays a central role
in regulating virulence factors in a broad-range of gram-negative pathogens, including E. coli
(Pifer et al., 2018; Pan et al., 2020; Ellermann et al., 2021). Thus, nutrient transitions to FA
catabolism are associated with increased pathogenicity, but these transitions remain an
understudied mechanism with respect to its effect on antibiotic tolerance. To avoid complication
from the Fbp regulatory loop that may form bistability (Kotte et al., 2014), we focus on shifts from

gluconeogenic carbon sources such as glycerol. Because both glycerol and FA require Fbp for

101



growth (Fraenkel and Horecker, 1965), switching between gluconeogenic carbon sources should
avoid triggering major changes in the activity of the Fbp loop. Distinct from the mono-phasic and
bi-phasic killing kinetics previously reported during glycolytic-to-gluconeogenic switches, we
observed a transient tolerance phase, where the population displays nearly universal tolerance to
ampicillin during the first 8 hours right after glycerol-to-FA shift. The transient tolerant phase was
followed by a rapid killing phase for 98% of cells, followed by a persister phase with slower killing
kinetics. This three-phase Killing kinetics was observed when switching from at least 5 different
gluconeogenic carbon sources (i.e. glycerol, pyruvate, malate, succinate, and acetate) tested in this
study. We genetically fused the FA transport gene fadD (encodes the acyl-CoA ligase FadD) to a
yellow fluorescent protein (YFP) and tracked transport expression kinetics after the nutrient shift.
The results showed that the period of transient tolerance correlates well (R? = 0.82 in the absence
of glyoxylate and R? = 0.98 in the presence of glyoxylate) with the time needed for FadD to
accumulate to a threshold before resuming growth. We demonstrate that the activity of the positive
feedback loop in the glyoxylate bypass modulates the timing of both transient tolerance and FadD
production on shifts to FA. These results demonstrate a fundamental difference in E. coli response
to gluconeogenic-to-FA nutrient shifts compared to previously reported glycolytic-to-
gluconeogenic switches. Overall, our results have broad implications for the relation between

metabolic regulations, nutrient shifts, and B-lactam antibiotic tolerance.

4.2 Results

4.2.1 Nutrient Shifts to Fatty Acid Stimulate Transient Ampicillin Tolerance
Similar to many other nutrients, FA uptake in E. coli is regulated by a positive feedback

loop (Figure 4.1A). In this loop, the fatty acyl-CoA ligase FadD controls the uptake and activation

of extracellular free FAs to acyl-CoAs, which are then catabolized by a series of FA degradation
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(Fad) enzymes to acetyl-CoA for use in central metabolism. Expression of fadD and the fad
regulon is repressed by the transcriptional regulator FadR, whose DNA-binding activity is further
inhibited by acyl-CoAs, forming a simple positive feedback loop. Modeling of this FA uptake loop
shows that bistability in FA uptake can appear under some parameters and the parameters for E.
coli may be near the bistable regime (Mannan and Bates, 2021). In the bistable regime, a
subpopulation of cells would have low FadD expression due to FadR repression, thus low FA
uptake rate to activate FadR and to support rapid cell growth. Another subpopulation would
maintain a high FadD expression level, thus can keep high intracellular acyl-CoA level to both
antagonizes FadR’s DNA binding activity and to support cell growth. If bistability in FA uptake
does occur, the rapid growing subpopulation will be killed by ampicillin whereas cells with slow-

growing cells may display tolerance ampicillin which only targets growing cells.

To test the possible presence of bistability in FA uptake, we transformed E. coli cells with
an engineered FadR-based acyl-CoA biosensor (Zhang et al., 2012) that reports intracellular acyl-
CoA level (Xiao et al., 2016; Liu and Zhang, 2018), and indirectly reports expression of fad genes.
To characterize the acyl-CoA biosensor activity under different conditions, the strain was grown
to steady state in defined media containing mixtures of glycerol and oleate at different ratios. Flow
cytometry showed that the mean activity of the acyl-CoA biosensor increased as the ratio of FA-
to-glycerol increased (Figure 4.1B), consistent with the biosensor’s behavior in glucose/FA media
(Liu and Zhang, 2018). At single-cell level, the biosensor activity showed unimodal distribution
under all conditions (Figure 4.1C), without a distinctive subpopulation above the detection limit
of the method (~1% of the population). These results suggest that although positive FA uptake

loop can support bimodality/bistability under some parameters (Mannan and Bates, 2021), the
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actual parameters for this strain of E. coli do not support a large bimodal population. Even so, a

much smaller bimodal population may exist below the detection limit of flow cytometry.

Thus, to more sensitively determine whether two distinct subpopulations exist with
different killing kinetics, we next conducted nutrient shifting experiments (Radzikowski et al.,
2016) from different ratios of glycerol/FA mixtures to pure FA accompanied by ampicillin
treatment (Figure 4.1D). When pure FA was used in the pre-culture as a negative control without
nutrient switching (FA-to-FA), a typical biphasic killing kinetics was observed (Figure 4.1E):
nearly-immediate and rapid killing followed by a small population (0.008%) of antibiotic tolerant
cells, close to previously reported levels of persistent cells in active cultures (Balaban et al., 2019).
Although we observe a short period without Killing (less than 1 hour), which may be caused by
starvation and cold stress from the washing procedures to provide temporary tolerance to
ampicillin (Heinemann et al., 2020), this tolerance is not maintained for a large fraction of the
population. Overall, this result proves that the switching procedure used in this study did not
generate an elevated level of persisters. In contrast, when switching from glycerol to FA, the killing
curve displayed much longer initial tolerant period, where nearly all cells survived ampicillin
treatment during the first 8 hours. This transient tolerance period is followed by a rapid killing
where 98% of the transiently tolerant cells were killed. Finally, the rate of killing reduced with
~2% population having elevated antibiotic tolerance. When mixtures of glycerol and FA were used
in the pre-culture, the killing curves also displayed an initial transient tolerant period followed by
rapid killing. The length of this tolerance period increased as the amount of FA in the pre-culture
decreased (Figure 4.1E). These results further confirm that the long transient tolerance to

ampicillin was caused by specifically by nutrient shifting rather than the washing procedure used
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in this study and suggests a connection between the prior acyl-CoA activity with the tolerance

period.
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Figure 4.1. Transitions from glycerol to fatty acid (FA) generates transient ampicillin
tolerance. (A) Simplified metabolic and regulatory network for FA and glycerol utilization. (B)
Average acyl-CoA biosensor activity during co-utilization of FA and glycerol at different ratios.
Across all conditions, the total concentration of carbon is constant at 72 mM. (C) Single-cell
distribution of acyl-CoA biosensor activity during co-utilization of FA and glycerol at different
ratios. A single representative distribution is shown per condition, n = 10,000 per distribution. All
distributions are unimodal, with the mean shifting higher for higher fractions of FA. (D)
Illustration of media switching and antibiotic killing experimental protocol. Abbreviations: GLY,
glycerol; Amp, Ampicillin; FA, Fatty acid. (E) Time course survival curves of cells after nutrient
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shifts from mixtures of glycerol and FA to 100% FA with 100 pg/mL ampicillin. The
glycerol/oleate fraction in the pre-switch correspond with the conditions displayed for the
distributions in Fig 1C. Average of biological replicates, n=3, Error Bars represent SEM. Curves
are fitting of the Gompertz model to experimental data.

4.2.2 Transient Tolerance Correlates with Lag Phase During Nutrient Shift
To examine whether the transient tolerant exists when switching from other gluconeogenic

carbons, we performed additional switching experiments by replacing glycerol with 4 other carbon
sources: acetate, pyruvate, malate, and succinate. These carbon sources represent different entry
points into the central metabolism (Figure 4.2A), thus would allow us to compare how different
metabolic state of cells in the pre-culture affect transient tolerance. All transitions displayed similar
tri-phasic killing kinetics with an initial transient tolerance followed by rapid Killing of susceptible
cells and a slow killing of persistent cells. The period of transient tolerance varied significantly
with different carbon sources (Figure 4.2B). While transitions from acetate had a relatively short
transient tolerance time (3.3 = 0.4 hours, 95% confidence interval (C.1.)), transitions from pyruvate
displayed extremely long tolerance (44 £ 3 hours, 95% C.1.). However, despite great variability in
the timing, all conditions showed that majority of cells were eventually killed by ampicillin,
indicating that the initial antibiotic tolerance is only temporary after gluconeogenic to FA nutrient

shifts.

Shifts from glycolytic to gluconeogenic carbon sources have been shown to produce lag phase
during which cell halts growth transiently (Basan et al., 2020). Since ampicillin is only effective
on growing cells, cessation of growth after a nutrient shift offers a simple mechanism for transient
tolerance. To test this, we measured growth kinetics of cultures switching from each gluconeogenic

carbon source to FA without antibiotic (Figure 4.2C). The lag time of each shift was found to
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correlate well (R? = 0.82) with the transient tolerance time (Figure 4.2D). These results suggest

that non-growing cells in the lag phase after a nutrient shift cause transient tolerance to ampicillin.
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Figure 4.2. Tolerance time correlates with lag time on transitions from gluconeogenic carbon
sources to oleate. (A) Simplified metabolic network for gluconeogenic carbon source utilization.
Pre-shift carbon sources used are in bold with a corresponding symbol indicating that carbon
source: (FA, square; Acetate, right-pointing triangle; Pyruvate, star; Glycerol, Circle; Malate, up-
pointing triangle; Succinate, kite). Dark arrows indicate pathways necessary for FA utilization.
Names of key metabolite intermediates and enzymes are shown. (B) Time course survival curves
of cells after shifts from gluconeogenic carbon sources to FA with 100 pg/mL ampicillin. Data
points are averaged values from biological replicates, n = 3. Curves are fitting of a two-population
Gompertz model to experimental data. Vertical dashed line indicates tolerance time determined by
fitting the Gompetz model. (C) Time course ODsoo after shift from gluconeogenic carbon to FA
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without ampicillin, normalized to time point t = 0. Average of biological replicates, n=3, SEM
Error Bars. (D) Correlation between measured tolerance time and lag time after switch to FA.
Dashed line is least-squares linear fit to the data with equal weighting.

4.2.3 Time for FadD Accumulation Correlates with Transient Tolerance
Since the lag time and transient tolerance period after the nutrient shift are well correlated, we

sought to understand the molecular mechanisms which govern both phenomena. Growth rate in
pre-culture conditions was shown to predict lag time for glycolytic to gluconeogenic switches
(Basan et al., 2020) and therefore may also predict tolerance time on nutrient shifts from
gluconeogenic carbons to FA. We measured pre-culture growth rates and found a weak negative
correlation (R? = 0.35) between pre-culture growth rate and tolerance time (Figure 4.3A). Although
the direction of correlation is consistent with previous studies (Basan et al., 2020), nutrient shifts
from pyruvate to FA presents a clear outlier, suggesting the presence of other mechanisms that

control tolerance time more directly.

Previous studies illustrated that B-oxidation enzymes are essential for growth when FA is the
sole carbon source (DiRusso et al., 1999), suggesting a possible role for B-oxidation enzymes in
tolerance time during nutrient shifts to FA. Because FadD is a key component of the positive
feedback loop controlling transport and activation of FAs for B-oxidation, we genetically fused a
YFP to FadD to monitor activity of FA degradation during the nutrient shift. The FadD-YFP strain
was grown in different gluconeogenic carbon sources and switched to FA in the absence of
ampicillin. Cell growth and YFP fluorescence were simultaneously monitored after the nutrient
shift. After shifting from different gluconeogenic carbon sources, the initial FadD levels were
different and all lower than that without carbon shift (i.e. from FA to FA, Figure 4.3B), suggesting
that the p-oxidation enzymes were not highly expressed in gluconeogenic carbons. The FadD
concentration gradually increased over time during the lag phase. When cells resume steady state

growth, FadD concentration from all switches reached the same threshold level (Figure 4.3C).

108



Without carbon shift (from FA to FA), the FadD level remained above this threshold level, and the
cells continued to grow without a lag phase. We measured the time needed to reach this threshold
FadD level and found that it has a good correlation with the tolerance time (R? = 0.82, Figure
4.3D). Since the timing of accumulating FadD correlates well with transient tolerance, we
wondered whether this timing of each phenomenon is simply determined by the amount of FadD
initially present immediately after the nutrient shift. Although FadD accumulation time appears to
decrease with increasing initial FadD concentrations (R? = 0.57, Figure 4.3E), transitions from
pyruvate again provide a strong outlier with cells taking much longer to accumulate FadD to a

threshold.
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Figure 4.3. Timing of FadD accumulation associated with transient tolerance time. (A)
Correlation between measured tolerance time and growth rate in pre-switch carbon source. Dashed
line is least-squares linear fit to data with bisquare weighting. (B) Time course of YFP/ODggo from
FadD-YFP fusion (colored line, left axis) and ODeoo (black line, right axis) after shifts from a
gluconeogenic carbon source to FA, n = 3, Error Bars represent SEM. The dotted line indicates
the YFP/ODsoo level when cells resume steady state growth. (C) Average YFP/ODgoo from FadD-
YFP fusion at the end of the lag phase, n = 3. Values from individual replicates shown as points.
The dashed line (namely the FadD threshold) shows the average FadD concentration at the end of
lag phase across all pre-shift conditions except FA. (D) Correlation between tolerance time and
FadD accumulation time (time for FadD to reach the threshold level). Tolerance time was obtained
from data in Fig 2B. Dashed line is a linear fit. (E) Correlation between YFP/ODsoo value at the
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steady state of pre-culture and FadD accumulation time. Dashed line is a least-squares linear fit
with bisquare weighting.

To verify whether these FadD dynamics are representative of the nutrient shifts in the presence
of antibiotics, we performed similar experiments using the FadD-YFP fusion strain in the presence
of ampicillin. Across all switching conditions, ODeoo initially decreased slightly followed by a
leveling off period (Appendix C, Figure C.1A). Because this slight decrease is also observed in
the absence of antibiotic, this decrease more likely represents reductive division of cells, which
has been previously reported for cells under starvation conditions (Nystrom, 2004), rather than
killing by antibiotics. After this relatively level period (transient tolerance), the OD decreases
substantially, corresponding to rapid killing of susceptible cells. In all switching conditions, the
FadD level continued to increase during the transient tolerance period, indicating active
transcription and translation. The time needed to reach a threshold FadD level still correlated well
with the tolerance time (R? = 0.79, Appendix C, Figure C.1B). Additionally, the timing of FadD
accumulation in the absence and presence of ampicillin correlated extremely well (R? = 0.997,
Appendix C, Figure C.1C), indicating that the FadD dynamics during the nutrient shift are nearly
the same prior to reaching the FadD threshold, regardless of the presence of ampicillin. Overall,
these results suggest that FA metabolic activity was low during lag phase, resulting in slow cell
growth and transient tolerance to ampicillin. A key level of FadD is needed to resume cell growth

and active metabolism in FA medium.

Finally, we evaluated the single-cell behavior of FA metabolism using the acyl-CoA biosensor
during nutrient transitions from pyruvate to FA, which has the longest transient tolerance time. We
characterized the acyl-CoA biosensor activity under mixtures of pyruvate and FA and found that

the population has a monomodal distribution of acyl-CoA biosensor activity under all conditions
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(Appendix C, Figure C.2A), consistent with the biosensor activity on glycerol/FA mixtures (Figure
4.1C). We then conducted nutrient switches from pyruvate to FA with ampicillin and measured
the acyl-CoA biosensor activity at time points during the transient tolerance phase. Again, we
observed monomodal populations at all time points, with the biosensor activity of the whole
population increasing sharply by 4 hours after the shift, and then more gradually after 21 hours
(Appendix C, Figure C.2B). Thus, these results suggest that there is a single, large majority
population before the shift and this whole population gradually transitions toward active FA
metabolism after the shift, leading to growth and sudden killing by ampicillin for a large population

at the end of the transient tolerance.

4.2.4 Multiple Metabolic Regulations Control the Transient Tolerance Time
Given that the time for FadD to reach its threshold concentration correlates well with transient

tolerance, we wondered what controls FadD accumulation. Particularly, shifts from pyruvate to
FA produced the longest transient tolerance times from the above experiment. We searched the
literature and did not find direct regulatory effects of pyruvate on fadD expression in E. coli.
However, pyruvate activates the IIcR transcription factor (Lorca et al., 2007) which represses
expression the glyoxylate bypass operon aceBAK (Figure 4.4A). The glyoxylate bypass is
necessary for FA utilization because B-oxidation produces only two-carbon metabolite precursors
in the form of acetyl-CoA (Dolan and Welch, 2018). To examine whether pyruvate impacts the
glyoxylate bypass or f-oxidation gene expression, we evaluated the expression level of the aceB
and fadD genes via RT-gPCR for cells growing in glycerol, pyruvate, and FA (Appendix C, Figure
C.3). In pyruvate, aceB expression is 1.7-fold lower compared to that in glycerol, however, fadD
expression is not significantly different between glycerol and pyruvate conditions, indicating that

the glyoxylate bypass rather than the FA transport genes is more blocked in pyruvate. During
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growth on FA, both aceB and fadD expression are significantly increased (13.7-fold and 5.0-fold
increase respectively), which indicates that the expression of both aceB and fadD genes needs to
be increased for cells to grow on FA, in agreement with previous literature (Clark and Cronan,

2005).

In addition to pyruvate regulation, ICcIR activity is antagonized by glyoxylate (Lorca et al.,
2007), an intermediate in the glyoxylate bypass (Figure 4.4A), thus forming a positive feedback
loop which also governs FA utilization. Therefore, when cells are growing in pyruvate,
accumulation of glyoxylate is slow, and the glyoxylate bypass enzymes remain at low levels. We
hypothesize that switching from pyruvate to FA requires a gradual increase in the metabolic flux
through the glyoxylate bypass to produce central metabolites (e.g. amino acids) for synthesizing
B-oxidation enzymes. To test this hypothesis, we added glyoxylate to the pre-shift medium to
activate the glyoxylate bypass enzymes, thus alleviating the bottleneck in the glyoxylate bypass
enzymes. New nutrient shift experiments with glyoxylate displayed decreased lag phase as well as
FadD accumulation times for pyruvate, succinate, and malate (Figure 4.4B, 4.4C). Among them,
pyruvate exhibited the most drastically change, its FadD accumulation time decreased from
11.4+1.3 hours to 3.4+0.5 hours (95% C.1.) (Figure 4.4C). Additionally, we performed similar
growth Kinetic experiments during nutrient shift to FA with ampicillin and observed similar
reductions in the transient tolerance time measured by ODeoo (Appendix C, Figure C.4). The
transient tolerant time shifting from pyruvate with glyoxylate supplement to FA decreased from
>16 hours without glyoxylate to 3.1+0.5 hours (95% C.1.). With the presence of glyoxylate in the
pre-shift medium, the highest correlation between the transient tolerance period and FadD
accumulation time was obtained (R?> = 0.98, Figure 4.4D), demonstrating that both FadD

accumulation and transient tolerance are accelerated by the removal of the glyoxylate bottleneck.
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Figure 4.4. Activity of glyoxylate shunt affects tolerance time. (A) Simplified metabolic
network with key positive-feedback regulatory interactions for FA utilization. Metabolic enzymes
(FadD/AceB) convert a precursor into a regulatory metabolite intermediate (acyl-CoA/glyoxylate).
The regulatory intermediate represses the activity of a transcription factor (FadR/IcIR) which
alleviates the repression of the metabolic enzyme. IcIR activity is also activated by pyruvate. (B)
Time course of YFP/ODegoo from FadD-YFP fusion (colored line, left axis) and ODsoo (black line,
right axis) after shifts from a glyoxylate supplemented gluconeogenic carbon source to FA (not
supplemented with glyoxylate). Error Bars represent SEM with n = 3 for FA, ACE, MAL, and
SUC, n=4for PYR, and n=5 for GLY. The dotted line indicates the YFP/ODsoo level when cells
resume steady state growth. (C) FadD accumulation time for nutrient shifts from carbon source
without glyoxylate (stripes) or with glyoxylate (dotted). Stars indicate significant change in
accumulation time, two-tailed t-test (**, p < 0.01) (D) Correlation between tolerance time and
FadD accumulation time for shifts from carbon with glyoxylate to FA. Tolerance timed determined
by time course optical density measurements (Appendix C, Figure C.4). Dashed line is a least-
squares linear fit.
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4.3 Discussion

In this study, we sought to elucidate the role of nutrient shifts and positive metabolic
feedback architecture in producing antibiotic tolerant cells. In doing so, we discovered that nutrient
shifts from gluconeogenic carbon source to FA produce tri-phasic antibiotic killing kinetics which
depend on the initial metabolic state of the cells. These killing kinetics are defined by an initial
period of nearly universal antibiotic survival, followed by a sudden increase in antibiotic killing
for over 98% of the population, followed by a slower, persister killing rate. Our results outline a
clear mechanism for this behavior. First, before switching to FA, cells are in single population of
low Fad activity. After shifting to FA, the bulk of the population is in a metabolically mal-adapted
state which causes the cells to cease growth, producing a lag phase. In this metabolically reduced
stated, ampicillin, which targets actively dividing cells, is rendered ineffective. This tolerance
continues until the cells adapt their metabolism by increasing the concentration of key metabolic
enzymes such as the FA degradation and glyoxylate bypass pathways to restore metabolism and
growth. Further, the timing of the recovery depends on its initial metabolic state and on specific

regulatory mechanisms for enzyme induction.

The connection between lag phase and antibiotic tolerance has been demonstrated
previously (Fridman et al., 2014) when shifting from stationary phase media to rich media. In the
so-called “tolerance by lag” (TBL) phenotype, mutant strains of E. coli have a population of cells
with a wide distribution of lag times when shifting back to rich media, which allows the population
to be more tolerant to ampicillin killing. While TBL and transient tolerance can both be attributed
to the growth-arrest of cells in a lag phase, there are several important distinctions between these
phenomena. First, the shapes of the Killing curves are different. In transient tolerance, the killing

curve is initially flat followed by a sharp decline which suggests that transient tolerant populations
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shift from high tolerance to low tolerance over time. In contrast, the TBL killing curves gradually
decrease at a constant slope without distinct phases which suggests that tolerance from TBL is
more constant in time. Second, TBL is caused by mutations in genes which are selected for by the
length of antibiotic treatments. In contrast, transient tolerance is caused by a major disruption of
the metabolic network due to nutrient shift which forces cells to halt growth. Finally, although
transient tolerance is correlated with lag, we show that transient tolerance is more fundamentally
affected by the time is takes to readjust the metabolic network by accumulating pathway enzymes.
Because nutrient shifts can often leave cells in a metabolically mal-adapted state, transient

tolerance is likely to be a general tolerance mechanism to ampicillin for cell populations.

Since the FA utilization and 3-lactam tolerance mechanisms in E. coli are well-known, the
connection between adaptation of the FA pathways and transient tolerance may seem apparent at
first. However, the tri-phasic shape of the antibiotic killing curves shed important insights and
raise new questions about how E. coli responds to nutrient shifts in general. In particular, it has
previously been demonstrated that on glucose-to-fumarate transitions cells adopt a responsive
diversification strategy where only a small minority of cells are capable of adaptation and the vast
majority becoming persisters (Kotte et al., 2014; Radzikowski et al., 2016). From these
experiments, it has been suggested then that prolonged cold shock and flux limitation are triggers
of persistence (Heinemann et al., 2020). Our results show that cold shock and flux-limitation on
nutrient shifts does not necessarily trigger persistence but can instead induce only a temporary
tolerance. The correlation of transient tolerance with adaptation to FA utilization and the sudden
killing of at least 98% of the population suggests that a majority of cells adapt to utilizing FA after
a gluconeogenic-to-FA transitions with very few cells entering a long-lived persister state.

Therefore, our results demonstrate that despite both being regulated by positive feedback,
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glycolytic-to-gluconeogenic and gluconeogenic-to-FA transitions follow fundamentally different
adaptation strategies. These contrasting results highlight the need for a deeper understanding of
how the underlying molecular mechanisms contribute to the choice of adaptation strategies in

response to nutrient transitions.

More generally, our results elucidate the role of metabolic positive feedback loops in
nutrient shift and p-lactam tolerance. For example, the positive feedback loop in the glyoxylate
bypass causes cells to maintain transient tolerance for up to 44 hours when switching from
pyruvate to FA. Adding glyoxylate to the pre-shift medium accelerated both transient tolerance
and FadD accumulation, indicating that a bottleneck in the glyoxylate bypass has a global effect
on the metabolic network, beyond its own regulatory loop. Previous studies of antibiotic
persistence have demonstrated the possibility of potentiating antibiotic killing by introducing key
metabolites (Allison et al., 2011). Our results demonstrate that glyoxylate can act as a key
regulatory metabolite to prime the metabolic network to adapt to certain nutrient shifts, thus
reducing transient tolerance to B-lactams. Because of the presence of these specific metabolic
regulations, cells maintain a memory of their pre-shift nutrient conditions, causing large
differences in tolerance time despite having identical post-shift nutrient environments.
Additionally, although we mainly focus on understanding the transient tolerance period, we note
that shifts from different carbon sources also have different rates of antibiotic killing and different
persister fractions (Figure 4.2B, Appendix C, Table C.1). These observations suggest a more
profound impact of metabolism on persistence, which are worth further studies. Altogether, our
findings show how the pre-shift metabolic conditions can have long lasting effects on the

metabolism and antibiotic tolerance of cells after a nutrient shift.
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4.4 Materials and Methods

4.4.1 Strains, Plasmids, and Construction
All strains were derived from Escherichia coli NCM3722, which was obtained from the

Coli Genetic Stock Center (Yale, USA). All strains, plasmids, and primers used are given in
Appendix C, Table C.2 and the plasmid sequences are given in Table C.3. Phusion DNA
polymerase, restriction enzymes, and T4 ligase used in plasmid construction were purchased from
Thermo Fisher Scientific (Waltham, MA, U.S.A.). Primers were synthesized by Integrated DNA

Technologies (Coralville, 1A, U.S.A).

Acyl-CoA Biosensor Strain. The Acyl-coA biosensor plasmid pSARK-yemGFP was
constructed from three parts following standard enzyme digestion and ligation protocols. The
bglBrick vector pS5k-rfp (Lee et al., 2011) was digested by Aatll and Xhol. The pAR promoter
was obtained by digesting pBARKk-rfp (Xiao et al., 2016) with Aatll and Bglll. The yemGFP
sequence was amplified by polymerase chain reaction (PCR) yemGFP_F and yemGFP_R
(Appendix C, Table C.2) and digested with Bglll and Xhol. Parts were ligated and transformed

into E. coli NCM3722 to make the Acyl-CoA Biosensor Strain.

FadD-YFP Strain. The FadD-YFP strain was constructed by following the pTarget-pCas
homologous recombination system protocol as described previously (Jiang et al., 2015, 2017).
Homology arms with 200-300 base pairs upstream and downstream of FadD were amplified from
E. coli NCM3722 genomic DNA by PCR. The YFP gene was amplified from a codon optimized
plasmid (Cox et al., 2010). The fadD and YFP genes were separated by a flexible glycine-serine-
rich linker constructed on primers (Bai et al., 2019). A guide RNA with the following sequence
was synthesized on primers and amplified along with the pTarget backbone:

TGACGACTGACTTAACGCTC. PCR products were then assembled via Golden Gate Cloning
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to form pTargetF-FadD-YFP. The pTarget plasmid was then used to integrate YFP into the genome
of E. coli NCM3722 transformed with pCas. Genome integration was verified by colony PCR and
sequencing, and the genome integrated strain was cured of the pTarget and pCas plasmids. The
final sequence of the FadD-YFP strain in the genome region of fadD is given in Appendix C, Table

C.3.

4.4.2 Growth Media
Cell growth and nutrient shift experiments were performed in M9 minimal media with

corresponding carbon source (M9 minimal salts supplemented with 75 mM MOPS at pH 7.4, 2
mM magnesium sulfate, 1 mg/L thiamine hydrochloride, 10 uM iron(ll) sulfate, 100 uM calcium
chloride, 3 uM ammonium heptamolybdate, 0.4 mM boric acid, 30 uM cobalt(I1) chloride, 15 uM
copper(Il) chloride, 80 uM Manganese(ll) chloride, and 10 uM Zinc sulfate). Media was
supplemented with sodium salts of each carbon source at a 72 mM carbon: 4mM oleate, 36 mM
acetate, 24 mM pyruvate, 24 mM glycerol, 18 mM (S)-malate, 18 mM succinate. For experiments
with co-utilization of glycerol and FA, the ratios of glycerol and oleate were adjusted to maintain
a total of 72 mM carbon atoms in the media. For experiments with co-utilization of carbon and
glyoxylate, 9 mM glyoxylate was used in all conditions, along with following concentrations of
each carbon source such that 72 mM of carbon atoms was maintained: 3 mM oleate, 24 mM
acetate, 18 mM pyruvate, 18 mM glycerol, 13.5 mM (S)-malate, 13.5 mM succinate. All cultures
were supplemented with appropriate antibiotic for selection (Ampicillin, 100 ug/mL; Kanamycin,

50 pg/mL).

4.4.3 Acyl-CoA Biosensor Activity
Single colonies of the acyl-CoA biosensor strain were grown in 3 mL LB media for 2-3

hours, then washed twice in M9 without a carbon source. Cultures were shifted into 3 mL M9
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media supplemented with specified glycerol and oleate concentration and grown for an additional
3-5 hours. Cells were again washed twice in M9 without a carbon source and were transferred M9
media supplemented with the specified glycerol/oleate ratios in a 96-well plate. Cells were diluted
to a density of ~2 cells/uL so that the glycerol/oleate ratio does not significantly change during
cell growth. Cells were grown for 9 hours, then growth was halted by addition of 100 pug/mL of
rifampicin and incubated on ice for at least 15 minutes prior to measurement. Samples were
analyzed with a Guava easyCyte HT5 flow cytometer (Luminex Corporation, Austin, TX, U.S.A.)

with blue 488 nm excitation laser and the green 525 nm emission filter.

4.4.4 Nutrient Shifting and Colony Counting Assays
All nutrient shifts were performed following previous methods (Radzikowski et al., 2016).

Specifically, cells were cultivated in a pre-shift medium at 37°C and were kept in exponential
growth phase for 14-17 hours. Cells were then collected and centrifuged in a pre-chilled centrifuge
(4 °C) at 4500 rcf for 10 minutes. Supernatant was discarded and cells were resuspended in chilled
M9 without carbon source. Three washes were performed. Finally, cell density (ODesoo) was
normalized to 0.5 in M9 without carbon, and then diluted 1:5 into pre-warmed oleate media so that
the final cell density was 0.1, and the final oleate and ampicillin concentrations were 4 mM and
100 pg/mL respectively, and with a final culture volume of 25 mL. At times indicated, 1 mL
culture was transferred to centrifuge tubes pre-filled with 200 uL of phosphate buffered saline
(PBS, pH 7.4). Cells are centrifuged at 4500 rcf, 4 °C, and washed 4 times in PBS. Finally, cell
pellets were resuspended to a final volume of 1 mL, and serial dilutions were also performed in
PBS. For each diluted culture, 10 pL was transferred onto LB agar plates and incubated for 12
hours at 37°C. Colonies were counted to determine the colony forming units per mL of culture

(CFU/mL).
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4.4.5 Transient Tolerance Time Determination
To quantify the length of time where the cells are transiently tolerant to ampicillin, we fit

the colony counting data to a modified two-population Gompertz model, which has been widely
used to describe kinetics of bacterial growth (Zwietering et al., 1990) and mortality (Kirkwood,

2015):

Survival = ((1 —p) X (1 —exp (—exp(l + prr X e x (t— TTT)))>>

+ ((p) X (1 —exp (—exp(l + Upgr X e X (t — TPER)))>>
where p is the persister fraction, urr and ppgg are the maximum Kkilling rates of the transient
tolerant and persister population, respectively, T, and Tpgg are the transient tolerance times of
the transient tolerant and persister fractions, respectively. Next, we assume that the tolerance time
of the transient tolerant fraction and persister fraction are equal, i.e. T, = Tpgg = T. Thus, only

the maximum rate of killing distinguishes the transient tolerant and persister populations.

To fit the data, CFU/mL counts were first normalized to the CFU/mL from time point zero and
converted to a logio scale. All data from replicates of each shifting experiment was fit to the two-
population Gompertz model using the MATLAB R2020B curve fitting tool (cftool). An initial
transient tolerance time was determined; the data was then re-normalized to the average CFU/mL
counts prior to the tolerance time for each replicate. The re-normalized data was fit again, and the

parameters along with their 95% confidence intervals and SEM were determined.

4.4.6 FadD-YFP Kinetic Assays
Cells were grown in different pre-shift carbon sources at steady state as described for

Colony Counting Assays. Cells were centrifuged and washed in M9 without carbon source for 4

times. Washed cells were then transferred to a Falcon 96-Well Imaging Microplate (Corning, NY,
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USA) and diluted to an initial ODego of 0.08 in oleate media with or without ampicillin, with a
final volume of 150 pL. An Infinite F200PRO plate reader (TECAN, Mannedorf, Switzerland)
was used to make automated ODeoo and fluorescence measurements (Excitation: 514 nm,

Emission: 552 nm) every 6 minutes with constant shaking and 37 °C temperature control.

Fluorescence measurements are normalized by ODeoo to give an estimate of FadD concentration.

4.4.7 Lag Phase, Threshold, and Accumulation Time Calculations
Lag phase was determined by a similar protocol as described previously (Basan et al.,

2020). The steady state growth rate after nutrient shift was first calculated by fitting a line to the
natural log of the ODeoo for the first hour after the culture density increases 8-fold from its initial
density. The time point where this line intersects the initial culture density is the end of the lag
phase. The fluorescence measurement at the closest measured time point is used as YFP/ODgoo at
the lag time. The FadD threshold was determined by taking the average YFP/OD level at the end
of the lag phase across all nutrient shift conditions without glyoxylate. The accumulation time was
determined as the first time point where the YFP/ODesoo Was above this threshold and the

YFP/ODsqo at all subsequent time points also exceeded the threshold.

4.4.8 Tolerance Time via ODeoo Calculation and YFP Normalization
For Kinetic optical density measurements in the presence of ampicillin, the transient

tolerance time was calculated as the last local maximum in the log of the OD for each time series.
To determine this, a moving window slope of 11 time points was used twice to calculate the first
and second derivatives of the log OD. The last time point where the first derivative was closest to
zero, and where the second derivative was negative was taken as the tolerance time measured by

ODesoo. Additionally, all fluorescence measurements after the measured tolerance time were
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normalized by the ODeo at the tolerance time to give an estimate of the FadD concentration which

is unbiased by the reduction in OD due to cell death.

4.4.9 Transcription Analysis by Reverse Transcription-gPCR
Cells were cultivated to steady state growth to an ODego 0f 0.2 and 2 mL of cells were

collected and stored in RNA/DNA Shield (Zymo Research, Irvine, CA, USA). Total RNA was
extracted from cells using the Quick-RNA Miniprep Plus Kit (Zymo Research) following
manufactures protocols. Contaminating genomic DNA was removed by DNase | treatment of RNA
on collection column, following the Quick-RNA Miniprep Kit protocol. cDNA was synthesized
using Revert Aid First strand cDNA Synthesis (Thermo Fischer Scientific) with random hexamer
primers following the manufactures protocol. Negative control reactions without the use of reverse
transcriptase were preformed to evaluate the potential presence of contaminating genomic DNA.
2 pL of cDNA was amplified using Power SYBR green PCR Master Mix (Thermo Fischer
Scientific) and gene specific primers (Appendix C, Table C.2). gPCR reactions for each biological
replicate, gene, and growth condition were performed in triplicate. gJPCR assays were performed
on a QuantStudio3 (Thermo Fischer Scientific) following standard thermal cycling conditions
recommended by the manufacturer. Expression levels of the condition invariant gene gyrA were
used as a control for normalization between samples (Said-Salman et al., 2019). Fold changes of

each gene of interest were calculated following the 2-AACt method.

4.5 Supplemental Information

Tables C.1- C.3, Figures C.1-C.4, and Appendix Sections C.1-C.2 can be found in Appendix C.
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4.5.1 Abbreviations
ACE, Acetate; Amp, Ampicillin; FA, Fatty Acid; F1,6P, fructose-1,6-bisphosphate; F6P, fructose

6-phosphate; GLY, glycerol; GOX, Glyoxylyate; ICT, Isocitrate; MAL, Malate; PEP,

phosphoenolpyruvate; PYR, pyruvate; SUC, Succinate; TBL, tolerance by lag
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Chapter 5: Conclusions and Future Directions

5.1 Conclusions

Metabolite dynamics and heterogeneity are two concepts which are gaining acceptance as
critical considerations in the design of engineered metabolic systems for producing commodity
chemicals (Schmitz et al., 2017; Hartline et al., 2021). Microbiologists have long understood the
significance of metabolic control systems in natural microbes, since the discovery of the lactose
inducible promoter in E. coli (Jacob and Monod, 1961). Despite this long history of deciphering
the molecular interactions involved in the control of metabolism, our ability to quantitatively
characterize systemic features arising from these interactions and to design new systems has been
limited. As such, only 53 examples of engineered dynamic control in metabolic engineering were
identified from the year 2000 to 2020 (Hartline et al., 2021). This dissertation expands the details
of how the regulatory architectures and parameters of metabolic control systems combine to affect

metabolite dynamics and heterogeneity, with a particular focus on the FA system in E. coli.

In Chapter 2, we dissected the role of regulatory architecture and parameters on recovering
pathway shutdown after a nutrient becomes depleted. Based on modeling and experimental results,
we uncovered the importance of maintaining and releasing a pool of sequestered TF in actuating
recovery. Our results show that negative autoregulation is a superior architecture for achieving fast
recovery with lower overall resource usage. This suggests a potential reason why many metabolites
uptake positive feedback loops incorporate negative autoregulation of the TF. The work elucidates
the tunable parameters and the constraints of regulatory architecture for controlling pathway
recovery in the design of metabolite uptake systems, which can be used in metabolic engineering

and metabolite sensing applications.
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In Chapter 3, we explored how changes in cell growth rate due to changing nutrient
conditions affect the minimum, maximum, and dynamic range (DR) of MRTF-based biosensors.
Our modeling results show how the growth dependence of DR is related to the biosensor’s
parameters, and to the transport mechanism of the sensed metabolite. Our results show that
dynamic range and its growth rate sensitivity are deeply coupled in due to their parameters, which
is a previously unknown design constrain in the engineering of MRTF-based biosensors. Since
MRTF-based biosensors are a critical component of engineered metabolic control systems, these
results highlight new considerations, and provide quantitative modeling approaches in the design

of such systems for use in different nutrient and growth environments.

Finally, in Chapter 4, we explored how positive feedback in nutrient uptake contributes to
B-lactam antibiotic tolerance after rapid nutrient shifts to FA. Our results show that both before
and after shifts to FA, there is apparently only a single population of cells which adapts to FA
utilization. During the adaptation period, cells are tolerant to killing by B-lactams. This tolerance
disappears for a majority of the population after the transient tolerance time, which is strongly
correlated with the timing of FadD production in the positive feedback loop. This study revealed
that positive feedback loops can control the timing of adaptation to nutrient sources and antibiotic
tolerance, without necessarily triggering persistence in these cells. These results shed new light on
persistence mechanisms during switching nutrient environments and suggests potential treatment

methods.
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5.2 Future Directions

This dissertation uncovers several new design principles for controlling metabolite dynamics and
heterogeneity at the transcription level through MRTFs. To uncover these design principles, we
took a combination of synthetic biology methods and modeling. These results highlight new

research directions which can be addressed to expand the applicability of this work to new systems.

5.2.1 Synthetic Biology Parts Design for Enhanced Metabolic Control Systems
From synthetic biology perspective, we were able to tune the architecture of the system by

replacing native promoters with engineered promoters with different regulatory logic to
experimentally test the impact on metabolite dynamics, for example in Chapter 2. These parts with
altered logic were derived from native FadR-regulated promoters, such as FabA, or from random
rearmament of FadR-regulatory sites to inactivate them. Although this approach successfully
changes the regulatory logic, the parameters of the system were also significantly altered, thus
requiring more tuning to get the parameters to be comparable between systems. This was
particularly noticeable in Chapters 2 and 3, where replacement of the native FadR promoter with
a positive autoregulation (Chapter 2) or constitutive regulation (Chapter 3) lead to a significant
loss of repression on controlled promoters (Pradp and Par). In both cases, we solved the problem
by introducing extra copies of the re-wired fadR on a plasmid to increase FadR levels, which added
further complexity to the experiments. Additionally in Chapter 4, it would be interesting to tune
the system into the bistable region by replacing the FadD promoter. This experiment was
attempted, but ultimately failed because a promoter with suitable parameters could not be easily
found. Advancements in methods to predict promoter strength (Zhao et al., 2022) and RBS strength
(Salis et al., 2009) directly from sequence are being explored, but current methods often make

inaccurate predictions for native promoters, and fail to capture the impact of regulators. The use

133



of libraries with a range of parameter strengths could be useful but selecting out the correct ones
from the library is labor intensive. Thus, having the ability to quickly engineer novel promoters
with appropriate and tunable parameters would significantly accelerate research in the control of
metabolite dynamics and heterogeneity. Additionally, fine tuning the parameters of a control
system is necessary for their function in metabolic engineering (Stevens and Carothers, 2015; Liu

et al., 2018), so rapid parameter tuning will be a critical advancement for this field.

In these studies, we took advantage of the fact that FadR acts as both a positive and negative
regulator of gene expression in some contexts. However, few TF have this capability without
extensive engineering, and many TF act repressively in the absence of a metabolite (Brautaset et
al., 2009; Shong et al., 2013). While our work shows that negative autoregulation is beneficial for
rapid pathway shutdown (Chapter 2), our results along with more recent modeling also shows that
positive autoregulation can be useful for purposely generating a slow response in for metabolic
engineering applications (Mannan and Bates, 2021). In these cases, a positively autoregulating
transcription factor needs to be identified. Thus, more research into protein engineering to turn
negative regulators into positive regulators can benefit the design of metabolic control systems

with appropriate dynamics.

5.2.2 Quantitative Design Algorithms for Metabolic Control Systems
In this work, we used mathematical modeling to elucidate design constraints and

advantages of regulatory architecture and parameters. These models where generally small in
scale, containing only a few differential equations with limited interactions between components.
This approach helped to abstract molecular details of the system and yet still provided good
agreement in trends between experiment and data. However, future models of metabolic control

systems will benefit by incorporating more interactions between the control system and
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metabolism, for example by modeling the effects of burden on control system components and the
role of the sensed metabolite as a carbon and energy source in the metabolic network. Incorporating
these interactions may help models to achieve better numerical accuracy to experimental data,
which will be very important in both the design of novel control systems and in understanding the
advantages of different control systems. Thus, algorithms which both capture these details, yet
maintain the simplicity and abstraction of small-scale models should enable better designs and

understanding of metabolic control.

For the FadR system, our work focused primarily on the interactions between FadR, acyl-
CoA and FadD in the metabolite uptake positive feedback loop. However, FadR has many
interesting regulatory roles including in central metabolism, FA biosynthesis, stress response, and
virulence. Additionally, other regulations play an important role in regulating FA catabolism
dynamics. For example, experiments in Chapter 4 revealed that the IcIR-aceB-glyoxylate positive
feedback loop affected the dynamics of the FadR-fadD-acyl-CoA feedback loop though some
global coordinating mechanism. Additionally, although the kinetics of nutrient switches could be
broadly captured with a single transient tolerance time, many cells maintain tolerance for a much
longer duration. Understanding these persister cells will require modeling of heterogeneity in the
system. Thus, there remains much research to understand the dynamics and heterogeneity of FadR
and FAs in the context of these many global interactions, and more complex models will be

necessary to capture these dynamics.

5.2.3 Metabolic Control Systems in Control of Antibiotic Persistence
This dissertation revealed that transitions from gluconeogenic carbon to FA produce a

transient tolerance to B-lactam antibiotics. These results raise several questions about the role of

metabolism in persistence. First, a prevalent view of metabolic persistence holds that carbon
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starvation and flux limitation in central metabolism triggers ppGpp synthesis (Gaca et al., 2015),
which can further trigger persistence in cells (Radzikowski et al., 2017; Wood and Song, 2020).
The transient tolerant cells similarly face a strong metabolic perturbation, which is sufficient to
cease cell wall biosynthesis (the primary target of B-lactam activity) yet is insufficient to
completely inhibit transcription and translation. Given these results, it would be interesting to
understand the role of ppGpp and other stress response mechanisms in transient tolerance, and its
relation to the metabolic signals necessary to generate “bona fide persistence” (Radzikowski et al.,
2016; Song and Wood, 2021). Second, previous reports claim bistability is an important
mechanism in maintenance of persistence after a flux limitation. We did not observe bistability in
FA metabolism, instead seeing only a single population before and after the switch. Thus,
bistability may still paly a role in the difference between transient tolerance and persistence.
Methods for quickly tuning the control system in the appropriate range can help tune bistability
and potentially the length of transient tolerance or degree of persistence, which could have use in
synthetic biology or metabolic engineering. Finally, this dissertation focused on B-lactam
antibiotics in transient tolerance. Our results show that transcription and translation are active
during FA nutrient shifts, which suggests these could be targeted by antibiotics. It would be
interesting to see if different classes of antibiotic generate different killing kinetics, which would
provide a useful tool in understanding the coordinated control of different biosynthetic and
catabolic pathways during nutrient shifts. The work in this dissertation highlights the many
avenues for research in understand the connection between metabolite dynamics, heterogeneity,

and antibiotic tolerance.
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Appendix A: Supplemental Information for “Metabolite
sequestration enables rapid recovery from fatty acid depletion in
Escherichia coli”

Appendix A contains supplemental information for Chapter 2.

A.1l. Nutrient Uptake Systems in Escherichia coli

Table A.1. Nutrient uptake systems in Escherichia coli. List of metabolite-responsive
transcription factors (TF) that control expression of nutrient uptake enzymes in Escherichia coli,
taken from EcoCyc (Keseler et al., 2017). All these systems follow the schematic in Figure. 2.1A.

TF Name TF autoregulation | Operon inhibited by | Sequestering
TF metabolite
ArsR | Arsenate Negative arsB, from arsRBC Arsenite /
inducibility operon Antimonite ion
regulator
AlsR | Allose utilization Negative alsABC, from D-allose
regulator alsRBACE operon
Betl Betaine Inhibitor Negative betT Choline
ChbR | Chitobiose Negative chbBCA from N,N’-
regulator chbBCARFG operon diacetylchitobiose
6-phosphate
CytR | Cytidine regulator | Negative nupC and nupG Cytidine
FadR | Fatty acid Negative fadD Acyl-CoA
degradation
regulon
GntR | Gluconate None, constitutive gntT, gntU D-Gluconate
repressor
Lacl Lactose inhibitor None, constitutive lacZYA Allolactose
LIdR | Lactate regulator Negative IldP, from IIdPRD S-lactate
operon
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LsrR | Quorum sensing Negative IsrACDB operon Al-2 (autoinducer)
system
NagC | N- Negative chbF, from Acetyl-D-
acetylglucosamine chbBCARFG operon glucosamine 6-
transcriptional phosphate
regulator
NanR | N-acetyl- None, constitutive | nanT, from N-
neuraminic acid nanATEK-yhcH acetylneuraminate
regulator operon
PaaX | Phenylacetic acid | Negative paaK, from paa Phenylacetyl-CoA
regulator operon
PuuR | Putrescine Negative puuP, from puuAP Putrescine
utilization and operon
transport regulator
RbsR | Ribose repressor Negative rbsACB, from rbs D-ribose
operon
SrIR Glucitol Repressor| Negative srlIAEB, from D-sorbitol
srIAEBD-gutM-slrR-
gutQ operon
TreR | Trehalose None, constitutive | treB, from treBC Trehalose 6-
repressor operon phosphate
UlaR | Utilization of I- None, constitutive | ulaABC, from L-ascorbate 6-
ascorbic acid ulaABCDEF operon phosphate
repressor
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A.2. Kinetic Model of Fatty Acid Uptake
To model the system in Figure 2.1B, we use the kinetic model:

% = Pr(R.,p;) —S—pu-R, (Eg. A1)
L —bp + il — - D Eq. A2
dl DT TRy R0~ M (Eq. A2)
Lea ‘D‘OA cat, 7 A
% = ;;i,,,_ltD*f’OA ’ D - ;‘&'”:.Bﬂ»z'l ’ B - 2 : S - 'UJ : A, (Eq A3)
St =8 —p-sR, (Eq. Ad)
S=kf R-A*— k. -sR (Eq. A5)

where R, D, A and sR represent the concentrations of transcription factor FadR, uptake enzyme
FadD, internalized fatty acyl-CoA and sequestered acyl-CoA-FadR complex, respectively (Figure
2.1B). During inducting, two molecules of acyl-CoA bind to sequester 1 dimer of FadR (van Aalten
etal., 2000). We model this reversible binding as mass-action kinetics (Eq. A5). The term Pr(R. py)
represents the expression and autoregulation of the fadR promoter. To model TF expression when
under negative autoregulation (n), positive autoregulation (p) or constitutive expression (c), we

write

Prn=by + H_(K?W, (Eq A6)
Pryp = by + ﬁ%}% (Eq. A7)
PR«; - pr:, (Eq A8)

respectively. We can use the model to simulate growth in continuous culture by fixing oleic acid

concentration (OA) in Eq. A3. Model parameters can be found in Table A.2.
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Table A.2. Model parameters for kinetic model of fatty acid uptake.

Parameter he ar Kp R

Description fadR basal exp. rate fadR promoter strength Affinity of FadR for its own promoter Hill coefficient
Units = #M /A Units = #M /R Units = L/ Units = N/A
(Fitted) (Fitted) (Fitted) (Fixed = 1)

Parameter by an K1 nn

Description fadD basal exp. rate fadD promoter strength Affinity of FadR for fadD promoter Hill coefficient
Units = 3 /h Units = 4 /h Units = L/ped Units = N/A
(Fitted) (Fitted) (Fitted) (Fixed = 2)

Parameter kr'(rt.D JKrra.D ”f(:m‘,,‘? }{-m,‘.’-i

Description Turnover rate of FadD Michaelis const. for FadD Turnover rate of PISB enzyme Michaelis const.
Units = 1/h Units = 1M Units = L/h Units = it
(Fitted) (Fitted) (Fitted) (Fitted)

Parameter B ky ke y

Description Conc. of PIsB enzyme Fwd rate of sequestering Reverse rate of sequestering Cell growth rate
Units = 1M Units = 1/h Units = 1/A Units = 41
(Fixed = 0.1369) (Fitted) (Fitted) (Fitted)

To fit model parameters, we use time course data from batch cultures induced with
titrations of oleic acid, shown in Figure A.1B. We used a red fluorescent protein (RFP) gene placed
at 3’ of the fadD promoter on a low copy number plasmid (pSfadDk-RFP). The plasmid was
incorporated to a fadE knockout strain to make AfadE-reporter. The fadE knockout strain was
chosen to reduce the consumption rate of intracellular acyl-CoA and to simplify the metabolite
dynamics for this parameterization purpose. Cells were cultivated in M9 glycerol (M9G) medium,

in flasks, to exponential growth phase and induced with varying concentrations of oleic acid. Time
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course measurements of cell density (Figure A.1A) and RFP fluorescence (Figure. A.1B) were

recorded.

For model fitting we extended the Egs. (A1) - (A8) with population growth in batch culture:

X —p X (Eq. A9)

Kear.p-OA
ap = _K,,:DZOA DX (Eq. A10)

with parameters defined in Table S2. We first converted fluorescence values to units of
concentration (UM) by assuming that the average fluorescence value in the absence of inducer
(dark blue points, Figure A.1B) represents the steady state concentration of FadD reported in,
measured in (Schmidt et al., 2016), where cells were grown in the same media as ours (M9G). This
gives a conversion factor of 1.12x10™* uM per unit of fluorescence, which was then applied to all

fluorescence values; results are in Figure A.1B.

We then performed a weighted least-squares fitting of simulations to the data. We define
Di(t,p) and di(t) as the simulated and average measured FadD concentration (from three biological
replicates), at time t, from the i time series. The index i =1, ... ,9 refers to the time course when
induced with oleic acid = 0, 0.4, 1, 4, 10, 40, 100, 400, and 1000 uM respectively. Fitting was

performed to find optimal values of model parameters (p) that minimize the cost function

Z (db" Mt )) (D( m)( di(t )gt)) (Eq. All)

given constraints

LB <p < UB, (Eq. A12)
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where LB and UB are lower and upper bounds on the parameter search space. The term &M is the

d; (t) . .
standard error measured from triplicate data. The term 4" in Eq. A11 ensures that the difference

between simulation and data at each time point is weighted by the inverse of the relative standard
error. This increases the weight of those contributions to the cost where data has a lower measured
error. We optimized parameters with a two-step approach. We first used a genetic algorithm (GA)
from the Global Optimization toolbox in MATLAB 2018a to find a candidate for a global
minimum (using 200 generations of the GA), and then to initialize the solver fmincon and perform
a local optimization using the same cost function (Eg. Al11). Fitting was performed independently
100 times; results are shown in Figure A.1B, and summary statistics of parameter values are given

in Table A.3.

Growth rates («) were estimated through a least-squares fitting of the measured optical

densities in Figure A.1A to the exponential function:

h(t) = hq - ett (Eq. Al13)

To understand the impact of each model parameter on the recovery time, we conducted

global parameter sensitivity analysis; see Appendix A.8 for details.
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A Fitted growth rates to resp. data

OA Conc. (UM) 0 0.4 1 4 10 40 100 400 1000
0.1926 0.1981 0.1932 0.1866 0.1785 0.1766 0.1809 0.1866 0.1857
0.3288 0.7136 0.3494 0.1288 0.5269 0.8634 1.6290 1.9973 19174

Growth rate ()
Sum sq. error

Mean of i 0.1865
SEM of u 0.0024

FadD Concentration (uM)
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035

e
w

o
N
a

o
N

o
o

o

a0 Fitting performance

Oleic acid
inductions
(M)

1000
400
100
40

w10
-y
=1
= 0.4

- O

0 5 10 15 20
Time (h)

Time (h)

Figure A.1. Fitting model to data. (A) Plot of time series data of measured optical density (OD),
in log scale, during growth in media induced with titrations of oleic acid. Values of the fitted
growth rate to each data series is given inset, including average growth rate (based on all data
series) used to in the model; modelled growth shown in red line, £ SEM in red dashed lines. (B)
Ensemble of 100 independent fits (grey curves) and the optimal fit (coloured curves) of simulations
to time course data (point with error bars), after converting fluorescence values to concentration.
Error bars in data represent SEM from biological triplicates (n = 3). Fitting performance in inset.
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Table A.3. Results of parameter fitting. Optimal parameter values together with search bounds
and summary statistics for 100 independent fits. The bounds on growth rate, x, are based on + two
times the SEM from data (shown in Figure A.1A, inset). Hill coefficients are fixed to nr=1 and
np=2, based on the number of FadR binding sites on the fadR and fadD promoters. Concentration
of PIsB is fixed to 0.1369 uM, as taken from (Schmidt et al., 2016).

barameters Optimal Bounds of GA Summary Statistics
Lower bound  Upper bound Average Median SD CV
u 0.1818 0.1817 0.1913 0.1854 0.1840 0.0036 1.9172%
br 0.0007 1.00E-06 0.0600 0.0210 0.0173 0.0140 66.7954%
aR 0.0131 1.00E-06 0.1500 0.0414 0.0343 0.0343 82.8857%
Kgr 4.3222 1.00E-03 100.0000 27.1436 22,9710 21.3182 78.5385%
Nr 1.0000 - - - - - -
bp 0.0108 1.00E-06 0.1000 0.0108 0.0112 0.0015 13.5842%
ap 0.0517 1.00E-06 0.1000 0.0486 0.0484 0.0021 4.4003%
Kb 305.9500 1.00E-03 750.0000 267.2850 215.9050 201.6395 75.4399%
Np 2.0000 - - - - - -
Keatp 49.0000 1.00E-06 27,000.0 12,364.4 12,817.5 7,610.1 61.5483%
Kmp 0.0672 1.00E-02 650.0000 173.6743 149.1950 128.8831 74.2096%
Keats 192.9100 1.00E-06 620.0000 235.0742 214.5650 160.4516 68.2557%
Kmg 45,429.0 1.00E-02 50,000.0 29,547.0 31,923.5 12,371.9 41.8719%
PlIsB 0.1369 - - - - - -
ke 612.5500 1.00E-06 625.0000 409.3018 446.6350 174.9435 42.7419%
Kr 900.7300 1.00E-06 3,200.0 844.9572 515.6600 928.0828 109.8378%
Init. Biomass 0.1648 1.00E-02 2.0000 0.2308 0.1521 0.2567 111.2037%
Obj Value 82.0500 - - 160,209.7 150,475.6 161,591.8 100.8627%
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A.3. Impact of the Exposure Time to Nutrient

As seen in Figure A.2, simulations suggest that for small increases in exposure time to oleic
acid cause a decrease in recovery time, but for longer times recovery time is increased again.
Further analysis of the simulations indicates that for exposure times, acyl-CoA accumulates to
higher levels. In the OFF state larger pools of accumulated acyl-CoA take longer to consume,
which causes delays in the release of free FadR in the OFF state. We infer that this delays the
recovery of FadD, increasing recovery time. We hypothesized that the bottleneck lies in the
consumption rate of acyl-CoA, as it is limited by the effective vmax 0of the consuming enzyme
kinetics (in our system Vmax = Kcat,gPISB). To computationally test this hypothesis, we increased the
concentration of consuming enzyme (PIsB) in the model and found a faster release of free FadR
which, in turn, reduced recovery time. Since longer exposure times increase the level of FadR

stored in complex (a-R), we also found a general decrease in recovery time.
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A.4. Plasmids and Strains Used in This Study

Table A.4. Plasmids used in this study.

Plasmids Replication Origin Operon Resistance Reference
pSfadDk-RFP SC101** Ptadp-rfp KanR This Study
pEfadRpoa-fadR colE1 Pradrpo-fadR AmpR This Study
pSfadRpok-rfp SC101** Ptadrpo-tfp KanR This Study

Table A.5. Strains used in this study.

Strains Relevant Genotype Reference

E. coli DH1 F- A- supE44 hsdR17 recAl endAl gyrA96 thi-1 relAl Hanahan 1983
DHI(AfadE) DH1, AfadE Steen 2010
WT-reporter DH1, pSfadDk-RFP This Study
AfadE-reporter DH1, AfadE, pSfadDk-RFP This Study
PA-reporter DH1, fadR::Psgrpo-fadR, pSfadDk-RFP, pEfadRpoa-fadR This Study
PA-FadR reporter DH1, fadR::Pragrpo-fadR, pSfadRpok-RFP, pEfadRpoa-fadR This Study
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A.5. Steady State Analysis: Autoregulation Affects FadR Levels During
Induction

Here, we ask how the mode of FadR autoregulation affects how the pool of total FadR
changes for long exposure times. To quantify this change, we look at the difference in the steady

ARp = Ry, — RY)

state 15— 'I.ss petween the concentration of total FadR achieved in the ON-state (

(n . . . (0) .
Rrs) to that achieved before induction (RTJ.ss) for each of the three systems (negative

autoregulation, positive autoregulation and constitutive expression).

To derive the expression for 27755, we define total FadR as £t = R+ sk, which from Eg. Al and

A4 follows

where Pr(R;p) is the FadR synthesis rate as a function of free FadR and parameters, », defined in
Egs. A6-A8 for each architecture. i is growth rate and assumed constant before and during the ON

state. At steady state Eq. Al4 gives
R’J"ss — pR(ﬁ%.ﬂ,p). (Eq. A15)
We can now write down an expression for Af7.ss as

I 0 RO, R,
AI?—T.S&-‘ — ]fg",)ss _ Ii'g",)ss — pr(Rss ,p) _ PrR(ss",p) (Eq A16)

I i ,

where R and k.Y are free FadR before induction and during the ON-state, respectively. In

general, Eq. Al at steady state gives
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0= pR(Rssap) — M- Rss - kf . Ags ' Rss + k'r N SRSS, (Eq Al?)

where Rss, Ass and SRss are steady state concentrations of free FadR, acyl-CoA and sequestered
FadR, respectively. Before induction, we have that Ass = 0 and sR.s = 0 for the three architectures.

Substitution into Eq. A17 leads to
0=pr(RY,p) — - R, (Eq. A18)

We now substitute Eqgs. A6-A8 into Eg. A18 for each mode of autoregulation, to get:

58,¢ m
(Eq. A19)
(constitutive expression)
o _ (o) /() s )
Ras,n = 2K
(Eq. A20)
(negative autoregulation)
Rssp = 7K.,
(Eq. A21)

(positive autoregulation)

To compute the steady state during the ON state, we first solve for sR in steady state from Eq. A4

ks A2 R ) .
to obtain SRss = ~F , and then substitute into Eq. A17:
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0 =pr(Rss,p) — A(Ass) - Rss, (Eq. A22)
where we have defined
A=p- (1) (Eq. A23)

We now substitute Eqgs. A6-A8 into Eq. A2 for each mode of autoregulation, to get the steady state

concentration of RO for each mode of autoregulation:

(Eq. A24)

(constitutive expression)

D, _ (1) /(e 1) 15 )
88,1 — 2Kn

(Eq. A25)

(negative autoregulation)

rcu(ceiﬂaa)_l n Ku(a§+bu)_1 2+45;1ba

RPN G ) | S e

(Eq. A26)

(positive autoregulation)

We now use the expressions for R's in Egs. A19-A21 and for RO in Egs. A24-A26 to compute
the direction of change in steady state concentration of free FadR. From Eq. A23 we have that

A = ufor positive parameters, and therefore:

R~ RY. <0 (Eq. A27)

R, — R, <0, (Eq. A28)
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R, —RY, <0 (Eq. A29)

Therefore, irrespective of the mode of autoregulation, the steady state level of free FadR is always

lower in the ON state relative to its steady state level before induction.

We can now return to Egq. A16 to compute the change in total FadR levels for each mode of

autoregulation. For constitutive expression, substituting Eq. A8 into A16 we get

ART:SS,C = % -

=@

=0 (Eq. A30)

and therefore, there is no change in the level of total FadR in the ON state, relative to its level

before induction.

For negative autoregulation, substitution of Eq. E6 into E16 gives

ART, ss,n —

an _ an
w(+ER R ) p(1+ K R, (Eq. A31)

Using the relation in Eq. A28, it can be shown that A%T.ss» = 0 and therefore the level of total

FadR is increased in the ON state, relative to its level before induction.

For positive autoregulation, substitution of Eq. A7 into A16 leads to

o gD - RO
AR KpR apKpR
T s — Uplip ss,p _ pirpilss.p

SEP L4 KRRYD,) (14K, RO, (Eq. A32)

Using the relation in Eq. A29, it can be shown that Afr.¢s» < 0 and therefore level of total FadR

is decreased in the ON-state, relative to its level before induction.
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In summary, we conclude that:

- For constitutive expression there is no change in total FadR and thus the system maintains
the level of sequestered FadR during induction.

- For negative autoregulation, total FadR increases and thus the system builds up a larger
pool of sequestered FadR during induction.

- For positive autoregulation, total FadR decreases and thus the system loses sequestered

FadR during induction.
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A.6. Construction and Characterization of Strain with Positively Autoregulated
fadR

To engineer a strain with a self-activating architecture, a portion of the fadR promoter
sequence, including the -10, -35 and the fadR operator sites were replaced with a sequence
originating from the promoter of the fabA gene, which is positively regulated by FadR. To alter
the genome sequence, we utilized pTarget-pCas genome editing system. The original promoter
sequence and the engineered promoter (Pradrpo) Sequence are show in Table A.6. To enhance the
expression of the FadR, we placed a plasmid copy of the positively regulated fadR, Ptadrpo-fadR,
in a ColE1 origin plasmid. The positively autoregulated reporter strain (named “PA reporter”) was

then created by transforming the pSfadDk-RFP reporter plasmid (Table A4, Table A5).

To confirm the self-activation of fadR, we measured the dose-response of the engineered
Pradrpo promoter. A rfp gene with a strong ribosome binding site (RBS) was cloned to the 3’ of the
Pradrpo promoter in a BglBrick plasmid (pSfadRpok-rfp). The engineered promoter and RBS
sequences are shown in Table A.6. To measure dose-response output, PA-FadR reporter strain was
grown in M9G with oleic acid concentrations = 0, 0.4, 1, 4, 10, 40, 100, 400 and 1000 uM. Cells
were grown in a plate reader. Cell culture absorbance and RFP fluorescence were measured.
Cultures were initially started at ODgoo = 0.001 and were allowed to reach steady state.
Measurements for each culture condition were made in triplicate. Induction with high
concentration of oleic acid reduces the output expression from the Pradrpo promoter (Figure A.3A),

confirming Psadrpo @S a positively autoregulated promoter.
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Table A.6. Sequences of engineered promoter with positively autoregulated fadR. (A) Native
fadR promoter sequence, Pragr. Bold lettering indicates FadR operator site, blue lettering indicates
coding sequence. (B) Positively autoregulated fadR promoter, Pradrpo, €ngineered in this work. The
underlined sequence is derived from the fabA promoter region of E. coli DH1 genome. (C)
Engineered Pradrpo Used to control rfp expression.

(A) [ CCCTTTTTCTTCTTTTTGTCTGCTATCAGCGTAGTTAGCCCTCTGGTATGATGAGTCCAACTTTGTTTT
GCTGTGTTATGGAAATCTCACTATGGTCATTAAGGCG

(B) [ CCCTTTTTCTTCTTTTTATTCCGAACTGATCGGACTTGTTCAGCGTACACGTGTTAGCT
ATCCTGCGTCAACTTTGTTTTGCTGTGTTATGGAAATCTCACTATGGTCATTAAGGCG

(C) | CCCTTTTTCTTCTTTTTATTCCGAACTGATCGGACTTGTTCAGCGTACACGTGTTAGCTATCCTGCGTCA
ACTTTGTTTTGCAGGTTTGTAAATAAAGGAGGGAGAAAGGGTATATGGCGAGTAGCGAA

A . Time spent
(A) o0 (B) in ON-state
1000 f— 2,000 ! : Shie
1,800 ”{ f 6 hrs
12000 | \\\ = 1,600 _ ';';i;_r Ei!l.ﬁi ®9hrs
= 10000 | ) $ 1,400 e .:rdi 58 gely Ii:_T
g 51,200 ;_T 'LlLl-"-H;:j": = hé Eﬁi}ﬁiﬁ%
o 00 o’ 1,000 T %*!zl W, € §§§
£ 2 800 f E_ £ : Iz Emy n .i!-.
¥ oo | o Ig i | = g
i g 600 Ll |
4000 % X 400 tl :
“ I
2000 | s S P 208 :
—o—w <
) 107 107 10" 10’ 10¢ 10 .
Oleic Acid Concentration M Time (h)

Figure A.3. Characterization and use of PA reporter strain. (A) Dose-response Of Ptadrpo-rfp
indicates FadR activated, and OA inhibited Pradrpo €Xpression. Error bars are SEM for biological
replicates (n=3) and blue curve is fit of a hill equation to the mean oleic acid concentrations. (B)
Time course fluorescence data for the switching experiment of the PA-reporter strain. Cells were
induced by 1mM oleic acid at time zero, and grown for three different exposure times, 3, 6, and 9
hours (dashed vertical lines), after which cultures were rapidly switched to fresh media lacking
oleic acid (OFF state). Error bars represent the SEM from biological triplicates.

156



A.7. Steady State Analysis: Promoter Strength Affects Level of Sequestered
FadR

For long exposure times, in Section A.4 we have shown that constitutive expression and
negative autoregulation can maintain or even build up the concentration of sequestered FadR. Here
we study how the mode of autoregulation and parameters shape the steady state level of SR (sRss)
achieved for long exposure times. We recall from the previous section that the steady state of

sequestered FadR in the ON state is

— ‘I'd'.f'R-“'Ags
SRJSS o ke

(Eq. A33)

where Rss is given by the formulae in Eq. A24 and A25 for constitutive and negative autoregulation

- (H ’“-;;fif-;f) (Eq. A34)

Rss.n =

respectively. Note that in Egs. (A34)-(A35) we have substituted the expression for 1 given by Eq.

A23. Substituting both expressions back into Eq. A33 we get

Ry A2
_ Pe fss,c E .
SRSS.C o kfx4%_;_p+kv'+#, ( q
A36)
k 1 Kb A‘Z Knb A2 ’ (Eq
E:R :_.L_, —1Lu+, o + — ApOn 2 +
ss,n ketp 2K, ‘!‘.(421 +k’:\+[“) 38,1 '”‘(A:l +k_,k+p) sn A37)
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for constitutive expression and negative autoregulation, respectively. To explore how parameters
affect sRss for long exposure time, we consider the scenario when there is a large accumulation of
acyl-CoA from high levels of inducer in the media. We therefore approximate sRss for each system

by evaluating Eq. A36 and A37 in the limit Ass — oo, For constitutive expression we get
aoBhog Sose = (Eq. A38)

For negative autoregulation, we further assume that the basal expression of fadR promoter is

negligible (bn = 0), so that Eq. A37 simplifies to

Q — ki 1 . 4/’1%3,”}{“{1”
SResn = 5o 2/, — AL nt [Aln t AT (Eq. A39)
H AES.?!-+k"'+#
and thus we obtain
lim  sRue, = =
pJm SR = F (Eq. Ad0)

In summary, from Eq. A38 and A40 we conclude that in both architectures, sequestered FadR is

scaled by the fadR promoter strength.
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A.8. Sensitivity Analysis of Kinetic Model

We used global sensitivity analysis (GSA) to quantify the impact of model parameters on
the recovery time. We performed GSA using the method of extended Fourier amplitude sensitivity
test (eFAST) (Saltelli et al., 1999; Marino et al., 2008) . We adapted the MATLAB code reported
in (Marino et al., 2008) and implemented eFAST to calculate the first-order and total-order
sensitivity indices (Figure A.4). We assumed that each parameter could vary from 0.1- to 10-fold
its fitted value, and model output was defined as the recovery time of FadD for the given input
parameters. To enable us to determine which parameters the recovery time was statistically and
significantly more sensitive to, we adopted the method of adding a dummy parameter to the model
(details in (Marino et al., 2008)). This was used to compare to the sensitivities of other model
parameters and a 2-tailed t-test was performed to test for significance. The parameters with
significantly higher sensitivities are highlighted with an asterisk in Figure A.4. The results suggest
that recovery time is more sensitive to parameters associated with the sequestering kinetics of
FadR by acyl-CoA and the promoter strength of fadR promoter. It is also sensitive to the
parameters representing the expression and regulation of FadD, but this is expected as it directly

affects recovery time.
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Figure A.4. Global sensitivity analysis of recovery time to model parameters. Bar plot of the
total-order sensitivity indices calculated from global sensitivity analysis (GSA) with eFAST.
Sensitivities were calculated from 257 samples per search curve (set of parameters), and this
sampling was repeated 7 times to ensure coverage of parameter values. Bars and error-bars show
the average and 1 standard deviation of sensitivities over the 7 repeated sampling. eFAST assigns
a dummy parameter a small, non-zero sensitivity (last bar). This was exploited to perform a two-
tailed t-test to calculate whether the sensitivity of each parameter was significantly greater than
that of the dummy parameter (asterisk, using a significance a=0.01). Parameters are listed in
descending order of sensitivity (bottom).
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Appendix B: Supplemental Information for “The Growth
Dependent Design Constraints of Transcription-Factor-Based
Metabolite Biosensors”

Appendix B contains supplemental information for Chapter 3.

B.1. Kinetic Model of MRTF-Based Biosensor with Repressed-Repressor
Architecture

B.1.1 Description of Kinetic Model
Motivated by the reactions shown in Figure 3.1A and recent simplified kinetic modeling of

biosensors (Mannan et al., 2017; Hartline et al., 2020), we develop the following kinetic model for

the operation of a biosensor.

Biosensor Expression

Hill-equations have been successful in describing the rate of protein production from a biosensor
promoter as a function of the amount of transcription factor (TF) (Mannan et al., 2017), so we use
the repressed-repressor hill-equation to describe protein production rate. These biosensor reporter
proteins (G) are diluted by growth only, and the effects of proteases are ignored due to being much
slower than cell growth under most conditions. Thus, we get the following kinetic equation for the

concentration of the biosensor output protein:

dc ag

6 _ pe +

dt G 1+RF
Kg

- uG (Eq. B.1)

Where by is the basal promoter expression rate, ag is the promoter strength, and Kg is the TF-
operator dissociation constant. Rr is the amount of free repressor TF, described below. The effects

of co-operativity in TF binding are ignored.
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Transcription Factor Expression and Metabolite-TF Sequestration

Free repressor (Ry) is produced at a constitutive rate. Based on previous modeling (Hartline et al.,
2020), free repressors can bind to intracellular target metabolite (Min) with mass-action kinetics to
produce metabolite-bound repressors (Rs), which cannot bind to DNA. This reaction is reversable

with first order kinetics as represented by the following reaction scheme:

> (i + @ =

%] %) %)

This gives the following kinetic equations for the intracellular concentration of free repressor (Ry)

and metabolite-bound repressor intracellular (Rs):

dRp

T br — ksgRpMy + kg Rs — URp (Ea. B.2)

dr
d_ts = kszfMin _ksrRS — URs (Ea. B.3)

where br is the constitutive repressor production rate, and kst and ks are the forward and reverse

binding rates between metabolite and MRTF. The total concentration of TF is Rt = RF +Rs.

Metabolite transport mechanisms

We provide a general mechanism to describe intracellular metabolite dynamics which can be
reduced to more specific mechanism by setting appropriate rates or concentrations to zero. First,
metabolite diffusion cross cell membrane is bi-directional with an identical diffusion rate constant

in each direction. Second, a metabolite can either be transported from extracellular environment

163



or catalytically created/destroyed by an enzyme following Michaelis-Menten Kinetics. The enzyme
transporters are constitutively expressed and are diluted by cell growth, which gives growth rate
dependence. Third, the metabolite binds to the repressor TF. Finally, the metabolite is also diluted
by growth. These give the following kinetic equations for the intracellular target metabolite

concentrations:

dlin kca ,imTim kca ,exTex
= = Kaipf(Mex — Mip) +mMex - mMin
- kszFMin + kg Rg - uM;y (Eq. B4)
dT;
— = brim — uTim (Eq. BS)
drT,
dix = bT,ex — UTey (Eq. B6)

Where Mgy is the extracellular metabolite concentration, and Tim and Tex are the concentrations of
importer and exporter enzymes, respectively. The parameter values and descriptions of the other

parameters are given in Table B.1.
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B.1.2 Analytical Solutions for Minimum Output, Maximum Output, and Dynamic Range
The steady-state value for the output protein concentration can be solved by setting Eq. B1-B6 to

zero and solving for G.

Minimum Output

For a repressed-repressor architecture, the minimum output (Gmin) occurs when extracellular target
metabolite concentration is zero (Mex = 0), so that maximum repression of the biosensor is

achieved.

Thus, the amount of free repressor is:
(Eq. B7)

RF,min =

and Gnin can be calculated as:

1
Gmin = ;(bG + 1+“§_R > (Eq. B8)

Kgu

To understand the effect of growth rate on the minimum output, we take the derivative with respect

to growth:
d _ —bp
-1
= Gmin) =7 | b + ( g (Eq. B10)
1422
GH

165



From Eq B.9-B.10, we observe that the minimum is always decreasing with growth for all positive
parameters. Additionally, based on Eq. B9, the overall repression of the biosensor is decreasing

since the repressor is diluted at higher growth rates.

Maximum Qutput

The maximum output depends on the amount of free repressor. From Egs. B2-B3, we can find the

fraction of free repressors available at steady-state:

RF 1 _ Kg
KsfMin ™ Min+Kg
ksr +u

(Eq. B11)
1+

Because the metabolite-MRTF binding rate ks is much faster than cell growth rate (i.e. ksr >> 1),

we can set ks+pL = ksr, and let Kr = ksi/kst be the TF-metabolite dissociation constant. Solving for

Min is generally difficult, so we write Gmax in terms of Min:

1 a
Gnax = ;(bG + . bgKR > (Eq. B12)

KGu(Min+KR)

ac;(l dMipn,  brKp )

d A Kg(Mip+KR)

dp

-1
(Gmax) = F b + (Eq. B13)

(1t )
Kgu(Min+KR)

From this equation, it can be determined that the maximum output decreases with growth if ddlin <

0, and increases with growth rate if ddl;‘ > 0.
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Often, models allow Min to reach infinity to describe the maximum output of a biosensor. However,
in experimental scenarios, the intracellular or extracellular metabolite cannot be made arbitrarily
high due to limitations in solubility, toxicity to cells, or transport limitations into the intracellular
environment. Thus, in our models, Mex takes on a large, but not infinite, value so that the potential

effects of these realistic experimental limitations can be captured by the model.

Dynamic Range

Finally, the DR can be calculated as

G agh M;
DR = —max_ 1 = &R L (Eq. B14)
Gmin Kgu (aG+bG+bG b:f)(KR+Min+ bRGKR>

and its derivative:

2
bGKRbR dMin( biR) ( bR)
M| —=—S5—— —(ag+ bg)(Kr+Miy) |+K ag+bg + *— + =
achg Ln< ZHZ (ag 6)(KRr ln)) R du GTPg KGu u K

Kg
bRKR)2
KGH

d
E(DR) =

bl 2
uz(aG+bG+—GR) (KR+Mi +

which can be either positive or negative depending on the sign of:

bGKRrbR®
Kg*u?

- (aG+bG)(KR+Min)) + KR(ZW_Hm(anLbGJrTGb:) (H + Il;_i)

S = M (

(Eq. B16)
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B.1.3 Analytical Solution for Parameter Space with dDR/du and dDR/dbR Both Positive
dDR/du positive for passive-only metabolite transport

If diffusion is the only process by which metabolite can enter the cell, a simplified relation between
DR and p can be obtained. From Eq S4, the active import and export rates can be set to zero.
Additionally, since ksr >> 1, then Eq S3 can be used to eliminate the sequestration terms from Eq

S4. Then at steady state, Eq S4 can be solved for the internal metabolite concentration:

_ kaigy N .
My, = (kazr+1) Mgy = Mgy if kdiff >> (Eg. B17)

Generally, diffusion happens on the order of a few minutes (Reuter et al., 2020), with a diffusion
rate of 8.4 h! estimated for the lacl inducer TMG (Noel et al., 2009), while the growth rate of a
cell is 0.69 h* for a cell with a 1-hour doubling time. Thus, the intracellular target metabolite
concentration becomes approximately independent of growth rate, (i.e. dMin/dy = 0). If growth
dilution cannot be ignored, the metabolite-p dependence becomes negative for all positive

diffusion rates as evident by equation S16:

Ay = — _ Fairr
du (Mln) (kdiff‘Hl)z Mex (Eq Blg)

If dMin/dp = 0 then the DR-p dependence becomes

bGKRbRZ
d agbg T\ Tkg2pz —(ag+bg)(Kr+Min)
@(DR) = bobny? oxz  (Ea.Bl9)
2 .
# (aG+bG+ KG#) (KR+Mm+ KG#)

And a simplified condition for where dDR/du is positive is found:

bGKRrbR?

Spassive—only = ( Ko2u? - (aG+bG)(KR+Min)) >0 (Eg. B20)
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Analytical solution for dDR/dbR positive

dDR/dbr can be calculated directly from Eq. B13:

_\_bGKRbR?
dDR _ acMin (ag+bg)(Kr+Min) KGZ”Z (Eq 821)
db, Kgu bgbgr 2 ] brKR 2 )
(ag+bg+ KG#) (KR+Mln+ KGH-)
Which is positive under the condition:
_ b _ bgKgbg® Eq. B22
Saprjar = | (a@g+bg) (Kg+M;y) Ko? 2 >0 (Eq. )

Comparing Eq B20 and Eq B22, it can be seen that Sypr/apr = —Spassive—onty- 1HUS, there is no

parameter space where both dDR/dp and dDR/dbr are positive for a passive diffusion only

mechanism. Examining Eq B16, if Sypr/apr IS positive, the sign of dDR/du is only positive when

dMin

” > 0, which motivates the examination active transport mechanisms to identify parameter

spaces where both Eq B16 and Eq B22 are positive.

B.2. Model Parameterization and Fitting

B.2.1 Model Parameterization for Simulations
The model is parameterized to biologically relevant values to explore the effects of parameters and

transport mechanisms. For growth rate, a doubling time between 1-8 hours was measured, so the
average of these corresponding growth rates (~1.8 hour doubling time) was used. To parameterize
the biosensor, parameters were chosen from previous literature values (Rosenfeld et al., 2002;
Hooshangi et al., 2005; Hartline et al., 2020), and then some parameters were further tuned to

match experimental results from our study. In particular, we observed that the maximum DR range
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from our library was ~500. So, ag, bs, and Kg, were tuned to give a maximum dynamic range of

500, while keeping the minimum output constant to match previous literature.

To model the appropriate transport dynamics, we assumed the TetR system had the mechanism
outlined in Figure 3.5. The diffusion rate was chosen to be 10-times the maximum growth rate
observed so that diffusion is much faster than growth. This value is on the same order of magnitude
as the diffusion rate observed for the lac inducer TMG (Noel et al., 2009). Next, as a starting point
for our analysis, we desired a set of parameters where the transport of the intracellular metabolite
through active and passive mechanisms are equal (for more detail, see Figure B.1A) which will
allow us to observe the effect of moving away from this balanced point on DR and dDR/dp. To
identify this initial balance point, the literature values for ksf, Kcatex, and Km.ex Were fine-tuned to

match the following constraint:

kCa ,exTex
—Ae e M — (Raige + W) My, = 0 (Eq. B23)

KM,ex"'Min

To explore the effect of tuning the Km values, Ku values were chosen to be Ky =1000 Min, Km =
Min, and Km =0.001Min for Km << Min, Km = Min and Km >> Min, respectively. Parameter-fine

tuning was performed using Matlab 2020b optimization toolbox fmincon.

Finally, when exploring the catalytic import/export mechanism, as many parameters were
maintained between the systems as possible, instead of re-tuning to match the FA-FadR sensor.
To enable a fair comparison between mechanisms, the center Keatim vValue was chosen so that Min

= Kmex. A summary of parameters used is given in Table B.1.
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Table B.1. Model Parameters and Values for Biosensor Model.

Parameter

Description

Value (units)

Parameters used across all simulations

Mo Growth Rate 0.3899 (h™)
M., External metabolite 4000 (uM)
b Biosensor basal expressionrate | 1.113E-2 (uM h™)
ag Biosensor promoter strength | 5.565E0 (uM h™t)
K; TF Dissociation constant 2.573E-5; (uM)
by TF constitutive expressionrate | 1.380E-2 (uM h™?)
kg, TF-M reverse sequestration rate | 900.7 (h~1)
Parameters Tuning br at constant growth (Figure 3)
Range:
by TF constitutive expressionrate | Min: 2.30E-3 (pM h7!)
Max: 1.38E-2 (uM h71)
ksf TF-M forward sequestration 3.345E3 (uM! hl)
rate
M;, Internal metabolite 1.894E3 (pM)

Parameters: passive transport/active export mechanism (aTc-type: Figure 5, Figure S2)

Center value:

kairs Metabolite diffusive rate 6.931E1 (h-1)
b o Met..tra.nsporter (e_xport) 0.0625 (uM h-1)
’ constitutive expression rate
Center values:
) Ky Low: 8.657E4 (h71)
kcat ex Active export turnover rate Ky Med: 1.730E5 (h-l)
Ku High:8.657E7 (h71)
Kv Low: 1.894E0 (uM)
Kt ex Active export Michaelis constant | Ku Med: 1.894E3 (uM)
Kv High:1.894E6 (uM)
Ky Low: 4.117E M-l h-!
ksf TF-M forward sequestration KS MZd: 3. 345E§ ((1:11\’1’1 h-l))
rate Ky High:2.958E3 (uM-! h-1)

Parameters: active import/export mechanism (FA-type, Figure 6)
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Met. transporter (export)

0.0625 M h-!
br,ex constitutive expression rate (v :
K Acti ft " Center value:

cat.ex ctive export turnover rate 1.730E5 (h-1)
Kit ex Active export Michaelis constant | 1.894E3 (uM)
bri Met. .trar.lsporter (1r.nport) 0.0625 (aM h-1)

’ constitutive expression rate
K Acti ft ¢ Center value:
cat,im,0 ctive export turnover rate 2.923E4 (h-1)
Active import Michaelis

Ky i 49.00 M

Mjem constant ()

ksf TF-M forwar;is:questraﬂon 3.34583 (uM-! h-l)
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B.2.2 Model Fitting to RBS Library Data
To determine how well the model works at a single-growth rate, we fit the model to the data

collected from the aTc sensors with a library of RBS strengths controlling TetR expression (Figure
3.3B, 3.3C, Appendix B, Table B.6). To do so we fit equations Eq B.8 and Eq B.12 representing
Gmin and Gmax respectively, to the data. To fit the data, the measured Gmin and Gmax Were first
multiplied by the average growth rate from all strains in the minimum and maximum output
conditions respectively. This operations converts the measured RFP concentration (RFP/OD) into
units of expression rate (RFP/OD/h). The measured TetR expression level was corrected for Gmax
to account for the change in growth rate. Finally, Min is assumed to be the same for all library
members and is taken to be 1 at the maximum and 0 at the minimum, for the purposes of fitting.
Four parameters were converted into log space and fitted, bg, as, Kg, and Kr. The minimum and
maximum expression rates were fit simultaneously using Matlab R2020b surface fitting tool
(cftool) with two inputs (TetR expression and aTc concentration), and one output (biosensor
protein expression rate). A summary of the fitted parameters is given in Table B.2. The measured
DR data was not used directly during fitting. Instead, the model prediction for DR was calculated

from the minimum and maximum outputs of the model and plotted directly for Figure 3.3D.

To determine whether the model fitting is statistically significant for the relation between
minimum output and TetR expression rate (Figure 3.3B), we refit the Gmin vVersus TetR expression
data with the average value for all the Gmin data (i.e. Gmin is not correlated with TetR expression).
We conducted an F-test of the residuals and found that our fitted model (Eq S8) provides a
statistically significant better description of Gmin versus TetR, as compared to a no-correlation
model (F-Statistic: 12.14; degrees of freedom no-correlation model: 11, degrees of freedom Eq.
B8: 9, p-value 4.1x10™). This supports that our model can correctly capture the relation between

Gmin and TetR expression rate (br).
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Table B.2. Model parameters and fitting to aTc-biosensor, TetR-RBS-library.
Model (Adapted from Eq B8 and Eq B12)

(0%

oG =bet . -TetR K
(1 - (umﬁn- K, )'(KR T+ M))

Input
Parameters

Description Value from experiment (units)

Average Growth Rate
of TetR-RBS-Library 0.4627 (h1)
at Gmin
Average Growth Rate
Momax of TetR-RBS-Library 0.3410 (h™)
at Gmax
Internal Target
M in Metabolite Concentration 0 (Concentration)

at Gmin
Internal Target
Metabolite Concentration 1 (Concentration)
at Gmax

TetR Expression Strength
TetR from TetR Expression Strength See Table b.o6
Library

Umin

Mmax

G Biosensor output See Table S6

Fitted
Parameters

Description Fitted Value (units)

be Biosensor basal expression | ; 4. (-1.5729) (REP/(OD h))
rate
ag Biosensor promoter strength | 10" (0.9604) (RFP/(OD h))
K. TF Dissociation constant 10" (-2.9963) (RFP/OD)
K TF-metabolite dissociation 107 (-4.4500)
R constant (Concentration)
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B.3. Sensitivity Analysis of Kinetic Model

We used global sensitivity analysis (GSA) to quantify the impact of model parameters on the DR
and DR-p dependence (dDR/dp). We performed GSA by extended Fourier amplitude sensitivity
test (eFAST) using MATLAB code adapted from previous works (Marino et al., 2008; Hartline et
al., 2020), to calculate the total-order sensitivity indices for each parameter. Parameter values were
varied from 0.1- to 10- fold from the parametrized values (with the intermediate value for Kw,ex)
and DR and dDR/du were calculated as model outputs. A dummy parameter was incorporated into
the model which has no effect on output. The sensitivities of each parameter were compared
against the dummy parameter for significance testing (2-tailed t-test, .= 0.01). The results suggest
that both DR and dDR/du are sensitive to the actuating parameters intrinsic to the biosensor
promoter (ag, bs, Kg) and the sensing parameters related to repressor expression and activity (br,
ksf, ksr) but are less sensitive to metabolite transport Kinetic parameters (Figure B.2). Overall, both
DR and dDR/dp share the same significant parameters, suggesting that tuning DR will also impact

the DR-growth rate dependence and vice versa.

B.4. Effect of Time-Varying Target Metabolite Concentration on Dynamic
Range-Growth Rate Dependence

For our model and experiments, it was assumed that the extracellular environment and target
metabolite concentrations are constant and saturating for the biosensors, so that the biosensor
output could reach a steady-state. These assumptions are valid for several reasons. First, the
addition of extracellular inducer is very high, at concentrations at or beyond what are typically
used to achieve full induction. Under these conditions, small reductions in target metabolite are
unlikely to significantly impact the output of the biosensor. Second, data was collected at early

exponential growth (O.D. 600 < 0.4), so that the distribution of the target metabolite to each cell
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remains high over that period. Third, the inducers used are non-metabolizable so their extracellular

concentration would not be significantly impacted by cells.

In some cases, the growth of the cell population can impact the extracellular concentration. This
can happen because the target metabolite is degraded by the cell, or because when cell density is
high, the relative amount of target metabolite per cell is reduced. In these cases, the DR-u
dependence could be affected by changes in the availability of extracellular target metabolite. To
understand this scenario, we use the model to explore how the DR-p dependence changes for a
linearly decreasing extracellular target metabolite concentrations (Figure B.3A). Although the
extracellular target metabolite concentration is unlikely to change in this way, the biosensor
outputs Gmin and Gmax are defined as the steady-state protein concentration of the biosensor. Thus,
the dynamics of the extracellular concentration can be ignored when calculating DR. We model
biosensor with an aTc-type transport mechanism for extracellular inducer and calculate how the
DR-u dependence changes as the target metabolite concentration decreases (Figure B.3B). Our
model shows that initially as the target metabolite concentration decreases, the DR-p dependence
increases, indicating that the DR become more sensitive to growth. Then as the target metabolite
concentration approaches zero, the DR-u dependence also goes to zero. To explain this behavior,
we focus on how Gmax changes over time, since Gmin does not depend on target metabolite
concentration (Eq S8). Our model shows that Gmax does not decay linearly with time and the rate
of Gmax decay depends on the growth rate of the cell (Figure B.3C). At low growth rates, Gmax is
more sensitive to falling extracellular target metabolite concentrations. Because of this, the Gmax
levels cross, and the DR becomes highly sensitive to growth rate, mostly due to a high Gmin-pt
dependence. Once the extracellular target metabolite concentrations reach zero, the Gmax, and DR

become zero, so there is no more DR-u sensitivity. These results demonstrate a non-linear
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relationship between DR-u dependence and extracellular target metabolite concentration, which
could be important in applications requiring high cell densities or when sensing degradable

metabolites.
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Figure B.1. Modeling the impact of passive transport/active export (aTc-like) transport on
intracellular target metabolite concentration and Min- dependence. (A) Total active (red) and
passive (blue) transport rates at different growth rates at center kqit and Kcatex Values for
intermediate Kwm,ex (i.€. Km,ex = Min). The dotted line shows the growth rate o, at which the passive
and active transport rates are equal. (B) Intracellular target metabolite concentration and. (C) Min-
M dependence under different parameter space.
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Figure B.2. Global sensitivity analysis of DR and dDR/du to model parameters. Bar plot of
the total-order sensitivity indices calculated from GSA by eFAST for the (A) Dynamic Range, (B)
dDR/Dy. Sensitivities were calculated from 600 samples per search curve over the parameter
space, and each sampling was repeated 9 times for a high coverage of the parameter space. Bars
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9 repeated samplings. The significance of each model parameter was tested against a dummy
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of sensitivity.
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Figure B.3. Effect of time-varying extracellular target metabolite concentration on DR-u
dependence. Model represents an biosensor with an aTc-like transport mechansim. (A)
Extracellular target metabolite concentration is decrasing over time due to significant consumption
by the cells. (B) DR-u dependence over time at an intermediate growth rate as extraceullar target
metabolite concentrations fall. (C) Maximum biosensor output (Gmax) Over time at a slow,
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Parameters used are given in Table B.1 for aTc-type biosensor with a medium Kw value.
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B.5. Growth Conditions, Plasmids, Strains, and Sequences Used in This Study

Table B.3. Medium conditions and growth rates used in this study.

Medium Condition

Growth rate @ |

Growth rate at maximum output

0.59 +£0.05 h'
b

at minimum

output aTc biosensor | IPTG biosensor | FA biosensor

75 mM Acetate 0.24 +0.02 h't 0.111 +0.001 | 0.20+0.01ht 0.01+0.01 ht
h-l

20 mM Pyruvate 0.34+0.01 ht 0.20+0.01h? | 0.34+0.02ht N.D.
1% (v/v) Glycerol 0.43+0.02 ht 0.28+0.02h?! | 0.38+0.01 ht 0.40 +0.02 h't
20 mM Sorbitol 045+0.01ht 0.23+0.02h? | 0.41 £0.01ht N.D.
15 mM Succinate 0.49+0.03ht 0.29+0.02h? | 0.39+0.01ht N.D.
1% Glycerol +7 0.50 + 0.03 h? 0.36 +0.02h?* | 0.50+0.01 ht 0.49 +0.02 ht
Amino Acids
20 mM Xylose 0.51+0.02ht 0.29+0.02h? | 0.45+0.01ht N.D.
0.4 % (w/v) Glucose N.D. N.D. 0.65+0.01 ht

N.D. Not determined

& Growth rate at minimum output are averages from all three sensors

b Glucose medium growth rate at minimum output is from FA-sensor only
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Table B.4. Plasmids used in this study.

Plasmid Description Replication  Operon Resistance References
Origin marker
pS2k-rfp aTc biosensor SC101 Pret-rfp KanR (Lee etal.,
Pretr-tetR 2011)
pS5k-rfp IPTG SC101 Pracuvs-rfp KanR (Leeetal.,
biosensor Piaci-lacl 2011)
pSARk-rfp  FA biosensor ~ SC101 Par-rfp KanR (Zhang et
al.,
2012)
pAfadRmla- fadR over- pl5A Ptagrmi-fadR AmpR This Study
fadR expression
pTargetF- Genome ColEl Pis119 -fadR gRNA,  SpecR This Study
Pfadrm1 Editing: targeting fadR
constitutive promoter, Pragrm1-
fadR promoter fadR homology arms
pTargetF- Genome ColEl Pis119 -fadE gRNA,  SpecR This Study
AfadE Editing: targeting fadk
fadE knockout coding sequence,
FadE 5’ and 3’
homology arms
pTargetF- Genome ColEl Pis119 -fadD gRNA,  SpecR This Study
Ppro4::fadD Editing: targeting fadD
constitutive promoter sequence,
fadD promoter FadD 5’ and 3’

homology arms,
Ppros upstream of

FadD

pSk-Prer-rfp-  aTc biosensor  SC101 Pret-rfp KanR This Study
Pi23110- with Library Pi23110-tetR
RBSLibrary- of TetR RBS
tetR
pSk-Pj23110-  Library of SC101 Pj23110-rfp KanR This Study
RBSLibrary- TetR RBS
rfp controlling

RFP
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Table B.5. Strains used in this study.

Strains Genotype references
E. coli MG1655  K-12F A7ilvG™ rfb-50 rph-1 This study
aTc biosensor MG1655 pS2k-rfp This study
strain

IPTG biosensor  MG1655 pS5k-rfp This Study
strain

FA biosensor MG1655 AfadE Pragrmi::fadR Pproa::fadD pSARK-rfp  This Study
strain pAfadRmla-fadR

TetR-RBS- MG1655 pSK-Pret-rfp-Pi2s110-RBSLibrary-tetR This Study
Library

TetR Expression MG1655 pSk-Pj23110-RBSLibrary-rfp This Study

Strength Library
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Table B.6. aTc biosensor-TetR RBS library members used in this study.

RBS TetR Expression G Gt
Sequence (sgs;‘gg‘) . (RFP/OD) (RFP/OD) © DR

GGT 1.07 +0.02 0.070 + 0.002 25.4+0.6 361 + 16
ATG 0.74 + 0.01 0.078 + 0.004 26.4+0.3 335 + 13
GTT 0.452 + 0.005 0.072 + 0.003 259 +0.2 356 +14
TGT 0.388 + 0.005 0.14 +0.01 27.0+0.3 186 +16
TTC 0.270 + 0.001 0.16 + 0.01 250+ 0.1 158 + 11
CAC 0.203 + 0.006 0.187 + 0.003 24.8+0.1 13142
ACT 0.193 + 0.007 0.116 + 0.005 29.3+0.6 250 + 10
cce 0.189 + 0.002 0.210 + 0.005 24.9 +0.4 117+1
CGC 0.19 + 0.01 0.112 + 0.004 27.0+ 0.4 240+ 6
CGT 0.180 + 0.005 0.095 + 0.004 27.7+0.6 289+ 9
ACC 0.161 + 0.003 0.261 + 0.004 27.3+0.4 103+ 1
ACA 0.124 + 0.004 0.20 + 0.01 263+ 13 131+ 11

& Measured from TetR Expression Strength Library Strains

b Measured from TetR-RBS-Library Strains at 0 nM aTc

¢ Measured from TetR-RBS-Library Strains at 1000 nM aTc

* Colors correspond to those low (yellow), medium (green), and high (purple) TetR expression
sensors displayed in Figure 3.4.
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B.5.1 DNA Sequences of Plasmids Constructed in This Study.

pAfadRm1a-fadR
3208 0p

pAfadRmla-fadR. Features: Promoter Prgrmi, blue; Removed FadR operator site, highlight;
fadR, dark red;

cttcgatagccaacagaccaccggggagcagcgggtagcatttcagggccatcgeccagagtgaaaataaattccgectaccagcaaccageccgegac
gaaagggctgatgaggaaaattaacgggtttacgattaagaaaatgatgagggcgagtttgtaccagtcgggggactggcccaaaaaattgcgecat
agcgcgcggceccccaggagatctccatgatggtttececttaccttacaaataatcaatgatgtttttatgtttaaacgcaaagecttaacggtcaggea
ggagtgaggcaagtcttgatagtcaaggggaaagagatgcggaaaatgaagceccttgatcectttttecttetttttgtectgectatcagegtagttage
cctaatttatgatactgccaactttgttttgctgtgttatggaaatctcactatggtcattaaggcgcaaagcccggecgggtttecgeggaagagtac
attattgaaagtatctggaataaccgcttccctceccecgggactattttgecccgcagaacgtgaactttcagaattaattggecgtaacgegtactacgt
tacgtgaagtgttacagcgtctggcacgagatggctggttgaccattcaacatggcaagccgacgaaggtgaataatttctgggaaactteccggttt
aaatatccttgaaacactggcgcgactggatcacgaaagtgtgeccgcagettattgataatttgectgtecggtgegtaccaatatttccactattttt
attcgcaccgcgtttcecgtcagcatcccgataaagcgcaggaagtgctggectaccgctaatgaagtggeccgatcacgecgatgectttgecgagetgg
attacaacatattccgcggcctggecgtttgecttccggcaaccecgatttacggtcectgattcttaacgggatgaaagggctgtatacgegtattggteg
tcactatttcgccaatccggaagecgegecagtcectggegetgggettectaccacaaactgtecggegttgtgcagtgaaggegegecacgatcaggtgtac
gaaacagtgcgtcgctatgggcatgagagtggcgagatttggcaccggatgcagaaaaatctgeccgggtgatttagecattcaggggecgataaggat
ccaaactcgagtaaggatctccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttecgttttatectgttgtttgtecggtgaacget
ctctactagagtcacactggctcaccttcgggtgggecctttctgegtttatacctagggatatattccgettectegetcactgactegetacgete
ggtcgttcgactgcggcgagecggaaatggcttacgaacggggecggagatttecctggaagatgeccaggaagatacttaacagggaagtgagagggecg
cggcaaagccgtttttccataggctccgeccecectgacaagcatcacgaaatctgacgectcaaatcagtggtggcgaaacccgacaggactataaag
ataccaggcgtttccccctggeggectcecctegtgegetctectgttectgecttteggtttaccggtgtcattececgetgttatggecgegtttgtet
cattccacgcctgacactcagttccgggtaggcagttecgectccaagectggactgtatgcacgaaccecccecgttcagteccgaccgetgegecttatece
ggtaactatcgtcttgagtccaacccggaaagacatgcaaaagcaccactggcagcageccactggtaattgatttagaggagttagtcttgaagtca
tgcgccggttaaggctaaactgaaaggacaagttttggtgactgecgectectccaageccagttacctecggttcaaagagttggtagectcagagaacct
tcgaaaaaccgccctgcaaggcggttttttegttttcagagcaagagattacgcgcagaccaaaacgatctcaagaagatcatcttattaatcagat
aaaatatttctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacgatataagttgttactagtgecttggattctca
ccaataaaaaacgcccggcggcaaccgagcegttctgaacaaatccagatggagttctgaggtcattactggatctatcaacaggagtccaagecgage
tcgtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcateccatagttgectgactececececg
tcgtgtagataactacgatacgggagggcttaccatctggeccccagtgctgcaatgataccgegtgaaccacgetcaccggectccagatttatcage
aataaaccagccagccggaagggccgagcgcagaagtggtectgcaactttateccgectceccatccagtctattaattgttgececgggaagetagagta
agtagttcgccagttaatagtttgcgcaacgttgttgeccattgctacaggcatecgtggtgtcacgectecgtegtttggtatggettcattcageteecg
gttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagecggttagetecttecggtecteccgategttgtcagaagtaagttgge
cgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatcegtaagatgettttctgtgactggtgagtactcaace
aagtcattctgagaatagtgtatgcggcgaccgagttgctecttgecceggegtcaatacgggataataccgegeccacatagcagaactttaaaagtge
tcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactegtgecacccaactgate
ttcagcatcttttactttcaccagecgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttga
atactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaac
aaataggggttccgcgcacatttcceccgaaaagtgccacctgacgte
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T
epa 323119 | g
fadR Nop A

pTargetF_PfadRm1
2832 bp

pTargetF-Pradrmi1. Features: fadR N20, ; Homology arms, green; Removed FadR operator
site, highlight
ttgacagctagctcagtcctaggtataatact tgggttttagagctagaaatagcaagttaaaataaggctagtccg

ttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagagtcgaccttcgatagccaacagaccaccggggagcagegggtag
catttcagggccatcgccagagtgaaaataaattccgctaccagcaaccagcccgcgacgaaagggctgatgaggaaaattaacgggtttacgatta
agaaaatgatgagggcgagtttgtaccagtcgggggactggcccaaaaaattgcgccatagecgecgecggeccccaggagatctccatgatggtttecct
taccttacaaataatcaatgatgtttttatgtttaaacgcaaagcttaacggtcaggcaggagtgaggcaagtcttgatagtcaaggggaaagagat
gcggaaaatgaagccttgatccecctttttcecttetttttgtectgetatcagegtagttagecctaatttatgatactgeccaactttgttttgetgtgtt
atggaaatctcactatggtcattaaggcgcaaagcccggcgggtttecgecggaagagtacattattgaaagtatctggaataaccgettececcteececgg
gactattttgcccgcagaacgtgaactttcagaattaattggcgtaacgecgtactacgttacgtgaagtgttacagegtctggcacgagatggectgg
ttgaccattcaacatggcaagccgacgaaggtgaataatttctgggaaacttccggtttaaatatccttgaaacactggecgecgactggatcacgaaa
gtgtgccgcagecttattgataatctcgagttcatgtgecagetcecatcagcaaaaggggatgataagtttatcaccaccgactatttgcaacagtgec
gttgatcgtgctatgatcgactgatgtcatcagcggtggagtgcaatgtcatgagggaagcggtgatcgccgaagtatcgactcaactatcagaggt
agttggcgtcatcgagcgccatctcgaaccgacgttgectggecgtacatttgtacggecteccgcagtggatggecggectgaageccacacagtgatatt
gatttgctggttacggtgaccgtaaggcttgatgaaacaacgcggcgagectttgatcaacgaccttttggaaacttecggecttcececctggagagageg
agattctccgcgctgtagaagtcaccattgttgtgcacgacgacatcattcecgtggegttatccagectaagegecgaactgcaatttggagaatggea
gcgcaatgacattcttgcaggtatcttcgagccagccacgatcgacattgatctggctatcecttgectgacaaaagcaagagaacatagegttgecttyg
gtaggtccagcggcggaggaactctttgatceccggttcctgaacaggatctatttgaggecgctaaatgaaaccttaacgectatggaactecgecgeeccyg
actgggctggcgatgagcgaaatgtagtgcttacgttgtecececgecatttggtacagecgcagtaaccggcaaaatcgegecgaaggatgtegetgecga
ctgggcaatggagcgcctgccggecccagtatcagecccgtcatacttgaagectagacaggettatecttggacaagaagaagatecgettggectegege
gcagatcagttggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagatgeccgctecgecagtcgattggectgagete
atgaagttcctattccgaagttccgcgaacgcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatceccttaacgtgagtttt
cgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttecttgagatcecectttttttectgegegtaatctgetgettgcaaacaaaaaaacce
accgctaccagcggtggtttgtttgeccggatcaagagctaccaactcttttteccgaaggtaactggecttcagcagagecgcagataccaaatactgte
cttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgecctacatacctecgetcectgectaatecctgttaccagtggetgetgeca
gtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggectgaacggggggttecgtgcacacagcece
cagcttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagecgccacgcttcccgaagggagaaaggcggacaggtat
ccggtaagcggcagggtcggaacaggagagcgcacgagggagecttceccagggggaaacgectggtatectttatagtectgtegggtttecgecacctet
gacttgagcgtcgatttttgtgatgctcgtcaggggggcggagecctatggaaaaacgccagcaacgcggectttttacggttecectggecttttgetyg
gccttttgctcacatgttctttecctgegttatccecctgattectgtggataaccgtattaccgectttgagtgagetgataccgectegeccgcagecga
acgaccgagcgcagcgagtcagtgagcgaggaagcggaagagecgcectgatgeggtattttcectecttacgecatectgtgeggtatttcacaccgeatat
gctggatcc
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oba_123119 g?,vj
fadE N2g

pTargetF_AfadE
3100 bp

pTargetF-AfadE. Features: fadE N20, ; Homology arms, green;

ttgacagctagctcagtcctaggtataatactagt gttttagagctagaaatagcaagttaaaataaggctagtccg
ttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagagtcgacctgcagaagcttagatctcgggaggaatgatgtttaag
gcaataacgacagtcgccgctctggtcatcgeccaccagtgcaatggcgcaggatgatttaaccattagcagecttgcaaagggcgaaaccaccaaag
ctgcatttaatcagatggtacaagggcataagctgcctgecctgggtgatgaaaggcggtacttatactecccgcacaaaccgtaacgttgggagatga
gacgtatcaggtgatgagcgcgtgcaaaccgcatgactgtggctcgcaacgtatcgectgtgatgtggtccgagaaatctaatcagatgacggggcetyg
ttctcgactattgatgagaaaacgtcgcaagagaaactcacctggctgaatgtgaacgatgecgcectttcgattgatggtaaaacggtgttgttcgegg
cgttgaccggcagcctggaaaaccatccggatggctttaattttaaataattagcggataaagaaacggagectttcecggectececgttattcatageac
ctgcccgtacttctecgettttggecggtatccggtacactgcattttgtctattacatttatgectgaaggatatcctcatgtaccaggatcttatteg
taacgaactgaacgaagcggcggaaacgctggctaactttttaaaagatgacgccaatattcacgccattcagecgegecggeggtecctgttagcagac
agctttaaagccggtggcaaagtgcectttecctgecggcaacggecggttecccattgecgacgectatgcactttgeccgaagagttgaccggtecgetacegtyg
aaaaccgtccgggctacccggcgattgctatttctgacgttagtcatatttecctgegtecggtaatgatttecggtttcaatgatattttecteececgeta
cgttgaagcggtaggtcgcgaaggcgatgtactgctggggatctccaccteccggtaactctgcaaacgtgatcaaagcgatcgcageggecgegtgag
aagggaatgactcgagttcatgtgcagctccatcagcaaaaggggatgataagtttatcaccaccgactatttgcaacagtgeccgttgatcegtgeta
tgatcgactgatgtcatcagcggtggagtgcaatgtcatgagggaagcggtgatcgeccgaagtatcgactcaactatcagaggtagttggegtcate
gagcgccatctcgaaccgacgttgctggccgtacatttgtacggctccgcagtggatggecggecctgaagccacacagtgatattgatttgetggtta
cggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttggaaacttcggectteccecctggagagagecgagattectecgege
tgtagaagtcaccattgttgtgcacgacgacatcattccgtggecgttatccagctaagecgecgaactgcaatttggagaatggcagecgcaatgacatt
cttgcaggtatcttcgagccagccacgatcgacattgatctggectatcttgctgacaaaagcaagagaacatagegttgecttggtaggtccagegg
cggaggaactctttgatccggttcctgaacaggatctatttgaggcgctaaatgaaaccttaacgctatggaactcecgeccgeccgactgggectggecga
tgagcgaaatgtagtgcttacgttgtcccgecatttggtacagecgcagtaaccggcaaaatcgcgeccgaaggatgtecgectgeccgactgggcaatggag
cgcctgccggeccagtatcageccecgtcatacttgaagctagacaggettatcttggacaagaagaagatcgecttggectecgegegecagatcagttgg
aagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagatgccgcectcgeccagtecgattggetgagectcatgaagttectat
tccgaagttccgcgaacgcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcecccttaacgtgagttttecgtteccactgage
gtcagaccccgtagaaaagatcaaaggatcttcttgagatcecctttttttctgegegtaatectgectgecttgcaaacaaaaaaaccaccgctaccagecg
gtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggecttcagcagagcgcagataccaaatactgteccttectagtgtage
cgtagttaggccaccacttcaagaactctgtagcaccgecctacatacctecgcectctgctaatecctgttaccagtggetgetgecagtggecgataagte
gtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagecccagecttggagega
acgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaageggceca
gggtcggaacaggagagcgcacgagggagcttccagggggaaacgecctggtatectttatagtecctgtecgggtttegecacctectgacttgagegteg
atttttgtgatgctcgtcaggggggcggagecctatggaaaaacgccagcaacgeggectttttacggttectggecttttgetggecttttgetecac
atgttctttcctgegttatcccectgattcectgtggataaccgtattaccgectttgagtgagetgataccgetcgecgcagecgaacgaccgagcgea
gcgagtcagtgagcgaggaagcggaagagcgectgatgeggtattttctecttacgecatctgtgeggtatttcacaccgecatatgetggatece
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/1
eba_J23119 | o
Pradp N3G A

pTargetF-Ppro4::fadD
2016 bp

pTargetF-Ppros::fadD. Features: fadD N20, ; Homology arms, green; Terminator
L3S2P21, ; Promoter Ppro4, blue;

ttgacagctagctcagtcctaggtataatactagt gttttagagctagaaatagcaagttaaaataaggctagtccg
ttatcaacttgaaaaagtggcaccgagtcggtgctttttttgaattctctagagtcgacctgcagaagcttagatctcggttttctggaccecggtgg
atttccgtggacaactggttacggtagtcgggccaatcactggtgcggttgacggcaaaatcggcaatacgecctataaatttatggtgatgcaagt
aacgggttacaaacgttggcatttaacccagcaggtgattatgccgectcageccgattgateccatggttttatggeggtegtggectggecctatgge
tacggcggatggggctggtataatcccggecceccgecgagagtacaaacagttgtaactgaataattgettgtttttaaagaaaaagaaacagce

cacagctaacaccacgtcgtccctatctgctgecctaggtce
tatgagtggttgctggataactttacgggcatgcataaggctcggatgatatattcagggagtcgacaacggtttceccctctacaaataattttgttt
aactttaacggcatgtatatcatttggggttgcgatgacgacgaacacgcattttagaggtgaagaattgaagaaggtttggcttaaccgttatcce
gcggacgttccgacggagatcaaccctgaccgttatcaatctctggtagatatgtttgagcagtcggtcgegegectacgecgatcaacctgegtttg
tgaatatgggggaggtaatgaccttccgcaagctggaagaacgcagtcgecgegtttgecgettatttgcaacaagggttggggctgaagaaaggcga
tcgcgttgcgttgatgatgcctcgagttcatgtgcagecteccatcagcaaaaggggatgataagtttatcaccaccgactatttgcaacagtgecegtt
gatcgtgctatgatcgactgatgtcatcagcggtggagtgcaatgtcatgagggaagcggtgatcgeccgaagtatcgactcaactatcagaggtagt
tggcgtcatcgagcgccatctcgaaccgacgttgectggecgtacatttgtacggectececgecagtggatggecggectgaagecacacagtgatattgat
ttgctggttacggtgaccgtaaggcttgatgaaacaacgcggcgagectttgatcaacgaccttttggaaacttcggettececectggagagagecgaga
ttctccgcgectgtagaagtcaccattgttgtgcacgacgacatcattccgtggegttateccagectaagecgecgaactgcaatttggagaatggcageg
caatgacattcttgcaggtatcttcgagccagccacgatcgacattgatctggectatcttgectgacaaaagcaagagaacatagecgttgecttggta
ggtccagcggcggaggaactctttgatccggttecctgaacaggatctatttgaggegectaaatgaaaccttaacgectatggaactcgecgeccgact
gggctggcgatgagcgaaatgtagtgcttacgttgtccecgecatttggtacagegecagtaaccggcaaaatcgegecgaaggatgtecgetgecgactg
ggcaatggagcgcctgccggcccagtatcagecccgtcatacttgaagctagacaggecttatcttggacaagaagaagatcgecttggectecgegegea
gatcagttggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagatgccgetcecgecagtcgattggectgagectcatyg
aagttcctattccgaagttccgecgaacgcgtaaaggatctaggtgaagatcecctttttgataatctcatgaccaaaatceccttaacgtgagttttegt
tccactgagcgtcagaccccgtagaaaagatcaaaggatcttecttgagatectttttttectgegegtaatctgectgettgcaaacaaaaaaaccacce
gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggecttcagcagagecgcagataccaaatactgtectt
ctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgecctacatacctecgectcectgectaatectgttaccagtggectgetgecagtyg
gcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataaggecgcagecggtcgggectgaacggggggttcgtgcacacageccag
cttggagcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgceccacgecttcccgaagggagaaaggcggacaggtateeg
gtaagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgectggtatectttatagtecctgtegggtttecgecacctectgac
ttgagcgtcgatttttgtgatgctcgtcaggggggcggagecctatggaaaaacgccagcaacgecggectttttacggttecctggecttttgetggee
ttttgctcacatgttctttcctgegttateccectgattctgtggataaccgtattaccgectttgagtgagectgataccgetecgecgecagecgaacyg
accgagcgcagcgagtcagtgagcgaggaagcggaagagcgcectgatgecggtattttectecttacgecatectgtgeggtatttcacaccgecatatget
ggatcc
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‘RBS library

moter | Bba_i23;
ok B inator: L3s2p2; 10

pS2k-rfp-PJ23110-RBSLibrary-tetR
4980 bp.

pSK-Pret-rfp-Pa2s110-RBSLibrary-tetR. Features: Terminator L3S2P21, ;  Promoter
Bba J23110, blue; RBS Library, ; tetR, red; rfp, dark red; Pt bi-directional promoter, light
blue.

tttacggctagctcagtcctacgtacaatgctage

atgatgtctagattagataaaagtaaagtgattaacagcgcattagagctgcttaatgaggtcggaatcgaaggttta
acaacccgtaaactcgcccagaagctaggtgtagagcagectacattgtattggcatgtaaaaaataagcgggctttgctcgacgecttagecattyg
agatgttagataggcaccatactcacttttgccctttagaaggggaaagctggcaagattttttacgtaataacgctaaaagttttagatgtgettt
actaagtcatcgcgatggagcaaaagtacatttaggtacacggcctacagaaaaacagtatgaaactctcgaaaatcaattagectttttatgecaa
caaggtttttcactagagaatgcattatatgcactcagcgctgtggggcattttactttaggttgecgtattggaagatcaagagcatcaagtcgecta
aagaagaaagggaaacacctactactgatagtatgccgccattattacgacaagctatcgaattatttgatcaccaaggtgcagagccagecttett
attcggccttgaattgatcatatgcggattagaaaaacaacttaaatgtgaaagtgggtcttaagacgtcggaattgccagectggggecgecctetgg
taaggttgggaagccctgcaaagtaaactggatggctttcecttgeccgeccaaggatctgatggecgcaggggatcatgatctgatcaagagacaggatga
ggatcgtttcgcatgattgaacaagatggattgcacgcaggttctcecggecgettgggtggagaggctattcggectatgactgggecacaacagacaa
tcggctgctctgatgecgecgtgtteccggectgtcagecgcaggggecgececggttetttttgtcaagaccgacctgteccggtgecctgaatgaactgceca
ggacgaggcagcgcggctatcgtggctggccacgacgggecgttecttgegecagetgtgectcgacgttgtcactgaagecgggaagggactggectgceta
ttgggcgaagtgccggggcaggatctectgtcatctcaccttgetectgeccgagaaagtateccatcatggectgatgcaatgeggeggetgecatacge
ttgatccggctacctgcccattcgaccaccaagcgaaacatcgcatcgagcgagcacgtactecggatggaagecggtecttgtecgatcaggatgatet
ggacgaagagcatcaggggctcgcgccagccgaactgttecgecaggctcaaggecgecgcatgecccgacggcgaggatctegtegtgacccatggegat
gcctgcttgccgaatatcatggtggaaaatggeccgettttcectggattcatcgactgtggecggectgggtgtggecggaccgectatcaggacatagegt
tggctacccgtgatattgctgaagagecttggecggecgaatgggectgaccgettecctegtgetttacggtatcgecgetececcgattecgecagegecatege
cttctatcgeccttecttgacgagttcttectgagecgggactectggggttcgagagectecgettggactectgttgatagatccagtaatgacctcagaac
tccatctggatttgttcagaacgctcggttgeccgecgggegttttttattggtgagaatccaagcactagggacagtaagacgggtaagectgttga
tgataccgctgccttactgggtgcattagccagtctgaatgacctgtcacgggataatccgaagtggtcagactggaaaatcagagggcaggaactyg
ctgaacagcaaaaagtcagatagcaccacatagcagacccgccataaaacgccctgagaagecccgtgacgggettttettgtattatgggtagttte
cttgcatgaatccataaaaggcgcctgtagtgccatttacccccattcactgccagagecgtgagegcagecgaactgaatgtcacgaaaaagacage
gactcaggtgcctgatggtcggagacaaaaggaatattcagcgatttgecccgagecttgcgagggtgectacttaagectttagggttttaaggtectgt
tttgtagaggagcaaacagcgtttgcgacatccttttgtaatactgcggaactgactaaagtagtgagttatacacagggctgggatctattetttt
tatctttttttattctttctttattctataaattataaccacttgaatataaacaaaaaaaacacacaaaggtctagcggaatttacagagggtcta
gcagaatttacaagttttccagcaaaggtctagcagaatttacagatacccagatcacccgggaaaaggactagtaattatcattgactageccatce
tcaattggtatagtgattaaaatcacctagaccaattgagatgtatgtctgaattagttgttttcaaagcaaatgaactagcgattagtcgctatga
cttaacggagcatgaaaccaagctaattttatgctgtgtggcactactcaaccccacgattgaaaaccctacaaggaaagaacggacggtatcgtte
acttataaccaatacgctcagatgatgaacatcagtagggaaaatgcttatggtgtattagctaaagcaaccagagagctgatgacgagaactgtgg
aaatcaggaatcctttggttaaaggctttgagattttccagtggacaaactatgccaagttctcaagcgaaaaattagaattagtttttagtgaaga
gatattgccttatcttttccagttaaaaaaattcataaaatataatctggaacatgttaagtcttttgaaaacaaatactctatgaggatttatgag
tggttattaaaagaactaacacaaaagaaaactcacaaggcaaatatagagattagccttgatgaatttaagttcatgttaatgcttgaaaataact
accatgagtttaaaaggcttaaccaatgggttttgaaaccaataagtaaagatttaaacacttacagcaatatgaaattggtggttgataagcgagg
ccgcccgactgatacgttgattttccaagttgaactagatagacaaatggatctcgtaaccgaacttgagaacaaccagataaaaatgaatggtgac
aaaataccaacaaccattacatcagattcctacctacataacggactaagaaaaacactacacgatgctttaactgcaaaaattcagctcaccagtt
ttgaggcaaaatttttgagtgacatgcaaagtaagtatgatctcaatggttcgttctcatggctcacgcaaaaacaacgaaccacactagagaacat
actggctaaatacggaaggatctgaggttcttatggctcttgtatctatcagtgaagcatcaagactaacaaacaaaagtagaacaactgttcaccg
ttacatatcaaagggaaaactgtccatatgcacagatgaaaacggtgtaaaaaagatagatacatcagagcttttacgagtttttggtgcattcaaa
gctgttcaccatgaacagatcgacaatgtaacagatgaacagcatgtaacacctaatagaacaggtgaaaccagtaaaacaaagcaactagaacatg
aaattgaacacctgagacaacttgttacagctcaacagtcacacatagacagcctgaaacaggcgatgctgcttatcgaatcaaagctgeccgacaac
acgggagccagtgacgcctccecgtggggaaaaaatcatggcaattctggaagaaatagegectttcageccggcaaaccggctgaagecggatectgega
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ttctgataacaaactagcaacaccagaacagcccgtttgecgggcagcaaaaccegtaccctaggtataaacgcagaaaggcccacccgaaggtgage
cagtgtgactctagtagagagcgttcaccgacaaacaacagataaaacgaaaggcccagtctttcgactgagectttegttttatttgatgectgga
gatccttactcgagtttggatccttaagcaccggtggagtgacgaccttcagcacgttegtactgttcaacgatggtgtagtcttecgttgtgggagg
tgatgtccagtttgatgtcggttttgtaagcacccggcagctgaaccggttttttagecatgtaggtggttttaacttcagecgtecgtagtgaccacce
gtctttcagtttcagacgcattttgatttcacctttcagagcaccgtcttccgggtacatacgttcggtggaagettcccaacccatggttttttte
tgcataaccggaccgtcggacgggaagttggtaccacgcagtttaactttgtagatgaactcacecgtcttgcagggaggagtecctgggtaacggtaa
caacaccaccgtcttcgaagttcataacacgttcccatttgaaaccttccgggaaggacagtttcaggtagtccgggatgtcagecgggtgtttaac
gtaagctttggaaccgtactggaactgcggggacaggatgtcccaagcgaacggcagcggaccacctttggtaactttcagtttageggtectgggta
ccttcgtacggacgaccttcaccttcaccttcgattthaactcgtqaccgttaacqgaaccttccatacgaactttgaaacgcatgaactctttga
taacgtcttcgctactcgccatatgtatatctcCttcttaaaagatcttttgaattc**** ~tctatcactgatagggagtggt ataactctat
C tagagtgt rttaggaatte

RBS Library)

ator: L32°21 [ terg
i 2_123170

pSk-PJ23110-RBSLibrary-rfp
4291 bp

pSk-Pa2s110-RBSLibrary-rfp. Features: Terminator L3S2P21, ; Promoter Bba J23110,
blue; RBS Library, ; tetR first 9 codons, red; rfp, dark red.

tttacggctagctcagtcctacgtacaatgctagce

atgatgtctagattagataaaagtaaagcgagtagcgaagacgttatcaaagagttcatgcgtttcaaagttecgtatg
gaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtececgtacgaaggtacccagaccgctaaactgaaagttaccaaag
gtggtccgctgcecgttegettgggacatcecctgtececececgecagttccagtacggtteccaaagettacgttaaacacccggectgacatcececggactacct
gaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggacteccteccctgcaagac
ggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagecttccaccg
aacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccac
ctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcecgttgaa
cagtacgaacgtgctgaaggtcgtcactccaccggtgcttaagacgtcggaattgccagectggggegecctectggtaaggttgggaagecctgecaaa
gtaaactggatggctttcttgccgccaaggatctgatggecgcaggggatcatgatctgatcaagagacaggatgaggatcgtttecgcatgattgaac
aagatggattgcacgcaggttctccggeccgecttgggtggagaggctattcggectatgactgggcacaacagacaatecggectgectectgatgecgeegt
gttccggctgtcagcgcaggggegeccggttetttttgtcaagaccgacctgtececggtgecctgaatgaactgcaggacgaggcagegeggetateg
tggctggccacgacgggcgttcecettgegecagetgtgectecgacgttgtcactgaagegggaagggactggectgectattgggecgaagtgececggggcagg
atctcctgtcatctcaccttgctcctgeccgagaaagtatcecatcatggectgatgcaatgecggeggectgecatacgettgateccggectacetgeccatt
cgaccaccaagcgaaacatcgcatcgagcgagcacgtactcggatggaageccggtcecttgtecgatcaggatgatctggacgaagagcatcaggggete
gcgccagceccgaactgttcgeccaggectcaaggecgegecatgeccgacggcgaggatectegtegtgacccatggegatgectgettgecgaatatcatgg
tggaaaatggccgecttttctggattcatcgactgtggecggetgggtgtggecggaccgetatcaggacatagegttggectaceccgtgatattgetga
agagcttggcggcgaatgggctgaccgecttcecectecgtgetttacggtatecgecgeteccgattecgecagegecatcecgecttcectategecttettgacgag
ttcttctgagecgggactctggggttcgagagectcgecttggactectgttgatagatccagtaatgacctcagaactccatectggatttgttcagaac
gctcggttgccgeccgggegttttttattggtgagaatccaagcactagggacagtaagacgggtaagectgttgatgataccgectgecttactgggt
gcattagccagtctgaatgacctgtcacgggataatccgaagtggtcagactggaaaatcagagggcaggaactgctgaacagcaaaaagtcagata
gcaccacatagcagacccgccataaaacgccctgagaagceccgtgacgggettttettgtattatgggtagtttecttgecatgaatccataaaagge
gcctgtagtgccatttacccccattcactgccagagecgtgagecgcagecgaactgaatgtcacgaaaaagacagecgactcaggtgectgatggtegg
agacaaaaggaatattcagcgatttgcccgagecttgecgagggtgctacttaagectttagggttttaaggtectgttttgtagaggagcaaacagegt
ttgcgacatccttttgtaatactgcggaactgactaaagtagtgagttatacacagggctgggatctattectttttatctttttttattetttcttt
attctataaattataaccacttgaatataaacaaaaaaaacacacaaaggtctagcggaatttacagagggtctagcagaatttacaagttttccag
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caaaggtctagcagaatttacagatacccagatcacccgggaaaaggactagtaattatcattgactagcccatctcaattggtatagtgattaaaa
tcacctagaccaattgagatgtatgtctgaattagttgttttcaaagcaaatgaactagcgattagtcgctatgacttaacggagcatgaaaccaag
ctaattttatgctgtgtggcactactcaaccccacgattgaaaaccctacaaggaaagaacggacggtatcgttcacttataaccaatacgctcaga
tgatgaacatcagtagggaaaatgcttatggtgtattagctaaagcaaccagagagctgatgacgagaactgtggaaatcaggaatcctttggttaa
aggctttgagattttccagtggacaaactatgccaagttctcaagcgaaaaattagaattagtttttagtgaagagatattgecttatcttttcecag
ttaaaaaaattcataaaatataatctggaacatgttaagtcttttgaaaacaaatactctatgaggatttatgagtggttattaaaagaactaacac
aaaagaaaactcacaaggcaaatatagagattagccttgatgaatttaagttcatgttaatgcttgaaaataactaccatgagtttaaaaggecttaa
ccaatgggttttgaaaccaataagtaaagatttaaacacttacagcaatatgaaattggtggttgataagcgaggccgecccgactgatacgttgatt
ttccaagttgaactagatagacaaatggatctcgtaaccgaacttgagaacaaccagataaaaatgaatggtgacaaaataccaacaaccattacat
cagattcctacctacataacggactaagaaaaacactacacgatgctttaactgcaaaaattcagctcaccagttttgaggcaaaatttttgagtga
catgcaaagtaagtatgatctcaatggttcgttctcatggctcacgcaaaaacaacgaaccacactagagaacatactggctaaatacggaaggatce
tgaggttcttatggctcttgtatctatcagtgaagcatcaagactaacaaacaaaagtagaacaactgttcaccgttacatatcaaagggaaaactg
tccatatgcacagatgaaaacggtgtaaaaaagatagatacatcagagcttttacgagtttttggtgcattcaaagectgttcaccatgaacagatcg
acaatgtaacagatgaacagcatgtaacacctaatagaacaggtgaaaccagtaaaacaaagcaactagaacatgaaattgaacacctgagacaact
tgttacagctcaacagtcacacatagacagcctgaaacaggcgatgctgcttatcgaatcaaagectgeccgacaacacgggagecagtgacgectcecce
gtggggaaaaaatcatggcaattctggaagaaatagcgctttcagccggcaaaccggectgaageccggatectgegattctgataacaaactagecaaca
ccagaacagcccgtttgcgggcagcaaaacccgtacectaggtataaacgcagaaaggcccacccgaaggtgagccagtgtgactctagtagagage
gttcaccgacaaacaacagataaaacgaaaggcccagtctttcgactgagecctttegttttatttgatgecctggagatcecttactecgagtttggatce
cgtcaacaaaaattaggaatta
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Appendix C: Supplemental Information for “Transient Antibiotic
Tolerance Triggered by Nutrient Shifts from Gluconeogenic Carbon
Sources to Fatty Acid”

Appendix C contains supplemental information for Chapter 4.

C.1 Chapter 4 Supplemental Figures
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Figure C.1. FadD accumulation dynamics in the presence of ampicillin after nutrient shift.
(A) Time course of YFP/ODego from FadD-YFP fusion (colored line, left axis) and ODeoo (black
line, right axis) after switches from carbon sources to FA with ampicillin, n = 3, Error Bars
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represent SEM. The dotted line indicates the FadD threshold as determined in Figure 4.3B, ODsoo
data normalized to the ODsgo at the tolerance time determined by ODsoo. (B) Correlation between
tolerance time and time for FadD to accumulate to the FadD threshold (accumulation time) in the
presence of ampicillin. Tolerance time data calculated from data in Figure 4.2B. Dashed line is a
linear fit. (C) Correlation between FadD accumulation time in the presence and absence of
ampicillin. Dashed line is linear fit to data.
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Figure C.2. Single-cell distribution of acyl-CoA biosensor activity during pyruvate to FA
shifts. (A) Single-cell distribution of acyl-CoA biosensor activity during co-utilization of FA and
pyruvate at different ratios. A single representative distribution is shown per condition, n = 10,000
per distribution. All distributions are unimodal, with the mean shifting higher for higher fractions
of FA. (B) Time course single-cell distribution of acyl-CoA biosensor activity after shift from
pyruvate to FA with ampicillin. A single representative distribution is shown per time point, n =
10,000. All distributions are monomodal, with mean biosensor activity increasing over time after
shift to FA. The acyl-CoA biosensor kinetics after the shift are consistent with the FadD Kinetics
measured on plate reader (Figure C.1, pyruvate).
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Figure C.3. Pre-shift relative transcription levels for aceB and fadD genes. mRNA levels of
genes measured from steady state cultures growing in glycerol (left, yellow), pyruvate (middle,
green), or FA, (right, blue). Transcription levels are relative to pre-shift growth in glycerol. n =3
biological replicates, Error bars represent standard deviation. Stars indicate significant change in
transcription compared to glycerol, two-tailed t-test (*, p < 0.05, *** p <0.001)
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Figure C.4. FadD accumulation dynamics in the presence of ampicillin after nutrient shift
with pre-shift glyoxylate. Time course of YFP/ODgoo from FadD-YFP fusion (colored line, left
axis) and ODeoo (black line, right axis) after shifts from a glyoxylate supplemented gluconeogenic
carbon source to FA with ampicillin (not supplemented with glyoxylate), n = 3, Error Bars
represent SEM. The dotted line indicates the FadD threshold as determined in Figure 4.3B, ODegoo
data is normalized to the ODeqo at the tolerance time determined by ODsoo (Note: Normalized
ODsoo serves only as approximate measure of cell survival, since OD cannot accurately determine
the fraction of live and dead cells).
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C.2 Chapter 4 Supplemental Tables

Table C.1. Fitted parameters for two-population Gompertz model.
Model parameters are given along with their 95% confidence intervals, N.D.: Not Determined

Pre-Shift Medium

Tolerance Time (7)

Transient Tolerant

Persister Killing

Loguo Persister

(hours) Killing Rate (urT) Rate (urT) Fraction (logo(p))
(hour™) (hour)

4mM FA 09+0.3 1.25+0.22 0.076 £ 0.011 -41+0.2
24 mM Acetate 3.3+04 0.62 +£0.09 0.122 +0.014 -29+0.2
18 mM Malate 4.7+0.6 0.43+0.05 0.053 +0.023 -43+04
18 mM Succinate | 6.0 + 0.8 0.59+0.14 0.101 +0.020 -3.1+£0.3
24 mM Glycerol 78+22 1.22+11.91 0.167 = 0.025 -1.9+0.3
24mM Pyruvate | 44.0 £ 3.2 0.13+0.04 0.015 +0.008 -3.2+04
23.8 mM Glycerol,

0.03 MM FA 27+04 0.68 + 0.07 N.D. N.D.

23.3 mM Glycerol,

0.11 MM FA 1.7+04 1.06 +0.23 0.249 + 0.156 -3.2+0.9
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Table C.2. Strains, plasmids, and primers used in this study.

Strain Genotype Source or
Reference
NCM3722 (WT) F* CGSC#:12355

Acyl-CoA-Biosensor NCM3722 pSARK-yemGFP This work

Strain

FadD-YFP Strain NCM3722 ®(fadD-YFP) This work

Plasmids Genotype Source

pSARK-yemGFP SC101 ori, KANR, Par-yemgfp This work

pTargetF-FadD-YFP colE1 ori, SPECR, This work

Cloning primers Sequence Source

yemGFP_F TTCAAAAGATCTTTTAAGAA This work
GGAGATATACATATGTCTAA
AGGTGAAGAATTATTCAC

yemGFP_R GAGTTTGGATCCTTATTTGTA This work
CAATTCATCCATACC

pTargetF_FadDN20_F GGCATTGGTCTCGGACTTAAC This work
GCTCGTTTTAGAGCTAGAAAT
AGCAAGTTAAAATAA

pTargetF_FadDN20_R TTCCACGGTCTCCCCAGATCT This work
AAGCTTCTGCAGG

pTargetF_FadD _ TTCCACGGTCTCCCTGGTTTTA This work

upstream_F ACGTCTATCCCAAC

pTargetF_FadD_ CCGCCGCCGTTAGAGGGAGTG This work

upstream_16L_partl R CTACCACCGGCTTTATTGTCCA
CTTTGCC

pTargetF_FadD_ ACAGCTGGTCTCCCTACCACCG This work

upstream_16L_part2 CTGCCGCTGCCGTCGTCGCCGC
CGCCGTTAGAGGG

pTargetF YFP_F ACAGCTGGTCTCCGTAGCAAAG This work
GTGAAGAACTGTTCAC

pTargetF_YFP_R TTCCACGGTCTCCCATTATTTAT This work
ACAGTTCGTCCATACCC

pTargetF_FadD_ TTCCACGGTCTCGAATGAGCGT This work

downstream F TAAGTCAGTCG

pTargetF_FadD _ TTCCACGGTCTCGAGAACCCCA This work

downstream R GCTGCGGGTAA

pTargetF_ TTCCACGGTCTCGTTCTCGAGTT This work

Backbone F CATGTGCAGC

pTargetF_ GGCATTGGTCTCGAGTCAGTCG This work

Backbone R TCAACTAGTATTATACCTAGGACTGAGC
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gPCR primers Sequence Source or
Reference

gyrA F GTCGTGGCGGGAAAGGTAAA

gyrA R CGGCTGGAGAAGCACAGAA

aceB F ACCTTGTGATGGTGAACGCA

aceB R TCCACTGCCAGATCGAGGTA

fadD_F CCGATCAACCTGCGTTTGTG

fadD R TTCTTCAGCCCCAACCCTTG

Table C.3. DNA sequences of plasmids and strains constructed in this study.

gttaatggtcacaaattttctgtctccggtgaaggtgaaggtgatgctacttacggta
aattgaccttaaaatttatttgtactactggtaaattgccagttccatggccaacctt
agtcactactttaacttatggtgttcaatgtttttctagatacccagatcatatgaaa
caacatgactttttcaagtctgccatgccagaaggttatgttcaagaaagaactattt
ttttcaaagatgacggtaactacaagaccagagctgaagtcaagtttgaaggtgatac
cttagttaatagaatcgaattaaaaggtattgattttaaagaagatggtaacatttta
ggtcacaaattggaatacaactataactctcacaatgtttacatcatggctgacaaac
aaaagaatggtatcaaagttaacttcaaaattagacacaacattgaagatggttctgt
tcaattagctgaccattatcaacaaaatactccaattggtgatggtccagtcttgtta
ccagacaaccattacttatccactcaatctaaattatccaaagatccaaacgaaaaga
gagaccacatggtcttgttagaatttgttactgctgctggtattacccatggtatgga
tgaattgtacaaataaggatccaaactcgagtaaggatctccaggcatcaaataaaac
gaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtecggtgaacge
tctctactagagtcacactggctcaccttcgggtgggectttctgegtttatacctag
ggtacgggttttgctgcccgcaaacgggctgttctggtgttgctagtttgttatcaga
atcgcagatccggcttcageccggtttgeccggectgaaagegectatttctteccagaattyg
ccatgattttttccccacgggaggecgtcactggctceccecgtgttgtecggecagetttgat
tcgataagcagcatcgcecctgtttcaggctgtctatgtgtgactgttgagectgtaacaa
gttgtctcaggtgttcaatttcatgttctagttgctttgttttactggtttcacctgt
tctattaggtgttacatgctgttcatctgttacattgtcgatctgttcatggtgaaca
gctttgaatgcaccaaaaactcgtaaaagctctgatgtatctatcttttttacacecgt
tttcatctgtgcatatggacagttttccctttgatatgtaacggtgaacagttgttct
acttttgtttgttagtcttgatgcttcactgatagatacaagagccataagaacctca
gatccttccgtatttagccagtatgttctctagtgtggttegttgtttttgegtgage
catgagaacgaaccattgagatcatacttactttgcatgtcactcaaaaattttgecct
caaaactggtgagctgaatttttgcagttaaagcatcgtgtagtgtttttcttagtcce
gttatgtaggtaggaatctgatgtaatggttgttggtattttgtcaccattcattttt
atctggttgttctcaagttcggttacgagatccatttgtctatctagttcaacttgga
aaatcaacgtatcagtcgggcggecctcgcttatcaaccaccaatttcatattgetgta
agtgtttaaatctttacttattggtttcaaaacccattggttaagccttttaaactca
tggtagttattttcaagcattaacatgaacttaaattcatcaaggctaatctctatat
ttgccttgtgagttttcttttgtgttagttcttttaataaccactcataaatcctcat
agagtatttgttttcaaaagacttaacatgttccagattatattttatgaattttttt
aactggaaaagataaggcaatatctcttcactaaaaactaattctaatttttcgettg
agaacttggcatagtttgtccactggaaaatctcaaagcctttaaccaaaggattcct
gatttccacagttctcgtcatcagectctctggttgetttagectaatacaccataagea
ttttccctactgatgttcatcatctgagegtattggttataagtgaacgataccgtcce
gttcttteccttgtagggttttcaatcgtggggttgagtagtgeccacacagcataaaat
tagcttggtttcatgctccgttaagtcatagcgactaatcgctagttcatttgetttg
aaaacaactaattcagacatacatctcaattggtctaggtgattttaatcactatacc
aattgagatgggctagtcaatgataattactagtccttttcccgggtgatctgggtat
ctgtaaattctgctagacctttgctggaaaacttgtaaattctgctagaccctctgta
aattccgctagacctttgtgtgttttttttgtttatattcaagtggttataatttata

DNA Sequence Feature Notes

_ aaaatttatcaaaaagagtgttgactatctggtacgaccagatgatacttagattcat .
pSARk ctggtacgaccagataccgaattcaaaagatcttttaagaaggagatatacatatgtc Blue' pAR promOter
yemGFP taaaggtgaagaattattcactggtgttgtcccaattttggttgaattagatggtgat | Green: yemGFP
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gaataaagaaagaataaaaaaagataaaaagaatagatcccagccctgtgtataactc
actactttagtcagttccgcagtattacaaaaggatgtcgcaaacgctgtttgectect
ctacaaaacagaccttaaaaccctaaaggcttaagtagcaccctcgcaagctcgggea
aatcgctgaatattccttttgtctcecgaccatcaggcacctgagtcgetgtecttttte
gtgacattcagttcgctgcgctcacggctctggcagtgaatgggggtaaatggcacta
caggcgccttttatggattcatgcaaggaaactacccataatacaagaaaagcccgtc
acgggcttctcagggecgttttatggcgggtctgectatgtggtgectatctgactttttg
ctgttcagcagttcctgcectctgattttccagtctgaccacttcggattateccegtyg
acaggtcattcagactggctaatgcacccagtaaggcagcggtatcatcaacaggett
acccgtcttactgtccctagtgettggattctcaccaataaaaaacgcccggcggcaa
ccgagcgttctgaacaaatccagatggagttctgaggtcattactggatctatcaaca
ggagtccaagcgagctctcgaaccccagagtcccgctcagaagaactcgtcaagaagg
cgatagaaggcgatgcgctgcgaatcgggagecggcgataccgtaaagcacgaggaagce
ggtcagcccattcgccgccaagetcecttcagcaatatcacgggtageccaacgectatgte
ctgatagcggtccgccacacccagceccggecacagtcgatgaatccagaaaagcggceca
ttttccaccatgatattcggcaagcaggcatcgccatgggtcacgacgagatcctcge
cgtcgggcatgcgecgecttgagectggegaacagtteggetggegegagecectgatyg
ctcttcgtccagatcatcctgatcgacaagaccggcttccatceccgagtacgtgectege
tcgatgcgatgtttcgecttggtggtcgaatgggcaggtageccggatcaagegtatgea
gccgccgcattgcatcagccatgatggatactttcectcggcaggagcaaggtgagatga
caggagatcctgcccecggcacttcgeccaatagcagecagtcecttecegettcagtyg
acaacgtcgagcacagctgcgcaaggaacgcccgtecgtggecagecacgatagecgeg
ctgcctcgtcecctgcagttcattcagggcaccggacaggtcggtcttgacaaaaagaac
cgggcgcccctgcgctgacageccggaacacggcggcatcagagcagecgattgtetgt
tgtgcccagtcatagccgaatagcctctccacccaagecggecggagaacctgegtgea
atccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcagatcatga
tcccectgecgecatcagatceccttggecggcaagaaagecatccagtttactttgcaggge
ttcccaaccttaccagagggcgccccagectggcaatteccgacgte

pTargetF-
fadD-YFP

tgacgactgacttaacgctcgttttagagctagaaatagcaagttaaaataaggctag
tccgttatcaacttgaaaaagtggcaccgagtcggtgetttttttgaattctctagag
tcgacctgcagaagcttagatctggttttaacgtctatcccaacgagattgaagatgt
cgtcatgcagcatcctggecgtacaggaagtcgecggectgttggegtaccttececggetee
agtggtgaagcggtgaaaatcttcgtagtgaaaaaagatccatcgcttaccgaagaga
gcttagtgactttttgccgeccgtcagectcacgggatacaaagtaccgaagctggtgga
gtttcgtgatgagttaccgaaatctaacgtcggaaaaattttgcgacgagaattacgt
gacgaagcgcgcggcaaagtggacaataaagccggtggtagcactcecctctaacggeg
gcggcgacgacggcageggtggt

tgagcgttaagtcagtc
gtcagacgccggttaatccggegttttttttgacgecccactaaagagaaaacaatttg
aattaccaaatgattaccacggacgatgcgctggecttctttgtgtgaagececgtecegtg
cctttccggcgatagceccctggatactgaatttgttecgtacgecgcacttattaccecgea
gctggggttctcgagttcatgtgcagctccatcagcaaaaggggatgataagtttate
accaccgactatttgcaacagtgccgttgatcgtgctatgatcgactgatgtcatcag
cggtggagtgcaatgtcatgagggaagcggtgatcgccgaagtatcgactcaactatce
agaggtagttggcgtcatcgagcgccatctcgaaccgacgttgctggecgtacatttg
tacggctccgcagtggatggcggcctgaagccacacagtgatattgatttgectggtta
cggtgaccgtaaggcttgatgaaacaacgcggcgagctttgatcaacgaccttttgga
aacttcggcttccecctggagagagecgagattctececgegetgtagaagtcaccattgtt
gtgcacgacgacatcattccgtggcgttatccagectaagecgecgaactgcaatttggag
aatggcagcgcaatgacattcttgcaggtatcttcgageccagccacgatcgacattga
tctggctatcttgctgacaaaagcaagagaacatagcgttgecttggtaggtcecageg
gcggaggaactctttgatccggttecctgaacaggatctatttgaggecgectaaatgaaa
ccttaacgctatggaactcgccgecccgactgggectggecgatgagecgaaatgtagtget
tacgttgtccecgcatttggtacagcgcagtaaccggcaaaatcgecgecgaaggatgtce
gctgccgactgggcaatggagcgectgececggeccagtatcagececgtcatacttgaag
ctagacaggcttatcttggacaagaagaagatcgcttggcctcgegegecagatcagtt
ggaagaatttgtccactacgtgaaaggcgagatcaccaaggtagtcggcaaataagat
gccgctcgceccagtcgattggctgagectcatgaagttecctattccgaagtteccgecgaac
gcgtaaaggatctaggtgaagatcctttttgataatctcatgaccaaaatcccttaac
gtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttettg

Blue: fadD N20,
Red: fadD homology
arms,

Purple: Glycine-
Serine rich linker;
Yellow: YFP
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agatcctttttttctgecgecgtaatctgctgcttgcaaacaaaaaaaccaccgctacca
gcggtggtttgtttgccggatcaagagctaccaactcttttteccgaaggtaactgget
tcagcagagcgcagataccaaatactgtccttctagtgtageccgtagttaggccacca
cttcaagaactctgtagcaccgcctacatacctcegctctgctaatectgttaccagtyg
gctgctgccagtggcgataagtegtgtcttaccgggttggactcaagacgatagttac
cggataaggcgcagcggtcgggctgaacggggggttcgtgcacacageccagcttgga
gcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgeccacg
cttcccgaagggagaaaggcggacaggtatccggtaagecggcagggtcggaacaggag
agcgcacgagggagcttccagggggaaacgcctggtatctttatagtecctgtegggtt
tcgccacctctgacttgagegtcgatttttgtgatgectecgtcaggggggecggagecta
tggaaaaacgccagcaacgcggcctttttacggttcctggecttttgetggecttttyg
ctcacatgttctttcctgegttatcccectgattectgtggataaccgtattaccgectt
tgagtgagctgataccgctcgcecgcageccgaacgaccgagegcagcgagtcagtgage
gaggaagcggaagagcgcctgatgcggtattttcteccttacgecatctgtgeggtattt
cacaccgcatatgctggatccttgacagctagctcagtcctaggtataatactagt

NCM3722
®(fadD-YFP)
fadD genome
region

ttgcttgtttttaaagaaaaagaaacagcggctggtccgectgtttectgecattcttacg
gtaaagataaaaataaatagtgacgcgcttcgcaaccttttcgttgggtaattatcaa
gctggtatgatgagttaatattatgttaacggcatgtatatcatttggggttgcgatg
acgacgaacacgcattttagaggtgaagaattgaagaaggtttggcttaaccgttatce
ccgcggacgttccgacggagatcaaccctgaccgttatcaatctctggtagatatgtt
tgagcagtcggtcgcgecgctacgeccgatcaacctgegtttgtgaatatgggggaggta
atgaccttccgcaagctggaagaacgcagtcgegegtttgecgettatttgcaacaag
ggttggggctgaagaaaggcgatcgcgttgegttgatgatgectaatttattgcaata
tccggtggcecgetgtttggcattttgegtgeccgggatgatecgtegtaaacgttaacccecg
ttgtataccccgegtgagcttgagcatcagecttaacgatagecggecgecatecggegattyg
ttatcgtgtctaactttgctcacacactggaaaaagtggttgataaaaccgccgttca
gcacgtaattctgacccgtatgggcgatcagctatctacggcaaaaggcacggtagte
aatttcgttgttaaatacatcaagcgtttggtgccgaaataccatctgeccagatgcca
tttcatttcgtagcgcactgcataacggctaccggatgcagtacgtcaaacccgaact
ggtgccggaagatttagecttttcectgcaatacaccggecggcaccactggtgtggecgaaa
ggcgcgatgctgactcaccgcaatatgctggcgaacctggaacaggttaacgcgacct
atggtccgctgttgcatccgggcaaagagctggtggtgacggecgectgecgectgtatcea
catttttgccctgaccattaactgectgectgtttatcgaactgggtgggcagaacctg
cttatcactaacccgcgcgatattccagggttggtaaaagagttagecgaaatatcegt
ttaccgctatcacgggcgttaacaccttgttcaatgcgttgctgaacaataaagagtt
ccagcagctggatttctccagtctgcatctttccgecaggecggtgggatgeccagtgcag
caagtggtggcagagcgttgggtgaaactgaccggacagtatctgctggaaggctatyg
gccttaccgagtgtgcgecgectggtcagegttaacccatatgatattgattatcatag
tggtagcatcggtttgccggtgccgtcgacggaagccaaactggtggatgatgatgat
aatgaagtaccaccaggtcaaccgggtgagctttgtgtcaaaggaccgcaggtgatge
tgggttactggcagcgtcccgatgctaccgatgaaatcatcaaaaatggctggttaca
caccggcgacatcgcggtaatggatgaagaaggattcctgecgcattgtcecgatcgtaaa
aaagacatgattctggtttccggttttaacgtctatcccaacgagattgaagatgtcg
tcatgcagcatcctggcgtacaggaagtcgcggctgttggegtacctteccggeteccag
tggtgaagcggtgaaaatcttcgtagtgaaaaaagatccatcgcttaccgaagagtca
ctggtgactttttgccgcecgtcagectcacgggatacaaagtaccgaagectggtggagt
ttcgtgatgagttaccgaaatctaacgtcggaaaaattttgcgacgagaattacgtga
cgaagcgcgcggcaaagtggacaataaagccggtggtagcactccecctcectaacggecgge
ggcgacgacggcagcggtggt

tgagcgttaagtcagtcgt
cagacgccggttaatccggegttttttttgacgeccactaaagagaaaacaat

Red: fadD CDS
Purple: Glycine-
Serine rich linker;
Yellow: YFP
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