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ABSTRACT OF THE DISSERTATION 

Functional Analysis of Recurrent Non-Coding Variants in Human Melanoma 

by 
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Assistant Professor Charles Kaufman, Chair 
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Associate Professor Christopher Maher 
 

Assistant Professor George Souroullas  
 

Assistant Professor Tychele Turner  
 

Worldwide incidence rates of cutaneous melanoma are increasing, and while survival rates 

for early stages of melanoma are high, rates drop precipitously for metastatic melanomas or those 

that are unable to be targeted by currently available treatments. As melanomas have a propensity 

to quickly metastasize, understanding the contributions of melanoma initiation remains critical for 

early intervention. Onset of melanoma is characterized most by mutations that stimulate mitogen-

activated protein kinase (MAPK) signaling, disrupt DNA damage checkpoints, and trigger 

mechanisms to bypass senescence through elongation of telomeres. Additionally, in zebrafish 

melanoma models, the earliest cluster of melanoma-initiating cells activate expression of a neural 

crest reporter which remains on during the melanoma lifespan. Neural crest cells are highly 

multipotent and migratory stem cells that arise in early development. Bulk and single-cell RNA-

sequencing have confirmed the prevalence of cells that are transcriptionally similar to neural crest 



 x 

cells in human and mouse melanomas and established the importance of this lineage in initiation, 

metastasis, immune response, and drug evasion. 

 

Cutaneous melanomas have one of the highest mutational loads of any cancer types. The most 

common protein-coding mutations occur in BRAF or NRAS, which activate MAPK signaling, and 

CDKN2A, PTEN, or TP53, which inactivate tumor suppressors. Even more common are non-

coding mutations in the promoter of TERT. These non-coding variants, present in 80% of 

melanomas, create a novel GABPA binding site leading elevated TERT transcription. Emerging 

evidence suggests that up-regulation of TERT elongates telomeres and assists in bypassing 

senescence brought on by excessive MAPK signaling. Since the discovery of the TERT promoter 

mutation, several other functional non-coding variants have been identified in not only in 

melanoma but across other cancer types and diseases. As cutaneous melanomas have some of the 

highest mutation rates, the number of functional non-coding variants in melanoma likely remains 

largely uncharacterized. 

 

Non-coding variants typically occur in or create cell-type specific enhancers. Under this 

assumption, we created a pipeline to identify recurrent variants in putative melanoma regulatory 

regions. Within these regions, we identified 140 statistically significant recurrently mutated 

regions, i.e. hotspots, that harbored ~2000 putative cis-regulatory variants. As we started with 

almost 21 million variants, the almost 10,000-fold reduction in the number of variants led to a pool 

of high-confidence variants for which to validate. Statistically significant variants were almost 

exclusively identified in promoters and more specifically at ETS transcription factor binding sites. 

Our pipeline identified the TERT promoter mutations as the 13th highest scoring hotspot. Through 



 xi 

several rounds of validation by luciferase assays and massively parallel reporter assays, we 

narrowed in on mutations in the promoter of CDC20 which is mutated in 39 out of 140 cutaneous 

melanoma samples, spanning different stages of the melanoma lifespan. 

 

Almost all the promoter mutations in CDC20 reduced reporter activity significantly across seven 

melanoma cell lines, one primary melanocyte cell line, and a human embryonic kidney cell line, 

likely though the disruption of an ETS motif. As high CDC20 is prognostic for worse overall 

survival, we hypothesized that low levels of CDC20 were important for early stages of melanoma 

but disadvantageous at later stages. Inspecting variant allele frequencies across different stages of 

melanoma supported this hypothesis, demonstrating variant allele frequencies like that of BRAF 

and TERT, known early events, in primary melanomas. However, many of the CDC20 promoter 

variants were not detected in distant metastases, supporting the notion that CDC20 promoter 

variants are selected against in metastatic populations as high levels of CDC20 appear to be 

beneficial for migration. Furthermore, in samples with low levels of CDC20, we identified high 

levels of key neural crest transcription factors and known melanoma oncogenes including SOX10, 

an important neural crest and melanocyte lineage specifier. Previous studies have shown that 

increased expression of SOX10 is observed in melanoma and leads to faster melanoma formation 

while knock-down of SOX10 slows down melanoma onset. 

 

We engineered a small indel in the promoter of CDC20 in a human melanoma cell line and 

observed decreased migration capabilities and increased expression of SOX10, among other key 

neural crest genes. Ongoing and future work will establish the mechanisms by which high and low 

CDC20 expression leads to metastasis and neural crest identity re-emergence, respectively. One 
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promising hypothesis is that changes in the length of the specific cell cycle stages could lead to 

changes in gene expression specific to differentiation pathways. For example, prolonging of the 

G2 phase in human embryonic stem cells upregulated pluripotency maintenance factors. Overall, 

we identify a non-coding variant that abolishes an ETS motif, leads to down-regulation of CDC20, 

and establishes a transcriptional program more reminiscent of early stages of melanoma as opposed 

to the metastatic stage. Therefore, we propose that CDC20 has a dosage-dependent effect on 

melanoma and that throughout the melanoma lifespan, CDC20 promoter variants confer different 

advantages at different stages of cancer progression.



 

1 
 

Chapter 1: Introduction 
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1.1 Overview 
Chapter 1 provides a summary of the molecular mechanisms driving melanoma. First, I 

describe the MAPK pathway and common genetic targets that lead to hyper-activity in melanoma. 

As lineage identity plays a key role in melanomagenesis, I describe the development and function 

of the melanocyte, the cell-of-origin of melanoma, and discuss aberrant genetic and epigenetic 

mechanisms that leverage certain attributes of the melanocyte in melanoma initiation and 

formation. I then discuss the transcriptional heterogeneity found in melanoma tumors and how 

certain signaling pathways are favorable at different stages. Lastly, as non-coding variants are the 

focus of this thesis, I describe the mechanisms by which non-coding variants alter transcription 

and provide relevant examples. 

1.2 Melanoma – a deadly cancer of transformed melanocytes 
Melanoma is a skin cancer that originates from pigmented skin cells called melanocytes. It is 

the 5th most common cancer type with almost 100,000 cases reported in 2022 (seer.cancer.gov). 

90% of patients receive surgical treatment for localized or regional disease, and the 5-year relative 

survival is 99.5% if local and 70.6% if regional1 (Figure 1, seer.cancer.gov). Strikingly, survival 

rates decrease to 31.9% if metastatic (seer.cancer.gov) which, while low, has drastically increased 

in the last decade due to the advent of targeted therapy and checkpoint combination therapy1. The 

targeted therapy available leverages hyperactivity of the MAPK pathway, which in half of all 

melanomas is caused by a mutation in BRAF, through BRAF inhibitor, dabrafenib, and MEK 

inhibitor, trametinib. The addition of MEK inhibitor vastly decreases the onset of acquired 

resistance which, when treated when dabrafenib alone, is around 5.3 months1. Checkpoint 

combination therapy improves T-cell performance by blocking pathways that negatively regulate 

T-cells and has led to a significant increase in the response rate. Despite advances in medical 
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therapy and surgical treatment, patients with wild-type BRAF (~50%) do not respond to BRAF 

inhibitors or immunotherapy and less than 18% of patients receiving one or multiple treatments 

are in complete remission. Therefore, there is a pressing need to further our understanding of the 

molecular mechanisms driving melanoma. 

 1.2.1 The subtypes of melanoma 
Cutaneous melanoma is the most common type of melanoma in Caucasians, accounting for 

more than 85% of all diagnoses, and is associated with a high mutational burden due to ultraviolet 

radiation exposure. Cutaneous melanomas are typically found in sun-exposed skin. Acral 

melanomas account for 2-3% of cases in Caucasians but 50-80% of non-Caucasians and are found 

in sun-protected areas, such as palms and nail beds2. Mucosal melanomas account for 1% of all 

diagnoses and are typically located in the head and neck, vulva, or anus. Uveal melanomas are an 

ocular form of melanoma and account for 5% of diagnoses. Acral, mucosal, and uveal melanomas 

have much lower mutational burdens than cutaneous melanoma and, apart from iris uveal 

melanomas, are not associated with UV damage. Acral and mucosal melanomas also have a 

significantly higher number of structural variants than uveal and cutaneous melanoma, which is 

dominated by single point mutations3,4. 

1.3 The MAPK pathway is a common target in melanoma 

1.3.1 The MAPK pathway in normal cells 
The mitogen-activated protein kinase (MAPK) signaling pathway is a highly conserved 

signaling pathway broadly responsible for converting extracellular signals into a cellular response, 

often in the form of proliferation, growth, or differentiation5. The initial step in the MAPK pathway 

is binding of a growth factor to its membrane growth factor receptor. Binding activates and recruits 

several proteins to the plasma membrane. Activation of Ras through the exchange of GDP to GTP 
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initializes a phosphorylation cascade starting with phosphorylation of the serine/threonine kinase 

Raf, then Mek, and lastly Erk6 Phosphorylated Erk translocates to the nucleus and activates 

transcription factors.  

1.3.2 Genetic lesions in the MAPK pathway in melanoma 
98% of melanomas have a mutation in the MAPK pathway3 Almost half of all melanomas 

have mutations in BRAF. Of the BRAF mutations, 56% converts a valine to glutamate in the kinase 

domain of Braf, subsequently increasing Braf and Erk activity by 480-fold and 4.6-fold, 

respectively7. NRAS is the second most mutated gene in the MAPK pathway, detected in 28% of 

tumors3. Mutations have also been detected in HRAS and KRAS in less than 5% of tumors3,8. The 

third most mutated gene in the MAPK pathway is NF1, detected in 17% of melanomas3,8,9. As NF1 

negatively regulates NRAS, loss of NF1 leads to a similar behavior as BRAF and NRAS mutants.  

In mucosal melanoma, inactivating mutations of another MAPK negative regulator 

SPRED1 was detected in 37% of samples10. KIT mutations are also found in other non-cutaneous 

melanoma subtypes such as acral (23%) and mucosal (15.6%)11. Uveal melanomas are 

predominantly driven by activating mutations in GNAQ/11 which indirectly activates the MAPK 

pathway through Protein Kinase C (PKC)4.  Less frequent mutations are found in MAP2K1, 

MAP2K2, and RAC19,12. The plethora of functional protein-coding mutations in the MAPK 

pathway underscores the importance of MAPK signaling in melanomagenesis. 

1.3.3 Genetic lesions in the PI3K-Akt pathway 
Ras genes can activate both the MAPK pathway and the PI3K-Akt pathway. Expression of 

phosphorylated Akt (p-Akt) increases throughout melanoma progression, observed in 49% of 

primary melanomas and 77% of metastases and is unexpectedly higher in BRAF mutants than 

NRAS mutants, suggesting a potential route by which BRAF activates the PI3K-Akt pathway13,14. 
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Activation can occur through the MAPK signaling pathway via NRAS (~30% of melanoma cases), 

which activates PI3K, or KIT (~7%), which activates NRAS. Another common PI3K-Akt mutation 

in melanoma is loss of PTEN, which is mutated in 10-15% of melanomas and is often present at 

low protein levels13. PTEN expression is also believed to be silenced epigenetically via promoter 

methylation15. While PI3K phosphorylates PIP2 to PIP3, which subsequently adds a phosphate to 

Akt, Pten dephosphorylates this reaction, reducing PIP3 levels and thereby decreasing Akt 

phosphorylation and activity. Depletion of PTEN in BRAFV600E mice and subsequent activation of 

Akt bypasses oncogene-induced senescence (reviewed below), dramatically decreasing time to 

melanoma metastasis to 25-50 days, unlike BRAFV600E mice which rarely develop melanomas16,17. 

Mutations in PREX2, a negative regulator of PTEN, were also found in 14% melanomas18. 

Because activation of NRAS already leads to PI3K signaling, NRAS and PTEN mutations are 

rarely found together and instead PTEN mutations most frequently co-occur with BRAF 

mutations19. Additionally, p-Akt inhibits Tsc, an mTOR inhibitor, and subsequently it was found 

that the mTOR signaling pathway is also activated in 73% in melanoma but only 4% of benign 

nevi20.  

1.3.4 Activation of the MAPK pathway leads to oncogene-induced senescence 
The transformation rate of BRAF-mutated nevi to melanoma ranges from 0.0005% for men 

and women under 40 years of age to 0.003% for men older than 6021, and although NRAS and 

BRAF mutations are found in most cutaneous melanomas, neither alone are sufficient to cause it. 

Additional alterations in tumor suppressors that are not detected in nevi are required for 

melanomagenesis22. In these nevi, increased activity of MAPK signaling does lead to temporary 

excessive growth but is arrested in part by oncogene-induced senescence (OIS). When an 

oncogene, such as BRAF, leads to excessive benign over-proliferation, it can be interrupted or 
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stopped by OIS23. OIS is still not completely understood but involves induction of the p53 signaling 

pathway by DNA damage24. Additionally, the proteins p14ARF and p16INK4a, isoforms of the gene 

CDKN2A, are believed to play major roles in OIS by destabilizing p53-inhibiting Mdm2 and 

inhibiting cyclin-dependent kinases, respectively25. Interestingly, the most common familial 

melanoma syndrome results from a loss of CDKN2A26. Despite this, melanocytes with NRAS 

mutations can initiate OIS without these proteins, suggesting alternative mechanisms by which 

OIS is initiated in melanocytes27. In mice with BRAFV600E mutations, benign nevi emerged even in 

the absence of p16INK4a,28 In addition, one study found that it could not differentiate nevi and 

melanoma when comparing eight markers of senescence29. However, mutations in TP53 and 

CDKN2A are detected in 17% and 43% of samples, respectively (cbioportal.org), suggesting that 

in many melanomas OIS is bypassed through loss of at least one tumor suppressor, although this 

clearly does not explain all cases. Given the importance of controlling proliferation in an organism, 

it is perhaps not surprising that multiple overlapping and redundant mechanisms are in place to 

limit this process. For example, Type 1 interferons were shown to induce OIS in melanocytes30. 

Overall, OIS remains an important component of growth arrest in melanocytic lesions but the 

details of its underlying regulation are still debated as biological and technical inconsistences 

remain.  

1.4 Melanocytes are the cell-of-origin of melanoma 
Regardless of subtype or genetic archetype, all melanomas originate from the melanocyte. 

Melanomas are known to hijack cell-type specific transcriptional programs to initiate, progress, 

and metastasize. As the developmental precursor of the melanocyte is a multipotent stem cell with 

high rates of proliferation and migration, understanding what aspects of lineage identity are 

appropriated will contribute to the well-characterized mutational profiles of melanoma. 
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1.4.1 Melanocyte differentiation from the neural crest 
The neural crest is an early and transient developmental structure made up of multipotent 

cells that will differentiate into a wide variety of cell types including neurons, glial cells, and 

melanocytes31. Specification of the neural crest begins during neurulation – expression of Msx1 

and Pax3/7, which ensure neural crest formation, is turned on via input from BMP, WNT, and FGF 

signaling pathways at the neural plate border32. Establishment of pre-migratory neural crest cells, 

located at the dorsal neural tube, requires expression of master transcription factors of the neural 

crest lineage including Ets1, FoxD3, Myc, Tfap2a, and Tfap2b31. Wnt signaling and the expression 

of transcription factors Snai1/2, Twist, Sox9, and FoxD3 induces epithelial to mesenchymal 

transition (EMT) of neural crest cells allowing for migration throughout the embryo through 

downregulation of Type I epithelial cadherins and up-regulation of Type II mesenchymal 

cadherins33. Migrating neural crest cells express Sox10, a master transcription factor of the neural 

crest and melanocyte lineage.  

Differentiation into the separate lineages is orchestrated by additional transcription factors 

and environmental cues before migration. There are five subtypes of neural crest cells based on 

migration patterns (cranial, vagal, trunk, cardiac, and sacral) and each give rise to specific cell 

lineages. Interestingly, the melanocyte lineage is unique in that it can be derived across any of the 

five neural crest subtypes. Melanocyte differentiation requires activation of microthphalima-

associated transcription factor (MITF) by Sox10 and Pax334. Sox10 is downregulated in 

differentiated melanocytes, as it can act unexpectedly as a repressor of Mitf targets35. Melanoblasts, 

melanocyte progenitors, express Mitf, Dct, and Pmel, melanocyte-specific markers, after 

delamination from the neural tube36. Establishment of the melanoblast requires downregulation of 

FoxD3 and/or Sox2 which bind to the promoter of Mitf and repress transcription37,38. Expression 
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of the receptor tyrosine kinase Kit and its ligand, Kitl, maintain melanoblast cells by ensuring 

proliferation and survival during migration39. 

1.4.2 Melanocyte function in the skin 
Melanocytes are found sparsely throughout the basal layer of the epidermis, vastly 

outnumbered by keratinocytes at a ratio of 1:10, and at hair follicle and sebaceous glands in the 

skin, where they are more densely distributed40. Melanocyte stem cells located in the hair follicle 

will either differentiate and produce pigment or remain quiescent41. Differentiated melanocytes in 

the skin respond to UV exposure by producing melanin and distributing it to ~30 surrounding 

keratinocytes, where it is used as the nucleus’ protective shield against UV radiation42. Melanin 

synthesis is regulated by DOPA-chrome tautomerase and tyrosinase and occurs in specialized 

organelles called melanosomes, which protect the cell from the toxic intermediates of the melanin 

synthesis pathway43. 

1.5 Re-emergence of neural crest identity in melanoma 
The re-emergence of neural crest identity is seen not only across all subtypes of melanoma 

but also in neuroblastoma, which is believed to originate from the trunk neural crest lineage44. In 

melanoma, hijacking of lineage identity occurs, at least in part, via the melanocytic lineage factor 

MITF and a neural crest and melanocyte master transcription factor SOX10. MITF and SOX10 

are at the center of a major transcriptional hub directing differentiation, proliferation, and growth43. 

SOX10 is the only transcription factor required to directly reprogram a fibroblast into a neural 

crest cell in vitro45. Mitf interacts with Sox10 to recruit chromatin remodeling complex Brg1 to 

multiple enhancers of genes regulated by MITF that induce cell proliferation of melanoma in 

vitro46. In support of this, overexpression of Sox10 decreases time to melanoma onset in 

zebrafish47. 
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In a mouse model of giant congenital nevi, Sox10 was found to be expressed both in 

melanocytic lesions and melanomas and furthermore, silencing of Sox10 eradicated melanoma and 

downregulated expression of MITF48. Contrary to this, hypermethylation of the transcription start 

sites for SOX10 and downregulation of SOX10 and MITF were found in metastatic melanomas49. 

This may suggest that neural crest re-emergence is critical for melanoma initiation but not for 

progression and metastasis. In support of this, labelling zebrafish melanocytes with a neural crest 

marker led to the observation of the clonal expansion of a transplantable melanoma tumor47.  

However, it remains unclear how SOX10 or other neural crest factors upstream of MITF become 

dysregulated in melanoma as MITF mutations in human melanoma have been detected in 13% of 

melanomas and SOX10 mutations in 8% of samples50.  

MITF amplifications were first described in melanoma cell lines and are the most common 

genomic amplification found in all subtypes of melanoma detected in 10% of primary 

melanomas3,8,51 and 21% of metastatic melanomas but not in benign nevi52. Recurrent germline 

mutations in MITF impair SUMOylating of MITF and downstream transcriptional activity, 

predisposing carriers to melanoma53. It was also shown that in tumors without the MITF 

amplification, super-enhancers led to increased MITF expression54.  

The role of MITF in melanoma may be dosage-dependent. One study using a temperature 

sensitive mitfa mutant in zebrafish described oncogenic behavior of mitf at low levels but 

melanoma regression when mitf was depleted55. This could suggest that while low levels of MITF 

are required for oncogenic activity, complete loss of MITF leads to OIS. Indeed, Guiliano et al. 

(2010) found that upon silencing of MITF, a DNA damage response pathway was activated leading 

to senescence56. Low levels of MITF were found to increase invasiveness while high levels of 

MITF led to activation of p21Cip1 or INK4A, hypophosphorylation of Rb1, and consequently G1 
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cell cycle arrest57,58. However, in melanoma, the INK4A promoter is commonly methylated, 

preventing MITF binding and reducing cell cycle exit signals59. Additionally, MITF was found to 

be hypermethylated and downregulated in malignant melanoma, suggesting an important role in 

initiation and/or progression but not in invasion60. This is further supported by STAT3-mediated 

silencing of MITF leading to metastasis of melanoma61, as well as by a study that found SOX10 

and MITF to be regulators of the proliferative state but not of the invasive state62. 

MITF expression is also regulated by BRAF and is higher in primary normal human 

melanocytes than in melanocytes with the BRAFV600E mutation because mutant Braf activity 

signals Mitf for degradation63,64. Braf not only targets Mitf for degradation but uses transcription 

factors Pax3 and Brn2 to up-regulate expression of MITF64,65. Similarly, Kit activation of MAPK 

signaling was also found to affect Mitf in similar ways; phosphorylation at two sites both increase 

Mitf transactivation and mark it for degradation66. Overall, there is strong support that melanoma 

leverages aspects of its developmental precursor, the highly proliferative, migratory and 

multipotent neural crest cell, to initiate cancer formation.  

1.6 Epigenetic dysregulation in melanoma 
Melanoma is likely as heavily epigenetically altered as it is genetically altered and 

understanding the combined effect on pathway signaling will be key to understanding and treating 

melanoma. The most well-studied epigenetic phenomenon is melanoma is DNA methylation. Jin 

et al. (2015) found substantial hypermethylation of melanomas compared to normal human 

melanocytes and found that methylation of SOX10, KIT, and PAX3 correlated with downregulation 

in metastatic tumors49. Hypermethylation in melanomas may be caused by upregulation of DNA 

methyltransferases, supported by the observation that DNMT3A inhibition by RNA interference 

reduced growth and invasiveness of melanoma in mouse models67. Indeed, BRAFV600E activity 
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leads to widespread DNA methylation not only in melanoma but in colorectal cancer as well via 

recruitment or activation of DNMT3B and DNMT1, respectively68,69. Enhancers were found to be 

the most differentially methylated regions in metastatic melanoma70. Importantly, several tumor 

suppressors are also hypermethylated and silenced in melanoma, including PTEN, P14ARFa, 

P16INK4a, and CDKN1B67.  

 Chromatin remodelers are also implicated in melanoma. Mutations in ARID2 and gains in 

copy number of ARID2 and ARID1B, both of which are components of the SWI/SNF chromatin 

remodeling complex, are found in melanoma3,8. Overexpression of the H3K9 methyltransferase 

SETDB1, which is recurrently amplified in melanoma, and loss of KDM2A, a lysine demethylase, 

dramatically accelerates melanoma onset in zebrafish melanoma models, suggesting that histone 

methylation is an important factor in melanomagenesis71,72. Epigenetic regulation by microRNAs 

have also been implicated in melanoma via regulation of cell cycle genes and several neural crest 

lineage factors such as MITF, TFAP2A, SNAI1, and ZEB1/267.  

1.7 Transcriptional heterogeneity in melanoma 
Melanomas display a high degree of both inter-tumor and intra-tumor transcriptional 

heterogeneity. Transcriptional changes in the TGFb and Wnt/b-catenin signaling pathways are 

characteristic of tumors with and without metastatic potential, respectively73. Single-cell RNA-

sequencing (scRNA-seq) and bulk RNA-sequencing on melanoma tumors revealed extensive 

inter-tumor and intra-tumor heterogeneity with similar properties as those discovered earlier74–76. 

There were two consistent subpopulations found across two independent studies: a neural crest-

like subpopulation with high levels of SOX10 and NGFR and a pigmented/melanocytic 

subpopulation with high expression of MITF. Other sub-populations that did not directly overlap 

between studies were a SOX10-low/SOX9-high group that was classified as undifferentiated, an 
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intermediate group between neural crest-like and pigmented populations, and a group of cells with 

high activity of a gene regulatory network indicative of nutrient starvation75,76.   

scRNA-seq of an additional ten melanoma cultures indeed confirmed the existence of the 

neural crest-like, intermediate/transitory, and undifferentiated/mesenchymal subpopulations 

previously identified77. Migration analyses of single cells confirmed the high migratory capabilities 

of the undifferentiated/mesenchymal population compared to the other subpopulations. Moreover, 

the transcriptional identity of melanomas cells is flexible; knockdown of SOX10 led to a 

phenotype switch from neural crest-like to mesenchymal77.  

A parallel approach comparing primary melanocytes genetically engineered to contain a series 

of common oncogenic variants identified seven gene regulatory networks78. As expected, WT 

primary melanocytes and those harboring either only a CDKN2A knock-out or an additional 

BRAFV600E mutation had a high melanocytic signature and were unable to form tumors in vivo. 

Activation of TERT via introduction of the TERT promoter mutation shifted the gene regulatory 

program from a melanocytic signature to an EMT signature. However, these cells were also unable 

to form tumors. Engineering loss-of-function mutations in TP53 and/or PTEN and APC, which 

subsequently activates the Wnt signaling pathway, led to increased expression of genes in the 

Myc/mTORC1, S Phase, and G2/M Phase gene regulatory networks. These cells could form 

tumors but only those containing loss-of-function APC mutations formed metastases in the lung78.  

Recently, a study integrating scRNA-sequencing and spatially-resolved RNA-sequencing 

corroborated previously known subpopulations and specifically observed the neural crest-like 

subpopulation densely distributed around blood vessel. These cells supported primary tumor 

growth but did not initiate metastasis which was found to instead be driven by a small population 

of mesenchymal cells with high levels of Prxx179 
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Overall, within a single melanoma tumor may exist a multitude of transcriptionally distinct 

cells each with their own tumor-driving specialties. Neural crest-like and melanocytic 

subpopulations appear to play important roles in tumor initiation and drug resistance, while 

mesenchymal/undifferentiated cells are highly migratory and are likely the source of metastasis-

initiating cells. Importantly, cells are not hard coded to their transcriptional state and can switch 

phenotypes based on extrinsic cues77.  

1.8 Non-coding mutations as cis-regulatory variants 
The source of transcriptional heterogeneity in melanoma can stem from epigenetic 

mechanisms as discussed above or mutations in the non-coding region of the genome. Cis-

regulatory variants (CRV) are non-coding mutations that affect expression of a gene on the same 

allele as opposed to trans-regulatory variants which effect those on separate DNA molecule. CRVs, 

including single nucleotide variants and small inserts and deletions, are the focus of this thesis. 

CRVs can alter transcriptional activity if located in regulatory regions, such as promoters or 

enhancers, by destroying or creating transcription factor binding sites. CRVs in 5’ UTRs and 3’ 

UTRs can affect RNA processing, and intronic variants can either effect splicing or transcriptional 

regulation if the CRV targets an intronic enhancer. CRVs that affect binding sites for chromatin 

organizing proteins, such as CTCF, can also lead to changes in the three-dimensional structure of 

the genome which can broadly alter transcription or binding sites for DNA methyltransferases 

which epigenetically repress transcription. Additionally, CRVs in regulatory RNAs can lead to 

trans-effects through, for example, altering the target sequencing of a microRNA. As CRVs can 

alter transcription through multiple mechanisms, identifying and characterizing their role in 

melanoma can contribute to the understanding of altered gene regulatory networks. To date, few 

variants have been comprehensively validated. 
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1.8.1 Cis-regulatory variants in melanoma 
A mutation in the promoter region of TERT was detected in a case of familial melanoma 

and sporadic melanoma80,81. A C to T mutation created a novel binding site for an Ets transcription 

factor, GABPA, and is associated with elevated mRNA expression of TERT8,82. This promoter 

mutation is found in BRAF-only (75%), NRAS-only (72%), or NF1-only (83%) melanomas and 

is found in 5% of triple wild-type melanomas8. When comparing the size of telomeres to the 

presence of the TERT promoter mutation, the mutation was associated with reduced telomeres as 

opposed to longer telomeres, suggesting a more complex interaction between TERT, telomere 

length, and melanoma progression3. Genome engineering of the single point mutation in primary 

melanocytes containing a CDKN2A deletion and the BRAFV600E mutation conferred replicative 

immortality, suggesting a potential mechanism by which elevated expression of TERT overcomes 

OIS78.  

Since the identification of the TERT promoter mutations, several non-coding variants in 

melanoma have been discovered. In a study of 183 whole-genome sequenced melanomas, 

recurrent non-coding mutations were detected in the promoters, 3’ UTRs, and 5’ UTRs of several 

genes, some of which were predicted to alter transcription factor binding. All but 3, TERT, 

RNF185, and RPS27, could not be associated with altered gene expression3. In a later study, RPS27 

promoter variants were shown to decrease reporter activity, and analysis of RPS27 transcript levels 

in human melanomas demonstrated a bimodal distribution of RPS27, where high levels were 

indicative of a more proliferative and invasive state while low levels were important for survival 

in low-attachment states and drug resistance83.  

A recurrent mutation in the promoter of SDHD, a tumor suppressor, in 10% of cases is 

predicted to disrupt ETS binding motifs, has decreased expression of the gene compared to samples 

without the mutations, is associated with poor prognosis, and disrupts a GABPA binding site84,85. 
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Zhang et al., (2018) discovered two somatic expression quantitative trait loci (eQTL) in the 

enhancer of HYI in ~20% of samples and in the promoter of DAAM1 in ~16% of samples, both 

of which were functionally validated by reporter assay. DAAM1 overexpression increased cell 

invasion although the overexpression was tested in a breast cancer cell line as opposed to a 

melanoma cell line85. A cluster of mutations located in the promoter of DPH3 and OXNAD3 were 

determined to increase luciferase activity and were also identified in basal cell and squamous cell 

carcinoma86. An intronic variant in MX2 led to increased expression of reporter activity likely due 

to creation of a YY1 transcription factor binding site and was found to accelerate melanoma onset 

in zebrafish87.  

While hundreds of recurrent non-coding mutations have been bioinformatically identified and 

scored, few have been validated. Only one of the studies listed above employed a massively 

parallel reporter assay and few others have validated across multiple loci. Moreover, aside from 

the TERT promoter mutation, none of the variants have been engineered into a melanoma cell line 

as either a single nucleotide variant or a small deletion. Therefore, there is a pressing need to more 

thoroughly characterize the effect of a variant on not only reporter activity but cellular biology. 

1.8.2 Cis-regulatory variants in other cancers 
Cis-regulatory variants have been identified in other cancers and diseases. In T-cell acute 

lymphoblastic leukemia (T-ALL), a small indel approximately 10kb from TAL1 leads to the 

creation of a super-enhancer through generation of a MYB binding site88. Binding of Myb 

drastically increases H3K27Ac and expression of TAL1. LMO1 and LMO2, also T-ALL 

oncogenes, were enriched for non-coding variants, some of which have been validated89. In chronic 

lymphoblastic leukemia, a non-coding variant in the 3’ UTR of NOTCH1 led to differential 

splicing90. This is remarkable as most variants studied are expected to alter gene expression and 
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shows the wide spectrum of aberrations that non-coding variants can inflict. In diffuse large B cell 

lymphoma (DLBCL), mutations in super-enhancers are common in most patients and are linked 

to lineage-specific genes91. A recurrent mutation in a brain-specific enhancer breaks an Oct2/4 

motif and subsequently increases expression of MYC to drive glioma92. In summary, non-coding 

variants are common across cancer types and appear to be located in cell-type specific regulatory 

regions or near cancer-specific oncogenes. 

1.9 Objective of thesis 
The objective of this thesis is to identify recurrent and putatively functional non-coding 

variants detected in human melanomas, validate the function of the variant via reporter assays, and 

characterize how the non-coding variant alters key melanoma phenotypes. Chapter 2 details the 

bioinformatic pipeline used to identify statistically significant hotspots, i.e. recurrently mutated 

regions, in putative melanoma regulatory regions (pMRRs). We investigate common attributes 

associated within statistically significant hotspots and compare expression levels of the genes 

associated with top-scoring hotspots across multiple melanoma cohorts. We validated selected 

mutations via luciferase assays and massively parallel reporter assays and identified dozens of 

functional variants across seven melanoma cell lines. Chapter 3 focuses in on the hotspot located 

in the promoter of CDC20. We perform bioinformatic analyses to understand the clonality of the 

CDC20 promoter variants and identify co-expression networks between CDC20 and certain neural 

crest transcription factors. Lastly, we engineered an indel in the promoter of CDC20 in a human 

melanoma cell line to characterize the effect of the variant on viability, migration, and 

transcription. 

 

 



 17 

 

 

 

 

 

  



 18 

Chapter 2: Functional validation of recurrent 

non-coding variants in human melanoma 
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Preface 

This chapter has been reproduced and adapted from the following preprint: 

Godoy, P. M., Zarov, A. P. & Kaufman, C. K. Functional analysis of recurrent non-coding 

variants in human melanoma. Biorxiv 2022.06.30.498319 (2022) 

doi:10.1101/2022.06.30.498319.  
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2.1 Abstract 
Small nucleotide variants in non-coding regions of the genome can alter transcriptional 

regulation, leading to changes in gene expression which can activate oncogenic gene regulatory 

networks. Melanoma is heavily burdened by non-coding variants, representing over 99% of total 

genetic variation, including the well-characterized TERT promoter mutation. However, the 

compendium of regulatory non-coding variants is likely still functionally under-characterized. We 

developed a pipeline to identify hotspots, i.e. recurrently mutated regions, in melanoma containing 

putatively functional non-coding somatic variants that are located within predicted melanoma-

specific regulatory regions. We identified hundreds of statistically significant hotspots, including 

the hotspot containing the TERT promoter variants. Using a combination of massively parallel 

reporter assays and luciferase assays, we validated 35 variants that displayed statistically 

significant differences in reporter activity compared to their WT counterparts. 

2.2 Introduction 
With the widespread availability of whole-genome sequencing and fewer discoveries of 

novel functional coding mutations, recent efforts have increasingly focused on identification and 

characterization of variants in the non-coding space of cancer genomes. Cis-regulatory variants 

(CRV) modulate transcription by altering the regulatory landscape of a gene, which in turn can 

lead to dysregulation of genes involved in cancer-driving pathways93. Identifying CRVs of interest 

is therefore, generally, a three-step process: (1) identification of variants by whole-genome or 

targeted sequencing (Chapter 2), (2) validation of variants through reporter assays and/or precise 

genome editing (Chapter 2), (3) and characterization of the effect of the gene targeted by the CRV 

on tumorigenesis or cancer cell biology (Chapter 3). For example, TERT promoter mutations were 

one of the earliest highly recurrent non-coding mutations identified in melanoma and are 
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remarkable due to both a strong activating effect and prevalence in multiple cancers80,81,94. Present 

in ~80% of cutaneous melanomas, the TERT promoter mutation creates a novel ETS motif that 

leads to binding of GABPA and de-repression of TERT82. The full extent of TERT’s influence on 

tumorigenesis, particularly via this regulatory variant, is still emerging, including its canonical role 

on telomere maintenance78,94,95. Beyond TERT promoter variants, few other CRVs have been 

identified and characterized in melanoma83–85,87,95–97. The next most common mutations in 

cutaneous melanoma are coding mutations in the MAPK pathway, predominantly BRAFV600E/K and 

NRASQ61K, as well as loss of key tumor suppressors like TP53, PTEN, and CDKN2A, all with 

relatively clear canonical growth regulatory and proliferative functions and discussed in Chapter 

13,8.  

2.2.1 Next generation sequencing in melanoma 
 Next generation sequencing (NGS) has revolutionized our understanding of melanoma. 

NGS has not only extended the catalog of protein-coding mutants but also our knowledge on the 

role of structural variants, the mutational signature associated with UV irradiation, and our 

awareness of the extraordinary number of variants in the non-coding genome. Most of the roughly 

3,000 melanomas that have been sequenced are sequenced through targeted approaches, such as 

whole-exome sequencing (WES). Notably, the Cancer Genome Atlas (TCGA) has performed 

WES and WGS on 333 and 34 tumors, respectively (TCGA-SKCM8), and the International Cancer 

Genomics Consortium (ICGC) performed WGS on 183 melanomas (ICGC-MELA3).  

 Apart from DNA-sequencing, the transcriptional and epigenetic landscapes have been 

assayed via RNA-sequencing, ChIP-sequencing, ATAC-sequencing, and bisulfite sequencing. 

Regions that are bound by certain histone marks indicate regulatory regions such as enhancers 

marked by H3K27Ac and promoters marked by H3K4me398. ATAC-seq specifically targets 
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accessible chromatin, i.e. able to be bound by a barcode-inserting transposase, which indicates 

putative regulatory regions as this means transcription factors would also be able to bind99). DNA 

methylation, which can alter the regulatory potential of an enhancer or promoter, is assessed via 

bisulfite conversion of unmethylated cytosines to uracil (Reinders et al., 2008).  

2.2.2 Bioinformatic methods to detect putatively functional variants 
Challenges 

 Predicting the impact of a non-coding variant remains a challenging task. Most non-coding 

variants have cell-type specific effects100. As melanoma is heterogenous within a single tumor and 

across the melanoma lifespan, variants may be functional at specific timepoints and within specific 

subpopulations of the tumor, as observed in lung cancer101. Most non-coding variants are in regions 

without any regulatory activity, as approximately 10% of the genome harbors regulatory 

potential102 but determining the 10% that is functional will depend on the cell type and the 

transcription factors and/or chromatin modifiers that are expressed. Determining whether a variant 

affects binding of a transcription factor and/or chromatin modifier is based on position-weight-

matrices (PWMs) which are experimentally determined through various assays including ChIP-

seq. PWMs can be used to predict motif-breaking or motif-gaining but the majority of transcription 

factor binding sites remain unknown103. Additionally, PWMs for transcription factors within the 

same family are often similar and can lead to multiple predictions and inferences. 

Bioinformatic pipelines that utilize RNA-sequencing 

 Many bioinformatic pipelines have been applied to detect and prioritize functional non-

coding variants. Some of the most successful methods are those that pair a variant to a phenotype, 

often referred to as quantitative trait loci (QTL). Variants that alter expression of a nearby gene 

are referred to as expression QTLs (eQTLs). Similarly, QTLs can be associated with methylation, 
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accessibility, transcription factor binding, or any other paired phenotype. However, QTL analyses 

still require experimental validation to identify the causal SNP and are often underpowered to 

identify rare variants. Another analytical method that matches transcription to a variant is allele-

specific expression (ASE) which is based on the idea that transcript levels between chromosomes 

can vary if a heterozygous non-coding variant affects expression on one chromosome but not the 

other. This method is powerful as it can test the effect of rare variants on expression but requires 

a transcribed heterozygous allele and phasing of the non-coding variant to the exonic allele104.  

 These methods require matched whole genome sequencing (and in the case of ASE, long-

read whole genome sequencing or otherwise inferred haplotyping) and RNA-sequencing. 

Unfortunately, of the 200 melanomas that have been whole genome sequenced to adequate read 

depth (>30X), the minority (~50) have also been analyzed by RNA-sequencing which renders 

eQTL and ASE analysis underpowered for most variants. Moreover, many tumors lack appropriate 

matched controls – blood is commonly used as a matched germline control but given the high 

mutational burden of melanomas, whole genome sequencing and RNA-sequencing of non-

transformed melanocytes would provide a more useful control, although the logistics of such 

experiments render it almost impossible in living humans.  

Summary of methods used to detect non-coding variants in melanoma  

The TERT promoter mutation was simultaneously discovered through linkage analysis of 

a familial case of melanoma and through whole genome sequencing of 70 melanomas and 150 cell 

lines representing multiple cancer types80,81. No other variant in melanoma has been validated by 

reporter assay on the grounds of recurrence or inheritance alone. Instead, many studies have 

integrated available WGS and RNA-sequencing to identify cis-regulatory variants. Since so few 

melanomas have matched WGS and RNA-sequencing, studies often combine multiple cancer 
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types to identify significant events based on recurrence and change in expression84,96 or use loci 

identified by GWAS which compares germline variants between cases and controls87. One study 

genotyped and RNA-sequenced 106 primary melanocytes to perform cis-eQTL analysis but were 

limited to common variants due to the sample size105. The ICGC-MELA cohort, which is the largest 

cohort of melanomas with WGS, detected almost 21 million variants, >99% of which were non-

coding3. A preliminary analysis of recurrently mutated promoters, 5’ UTRs, and 3’ UTRs detected 

nine promoter variants that were statistically significant based on the OncoDriveFML algorithm106. 

Of these nine, only three displayed altered expression on the associated gene, one of which was 

the TERT promoter mutation.  

 Through these combined efforts, 44/837 variants have been validated via reporter assay: 

831 variants detected by GWAS via MPRA, 4 detected in the TCGA-SKCM cohort via flow 

cytometry or luciferase assay, and 2 detected in the ICGC-MELA cohort by luciferase 

assay83,87,96,105. In this chapter, I describe a novel bioinformatic pipeline that bypasses the lack of 

RNA-sequencing to determine statistically significant recurrently mutated non-coding regions in 

putative melanoma-specific regulatory regions using as input the 21 million variants from the 

ICGC-MELA cohort and various ChIP-seq and ATAC-seq datasets and validate my findings via 

MPRA and luciferase assay. 

The FunSeq2 algorithm 

 The bioinformatic pipeline described in this Chapter scores recurrently mutated regulatory 

regions based on two factors: recurrence and predicted impact of the variant. The FunSeq2 

algorithm scores and prioritizes variants through integration of various features of the variant and 

the variant-associated gene107. Utilizing the comprehensive functional annotations generated by 

the Encode Project Consortium, variants within these putative regulatory regions or transcription 
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factor binding sites are scored higher. Scores are also dependent on changes to the PWM score 

indicating loss or gain of a motif and conservation of the nucleotide. The variant-associated gene 

is also scored higher if central to a gene regulatory network. FunSeq2 weighs each feature score 

with different weights based on significance to output a final score for every nucleotide.  

2.2.5 Reporter Assays 
 Due to the large number of non-coding variants in melanoma, bioinformatic prioritization 

of variants is an essential first step. Once a panel of high-confident variants has been identified, 

experimental validation of the variant is key to filter out false positives. A major advantage of 

reporter assays is the ability to exogenously assay a variant compared to its wild-type (WT) 

counterpart without having to perform precise base editing which has low success rates and are 

low throughput. It is generally assumed that if the variant alters activity in a reporter assay it will 

also alter activity if endogenously engineered. However, this has yet to be comprehensively 

evaluated. 

Luciferase assays are a medium-throughput reporter assay. A region-of-interest of variable 

length is cloned upstream of luciferase in a vector with either a minimal promoter, if the region-

of-interest is in an enhancer, or in a promoter-less vector if the region-of-interest is in a promoter. 

The region-of-interest will either contain the WT or mutant allele and are transfected in separate 

wells. To control for transfection efficiency, a vector expressing renilla is co-transfected with each 

luciferase vector. Luciferase values are normalized by the renilla values and these normalized 

values are compared between WT and mutant luciferase vectors. The advantages of luciferase 

assays are their low cost, quick readout, and easy statistical analysis108. 

Massively parallel reporter assays 
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 One of the major disadvantages of the luciferase assay is its throughput. For every WT and 

mutant allele, a separate well must be transfected. Therefore, it requires six wells to test one WT 

and one mutant allele in triplicate. To comprehensively assay the many mutations present in 

melanoma, a more high-throughput method is necessary. Massively parallel reporter assays 

(MPRAs) address this limitation. MPRAs rely on barcodes and next generation sequencing to 

assay many hundreds to thousands of variants and their WT counterparts in one single well. As 

with the luciferase vector, a region harboring either the WT or mutant allele is cloned upstream of 

a reporter, usually GFP which is used to qualitatively check transfection efficiencies, and a 

barcode109. After transfection, RNA is isolated, sequenced using universal primers targeting the 

MPRA cDNA, and read counts associated with each barcode are demultiplexed to allow 

comparison between the relevant WT and mutant alleles. The disadvantages associated with 

MPRAs are their high cost, as each region-of-interest needs to be synthesized, and the relatively 

more difficult analysis. Overall, both luciferase assays and MPRAs are excellent ways with their 

own advantages and disadvantages to ensure the predicted variant is indeed functional in one or 

more melanoma cell lines. 

2.2.5 Melanoma cell lines 
 The need to validate variants in multiple cell lines is imperative, as multiple cell states exist 

within a melanoma tumor74–77. Generally, these cell states can be divided into 4 broad categories 

based on expression of 4 genes: “Melanocytic” (high levels of MITF and SOX10, low levels of 

NGFR and AXL), “Transitory” (high: SOX10 and NGFR, low:  MITF and AXL), “Neural crest-

like” (high: NGFR, SOX10, and AXL, low: MITF), and “Undifferentiated” (high: AXL, low: 

NGFR, SOX10, and MITF). These cell lines have varied transcriptional, protein, and epigenetic 

landscapes110,111 .  
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In this chapter, we performed luciferase assays in nine cell lines. A375, LOX-IMVI, RPMI-

7951, SK-MEL-28, SK-MEL-5, UACC-62 are BRAF-mutant melanoma cell lines that are 

commercially available. SK-MEL-2 contains the NRASQ61K.   LOX-IMVI and RPMI-7951 have 

almost no detectable levels of SOX10 and are classified as “Undifferentiated”, while A375 and 

SK-MEL-2 have relatively high levels of all four markers and are classified as both “Neural crest-

like” and “Undifferentiated”. SK-MEL-5 and UACC62 have low levels of NGFR and AXL but 

relatively higher levels of MITF and SOX10 and are thus classified as “Melanocytic”. SK-MEL-

28 are “Neural crest-like” due to low expression levels of AXL but high NGFR, SOX10, and 

MITF. In addition to melanoma cell lines, we validated results in 293FT cells, which are human 

embryonic kidney cells, and primary melanocytes derived from human foreskin melanocytes. 

These cell lines are used as non-melanoma comparators, in order to determine if there are any 

melanoma-specific effects throughout the work described in this dissertation. 

2.2.6 Aim of Chapter 2 
 In this Chapter, I design a novel bioinformatic pipeline to identify recurrently mutated 

regions in putative melanoma regulatory regions (pMRRs). This pipeline utilizes previously 

published ChIP-seq and ATAC-seq datasets from relevant sample types to partition the genome. 

Regions not in pMRRs are used as an empirical null distribution in order to calculate statistical 

significance. As non-coding variants cannot be reliably predicted in silico, we use luciferase assays 

and MPRAs to experimentally validate statistically significant and high-scoring variants. 

2.3 Methods and Materials 

2.3.1 Calculating hotspot scores 
Step 1: Merge mutations into hotpots. Mutation calls for SNVs and indels from the MELA-

AU cohort were downloaded from dcc.icgc.org after receiving DACO approval3. Using a 25 bp 
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window, we merged mutation calls using bedtools intersect into hotspots based on the premise that 

highly recurrent variants may be under positive selection at some point during the melanoma life 

cycle (e.g. favor melanoma growth) and that a transcription factor binding site(s) (TFBSs) may be 

disrupted/created by modifying any of multiple nucleotides in this window112.   

Step 2: Filter hotspots not in putative enhancers/promoters. We downloaded processed 

peak calls from ChIP-seq (e.g. H3K27Ac, H3K4me3, CTCF) and ATAC-Seq (revealing accessible 

chromatin domains) data from 69 melanoma datasets to enrich for putative Melanoma Regulatory 

Regions (pMRRs) which we reasoned are more likely to bind transcription/chromatin factors 

(information available upon request). These are indicated by the blue “peaks” in the example 

Figure 1A. We excluded exons and those regions (e.g. highly repetitive) from Encode excluded 

regions list113.  

Step 3: Calculate Donor Score. The donor score for a given hotspot is represented as D2/G, 

where D is the number of samples (donors) with the specific variant and G is the number of 

nucleotide locations with variants in the hotspot. For example, in Figure 1A, the purple hotspot 

shows D = 3 + 1 + 2 + 4 = 10 mutations, at G = 4 different locations, for Donor Score of 102/4 = 

25.    

Step 4: Weight variants using FunSeq2 score. Each mutation is weighted for predicted 

functional significance by features including predicted TFBS motif creating/breaking effect and 

evolutionary conservation using pre-computed scores from the published FunSeq2 algorithm 

(http://funseq2.gersteinlab.org/downloads) with a higher score predicting higher likelihood of 

functional significance107.   

Step 5: Calculate Hotspot Score. Each hotspot is assigned a Hotspot Score as the product 

of the Donor Score (Step 3) and mean FunSeq2 score (Step 4) for all variants in the hotspot, to 
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weigh both the number of variants and their predicted functional consequence in one metric. For 

example, in Figure 1A, the purple box shows (Average FunSeq2 score)*(Donor Score) = 1.5*25 

= 37.5  

Step 6: Calculate p-value for each hotspot in MRRs relative to the empirical null 

distribution (non-pMRR regions from Step 2). For each hotspot score within pMRRs, we calculated 

a p-value by determining the proportion of null hotspots with hotspot scores greater than or equal 

to it. All p-values were adjusted for false discovery rate (FDR). Adjusted p-values equal to 0 are 

provided (Supplemental Table 2).  

2.3.2 Genomic Analysis of Hotspots 
For all pMRRs, statistically significant hotspots (FDR adjusted p-value < 0.05, 707 

hotspots), and top-scoring hotspots outside of pMRRs (top 707 null hotspots by Hotspot Score), 

we annotated regions using the ChIPSeeker function annotatePeak114 (Figure 1D). For HOMER 

motif analysis, we ran findMotifsGenome.pl on BED files of all pMRRs and statistically 

significant hotspots to identify known motifs (Supplemental Figure 1A). For each variant within 

statistically significant hotspots, we made FASTA files with 20 bp sequences corresponding to 

either the WT or mutant sequence (variant at position 10). These were processed through HOMER 

using the findMotfs.pl function (Supplemental Figure 1A). A BED file containing only the CDC20 

promoter variants were processed through motifBreakR115 using the known and discovered motif 

information from transcription factor ChIP-seq datasets in Encode116.  

To calculate the ETS motif distribution, we first made FASTA files containing 11 bp 

sequences corresponding to either the WT or mutant sequence (variant at position 6) from the 707 

statistically significant hotspots with FDR-adjusted p-values < 0.05. If a sequence contained the 

GGAA motif, we counted how far each variant within a statistically significant hotspot occurred 
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from the nearest GGAA (if more than one instance was detected). If the reverse complement, 

TTCC was identified, as the nearest ETS motif, we first rewrote the sequence as its reverse 

complement and then counted the distance. A consensus sequence was generated with Web Logo 

(https://weblogo.berkeley.edu/logo.cgi) using a re-oriented version of the 11 bp WT fasta file 

where the first G of the GGAA motif is always at position 5.  

2.3.3 Selection of variants 
Manual curation of 15 hotspots 

As non-coding somatic variants are often heterozygous and their regulatory effects in cis, 

we reasoned that genes near hotspots displaying allele-specific expression (ASE) could be further 

evidence of a putative functional hotspot. In order to further investigate this, we downloaded the 

alignment files (BAM format) of RNA-seq performed on 56 tumor samples 46 donors from ICGC 

(EGAD00001003353). Following the GATK best practice guideline for short variant discovery in 

RNA-seq, we called variants and used the GATK ASEReadCounter tool to calculate wild-type 

and mutant alleles. To determine whether genes were displaying ASE, we first generated a normal 

distribution with parameters a=0.5 and b=0.1. This created a distribution with 1st and 3rd quartiles 

similar to the allelic ratios found in genes with low variance across melanoma and melanocyte 

samples117 (0.4-0.6, data from GSE112509). Using this sample as our null distribution, we 

calculated p-values for each variant detected in a transcript. FDR-adjusted p-values were collapsed 

for each gene by calculating the average p-value. 

 To generate a list of high-confidence hotspot candidates, we considered each hotspot 

primarily by their test statistic. We then carefully considered the results of the ASE analysis, 

information from the literature, the gene expression pattern from an independent RNA-seq dataset, 

presence of a mutation within the genomic coordinates of candidate hotspots in a smaller 
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independent cohort, and whether it was considered a putative driver in a recent pan-cancer 

analysis18,118 (Supplemental Table 3). 

MPRA Variant Selection 

Starting with all the variants present in hotspots with q-values less than 0.005, we looked 

for presence of the mutation in two independent cohorts: 25 metastatic melanomas and 18 

melanoma cell lines from the Cancer Cell Line Encyclopedia (CCLE). 118 SNVs were detected in 

at least 4 samples from the secondary cohorts, corresponding to 108 unique hotspots. 

Cohort comparison of Top 13 Genes 

We downloaded DESeq2-normalized read counts from GSE112509 for the Kunz cohort 

and quantile-normalized read counts from Firehose (Broad GDAC) for the TCGA-SKCM cohort. 

The Kunz cohort is made of 23 laser-microdissected melanocytic nevi and 57 primary 

melanomas117. The TCGA cohort consists of 81 primary and 367 metastatic melanomas8.   

For ICGC-MELA, we downloaded BAM outputs from STAR from the European Genome-

Phenome Archive (EGA) under Study ID EGAD00001003353. Gene counts were calculated using 

RSEM and normalized by DESeq2. This cohort comprises 56 melanomas from 46 donors and 25 

metastatic melanomas, 17 primary melanomas, and 14 cell lines derived from tumors.   

For the Baggiolini cohort, we obtained raw counts from the supplementary material of the 

corresponding publication and normalized counts by DESeq2119. This cohort is made up of human 

pluripotent stem cell derived cells that are engineered to contain doxycycline-inducible BRAFV600E. 

KO lines contain deletions to RB1, TP53, and P16. These cells were then differentiated into neural 

crest cells, melanoblasts, and melanocytes. For our study, we only considered WT and KO 

melanoblast samples that had activated BRAFV600E expression. In line with the corresponding 

publication, we consider KO melanoblasts to be melanoma-like (based on the ability to form 
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tumors when subcutaneously injected into NSG mice) while WT melanoblasts were considered to 

be a non-tumorigenic precursor to melanocytes.  

For each of the top 13 genes, we calculated the log2 fold-change between metastatic and 

primary melanomas (TCGA-SKCM and ICGC-MELA), primary melanoma and nevi (Kunz), and 

KO and WT melanoblasts.  Survival rates and corresponding p-values for high and low expressing 

tumors were downloaded from cBioPortal (TCGA-SKCM) using the Onco Query Language 

(OQL): GENE: EXP < -0.5 and GENE: EXP > 0.5. Data was downloaded from cBioPortal.org 

and plotted with ggplot2.  

2.3.4 Cell Culture  

We obtained A375 (CRL-1619) and RPMI-7951 (HTB-66) cells from ATCC. SK-MEL-2, 

LOX-IMVI, SK-MEL-28, SK-MEL-5, UACC-62 cells were obtained directly from the NCI-60 

collection following written request and approval and were grown in RPMI-1640 media with 2 

mM L-Glutamine (Gibco, 11875) with 10% FBS and 1X Pen/Strep. Newborn foreskin 

melanocytes were ordered from the specimen research core at the SPORE in Skin Cancer at Yale 

University. HEK-293FT cells were obtained from Invitrogen (#R70007). Cells were grown in a 

dedicated incubator set to 37°C at 5% CO2. A375 and HEK 293FT cell lines were grown in 

DMEM media (Corning, 10-013-CV) with 10% Fetal Bovine Serum (Gibco, 261470) and 1X 

Penicillin/Streptavidin (Pen/Strep, Sigma-Aldrich, P4333). Primary melanocytes were grown in 

OPTI-MEM (Gibco, 31985) containing 5% FBS, 1X Pen/Strep, 10 ng bFGF (ConnStem, F1004), 

4 mL of 5 mM IBMX (Sigma, #I-5879), 1 ng/mL Heparin (Sigma, #3393), and 200 µL of 0.1 M 

dbcAMP (Sigma, #D-0627). SK-MEL-5 and RPMI-7951 were grown in EMEM media (Corning, 

10-009-CV) with 10% Fetal Bovine Serum (Gibco, 261470) and 1X Penicillin/Streptavidin 

(Pen/Strep, Sigma-Aldrich, P4333). UACC-62, LOX-IMVI, UACC-257, SK-MEL-28, and SK-
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MEL-2 were grown in RPMI-1640 media (Corning, 10-040-CV) supplemented with  1X L-

Glutamine (Gibco, # 25030081), 10% Fetal Bovine Serum (Gibco, 261470), and 1X 

Penicillin/Streptavidin (Pen/Strep, Sigma-Aldrich, P4333). 

2.3.5 Luciferase Assays 
For the first round of luciferase assays, we synthesized 300 bp sequences corresponding to 

WT and mutant hotspots with the variant centered at position 150 and sequenced into a luciferase 

vector with a minimal promoter (pGL3-Promoter, E1761). For the second round of luciferase 

assays, we synthesized a 170 bp sequence containing the WT CDC20 promoter sequence 

(chr1:43,824,464-43,824,633) (GenScript). From this template, we amplified a 150 bp sequence 

using primers pGL3-CDC20_F and pGL3-CDC20_R (Phusion High-Fidelity PCR Master Mix, 

NEB M0531, Supplemental Table 4) that added restriction sites for SacI and XhoI to the 150 bp 

sequence. Both the pGL3-Basic Luciferase vector (Promega, E1751) and the CDC20 promoter 

amplicon were digested using SacI-HF (NEB, R3156S) and XhoI (NEB, R0146S) at 37°C 

overnight, followed by heat inactivation at 65°C for 20 minutes. Digested vector and amplicon 

were ligated using T4 DNA Ligase (NEB, M0202S) and transformed into OneShot Top10 

Chemically Competent Cells (ThermoFisher, C404010). Individual colonies were mini-prepped 

and confirmed by Sanger Sequencing (Azenta).   

Using the Q5 Site-Directed Mutagenesis kit (NEB, E0554), we induced variants in the WT 

sequence using primers designed by NEBaseChanger (https://nebasechanger.neb.com/, 

Supplemental Table 4). Sequences that were successfully mutated, as well as the WT pGL3-Basic 

vector and pRL-TK (Promega, E2241), were midi-prepped (Qiagen, 12941).  

For all transfections, 300,000 cells per well were seeded onto 6-well plates. All 

transfections were performed using 9 uL of Lipofectamine 2000 (Invitrogen, 11668), 1.5 µg of 
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luciferase vector, and 1.0 µg of control pRL-TK (renilla), following the manufacturer’s protocol. 

All transfections were performed at minimum in duplicate.  

The following day, luciferase and renilla luminescence were measured using the Dual-

Luciferase Reporter Assay System (Promega, E1910) per manufacturer specifications. Cells were 

lysed using 500 µL of 1X Passive Lysis Buffer and incubated for 15 minutes on an orbital shaker. 

20 µL of lysate were added to clear-bottom 96-well plates. We ran three technical replicates per 

sample. Luminescence was measured on a GloMax 96 Microplate Luminometer (Promega) using 

a standard Dual Reporter Assay program. All luciferase values were normalized to renilla, as the 

internal transfection control. We then normalized all variant ratios to the corresponding average 

WT value. p-values were calculated using Student’s t-test.  

2.3.5 Massively parallel reporter assay 
Oligonucleotides were synthesized by IDT and were designed as described previously with 

several differences120. Each oligo contained an upstream universal primer binding site, a Step 1 

restriction enzyme site, a 150 base pair regulatory region containing either the reference or mutated 

allele at the center, a Step 2 cloning site, a C spacer nucleotide, a second Step 2 cloning site, a 

unique 10-base pair barcode, a second Step 1 cloning site, and a universal downstream primer 

binding site. To create the Step 1 library, oligos were amplified with 6 cycles of PCR using the 

Phusion HiFi Master Mix (HF Buffer) using primers MPRA_Oligo_F and MPRA_Oligo_R 

(Supplemental Table 4). The reaction was cleaned up using the Qiagen PCR Clean Up Kit and 

digested with AseI and SalI. Reactions were stopped by heat inactivation at 80°C for 20 minutes. 

The backbone used for our MPRA assays had an EF1a promoter and an mCherry reporter gene. 

To obtain the Step 1 library, the vector was digested in the same manner as the oligos and ligated 

overnight at 16°C using a 1:5 molar ratio starting with 42 ng of vector. The step 1 library was 
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sequenced using a MiSeq to determine percent drop-out. The Step 1 library contains the vector 

backbone, the synthesized oligo containing the wild-type or mutant enhancer, and the barcode. To 

clone in the promoter and reporter, we digested the Step 1 library at the synthesized Step 2 cloning 

sites using PvuI and AatII restriction enzyme. We stopped the reaction by PCR clean-up. The 

EF1a-mCherry sequence was amplified with MPRA_pEF1a_mCh_6bp_ext_F and 

MPRA_pEF1a_mCh_6bp_ext_R that added the restriction enzyme sites (Supplemental Table 4). 

This amplicon was digested and ligated into the Step 2 vector. These counts are used to normalize 

the cDNA barcode counts. Libraries were sequenced on a MiSeq-v3 to a total of 2 million reads 

and at an average of 55 counts per barcodes. 114 of 118 variants were present in the final library. 

 2.5 µg of the Step 2 library was transfected into HEK 293FT, Primary Melanocytes, A375, 

SK-MEL-5, RPMI-7951, and UACC-62 using 10 µL of Lipofectamine 2000. RNA was isolated 

24 hours post-transfection using the Qiagen RNeasy Mini Plus Kit. RNA was treated with TURBO 

DNase (following the ‘Rigorous’ protocol, ThermoFisher Scientific #AM2238) and converted into 

cDNA using the First Strand SuperScript III kit (Invitrogen, # 18080051). Barcodes were amplified 

using primers MiSeq_MPRA_Step2_Barcode_F and MiSeq_MPRA_Step2_Barcode_R 

(Supplemental Table 4). A second round of PCR is performed to add adapters and indices. The 

completed Step 2 library was sequenced on a MiSeq to a total of 2 million reads and 1000X 

coverage of barcodes. Barcodes were demultiplexed, counted, and divided by the tag counts obtain 

from the Step 2 library. For each corresponding WT and mutant hotspot, we calculated log2 fold-

changes and p-values using the Student’s t-test. All p-values were adjusted for false discovery rate. 

2.4 Results 



 36 

2.4.1 Putative regulatory regions in melanoma are enriched for hotspot 

mutations 
To identify recurrent non-coding mutations in human melanoma, we used variants called 

from whole genome sequencing (WGS) data from the International Cancer Genome Consortium 

(ICGC), the largest collection of WGS for melanoma to our knowledge, including 183 melanoma 

samples made up of 75 primary tumors, 93 metastases, and 15 human melanoma cell lines, as 

exome sequencing does not include full promoters or distal regulatory elements. The bulk of these 

tumors are cutaneous (140) but includes 35 acral and 8 mucosal melanomas.  A total of 20,894,255 

substitutions and 96,467 indels were identified from the ICGC Melanoma cohort3.   

To refine our search space, we collated 69 previously published ChIP-seq and ATAC-seq 

datasets that were specifically performed on melanoma or melanocyte samples121. We reasoned 

these regions of the genome are more likely to bind transcription/chromatin factors and refer to 

them as putative melanoma regulatory regions (pMRRs). Genomic regions outside the pMRRs 

(red box, indicated by the lack of peak, Figure 1A) serve as an empirical null distribution but still 

have large numbers of recurrent mutations. 

 pMRRs account for only ~12% of the genome and harbor 2,142,063 variants (~10% of 

total variants detected in the ICGC cohort).  Of these, 444,161 variants are merged into 118,741 

hotspots (3 or more variants within 25 bp are merged). Our empirical null distribution accounts 

for 5,478,131 variants within 1,462,992 hotspots. The remaining variants are isolated (i.e. not 

within 25 bp of another variant) and thus were not designated as hotspots.  

All hotspots are also scored based on recurrence (donor score) and the average predicted 

impact of all variants within a hotspot as computed by the FunSeq2 algorithm107, which weighs 

attributes such as evolutionary conservation and likelihood of TF motif creation/destruction 

(Funseq2 score, Figure 1A’). Hotspots in pMRRs have higher hotspot scores (product of donor 
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score and FunSeq2 score) than those in null regions (Figure 1B). While donor scores are 4.9-fold 

higher in hotspots within pMRRs than those in null regions, FunSeq2 scores are 6.7-fold higher, 

drastically reducing the hotspot scores in regions outside of pMRRs and therefore potentially 

reducing false positives (Figure 1C).   

Promoter regions are enriched in statistically significant test hotspots, while top-scoring 

null hotspots are commonly found in intergenic regions (Figure 1D). We identified 140 hotspots 

with FDR-adjusted p-values = 0 encompassing 2,631 mutations, notably including the known 

TERT promoter variant which has the 13th highest hotspot score (Supplemental Table 2).   

In order to evaluate for enrichment of putative TF binding site motifs, we used Homer 

analysis of pMRRs which identified motifs for TFs known to play prominent roles in melanoma, 

including SOX1047,48,122 (p-value = 1 x 10-472) and ETS family factors123 (Supplemental Figure 1A), 

as well the multifunctional chromatin regulator CTCF (p-value = 1 x 10-6092). However, pMRRs 

that encompassed statistically significant hotspots are only enriched in ETS motifs, as previously 

observed (Supplemental Figure 1A). No ETS factor motifs are enriched in the mutant sequences, 

suggesting that most mutations break ETS transcription factor motifs (Supplemental Figure 1A). 

We found an almost identical distribution of mutations around the canonical GGAA ETS motif 

within the significant hotspots identified in our pipeline as previously reported124,125 (Figure 1E). 

2.4.2 An initial assessment of 15 hotspots by luciferase assay 
 Of a total of 26 variants corresponding to 15 hotspots, 19 altered reporter activities 

significantly in at least one melanoma cell line, 18 in at least two cell lines, and 3 in all three 

melanoma cell lines (Figure 2). These 3 included the two prominent TERT promoter mutations, 

G228A and G250A, which increased reporter activity and a mutation 2,200 bp upstream of SOX9 

in the intron of SOX9-AS1 which decrease reporter activity compared to the WT sequence. We 
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detected two hotspots upstream of NRG1 (178 Kb and 555 Kb from TSS) that decreased reporter 

activity in 2 melanoma cell lines. We tested two variants 400 bp upstream of TCF3: C018T 

decreased reporter activity but C026T increased reporter activity, despite being 8 bp away. 

Similarly, variants 100 bp upstream of ASXL2 mostly led to an increase in reporter activity; C488T 

significantly increase reporter activity in SK-MEL-5 and A375 but C489T, the adjacent nucleotide, 

led to a 0.7 fold decrease in reporter activity. The same variant upstream of MCRS1 led to an 

increase in UACC-62 but a decrease in A375, suggesting cell-type specific effects. Two out of 

three variants in a hotspot downstream of CCNF led to a significant increase in reporter activity in 

UACC-62 and A375 but not SK-MEL-5. One hotspot in the intron of HDAC9 and downstream of 

TWIST1, an important EMT transcription factor, led to an increase in expression in UACC-62 and 

A375; another hotspot 100 kb away did not display any significant changes in reporter activity. A 

hotspot in the intron of ANGPT1 increased reporter activity in all three cell lines, two of which 

reached statistical significance and one which was just above at an FDR-adjusted p-value of 0.06. 

2.4.3 A systematic assessment of 108 hotspots by MPRA 
13 out of 118 variants reached statistical significance in 1 cell line, 5 in 2 cell lines, and 3 

variants were significant in 3 cell lines. Fold changes correlated across similar cell types (Figure 

3). One of the variants has previously been validated in a separate publication83. The other is 

upstream of SLC30A6; an adjacent variant decreased reporter activity in only one cell line. The 

GG528AA and G528A variants in the CDC20 promoter, which decreased reporter activity in the 

preliminary luciferase assay, were also observed to decrease reporter activity significantly in 3 and 

1 of the 5 cell lines, respectively, by MPRA (Figure 4). Hotspot scores for variants that altered 

reporter activity by MPRA were high compared to variants not selected for validation (Figure 5). 
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2.4.4 A comprehensive assessment of CDC20 promoter variants across nine 

cell lines 
To focus our efforts on a candidate(s) among the top scoring hotspots (i.e. those with scores 

higher than TERT, encompassing thirteen candidates), we looked for consistent changes in gene 

expression for the gene nearest the recurrent variants between different stages of melanomagenesis 

(Supplemental Figure 1B). We used RNA-sequencing from 4 studies to calculate the fold change 

of the genes nearest to the hotspot between primary and metastatic tumors (The Cancer Genome 

Atlas, TCGA-SKCM and ICGC-MELA), nevi and melanoma (Kunz), and hPSC-derived 

melanoblasts with (KO melanoblasts) and without (WT melanoblasts) deletions in key tumor 

suppressors (Baggiolini, see Methods for description of samples). CDC20 (gene associated with 

the 8th highest-scoring hotspot) is consistently upregulated in expression between melanoma and 

nevi (Kunz) and the KO and WT melanoblasts (Baggiolini, Supplemental Figure 1B). We observe 

a small increase in metastatic tumors compared to primary tumors in the ICGC cohort and no 

change between primary and metastatic tumors in the TCGA. The only other log2 fold-change 

greater than 1 is seen in the ICGC cohort for TERT expression (increase in metastatic melanoma, 

Supplemental Figure 1B). Low levels of RPL18A (3rd highest-scoring hotspot), HNRPNUL1 (6th), 

and CDC20 (8th) tumors have higher survival rates than tumors with high expression of these genes 

(Supplemental Figure 1C). Taking both differential gene expression and association with survival 

rates for those with melanoma into consideration, we specifically focus on characterizing the 

CDC20 promoter in melanoma.  

The CDC20 promoter is mutated in 39 of 183 donors in the ICGC dataset, all of which are 

skin cutaneous melanomas (27.9% of cutaneous melanoma). The most common single-nucleotide 

variants (SNVs) are at adjacent positions chr1:43,824,528 (G>A, hereinafter termed G528A, 

mutated in 10 donors) and chr1:43,824,529 (G>A, G529A, 16 donors) as well as a SNV at position 
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chr1:43,824,525 (G>A, G525A, 4 donors) and a multi-nucleotide variant (MNV) at positions 

chr1:43,824,528-43,824,529 (GG>AA, GG528AA, 4 donors) and are located within an ETS motif 

(Figure 6A). While at adjacent positions, G528A and G529A have different FunSeq2 scores 

(second number) and Genomic Evolution Rate Profiling (GERP) scores (third number) reflecting 

different degrees of purifying selection126. G525A is located within the core ETS motif, at the 

position that is most often mutated when taking all variants within statistically significant hotspots 

into consideration (Figure 1E) but is not the most recurrent variant in the CDC20 promoter hotspot, 

occurring only in 4/39 donors. Like G528A, G525A has both a high FunSeq2 score and a high 

GERP score.  

Overlaying chromatin-related assessments of the locus, the CDC20 promoter is accessible 

in 4/7 datasets that assay genome-wide chromatin accessibility (Supplemental Table 1). BRG1, 

CTCF, and TFAP2A are among the chromatin/transcription factors that have binding activity at 

the CDC20 promoter, as detected by ChIP-seq. ETV1, the only ETS factor with ChIP-seq data in 

our collation of melanoma-specific functional datasets, did not have binding activity at the CDC20 

promoter in the 2 cell lines assayed (A375 and COLO-800).   

To understand how the variants affect the regulatory activity of the CDC20 promoter, we 

performed luciferase assays using a 150 bp sequence length in a promoter-less luciferase vector 

(Figure 6). C520T reduced reporter activity in A375, SK-MEL-2, and primary melanocytes. 

G525A and C537T reduced reporter activity in all cell lines tested. G528A, the second most 

common variant, reduced expression in all but SK-MEL-2. G529A, the most common variant, 

reduced activity in A375, SK-MEL-2, RPMI-7951, HEK 293FT, and UACC-62. GG528AA only 

reduced activity in A375 and primary melanocytes but upregulation in HEK 293FT. CDC20 
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promoter hotspots are not more likely to co-occur with pathogenic BRAF mutations than NRAS (p-

value = 0.67, Fisher’s Exact Test, Supplemental Figure).  

2.5 Discussion 
Using the largest available cohort of melanoma whole-genome sequencing data and several 

dozen melanoma-specific functional genomics datasets, we have identified hundreds of mutational 

hotspots containing putatively functional non-coding somatic variants. Under the assumption that 

variants outside of pMRRs are not, or are less likely to be, functional, we generated an empirical 

null distribution with which to calculate significance.  We chose to focus on characterizing variants 

in the promoter of CDC20, whose weighted rate of recurrence and predicted functional 

significance were greater than that of the well-studied TERT promoter variants and began to 

investigate how these variants alter melanoma behavior.  

Our pipeline to identify putatively functional non-coding variants has important similarities 

and differences with other pipelines. Like many other studies, we selected recurrently mutated 

regions by performing a hotspot analysis84,105,118. In melanoma, recurrently mutated regions are 

significantly enriched at ETS transcription factor binding sites and at CTCF binding sites due to 

damage from UV irradiation124,125,127. These hotspots, frequently in promoters, likely lead to an 

increase in the number of false positives. However, mutations in transcription factor binding sites 

are one potential mechanism by which gene expression is altered and therefore should not be 

ignored simply due to mutational signature. Another major similarity is utilizing functional 

annotations of the genome to refine the search space. Unlike other methods, we specifically use 

ChIP-seq and ATAC-seq datasets from melanoma and melanocyte samples, enriching for hotspots 

within cell-type specific regulatory elements. The last important similarity is using a method by 

which to score each individual variant. In Weinhold et al. (2014), mutations were selected based 
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on location within an ETS motif. In Rheinbay et al. (2020), the most recent pan-cancecr analyses 

of non-coding variants, mutations were ranked based on a collective p-value determined from 12 

methods to identify driver mutations118. These methods consider features such as the expected local 

mutation rate, the FunSeq2 score, algorithms specifically designed to look for driver mutations in 

lncRNAs, CADD scores, and conservation of a nucleotide.  This study emphasized the lack of 

driver events despite a systematic and comprehensive analysis, suggesting an improvement in 

bioinformatic pipelines and/or larger numbers of samples processed both by RNA-sequencing and 

WGS to perform either eQTL analyses or ASE. Alternatively, experimentally validating variants 

and improving pipelines based on results could yield more accurate scoring algorithms. 

Our pipeline builds on previous work by looking for functional non-coding variants 

specific to melanoma using cell-type specific functional annotations. We then validated our results 

by performing luciferase assays and MPRAs. In total, we assayed 25 variants as a 300 bp long 

enhancer by luciferase assay upstream of a minimal promoter, 6 variants as a 150 bp long promoter 

by luciferase assay, and 118 variants by MPRA as a 150 bp long enhancer upstream of the EF1a 

promoter. The CDC20 promoter variants, G528A, G529A, and GG528AA, were assayed across 

all three experiments. The results obtained from the luciferase assays were most similar except for 

the G529A variant which showed no change relative to WT. However, the MPRA results were 

discordant (Supplemental Figure 3). We concluded that the MPRA was faulty for three technical 

reasons: (1) the presence of the strong promoter, EF1a, likely overpowered the signal driven by 

the variant, (2) many of the variants were in promoters and thus were incorrectly assessed as an 

enhancer in this assay, and (3) we used an insufficient number of barcodes per variant to reliably 

determine statistical significance. While these technical limitations led to the inability to use the 

MPRA for a peer-reviewed publication, we were still able to use our MPRA to provide a 



 43 

preliminary assessment of our pipeline. Overall, our hotspot scores correlated with our selection 

criteria and MPRA activity (Figure 5). Future work will go into validating more variants and 

improving our pipeline based on these results. 

Many of the variants included in our assays were adjacent to one another, meaning one 

sample would have a variant at position n, another at n + 1, and in some cases both at n + 1. We 

expected these variants to have similar results in the reporter assay as they targeted almost the 

exact same nucleotide. However, we noted vastly different results for some of the hotspots 

(Supplemental Figure 4). This suggests a more complicated mechanism of altered transcription 

factor binding than a simple gain or loss.  

  Overall, we were most interested in three hotspots upstream of SOX9, in an ANGPT1 

intron, and in the promoter of CDC20.The SOX9 hotspot is located ~2 kb away, is present in 8 

donors, and leads to a decrease in reporter activity. In support of this, SOX9 has been to shown to 

repress SOX10 activity and delay onset of melanoma128 (discussed further in Chapter 4). The 

ANGPT1 intronic hotspot is located > 5 kb from the TSS, is present in 9 donors, and has been 

shown to support angiogenesis in breast cancer129. 

The remainder of this thesis will focus on CDC20 and a hotspot located in the promoter. 

At least half of the CDC20 promoter variants tested decreased reporter activity across all cell lines 

in this study. Four variants were within 2 bp of a core ETS motif but did not affect reporter activity 

to similar extents. G525A, located in the core GGAA ETS motif, reduced expression in every cell 

line tested, including non-melanoma cell lines such as HEK 293FT and primary melanocytes, 

suggesting its key location in a transcription factor binding site (Figure 6). Interestingly, this 

variant is only present in 4 donors, despite being at the position in the ETS motif most mutated 

across all significant hotspots, as opposed to G528A and G529A which led to a x-fold and y-fold 
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decrease (Figure 6). Most surprising was the double substitution, GG528AA, that had a less 

deleterious effect than G528A, and resembled G529A, suggesting a partial rescue of the 

transcription factor binding site. Overall, we see clear cell-type specific effects that does not seem 

to depend on the cell state (i.e. neural crest-like, undifferentiated, melanocytic, or transitory) but 

more likely on the expression levels of multiple transcription factors and their interactors, 

discussed more thoroughly in Chapter 3. 

Future directions of the work performed in this chapter will aim to improve the 

bioinformatic pipeline through large-scale assessment of variants. Through the use of larger 

MPRAs and convolutional neural networks, we can learn sequence features that predict effect on 

reporter activity. Another limitation of this work is the assessment of the exogenous effect of the 

variant. To more accurately validate each variant, we can transduce pools of pegRNAs that, 

through prime editing, can introduce the actual variant to its endogenous location. However, this 

requires high efficiency, which is currently low for prime editing, single-cell RNA-sequencing, 

and single-cell genotyping.  

2.6 Conclusions 
 CRVs in cancer genomes are emerging as a significant contribution to cancer onset and 

progression. Like protein-coding mutations, the challenge of identifying CRVs requires predicting 

the impact of the non-coding variant and then assessing how its impact contributes to 

tumorigenesis. However, unlike protein-coding mutations, the non-coding genome lacks the 

characterization of the amino acid code, making prediction, and therefore, prioritization difficult. 

We have developed a pipeline to confront these challenges. We use published datasets that assess 

accessibility and DNA binding specifically in melanoma and melanocyte samples to define regions 

of regulatory activity. We search for mutational hotspots, score them for recurrence and predicted 
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impact, and calculate statistical significance by generating an empirical null distribution of 

hotspots that are not predicted regulatory regions but still harbor many variants. Our pipeline 

identified hundreds of statistically significant hotspots, including the well-known TERT promoter, 

which has the 13th highest score. 170 variants were assayed either by luciferase assay or MPRA 

and 35 altered reporter activity significantly in at least one melanoma cell line. Variants in the 

CDC20 promoter region were validated by two separate rounds of luciferase assays and an MPRA. 

CDC20 stood out both in its up-regulation between early and later stages of melanoma and its 

association with overall worse survival.  

2.7 Declarations 
Ethics Approval and Consent to Participate 

Not applicable. 

Consent for Publication 

Not applicable 

Availability of Data and Materials 

All raw and processed sequencing data generated in this study have been submitted to the NCBI 

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession number 

GSE206639. Scrips for data visualization and the bioinformatic pipeline can be made available 

upon request. 

Competing Interests 

The authors have no competing interests. 

2.8 Funding 
This research was supported by the Melanoma Research Alliance Young Investigator Award 

#566840. P.G. was supported by NSF DGE-1745038.   



 46 

2.9 Author Contributions 
P.M.G. and C.K. conceived of the project. P.M.G. designed the bioinformatic pipeline. P.M.G. 

and A.Z. did the preliminary luciferase assay. P.M.G. designed and made the MPRA and 

performed all other validation experiments. P.M.G. and C.K. wrote the manuscript. 

2.10 Acknowledgments 
 We thank members of the Kaufman laboratories for assistance, and my thesis committee  

and Ryan Friedman (Washington University) for helpful discussions. 

2.11 Figures 



 47 

 

 



 48 

Figure 1. A method to identify putative functional non-coding variants in human melanoma. 

(A) Summary of pipeline to identify hotspots (A) with a generalized schematic of three theoretical 

hotspots (A’).  Blue boxes indicate regions within putative Melanoma Regulatory Regions 

(pMRRs), and red box indicates null regions (i.e. those outside predicted regulatory regions). 

Numbered rectangles represent hotspots. Dot plots represent the number of variants within a given 

position. Donor score is equal to the square of the number of donors divided by the number of 

mutated positions, and FunSeq2 score is a weighting factor with higher values indicating higher 

conservation within regulatory regions and/or TF binding site motif altering. (B) Kernel density 

estimate of hotspot scores in pMRRs (blue) and not in pMRRs/in null regions (red). Hotspots with 

log10 scores lower than 1 are not shown. Dashed line depicts hotspot scores with a p-value = 1 x 

10-6 , lower p-values are to the right (C) Boxplots showing the log10-transformed Donor, FunSeq2, 

and Hotspot (Donor x FunSeq2) for the Top 10,000 highest-scoring hotspots. (D) Bar chart 

demonstrating the frequency of genomic annotations for Top 10,000 null hotspots (red bars) and 

statistically significant hotspots (707 hotspots, FDR-adjusted p-value < 0.05, blue bars). (E) Bar 

chart of the total number of mutations in significant hotspots (707 hotspots) at each site within 4 

bp of the core ETS motif, GGAA (top, represents 5,561 mutations out of a total of 8,514 

mutations), and WebLogo of 11 bp WT sequence (bottom).  
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Figure 2. Validation of manually curated hotspots from preliminary analysis. 
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Heatmap depicting log2 fold-changes of variant reporter activity compared to WT reporter 

activity. Each row depicts a unique variant with the following notation: the variant-associated 

gene (by proximity) and the variant annotation (WT allele, the last 3 numbers of the nucleotide 

position, and the mutant allele). Stars depict statistical significance in one (*), two (**), or three 

(***) cell lines. 

 

Figure 3. MPRA Tag Counts are correlated within biological replicates and within cell 

type. 

Heatmap depicting Pearson correlation coefficient of tag counts (RNA/DNA) between each 

sample. Samples are clustered based on Euclidean distance and demonstrate highest correlation 
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within biological replicates, higher correlation within melanoma cell lines, and lowest correlation 

across sample types (i.e. between melanoma cell lines and HEK-293FT and primary 

melanocytes). Correlations between primary melanocyte replicates were low, suggesting low 

transfection efficiencies and were therefore discarded from the subsequent analyses. 

 

Figure 4. Functional analysis of 118 variants in statistically significant hotspots by 

massively parallel reporter assay. 

Volcano plots of MPRA results from five different cell lines: A375 (BRAF mutant, neural crest-

like), HEK-293FT (human embryonic kidney cells), RPMI-7951 (BRAF mutant, 

undifferentiated), SK-MEL-5 (BRAF mutant, melanocytic), UACC-62 (BRAF mutant, 

melanocytic/transitory). Black points are significant (FDR-adjusted p-value ≤ 0.05). Negative 

controls are depicted as large transparent red circles and are variants within hotspots that were 
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not statistically significant. Variants in the promoter of CDC20 and SLC30A6 are highlighted, as 

variants within these hotspots were significant in the majority of cell lines. 

 

Figure 5. Validation of bioinformatic pipeline and variant selection criteria. 

Variants to be validated by MPRA were selected on three criteria: (1) statistical significance, (2) 

presence in secondary cohort, and (3) detected in a total of 4 samples. Boxplots depict 
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distribution of log10 Hotspot Scores for top 1000 hotspots (grey), hotspots with a q-value = 0 

(Top 140 hotspots, dark grey), hotspots containing variants detected in secondary cohorts (light 

pink), and hotspot scores of variants with statistically significant tag counts in the MPRA (dark 

pink). 
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Figure 6. Functional analysis of recurrent CDC20 promoter variants. 
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(A) The CDC20 promoter hotspot. All variants within the hotspot are denoted by name, # of 

donors with given mutation, FunSeq2 score, and GERP score. Co-occurring GG528AA double 

mutant is depicted above. Variants with colored text were validated by luciferase assay. (B) 

Altered CDC20 promoter activity for variants as assayed by luciferase reporter assays in 

melanoma (A375, SK-MEL-5, UACC-62, LOX-IMVI, RPMI-7951, SK-MEL-2, SK-MEL-28), 

primary melanocytes, and HEK 293FT cells. Boxplots depict normalized (to WT) luciferase 

assay results in these 3 different cell lines.  

2.12 Supplemental Figures 
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Supplemental Figure 1. Characterization of putative melanoma regulatory regions, 

hotspots, and associated genes. 

(A) Table of selected motifs identified by Homer analysis. First section shows results for all 

pMRRs, regardless of whether region harbors a hotspot. To showcase diversity of transcription 

factors, we chose high-ranking motifs from three distinct transcriptional families. Second section 

shows top 3 motifs for pMRRs harboring statistically significant hotspots (707 hotspots, FDR-

adjusted p-value < 0.05). Last two sections show top 3 motifs when input is a 20 bp sequence 

containing either the WT (top) or mutant (bottom) allele for all variants within statistically 

significant hotspots. (B) Log2 Fold-Change for Top 13 genes in ICGC-MELA, TCGA-SKCM, 

Kunz, and Baggiolini. Order in which samples are written represents numerator and denominator 

(e.g. if higher in metastatic, positive fold-change). (C) Kaplan-Meier curves representing over-all 

survival rates for high (red) and low (blue) expressing tumors for the three genes listed). Data 

and p-values obtained from cBioPortal using OQL.  
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Supplemental Figure 2. Motif impact of recurrent CDC20 promoter variants. 

(A) Table summarizing motifBreakR results. All transcription factors listed have strong and 

significant motif altering predictions. ETS transcription factors are colored in pink. (B) Heatmap 

of Pearson correlation values between TF (column) and samples with WT CDC20 promoters 

(top row) or mutant CDC20 promoters (bottom row.)   
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Supplemental Figure 3. Comparison of results obtained from luciferase assay and MPRA 

for the CDC20 promoter hotspot. 

Top boxplot represents MPRA tag counts (RNA/DNA) and bottom boxplot represents 

normalized luciferase activity (relative to renilla) for plasmids containing the WT promoter, 

G528A, G529A, and GG528AA variants. Stars depict statistical significance (FDR-adjusted p-

value < 0.05). 

2.13 Supplemental Tables 
Supplemental Table 1. List of datasets with peaks at CDC20 promoter hotspot. 

Full dataset available upon request. 

Accession Cell Line Experiment Type 
CDC20 

Promoter 
Hotspot 

GSM3144751 MM032 H3K27Ac ChIP-seq Yes 
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GSM1199827 Melanoma tumor tissue H3K4me3 ChIP-seq Yes 
GSM1199828 Melanoma tumor tissue H3K4me3 ChIP-seq Yes 
GSM1199830 Melanoma tumor tissue H3K4me3 ChIP-seq Yes 
GSM1199831 Melanoma tumor tissue H3K4me3 ChIP-seq Yes 
GSM1199832 Melanoma tumor tissue H3K4me3 ChIP-seq Yes 
GSM3544062 MEL270 BRG1 ChIP-seq Yes 
GSM1953837 CJM H3K27Ac ChIP-seq Yes 
GSM1953838 COLO679 H3K27Ac ChIP-seq Yes 
GSM1953839 LOX IMVI H3K27Ac ChIP-seq Yes 
GSM1953840 SKMEL2 H3K27Ac ChIP-seq Yes 
GSM1953841 SKMEL30 H3K27Ac ChIP-seq Yes 
GSM1953842 UACC257 H3K27Ac ChIP-seq Yes 
GSM831874 MelJuSo H3K4me3 ChIP-seq Yes 
GSM831875 MelJuSo doxorubicin H3K4me3 ChIP-seq Yes 
GSM831876 MelJuSo etoposide H3K4me3 ChIP-seq Yes 
GSM1024779 RPMI-7951 Dnase-Seq Yes 
GSM2178295 COLO829 CTCF ChIP-seq Yes 
GSM2178296 COLO829 CTCF ChIP-seq Yes 
GSM3664673 A375 DDX21 ChIP-seq Yes 
GSM1649543 neonatal foreskin TFAP2A ChIP-seq Yes 
GSE102813 SKMEL-239 ATAC-seq Yes 

GSM1665991 SKmel147 H2A.Z ChIP-seq Yes 
GSM1665993 SKmel147 H2A.Z GFP ChIP-seq Yes 
GSM1665994 SKmel147 H2A.Z GFP ChIP-seq Yes 
GSM2199948 A375 shGFP SMAD1/5/8 ChIP-seq Yes 

ENCFF862XVF SK-MEL-5 Dnase-Seq Yes 
ENCFF600JNF SK-MEL-5 Dnase-Seq Yes 

 

Supplemental Table 2. Test statistics and p-values of the top 13 hotspots. 

Full list of hotspots available upon request. 

 Donor Score 
FunSeq2 

Score 
Hotspot Score 

FDR-adjusted 

p-value 
Nearest Gene 

chr19:49990690-49990785 305.818182 2.05671532 628.980939 0 RPL13A (-73) 

chr4:152020699-152020704 162 3.04812981 493.79703 0 RPS3A (-23) 

chr19:17970680-17970687 196 2.07347159 406.400432 0 RPL18A (-1) 
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chr2:32390903-32390910 144 2.40809733 346.766015 0 SLC30A6 (-26) 

chr8:56987107-56987150 105.125 2.93709915 308.762549 0 RPS20 (-61) 

chr19:41769770-41769773 81 3.63082615 294.096918 0 HNRNPUL1 (-464) 

chr1:153963167-153963241 126.5625 2.30430317 291.638371 0 RPS27 (-31) 

chr1:43824513-43824549 152.1 1.76982066 269.189723 0 CDC20 (-153) 

chr5:179125762-179125764 81 3.21893461 260.733704 0 CANX (-144) 

chr22:30988168-30988213 122.5 2.10901816 258.354724 0 PES1 (-264) 

chr3:16306501-16306534 152.818182 1.66400039 254.289515 0 DPH3 (-39) 

chr5:149829293-149829346 75.5714286 3.23067364 244.146622 0 RPS14 (-10) 

chr5:1295204-1295255 220.9 1.06309171 234.836958 0 TERT (-68) 

 

Supplemental Table 3. List of manually-curated hotspots for preliminary analysis by 

luciferase assay. 

Each row represents a hotspot designated by the most likely gene target. Subsequent information 

includes gene function, # of donors with mutations in ICGC dataset and Berger dataset, # of donors 

with significant ASE, gene expression pattern, and Brown’s q-value. 
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Supplemental Table 4. List of primers. 

Pertains to entire dissertation. 

Primer Name Primer Sequence (5’ – 3’) 

CDC20_genomicDNA_F CCCCTCTCGTACCCTTCAA 

CDC20_genomicDNA_R GCTTTAACACGCCTGGCTTA 

pGL3-CDC20_F TGACTGGAGCTCCTCGTACCCTTCAAATCGCG 
pGL3-CDC20_R CAGTCACTCGAGGCTCCGAGCGCCTATTGG 

WT_to_G525A_Q5_F ACTTTCCCCGaAAGGCCCGCC 
WT_to_G525A_Q5_R CTCAGCTATCACGAGAGTCTAGCG 
WT_to_G520A_Q5_F CTGAGACTTTtCCCGGAAGGC 
WT_to_G520A_Q5_R CTATCACGAGAGTCTAGCG 
WT_to_G537A_Q5_F AGGCCCGCCCtCTTCGCCGGA 
WT_to_G537A_Q5_R TCCGGGGAAAGTCTCAGCTATCACGAGAGTCTAGC 

XCC825c.h.CDC20.sp2 GGCGAAGGGGGCGGGCCTTCNGG 
XCC825c.h.CDC20.sp4 CGAAGGGGGCGGGCCTTCCGNGG 
XCC825c.hCDC20.DS.F ttctgcaccgagttctgcat 

XCC825c.h.CDC20.R acgcctcttaaactctccgc 
MPRA_Oligo_F GTAGCGTCTGTCCGT 
MPRA_Oligo_R CTGTAGTAGTAGTTGGTCGAC 

MiSeq_MPRA_Step2_Barcode_F ACTGGAGTTCAGACGTGTGCTCTTCCGATCTgaggctgaagctga
aggac 

MiSeq_MPRA_Step2_Barcode_R TCTTTCCCTACACGACGCTCTTCCGATCTgatcagttatctagatccg
g 

MPRA_pEF1a_mCh_6bp_ext_F AGCCATCGATCGgagtaattcatacaaaaggactcg 
MPRA_pEF1a_mCh_6bp_ext_R CCTGTCGACGTCctacttgtacagctcgtccat 
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Chapter 3: Towards understanding the role 

of CDC20 in melanoma 
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Preface 

This chapter has been reproduced and adapted from the following preprint: 

Godoy, P. M., Zarov, A. P. & Kaufman, C. K. Functional analysis of recurrent non-coding 

variants in human melanoma. Biorxiv 2022.06.30.498319 (2022) 

doi:10.1101/2022.06.30.498319.  
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3.1 Abstract 
One of the most intriguing hotspots identified in Chapter 2 is upstream of the CDC20 

promoter. CDC20 is up-regulated in many melanomas and is associated with overall worse 

survival. Unexpectedly, characterization of the variants in nine cell lines, including primary 

melanocytes, suggests that variants, which are present in 27% of cutaneous melanomas, decrease 

reporter activity. We went further to genome engineer a small indel in a human melanoma cell line 

and show decreased CDC20 expression levels. Additionally, most CDC20 variants are present in 

primary melanomas and lymph node metastases, which is often the first site of regional metastatic 

disease but are not as widely detected in distant metastatic tumors. Guided by the recently 

identified MITF-rheostat model, where high levels of MITF are associated with 

proliferative/melanocytic phenotype and low levels represent a more invasive state, we explored 

both CDC20-high and CDC20-low phenotypes using five RNA-sequencing melanoma cohorts, 

including our genome-engineered cell lines. We hypothesized that CDC20-high levels would be 

favored in later stages of melanoma, based on our results and previous work, and that CDC20-low 

would be favored in melanoma initiation. As expected, the CDC20-high phenotypes were 

ubiquitously enriched for pro-metastatic gene signatures. This was confirmed by migration assays 

on our WT and CDC20 promoter indel lines where we observed decreased migration capabilities 

in our mutant strains compared to WT. Most of the CDC20-low samples across the 5 cohorts were 

enriched for aneuploidy gene signatures, and interestingly, upregulation of certain key neural crest 

transcription factors, associating low levels of CDC20 with a more de-differentiated state. 

3.2 Introduction 
 CDC20 is a highly conserved and essential regulator of the cell cycle. Deletion of CDC20 

leads to arrest at metaphase in 2-day old embryos in mice130. It is a catalytic co-activator of the 
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Anaphase Promoting Complex/Cyclosome (APC/C) which is a large multi-subunit E3 ubiquitin 

ligase. CDC20 contains many degrons (i.e. protein ‘motifs’ that recognize and target substrates for 

degradation) for proteins including Cyclin B1 and Securin131. Degradation of Cyclin B leads to the 

inactivation of mitotic cyclin-dependent kinases and degradation of securin leads to activation of 

separase, causing separation of sister chromatids. The combined effect of the two mark the 

beginning of anaphase and end of mitosis132. The spindle assembly complex (SAC) binds to 

CDC20 and MAD2 (forming the mitotic checkpoint complex, MCC) at the kinetochore to inhibit 

APC-CDC20 until all sister chromatids are attached to the kinetochore133. Cyclin-dependent 

kinases also phosphorylate CDC20 which reduces the binding efficiency with APC/C, therefore 

preventing APC/C-CDC20 formation and G2-to-M transition134. This is an imperative function as 

the inability to inhibit APC-CDC20 leads to rapid tumorigenesis in mice135.  

 CDC20 has also been implicated in functions outside of the SAC and MCC, including the 

mediation of chromatin loop formation through ubiquitylation of hnRNPU136, maintaining 

stemness in human primary keratinocytes and human embryonic stem cells137,138, attenuating 

cardiac hypertrophy139, maintenance of the primary cilia140, and regulating dendrite morphogenesis 

in neurons141,142.  

 Expression of CDC20 is prognostic in many cancers131. High levels of CDC20 are 

associated with aggressive tumors in multiple cancer types and increased infiltration of immune 

cells and cancer-associated fibroblasts143–145. APC/C-CDC20 regulates SOX2 to enhance tumor 

migration and invasion in human glioblastoma146. One recent reporter identified germline 

mutations in CDC20 that accelerated tumor onset in conjunction with Myc overexpression and 

mitotic slippage147. Another paper identified another germline missense mutation that led to 

premature aging and cancer, likely due to an increase in the number of aneuploid cells148. siRNA-
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mediated knockdown in multiple epithelial cell lines led to increased chromosomal instability and 

better survival in low pH culture conditions, a proxy for tumor-like conditions due to the Warburg 

effect149.   

 Overall, CDC20 plays important and essential roles in diverse functions in cell biology. 

Support for CDC20 as an oncogene in more advanced tumors is emerging. However, because the 

CDC20 promoter mutations decrease reporter activity in many of the cell lines we assayed, we 

hypothesize that in certain contexts decreased expression of CDC20 could favor tumor formation. 

In this Chapter, we explore this hypothesis by investigating the epigenetics of the CDC20 

promoter, the clonality and evolutionary history of the CDC20 promoter hotspots, and changes in 

cancer phenotypes upon genome engineering of an indel at the CDC20 promoter in a human 

melanoma cell line. 

3.3 Materials and Methods 
Correlation between TFs and CDC20  

The ICGC RNA-sequencing cohort consists of 56 samples from 46 donors. 13 samples 

(from 10 donors) contained a variant in the CDC20 promoter. The remaining 43 samples were WT 

samples. We downloaded a list of all transcription factors from http://humantfs.ccbr.utoronto.ca. 

We calculated the Pearson correlation between CDC20 and every TF in either the samples with 

WT or mutant CDC20 promoter variants. We selected those that had correlations between the TF 

and the WT CDC20 promoter samples greater than 0.5 and less than 0.2 for those between the TF 

and mutant CDC20 promoter samples.  

 Calculation of Variant Allele Frequencies  

Mutation calls for SNVs and indels from the MELA-AU cohort were downloaded from 

dcc.icgc.org after receiving DACO approval. We calculated variant allele frequencies by dividing 
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the number of reads containing the variant divided by the total counts for each specimen. We then 

stratified specimens by tumor subtype (primary melanoma, lymph node metastasis, distant 

metastasis). VAFs from recurrent tumors or from cell lines derived from tumors were not 

considered. When plotting VAFs, the CDC20 promoter variants and the BRAFV600E variants were 

plotted separately. Variant allele frequencies for NRASQ61K and NRASQ61R and for TERT G228A 

and G250A were combined into one boxplot each.  

 Kunz RNA-sequencing analysis  

We downloaded DESeq2-normalized read counts from GSE112509 for the Kunz cohort117. 

We classified each sample as CDC20-low, medium, or high based on CDC20 expression. Samples 

with less than the 25th percentile of CDC20 expression were classified as low, while samples with 

greater than the 75th percentile of CDC20 expression were classified as high. All other samples are 

classified as having medium CDC20 expression.   

We performed gene set enrichment analysis (GSEA) on the 20 CDC20-low and 20 CDC20-

high samples using all gene sets in MSigDB (https://www.gsea-msigdb.org) that contained the 

keyword “melanoma”. We used the following parameters: 1000 permutations, the phenotypes 

were always set as low versus high (ergo enrichment scores are positive for CDC20-low, negative 

for CDC20-high), and permutations were performed on the gene set.  

We manually curated a list of 20 neural crest transcription factors from two previously 

published sources31,150. DESeq2-normalized read counts for these genes were used to construct the 

heatmap. Counts across every gene were scaled by setting the parameter “scale” to “row” in the 

heatmap plotting function pheatmap. Genes and samples were clustered using Euclidean distance.  

 Genome Engineering of A375  



 70 

A375 cells were nucleofected on a Lonza 4D nucleofector according to manufacturer 

recommendations (P3 solution, nucleofection program EH-100). Each nucleofection was 

performed with 1 x 105 cells, 0.75 µL Cas9 Protein at 10 µg/µL (IDT v3 Cas9 protein, glycerol-

free, # 10007806), and 0.75 µL of each sgRNA at 100uM (IDT) suspended in IDT Duplex Buffer 

(IDT, # 11-05-01-03) (Supplemental Table 5). Sham-nucleofections for WT A375 Cas9 controls 

were nucleofected with an equal volume of blank PBS. After nucleofection, cells were seeded into 

500 µL of DMEM complete in a 24-well plate at standard incubator conditions.  

72 hours post-nucleofection, cells were harvested, and split into 6-well culture for 

expansion and into lysis buffer for DNA extraction (homemade by GESC, formulation identical 

to Lucigen Quick-Extract buffer). PCRs were performed with Platinum Superfi II 2x master mix 

(Thermofisher, #12368010) and primers against the sgRNAs target site (Chapter 2, Supplemental 

Table 4). PCR products were sequenced by NGS using Illumina.  

After confirmation of cutting activity at, the pools were single-cell sorted using a Sony 

SH800 cell sorter at 1 cell per well into 4 x 96-well plates with 100uL of DMEM, with 50% 

conditioned media, 5 µM Rock Inhibitor, and 100 µM sodium pyruvate. Plates were allowed to 

grow for ~10 days, then clones were harvested and re-screened using PCR primers against the 

targeted locus (Supplemental Table 5). Homozygous knockout clones were identified based on the 

presence of deletion junction and absence of the target locus. WT A375 Cas9 controls were 

sequenced at all gRNA target sites to confirm wild-type genotype. Homozygous knockout clones 

and wild-type Cas9 control clones were expanded, checked by STR profiling, tested for 

mycoplasma contamination, and used for subsequent experiments.  

 Cell Viability Assay of A375 CDC20 Promoter Knock-outs and Controls  
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For each strain (A3, A10, and the wild-type Cas9 control), we seeded 1500 cells per well 

in a clear-bottom 96-well plate (Corning, #3903) in DMEM media containing 10% fetal bovine 

serum and 1X Pennicilin/Streptavidin (DMEM complete), DMEM complete with 30 nM 

dabrafenib (Selleck Chemicals, S2807), or DMEM complete with 1% DMSO. To measure 

viability, we used CellTiterGlo (Promega, G7570) as per the manufacturer’s protocol. Plates were 

read on a GloMax 96 Microplate Luminometer (Promega) using the standard CellTiterGlo 

program.  

 Cell Migration Assay of A375 CDC20 Promoter Knock-outs and Controls  

Scratch assays were performed by seeding 1 million cells per well in a 6-well plate in 

DMEM complete media. Using a P200 pipette, we scratched the plate at indicated positions. Cells 

were washed with 1X PBS and imaged on a Nikon Eclipse Ts2. Cells were then plated with DMEM 

media with 1% FBS and 1X Pen/Strep. On the following day, cells were washed with 1X PBS and 

imaged.  

RNA-sequencing of A375 CDC20 Promoter Knock-outs and Controls  

300,000 cells of the parental A375 (in duplicate), two WT CRISPR/Cas9 clones (one 

replicate each), A3 (in duplicate), and A10 (in duplicate) were seeded on a 6-well plate. On the 

following day, we isolated RNA using the Qiagen RNeasy Plus Mini Kit (Qiagen, 74134). Samples 

were submitted to the Genome Technology Access Center at the McDonnell Genome Institute at 

Washington University School of Medicine for library preparation and sequencing.  

Total RNA integrity was determined using Agilent Bioanalyzer or 4200 

Tapestation.  Library preparation was performed with 5 to 10ug of total RNA with a Bioanalyzer 

RIN score greater than 8.0. Ribosomal RNA was removed by poly-A selection using Oligo-dT 

beads (mRNA Direct kit, Life Technologies). mRNA was then fragmented in reverse transcriptase 
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buffer and heating to 94 degrees for 8 minutes. mRNA was reverse transcribed to yield cDNA 

using SuperScript III RT enzyme (Life Technologies, per manufacturer's instructions) and random 

hexamers. A second strand reaction was performed to yield ds-cDNA. cDNA was blunt ended, 

had an A base added to the 3' ends, and then had Illumina sequencing adapters ligated to the ends. 

Ligated fragments were then amplified for 12-15 cycles using primers incorporating unique dual 

index tags. Fragments were sequenced on an Illumina NovaSeq-6000 using paired end reads 

extending 150 bases. RNA-seq reads were then aligned and quantitated to the Ensembl release 101 

primary assembly with an Illumina DRAGEN Bio-IT on-premise server running version 3.9.3-8 

software.  

Read counts were normalized using DESeq2, comparing WT to mutant strains151. Principal 

component analysis was performed using the plotPCA function in the DESeq2 package. The 

heatmap was generated with pheatmap using z-score normalized counts of the manually curated 

list of 20 neural crest transcription factors with FDR-adjusted p-values < 0.1 (between WT and 

mutant samples).  

Gene set enrichment analysis was performed as previously described using the 25th and 75th 

quantile to establish CDC20-low and CDC20-high expression groups, respectively. To generate 

heatmaps of all 4 cohorts, we downloaded Kunz, TCGA, and ICGC RNA-sequencing datasets as 

previously described. For the Wouters cohort, we downloaded normalized counts from bulk RNA-

sequencing of 33 melanoma cultures77 (GSE134432). We calculated the mean across all samples 

classified as CDC20-low, medium, or high and plotted z-score normalized counts using the 

pheatmap function. Z-scores were calculated by scaling across rows, or genes.  

 Karyotyping of A375 CDC20 Promoter Knock-outs and Controls  
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Karyotyping and analysis was performed at the Cytogenetics and Molecular Pathology 

Laboratory at Washington University School of Medicine. The cytogenetic test/ karyotype analysis 

was performed to assess aneuploidy (gains and losses of whole chromosomes), structural changes 

(chromosomal translocations, inversions, segmental deletions and duplications). This assay 

involves growing of cells in appropriate culture medium, hypotonic treatment, fixing cells, staining 

cells with GTG banding and microscopic examination. Twenty cells are counted for enumerating 

the number of chromosomes in a metaphase spread. Three of these metaphase spreads are digitally 

processed to produce a detailed karyotype/karyogram to perform a detailed study (analysis) for 

variant counts and structural aberrations. Analyzing a metaphase is defined by band-by-band 

comparison between chromosome pairs.  

3.4 Results 

3.4.1 Motif analysis of the CDC20 promoter variants 
We used motifBreakR to identify possible transcription factor binding motifs that are 

destroyed by the presence of the CDC20 promoter variants. As expected, the four variants closest 

to the core ETS motif are predicted to break sites for various ETS transcription factors, with 

G525A showing the largest reduction in ETS motifs of any variant (Supplemental Figure 1A).  

We leveraged the RNA-sequencing data from a subset of the ICGC-MELA cohort to better predict 

the transcription factor (TF) that may have dysregulated binding in the mutated CDC20 promoter 

samples. We reason that if TFi binds to the CDC20 promoter at the core ETS motif that is disrupted 

by G525A, G528A, G529A, and GG528AA, CDC20 expression will correlate with TFi expression 

in WT samples but not in samples with the disrupted core ETS motif. Therefore, we calculated the 

Pearson correlation between every TF48 and CDC20 in both WT and mutated samples. We 

identified 8 TFs that had high correlation of their expression (Pearson Correlation > 0.5) with 
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CDC20 expression in WT samples but low correlation in mutated samples (Supplemental Figure 

1B). These include E2F1 and E2F2, which are known to regulate genes involved in cell cycle 

progression152 and, interestingly, the ETS family TF ELK1.  

3.4.2 CDC20-associated variants appear to be present as early clonal events 

but drop-out in distant metastatic melanomas  
We next sought to understand the degree of clonality of the CDC20 promoter variants in 

sequenced tumors. Variant allele frequencies (VAF) can indicate how clonal a variant is by 

associating higher VAF with earlier appearance of the variant153. We compared the CDC20 

promoter VAFs to those of the BRAFV600E, NRASQ61K/R, and TERT G228A and G250A variants 

since these have all been reported to occur early154 (Figure 1A, Supplemental Figure 1B). In 

primary tumors, the BRAF, NRAS, and TERT variants are detected at median frequencies around 

0.30, 0.32, and 0.41, respectively (Figure 1A). The median VAFs for the two most common 

CDC20 promoter variants G528A (0.34) and G529A (0.33) are only slightly lower than TERT and 

slightly higher than BRAF and NRAS, suggesting G528A and G529A mutations as early occurring 

events in melanomagenesis.   

Since CDC20 promoter variants led to a decrease in reporter activity and CDC20 has been 

shown to be essential for migration in melanoma mouse models155, we hypothesized that promoter 

variants might decrease or disappear in later metastases. The G528A variant is detected mostly in 

lymph node metastases, often the first site of metastasis (n=6/11) and primary tumors (n=4/11). 

Only one distant metastatic sample out of a total of 51 had the G528A variant (Supplemental Figure 

1C). Unlike G528A, G529A is detected across all stages and at median variant allele frequencies 

like those seen in earlier stages (Supplemental Figure 1B).  Interestingly in A375 melanoma cells, 

G529A decreases reporter activity less than G528A, consistent with a model in which G529A, 
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which is less deleterious to CDC20 expression, does not seem to drop out in distant metastases 

like G528A, which lowers reporter expression more and, in agreement with published work155, 

thus would be disfavored in later metastases (Figure 1B).  

3.4.3 Distinct transcriptional programs emerge in nevi and melanoma in a 

CDC20 dosage-associated manner  
To begin to pry into the differences between a CDC20-low and CDC20-high phenotype 

and how these differences may drive or support cancer progression at different stages of 

melanoma, especially those representative of the earliest states of melanoma, we utilized the Kunz 

cohort of 23 nevi and 57 primary melanomas that were RNA-sequenced117. We stratified all 

samples by CDC20 expression with CDC20-high and CDC20-low classifications based on the 75th 

and 25th percentile of CDC20 expression, respectively. Remaining samples were classified as 

medium expression (Figure 1B).   

We performed gene set enrichment analysis (GSEA) on CDC20-low and CDC20-high 

samples. As expected, based on prior studies, genes in the CDC20-high samples are enriched for 

gene sets associated with metastasis155 (Figure 1C, Supplemental Table 1). CDC20-low samples 

have an enrichment of genes expressed in uveal melanomas with high aneuploidy156 (Figure 1D, 

Supplemental Table 1). This is in line with previous work that have shown increased aneuploidy 

in models with knockdown or mutated CDC20135,149,157.   

We next sought to understand whether CDC20-low samples were enriched for key neural 

crest TFs, some of which (e.g. SOX10) are known to play important roles in melanoma 

initiation47,48,158. Hierarchical clustering using 20 neural crest TFs clustered samples into 3 major 

groups: samples with mostly low CDC20 (Group C, median log2 expression = 6.7), samples with 

mostly high CDC20 (Group B, median log2 expression = 9.4), and samples with medium CDC20 



 76 

expression (Group A, median log2 expression = 9.0, Figure 1E). This indicates differences in 

expression of these neural crest transcription factors is associated with CDC20 expression. 

Surprisingly, CDC20-low samples cluster more closely with CDC20-high than CDC20-medium, 

despite having a larger difference in CDC20 expression (Figure 3E).   

Group C is made up of 13 nevi and 7 melanomas, 16 of which are classified as CDC20-

low and four as CDC20-medium. This sample group has relatively high expression of genes 

prevalent in premigratory neural crest cells (ETS1, SOX5, SOX9, and TFAP2B) and melanocyte 

lineage specifiers (SOX10 and MITF)31. Group A contains 6 nevi and 14 melanomas, 1 of which 

is classified as CDC20-low, 2 as CDC20-high, and 17 as CDC20-medium.  This group has 

relatively high expression of MYB and TFAP2B which are prevalent in premigratory neural crest, 

MSX1 (neural plate border), and MAFB, which is required for migrating cardiac neural crest 

cells159. Group B contains 32 melanomas and 4 nevi, 2 of which are classified as CDC20-low, 15 

as CDC20-high, and 19 as medium. This group did not have relatively high expression across the 

group of any specific subset of transcription factors as seen with Group A and Group C. However, 

several isolated samples had relatively high expression of SOX10, TEAD2, and RXRG, as in Group 

C, and relatively high expression of TFAP2A, MSX2, and HES4, as in Group A. Notably, many of 

the neural crest transcription factors that are relatively higher in Group C are also known 

oncogenes in melanoma, particularly SOX10, MITF55, ETS1160, and MYC161.  

3.4.4. Genome-engineered CDC20 promoter mutants have altered phenotypes 

and transcriptional profiles  
Thus far, we have identified variants prevalent in the CDC20 promoter in melanoma 

tumors that by luciferase reporter assay reduce transcriptional activity and see distinct profiles of 

neural crest transcription factors in naturally occurring human melanoma tumors and nevi 
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associated with high, medium, and low levels of CDC20. To determine the effect of CDC20 

promoter mutations on key cancer phenotypes and gene expression programs, we generated two 

CRISPR/Cas9-engineered A375 melanoma cell lines termed A3 and A10 (Figure 2A). The A3 line 

contains an indel on both alleles, both of which have the G528 and G529 nucleotides deleted. One 

allele retains the core GGAA motif while the other does not. The A10 line contains a larger deletion 

that completely removes the G525, G528, and G529 mutations, as well as the core ETS motif in 

both alleles (Figure 2A).  

Both mutations decrease CDC20 expression by 2.0-fold on average as detected by RNA-

sequencing (FDR-adjusted p-value = 1.8 x 10-40, Figure 2B). The A3 strain has slightly lower 

CDC20 expression than A10 despite having a smaller deletion and the retention of one core ETS 

motif (Figure 2B). Principal component analysis shows a separation along PC1 between the WT 

parental A375 line (high CDC20), the WT Cas9 control A375 line (high CDC20), and the mutant 

A3 and A10 line (low CDC20, Figure 2C).  

Because CDC20 is an essential component of the cell cycle, we wondered if decreased 

CDC20 levels would lead to decreases in cell viability. We assayed viability in the presence of 

media containing serum, media containing serum and DMSO, and media containing serum and 30 

nM dabrafenib (MAPKi) daily over the span of 6 days (Supplemental Figure 3A). A10 grows 

slightly slower than A375 and A3, despite having slightly higher levels of CDC20 than A3 

(Supplemental Figure 3A). No change in growth rates between A3 and A375 were observed 

(Supplemental Figure 3A).  

We performed GSEA on the A375 WT and CDC20 promoter indel lines A3 and A10 using 

the same gene sets as above (Figure 1C and Figure 1D). There is significant enrichment of genes 

upregulated in WT vs CDC20 promoter indel cells for genes in the Winnepenninckx Melanoma 
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Metastasis gene set162 (Figure 2D). While not statistically significant, we did see slight enrichment 

of genes upregulated in the mutant A375 line in the Ehlers aneuploidy gene set156 (Supplemental 

Table 1). To determine whether these gene sets are enriched in other melanoma cohorts, we 

performed GSEA on three other cohorts that underwent RNA-seq using the same CDC20 

stratification as before (Supplemental Table 1). All cohorts with high CDC20 expression have 

statistically significant enrichment of genes associated with metastasis gene sets, while all CDC20-

low cohorts except for TCGA-low have enrichment of genes in gene sets associated with low 

metastasis (Supplemental Table 1). The Kunz-low, TCGA-low, and Wouters-low samples have 

enrichment of genes in the Ehlers’ Aneuploidy gene set (Supplemental Table 1). Together these 

analyses show association of CDC20-high states with metastasis and CDC20-low states with 

aneuploidy across multiple cohorts.  

To see whether our A375 promoter indel lines have altered migration capabilities as 

suggested by the results of GSEA and the literature, we performed a scratch assay and observed 

decreased migration capabilities suggesting that, at least in this context, reduced levels of CDC20 

affect migration more so than viability (Figure 2E). Because we see enrichment of an aneuploidy 

gene set in CDC20-low samples, we checked the A375 mutant lines for increased aneuploidy but 

did not observe any in a karyotyping analysis (Supplemental Figure 3B).  

Finally, we performed hierarchical clustering using the 9 differentially expressed (FDR-

adjusted p-value < 0.05) neural crest transcription factors from the 20 that were previously found 

to be correlated with differential CDC20 levels in naturally occurring nevi and melanomas (Figure 

2E). We observe similar patterns of neural crest transcription factor levels in high and low CDC20 

samples. SOX10, SOX5, RXRG, and TFAP2B are consistently high across the A375 mutant lines 
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and CDC20-low samples in the Kunz cohort. TFAP2A, TFAP2C, and FOXD1 were upregulated 

in WT A375 cells as well as in CDC20-medium or CDC20-high samples in the Kunz cohort.  

Because we observe a similar association between neural crest transcription factor 

expression and CDC20 expression between our CDC20 promoter indel cell lines and a cohort of 

nevi and melanoma, we looked for such patterns in the ICGC-MELA, TCGA-SKCM, and Wouters 

samples as well. We stratified all samples by CDC20 expression (low, medium, and high) and 

performed hierarchical clustering using the 20 neural crest transcription factors (Supplemental 

Figure 4A). We specifically looked at the 9 neural crest transcription factors that were 

differentially expressed between the CDC20 promoter indel and WT cell lines (Supplemental 

Figure 4B). FOXD1 and TFAP2C, which are upregulated in WT lines compared to mutant, are 

also relatively highly expressed in CDC20-high or CDC20-medium samples in 3 out of the 4 

cohorts.  TFAP2B, SOX5, RXRG, and MYC, which are upregulated in the CDC20 promoter indel 

cells, are upregulated in CDC20-low or CDC20-medium samples in most or all cohorts. TFAP2A, 

SOX10 and ETS1 were relatively highly expressed in multiple CDC20-expression groups. We also 

observed an up-regulation of genes in the melanocytic and neural crest subpopulations as identified 

by scRNA-seq of a melanoma tumor in the CDC20 promoter indel lines75. In conclusion, we 

observe a consistent trend across 5 cohorts between certain neural crest transcription factors and 

CDC20 expression, suggesting a phenotype switch from an “undifferentiated” state to a more 

“differentiated” state reminiscent of the melanocytic and neural crest-like subpopulations within a 

melanoma tumor. 

3.5 Discussion 
We have shown that seven of the most common variants in the CDC20 promoter reduce 

reporter activity in multiple melanoma cell lines, HEK 293FT, and in primary melanocytes. Most 
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of these variants are not detected in distant metastases, which in agreement with previous work, 

suggests that lower levels of CDC20 may be disfavored in later metastases155. Therefore, we 

propose a dosage-dependent role of CDC20 on melanoma onset and progression, in which low 

levels of CDC20 are important in early stages of melanoma but higher levels may be important for 

later stages of melanoma.  

Because we hypothesize that low CDC20 levels are critical in early stages of melanoma, 

we looked for co-expression of CDC20 with neural crest transcription factors, a state observed in 

the first malignant cells of melanoma. We show both in our genome engineered cells and in four 

other naturally occurring human melanoma cohorts that samples with low CDC20 can have 

relatively high expression of certain neural crest transcription factors, such as SOX10, RXRG, 

SOX5, TFAP2B, and MYC. Notably, SOX10 and MYC have already been established as 

oncogenes47,48,158. RXRG reportedly drives a neural crest stem cell state that is resistant to treatment 

in a subset of cells in melanoma minimal residual disease76. TFAP2B regulates the melanocyte 

stem cell lineage in adult zebrafish163, and SOX5 has been shown to inhibit MITF. Taken together, 

we hypothesize that low levels of CDC20 in melanocytic nevi may support a transcriptional 

program associated with a partially de-differentiated, neural-crest like state.  

Meanwhile, as CDC20 levels increase, we observe an increase in a different subset of 

neural crest transcription factors, including FOXD1, which is known to impair migration and 

invasion in melanoma models when knocked-down164. Therefore, as CDC20 levels increase, cells 

may gain migration capabilities. In conjunction, we did not detect some of the more deleterious 

CDC20 promoter variants (i.e. those leading to lower reporter expression) in distant metastases. 

Additionally, we found enrichment of metastatic gene signatures in the CDC20-high expressing 
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samples across all 5 melanoma cohorts (Supplemental Table 1) and observed loss of migratory 

capabilities in A3 and A10, the CDC20 promoter indel cell lines with lowered CDC20 levels.  

Like TERT, CDC20 performs a variety of canonical and non-canonical functions, many of 

which can be implicated in cancer formation131. Most crucial is its role in the cell cycle, where it 

interacts with the anaphase-promoting complex to degrade cyclin B and signal the end of 

metaphase and the start of anaphase. Complete knock-down of CDC20 is lethal but several studies 

have shown that partial knock-down or missense mutations that impair the ability of CDC20 to 

bind to other interacting proteins leads to aneuploidy, an important hallmark of cancer147–149,157. 

Although aneuploidy did not increase in the CDC20 promoter indel A375 cell lines, CDC20-low 

samples in 3/5 cohorts analyzed had enrichment of genes associated with increased aneuploidy 

(Supplemental Table 1). Additionally, we only observed a slight reduction in growth rates in one 

CDC20 promoter indel strain, A10, which has similar levels of CDC20 as the A3 strain despite a 

larger deletion in the CDC20 promoter, suggesting that at least in our model, a 2-fold reduction of 

CDC20 does not significantly alter cell growth rates.  

3.6 Conclusion 
The ever-expanding genomic data available for melanoma has been crucial in advancing 

our understanding of melanoma biology, but most of the largest datasets with publicly available 

clinical outcomes data (i.e. TCGA) overrepresent metastatic lesions, and even a subset of 

metastatic lesion types (i.e. lymph node metastases in TCGA). Thus, while CDC20 has been 

implicated as a cancer-driving gene with higher levels often associated with melanoma metastases 

and poorer survival, we posit that specific levels of CDC20 expression may be crucial to supporting 

or allowing passage of melanocytes through malignant transformation (CDC20 low) to locally 

invasive cancer and then on to metastatic disease (CDC20 high, Figure 2G). As in the case of 
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MITF, a rheostat model of CDC20 may exist, whereby higher levels of CDC20 drives metastasis 

and lower levels support a phenotype likely beneficial in earlier tumors43.   
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Figure 1. Changes in CDC20 expression levels correlate with specific gene expression 

programs. 

(A) Variant allele frequencies of the CDC20 promoter variants (each labelled), BRAFV600E (BRAF), 

NRASQ61K and NRASQ61R (NRAS), TERT G228A and G250A (TERT) that are detected in primary 

melanomas. C520T and C541T are not detected in primary melanomas and have no data points. 

There are no statistically significant differences between G528A, G529A and other variants. (B) 

CDC20 expression in CDC20-Low, CDC20-Medium, and CDC20-High nevus or melanoma 

samples from Kunz et al. Each data point represents the log2 DESeq2-normalized read count of 

CDC20. No nevi are classified as CDC20-high. (C and D) Gene set enrichment analysis of results 

for the Winnepenninckx Melanoma Metastasis Up gene set (C) and the Ehlers Aneuploidy Up 

gene set (D). Each point represents a gene, ranked by expression, at the current running-sum 

statistic. Negative scores indicate enrichment in CDC20-high samples (as seen in C). Positive 

scores indicate enrichment in CDC20-low samples (as seen D). (E) Heatmap depicting z-score 

normalized expression patterns of 20 key neural crest transcription factors. Samples and genes are 

hierarchically clustered with orange and blue indicating relatively higher and lower gene 

expression, respectively, across samples. All columns are annotated by CDC20 expression (top 

row of boxes, log2 DESeq2-normalized read count), CDC20 expression group (second row, for 

low, medium, or high), and sample type (nevus in orange or melanoma in dark brown).  
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Figure 2. Engineered indels at the recurrently mutated CDC20 promoter locus leads to 

decreased CDC20 expression and changes in melanoma behavior. 

(A) Sequence alignment of the CDC20 promoter between hg19, WT A375, A3, and A10. Arrows 

denoting positions of G525A, G528A, and G529A. The ETS core motif is boxed. The last 

nucleotide of the sequence is 37 bp upstream of the TSS of CDC20. Nucleotides are color-coded 

and dashes indicate deletions. (B) Plot depicting log2 transformed DESeq2-normalized read counts 

of CDC20 in WT A375 and CDC20 promoter indel strains, A3 and A10, with decreased CDC20 

expression. Each point represents CDC20 expression in one sample. (C) Principal component 

analysis of read counts normalized by regularized log transformation using the top 500 most 

variable genes. The horizontal axis, PC1, explains 58% of the variance associated across all 

samples and separates out WT from CDC20 promoter indel cell lines. The vertical axis, PC2, 

explains 28% of the variance and separated A3 from A10. (D) Gene set enrichment analysis of 

results for the Winnepenninckx Melanoma Metastasis Up gene set. Each point represents a gene, 

ranked by expression, at the current running-sum statistic. Negative scores indicate enrichment in 

WT A375 samples as compared to the engineered indel lines A3 and A10. (E) CDC20 indel lines 

A3 and A10 show decreased migration capabilities compared to WT A375 cell lines. Images of 

scratch migration assay from day 0 (immediately after scratch) and day 1 (24 hours post-scratch). 

(F) Heatmap depicting z-score normalized expression patterns of 9 differentially expressed neural 

crest transcription factors. Samples and genes are hierarchically clustered with orange and blue 

indicating relatively higher or lower expression, respectively, of genes across samples. All 

columns are annotated by CDC20 expression (log2 DESeq2-normalized read count), and sample 

type (WT or mutant). SOX5, TFAP2B, SOX10, MYC, and RXRG are expressed at relatively higher 

levels in the CDC20 promoter indel-containing A3 and A10 cell lines. FOXD1, ETS1, TFAP2C, 
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and TFAP2A are higher in WT (CDC20-high) A375 cell lines. (G) Model of CDC20 expression 

and neural crest transcription factor signature over melanoma onset and progression. CDC20 levels 

increase as melanoma progresses. Neural crest transcription factors that correlate with CDC20 

expression are more prevalent in migrating neural crest cells, whereas those that are relatively 

higher in CDC20-low settings are more prevalent in the melanocytic/pre-migratory neural crest 

states.  

3.12 Supplemental Figures 

 

Supplemental Figure 1. Motif impact of recurrent CDC20 promoter variants. 

(A) Table summarizing motifBreakR results. All transcription factors listed have strong and 

significant motif altering predictions. ETS transcription factors are colored in pink. (B) Heatmap 

A

B
E2F2 YBX1 MYBL2 E2F1 CHCHD3 ELK1 ZBTB18 MYBL1

í����������������

Correlation between CDC20 expression 
and TF Expression in Specimens with

Pearson’s R

SNP ID motifBreakR Results

*���$

&���7

*���$

*���$

C537T

&���7

*$,1��%$7)��,5)�

*$,1��67$7��67$7���67$7���67$7�$��67$7�%
LOSS: ELK1��37)�$
*$,1��%&/�%��67$7��67$7����67$7�$��67$7�%
LOSS: (/)���(/)���(/.���(/.���(/.���(76���(79���(79���*$%3$��1)(�/���15�&���5(/��7$)�
*$,1: FLI1��1)$7&���5(/$�
LOSS: (/)���(/)���(/.���(76���*$%3$��+)�+�%��1)(�/���63��
*$,1��5;5$
LOSS��+)�+�%��./)����63���63���=%7%�$��=1)�����=1)����

LOSS: HF1H3B 

*���$ *$,1: ELK1��)2;$���5(/��5(/$��63����

0XWDQW�&'&���3URPRWHU

:7�&'&���3URPRWHU



 89 

of Pearson correlation values between TF (column) and samples with WT CDC20 promoters (top 

row) or mutant CDC20 promoters (bottom row.)   

 

Supplemental Figure 2. Co-occurrence and clonality of recurrent CDC20 promoter 

variants. 

A) Mosaic plot of the number of donors with either BRAF and/or NRAS mutations and WT and/or 

mutant CDC20 promoter. (B) Variant allele frequencies of the CDC20 promoter variants (each 

labelled), BRAFV600E (BRAF), NRASQ61K and NRASQ61R (NRAS), TERT G228A and G250A 

(TERT) that are detected in lymph node metastases or distant metastases. (C) Each bar represents 

the number of specimens with the corresponding variant within the corresponding tumor subtype 

divided by the total number of specimens with the corresponding variant across all subtypes. 
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Absolute counts for each subtype are labeled within the bar. Total counts across all subtypes are 

labeled within the legend. The total number of samples at each stage that contain one of the 

specified mutations are in parentheses below the row label; the number that follows is equal to the 

total number of samples in that tumor stage.  

 

Supplemental Figure 3. Viability and aneuploidy of WT and CDC20 promoter indel cell 

lines. 

(A) Proliferation rates are slightly lower in A10 but unchanged in A3. Plot shows luminescence 

values obtained from CellTiterGlo normalized to the average WT luminescence for each day and 

for each specific condition. Each point represents the average of three replicates. Confidence 

intervals are calculated using a nonparametric bootstrap method. (B) Table showing the 

karyotype/nomenclature of WT A375, A3, and A10. Differences across cell lines are color-coded.  
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Supplemental Figure 4. Neural crest transcription factor signature across 5 RNA-

sequencing melanoma cohorts. 

(A) Heatmap depicting relative expression of 20 neural crest transcription factors using the average 

of all samples classified as CDC20-high, medium, or low. The median log2-normalized CDC20 

count is listed below each column of every heatmap. Orange indicates higher expression relative 

to other samples for the same gene. Genes in green are upregulated in WT A375 compared to 

CDC20 promoter indel cell lines. Genes in red are upregulated in CDC20 promoter indel cell lines. 

(B) Table summarizing whether a cohort has a relative gene level that matches or does not match 

the gene level seen in WT or CDC20 promoter indel cell lines. For a gene to agree, it needs to have 

relatively higher expression in the WT lines (green genes) or relatively higher expression in the 

CDC20 promoter indel lines (red genes). Cohorts that have an asterisk neither completely agree or 

disagree (e.g. relatively higher in CDC20-medium samples or relatively high in CDC20-low and 

CDC20-high, see SOX10 in TCGA).  
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Supplemental Figure 5. CDC20 promoter indels recapitulate major subpopulations 

identified in scRNA-seq of melanoma. 

Heatmap of genes expressed in melanocytic, neural crest-like, transitory, and undifferentiated 

subpopulations within a melanoma tumor that underwent single-cell RNA-sequencing. Samples 

and genes are clustered by Euclidean distance. WT and Mutant CDC20 Promoter lines cluster 

accordingly. Row annotations are colored based on the presence of the gene within a specific 

subtype. Gene annotations provided as a supplemental file from Tsoi et al. (2018). 

3.13 Supplemental Tables 
Supplemental Table 1. GSEA Results of CDC20-High and CDC20-Low Populations across 

4 RNA-sequencing cohorts. 
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0.03

2 
5823 

WINNEPENNINCKX_MELANOMA_ME

TASTASIS_DN 
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A375 Mutant (CDC20-Low)        
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Chapter 4: Discussion 
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4.1 Prediction and validation of non-coding variants 
 Chapter 2 presented a bioinformatic pipeline to predict putatively functional non-coding 

variants. This pipeline leveraged publicly accessible ChIP-seq and ATAC-seq datasets to partition 

the genome into test regions, i.e. putative melanoma regulatory regions, and null regions. We used 

our test and null regions to generate an empirical null distribution with which to calculate statistical 

significance. Non-coding variants were merged, i.e. hotspots, using a window of 25 bp. The Donor 

Score for each hotspot was calculated as a function of the number of donors with a mutation in 

that hotspot and the total number of unique sites. High-scoring hotspots were therefore those that 

were recurrently mutated across multiple samples with most mutations occurring at a few specific 

locations. This was meant to emulate the TERT promoter hotspot where most of the variants are 

at one of two positions80,81. We took the average FunSeq2 score of each variant within a hotspot.  

The FunSeq2 algorithm generates a score for each non-coding variant based on several features 

including conservation, impact on motif, and whether the variant-associated gene is a known 

cancer driver107. The fold-change between the FunSeq2 score in null and test hotspots was higher 

than the fold-change between the Donor Score (Chapter 2, Figure 1) leading to a larger separation 

between the Hotspot Scores corresponding to the null and test regions, suggesting that the addition 

of the FunSeq2 score further reduced the hotspot scores of potential false positives. Overall, we 

identified 140 hotspots with FDR-adjusted p-values = 0 harboring 2,631 mutations, which 

represents 0.01% of the total number of mutations used as input. The TERT promoter hotspot, the 

RPS27 promoter hotspot, the DPH3 promoter hotspot, and the CDC20 promoter hotspot, all within 

the top 13 highest-scoring hotspots, have been previously validated by luciferase assay80,83,86,97.  

 Due to the high mutational load particularly at ETS motifs in promoters, we note that our 

bioinformatic pipeline almost exclusively identified hotspots within promoter regions at ETS 
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motifs. On the one hand, this selects for variants that are at actively bound transcription factor 

binding sites which is more likely to yield changes in gene expression and reporter activity. 

Moreover, ETS factors are known oncogenes in melanoma160. On the other hand, the alteration of 

DNA by bound ETS transcription factors is sensitive to UV irradiation and therefore leads to 

higher mutation rates at these specific locations124,125. Our bioinformatic pipeline is built is sensitive 

to this mutational signature and therefore not only increases the number of false positives but likely 

reduces the number of true positives. This brings to light an important observation – a variant at a 

transcription factor binding site may alter activity of a gene without significantly altering cancer 

biology. Therefore, assessment of variants needs to extend beyond reporter assays and into 

appropriate cancer models.  

 Systematic assessment of bioinformatic pipelines remain limited due to the small number 

of studies that used high-throughput reporter assays. While we understand that our MPRA requires 

technical improvements before thorough assessment, we did see a correlation between Hotspot 

Score and fold-change as calculated by the MPRA, suggesting that our method is able to prioritize 

to some degree functional variants (Chapter 2, Figure 5). However, this remains a preliminary 

assessment that requires follow-up.  

 Our bioinformatic pipeline can be improved in a variety of ways. For example, because our 

pipeline does not consider the combined regulatory space of a gene, a promoter hotspot will almost 

always score higher than a hotspot within an enhancer due to the aforementioned mutational 

processes. Genes are often regulated by dozens of enhancers extending hundreds of kilobases 

away. Combining variant scores from the entire regulatory space of a single gene may increase the 

likelihood of identifying functional variants in more distal regulatory elements. Understanding the 

cell-type specific regulatory process of a gene will also improve our search space. Indeed, various 
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studies have identified cis-acting regulatory variants via functional genomics datasets like ChIP-

seq or ATAC-seq where the variant is observed to decrease or increase peak intensity akin to allele-

specific expression165. A more systematic and accurate method to improve bioinformatic pipelines 

will be to perform high-throughput validation on as many variants as technically possible and learn 

through convolutional neural networks the sequence motifs that when altered lead to change in 

expression in a cell-type specific manner.  

Validation of variants is another area for future improvement. The luciferase assays used 

here are a reliable and fast way to test a small number of variants (~dozens). For larger scale 

validations (~100s-1000s), exogenous MPRAs are currently the only pragmatic solution, although 

it may be important to assess different lengths as one study reported an increase in luciferase of a 

CDC20 promoter variant in HEK 293FT cells when using a ~700 bp sequence while we noticed a 

decrease in activity when using a 150 bp sequence97. Additionally, integration of the MPRA into 

the genome to test the endogenous effect of the variant may also lead to more accurate results, 

although there are many challenges to this method as well, including position-specific effects166. 

The most accurate method would involve introducing the exact variant into the genome and 

looking for corresponding changes in gene expression. At the time of writing, this would not be 

practical as methods are still inefficient and non-coding variants often fall in repetitive sequences.  

4.2 The CDC20 promoter hotspot 
 The CDC20 promoter hotspot was the 8th highest scoring hotspot with an average FunSeq2 

score of 1.77 (1.06 for the TERT promoter hotspot). The hotspot is located ~153 bp from the 

transcriptional start site of CDC20 and is mutated in 39 donors.  We validated several variants of 

the CDC20 promoter hotspot using a variety of methods: (1) luciferase assay using a 300 bp 

sequence upstream of a minimal promoter driving luciferase, (2) MPRA using a 150 bp sequence 



 103 

upstream of EF1a, a strong promoter, driving GFP, and (3) luciferase assay using a 150 bp 

sequence in a vector with no promoter driving luciferase. In all three assays, variants either 

significantly decreased reporter activity or exacted no change. This is in direct contrast to a recent 

publication where CDC20 promoter variants led to an increase in luciferase activity97. However, 

there were major differences in other publications: (1) the other study used a 1,117 bp sequence 

was used that to the TSS and (2) only two cell lines were assayed, one of which was a melanoma 

cell line. A study on long and short enhancers in melanoma demonstrated that 190 bp regions were 

sufficient to capture the enhancer activity167. It may therefore be likely that in a 1,000 bp region, 

multiple enhancer units are captured and occlude the actual effect of the variant. Moreover, when 

aligning the sequence to the hg19 genome via BLAT, the sequence extends into the first exon. 

Between our validations, we also noted discrepancies between the variants that reduced 

reporter activity. In the luciferase assay performed with a minimal promoter downstream of a 300 

bp region harboring the WT or variant allele and the MPRA, G528A and GG528AA both led to a 

reduction in reporter activity while G529A exhibited no change (Chapter 2, Supplemental Figure 

3). In the luciferase assay using a 150 bp sequence and no promoter, G528A strongly reduced 

reporter activity in all but one cell line while G529A and GG528AA varied in their response. This 

could represent transcriptional noise, the effect of additional sequences in the 300 bp luciferase 

assay, and cell-type specific effects. However, the evidence for downregulation, as opposed to 

upregulation, of the reporter via the CDC20 promoter hotspot is robust in our hands when tested 

across multiple pertinent (i.e. melanoma) cell lines. 

 One of the most intriguing observations across all three reporter assays is the drastic change 

in reporter activity when driven either by the G528A, G529A, or GG528AA variants. The G528A 

and the G529A variants are adjacent while the GG528AA variant is a multi-nucleotide variant. 
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Despite their proximity, the effects on reporter activity are dramatically different with G528A 

almost always leading to a strong decrease in promoter activity across multiple cell lines, while 

G529A leading to no change or a small decrease in reporter activity. Most unexpectedly is that 

GG528AA displayed effects on reporter activity most similar to G529A as opposed to G528A. A 

previous study demonstrated that mutating the nucleotides flanking the core ETS motif (i.e. 

mutations like G528A and G529A) could lead to either total loss of expression or even stronger 

and ectopic expression (Farley et al., 2016). Therefore, the G528A mutation, since it is closer to 

the core ETS motif, may directly impair binding whereas G529A may lead to altered binding of, 

for example, co-factors specific to the cell state. This may also depend on what other transcription 

factor binding sites are near the mutated ETS motifs. 

 It was also interesting to note that the G525A variant was not as common as the G528A, 

G529A, or GG528AA variants despite it being at the location in the core ETS motif most often 

mutated by variants in statistically significant hotspots (Chapter 2, Figure 1E). This may provide 

support for a dosage-dependent bias for CDC20 in melanoma, as G525A consistently led to large 

reductions in reporter activity, as opposed to G528A and G529A which are more common. Overall, 

the CDC20 promoter hotspot appears to alter a transcription factor binding site such that the 

variants at or near the core ETS motif decrease reporter activity, likely through disruption of an 

ETS transcription factor, while variants further away have cell-type specific effects. 

 Although it is predicted that an ETS transcription factor binds to the CDC20 promoter 

hotspot, motif analysis identified several different ETS family members along with other 

transcription factors. When defining our search space, we used ChIP-seq for ETV1 performed on 

two melanoma cell lines, neither of which had signal at the CDC20 promoter. Of the ChIP-seq 

datasets used, BRG1, CTCF, DDX21, TFAP2A, and SMAD1/5/8 were found to differentially bind 
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to the CDC20 promoter (compared to IgG control). It is likely that an ETS factor binds and recruits 

multiple co-factors, dependent on cell type, to regulate expression of CDC20. To provide support 

to the notion that an ETS family member binds to the promoter, we correlated expression of all 

TFs to CDC20 in samples with and without a mutation in the CDC20 promoter using the ICGC-

MELA RNA-sequencing cohort and identified 9 transcription factors that had high correlations in 

WT samples but low correlations in mutant samples, suggesting impaired transcriptional 

regulation of that TF towards CDC20. These included ELK1, E2F1 and E2F2, and MYBL1 and 

MYBL2. E2F transcription factors regulate genes involved in cell proliferation. Interestingly, 

APC/C-CDC20 targets E2F1 for degradation in prometaphase152. However, CDC20 expression 

and translation is necessary in anaphase suggesting that E2F1 may inhibit CDC20 transcription. 

MYBL2 has also been associated with regulating not only cell cycle progression but embryonic 

stem cell fate168. Overall, the combined results of the luciferase assay and analysis of co-expressed 

transcription factors suggests a cell-type specific regulatory complex that likely involves members 

of the ETS transcription family, cell cycle regulators, and others. Advances in DNA binding assays 

such as multiCUT&TAG and proximity labelling can aid in understanding the full extent of the 

epigenetic landscape at the CDC20 promoter hotspot and how changes in the promoter lead to 

changes in DNA binding. 

4.3 A CDC20-low population may be characterized by a 

more neural crest-like state 
 Our observation of a reduction in reporter activity was unexpected because high expression 

of CDC20 is prognostic of aggressive tumors in multiple cancer types131. Therefore, in order to 

generate a hypothesis as to why reduced transcriptional activity of CDC20 could contribute to 

melanoma onset, progression, metastasis, recurrence, and/or resistance, we looked at the variant 
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allele frequencies (VAFs) of the CDC20 promoter variants across melanoma types. We observed 

VAFs in primary melanomas that are similar to those of the TERT promoter mutations and BRAF 

mutations which are known to be early events154. We also observed a dramatic reduction in the 

presence of not only the VAFs but the variants themselves in later stages of melanoma. We 

therefore hypothesized that the promoter variants are beneficial to tumor formation in early stages 

of melanoma but not at later stages of melanoma, specifically the formation of metastases at distant 

locations (e.g. lungs, liver, or brain). Therefore, we stratified an RNA-seq dataset of primary 

melanomas and nevi by CDC20 expression and performed gene set enrichment analysis on a 

variety of melanoma and neural crest gene sets. As expected, we saw genes that co-expressed with 

high levels of CDC20 were enriched in migration and metastasis gene sets. While we did not 

observe gene set enrichment for any of the neural crest signatures, we did notice that genes co-

expressing with low levels of CDC20 were enriched in an aneuploidy gene signature. Aberrant 

expression and germline mutations of CDC20 have been associated with aneuploidy147,148,157.  

 We then looked at how CDC20 co-expressed with neural crest transcription factors, as re-

emergence of the neural crest identity occurs in the very earliest cells of melanoma47. Interestingly, 

we noted that several neural crest transcription factors, including SOX10, correlated with low 

levels of CDC20, suggesting that reduced levels of CDC20 could lead to re-emergence of neural 

crest activity. To confirm this hypothesis, we genome engineered a small indel encompassing the 

mutated region at the CDC20 promoter in two cell lines. This allowed us to confirm the phenotypes 

that were associated with the gene expression signature of samples with low and high levels of 

CDC20, specifically the migratory and neural crest signature phenotypes. Moreover, we used the 

gene sets characteristics of the four cluster subtypes identified in Tsoi et al. (2018) to show that 

CDC20-knockdown converted A375 from a more “undifferentiated/neural crest-like” subtype to 
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a “neural crest-like/melanocytic” subtype75. In conclusion, by investigating the clonal history of 

the CDC20 promoter variants and generating a CDC20 promoter indel strain in a human melanoma 

cell line, we observed that low levels of CDC20, driven by mutations in the promoter, could 

contribute to the de-differentiation of melanocytes into a more neural crest-like state through up-

regulation of SOX10 whereas high levels of CDC20 are more important for metastasis and 

migration. 

4.4 Future Directions 

4.4.1 How is CDC20 transcriptionally regulated and what effect do the CDC20 

promoter variants have on its regulation? 
 The levels of CDC20 protein and mRNA oscillate throughout the cell cycle169. As expected, 

CDC20 protein levels are highest during mitosis and are promptly diminished after mitotic exit. 

CDC20 primarily targets itself for degradation through the APC/C-CDC20 complex. APC/C-

CDC20 appears to be involved in a feedback mechanism where degradation of CDC20 also up-

regulates CDC20 transcription133. How APC/C-CDC20 leads to increased transcriptional up-

regulation remains unknown. Additionally, the post-transcriptional regulation of CDC20 appears 

to play important roles as in plant stem cells, CDC20 mRNA remains in the nucleus until 

prometaphase where it is exported and translated170. This activity is mediated by the 5’UTR. As 

CDC20 plays important functions in and out of mitosis, transcriptional and post-transcriptional 

regulation is likely complex and mediated by multiple co-factors dependent on cell-type and 

context171. 

 Based on our analysis of putative melanoma regulatory regions, we observed published 

instances of binding of BRG1, DDX21, TFAP2A, CTCF, and SMAD1/5/8 at the CDC20 

promoter. SMAD1/5/8 represses MITF and SOX9 expression thereby preventing differentiation 
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and cell death172. When GDF6 is expressed, SMAD1/5/8 is detected at the CDC20 promoter. 

Knockdown of GDF6 causes loss of promoter binding activity172. TFAP2A binds to the CDC20 

promoter in human primary melanocytes and is found at several other melanocyte-specific 

genes173. CTCF also binds to the CDC20 promoter, and mutations at CTCF binding sites are 

prevalent due to deficiencies in nucleotide excision repair due to active CTCF binding. Such 

changes in CTCF binding can lead to changes in 3D genome architecture but have not been shown 

to contribute to cancer174. Altogether, this suggests complex and dynamic promoter kinetics at the 

CDC20 promoter. 

 In order to better characterize the transcriptional regulation of CDC20, it will be imperative 

to perform assays such as multiCUT&TAG that can track binding of multiple DNA binding 

proteins at a time in multiple cell types to understand the transcription factors conserved 

throughout the cell cycle and those that could potentially be cell-type specific such as TFAP2A. 

Editing the promoter to include the common G528A and G529A single-nucleotide variants and 

the GG528AA multi-nucleotide variant as well as others, ideally in a genetically engineered tumor 

model such as mice, would elucidate the changes in promoter kinetics in mutant strains. 

Additionally, it will be important to understand the cyclical changes in the complement of 

transcription factors bidingn to the CDC20 promoter throughout the cell cycle and how CDC20 is 

post-transcriptionally regulated in mammalian systems. 

4.4.2 Can we engineer CDC20 promoter variants in earlier models of 

melanoma? 
 The CDC20 promoter variants appear to contribute to melanomagenesis at early stages of 

melanoma. By generating CDC20 promoter mutations in primary melanocytes that harbor 

mutations in BRAF or NRAS and/or tumor suppressors like TP43, PTEN, or CDKN2A, we can 
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more accurately assess the stage at which low levels of CDC20 are important for up-regulating 

SOX10. Recently, researchers at the Broad Institute sequentially introduced mutations in human 

primary melanocytes78. Each mutation conferred growth advantages such that after several months, 

the allele would become the dominant clone in the primary melanocyte culture. First, CDKN2A 

was deleted, followed by introduction of BRAFV600E. Interestingly, primary melanocytes were not 

immortalized until addition of the TERT promoter mutation. Subsequent mutations in TP53, 

PTEN, and/or APC led to cells that could form tumors in vivo. Engineering the CDC20 promoter 

variant in each of these engineered melanocytes would confirm that low levels of CDC20, 

particularly in early stages of melanoma, leads to an increase in expression of certain neural crest 

transcription factors, including SOX10. Additionally, we could better understand why it seems 

important that primary melanocytes first have BRAFV600E and/or the TERT promoter mutation. 

One possibility is that cells need to be cycling in a MAPK-dependent manner in order for a dosage-

dependent effect to occur.  Additionally, performing these experiments in a diploid model could 

lead to observations of aneuploidy, unlike the CDC20 promoter indel lines generated in this work. 

Because the A375 melanoma cell line is a hypotetraploid, we may not have detected additional 

chromosomal aberrations because there may be an upper limit of the amount of genomic instability 

a particular cell line can tolerate.  

4.4.3 What does APC/C-CDC20 target? 
 One of the major questions remaining is how changes in expression of CDC20 leads to 

phenotype switching from “undifferentiated” to “neural crest-like” and why transcription factors 

such as SOX10 are up-regulated. During metaphase, CDC20 is phosphorylated and binds to the 

mitotic checkpoint complex until all sister chromatids have attached properly to the kinetochore175. 

This prevents binding of CDC20 to the Anaphase Promoting Complex/Cyclosome until the spindle 
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assembly checkpoint is satisfied, signaling the end of metaphase. APC/C-CDC20 ubiquitylates 

securin and Cyclin B1, causing the sister chromatids to separate from the kinetochore. Due to its 

essential role in the cell cycle, physical interactions between CDC20 and multiple cell cycle 

regulators have been observed and catalogued (BioGRID, https://thebiogrid.org). CDC20 has also 

been shown to interact with transcription factors, such as MYC and HOXD1, and chromatin 

remodelers like CTCF and HDAC1/2/6, suggesting that it can potentially mediate changes in gene 

expression through degradation of these proteins. Indeed, recruitment of APC/C-CDC20 to cell-

type specific genes during mitosis leads to ubiquitylation of histones, allowing for rapid 

degradation and transcription during re-entry into interphase, establishing cell identity after 

transcription has been paused during mitosis138. Therefore, reduced levels of APC/C-CDC20 could 

lead to altered rates of histone ubiquitylation leading to changes in cell identity. 

Characterizing interactors of APC/C-CDC20 through proximity-labelling techniques such 

as TurboID176 or through ChIP-seq of ubiquitin tagged histones at K11 and K48 would elucidate 

the mechanisms by which reduced APC/C-CDC20 levels leads to up-regulation of SOX10. As 

MITF expression levels did not change in CDC20 promoter indel lines, perhaps MITF is a not a 

direct or indirect target of APC/C-CDC20. Interestingly, SOX5 has been to shown to repress 

SOX10 activity at melanocyte-specific loci; up-regulation of SOX5, which was seen in our CDC20 

promoter indel lines, could therefore in principle contribute to a dedifferentiation from the 

melanocyte state177. 

4.4.4 How do changes in cell cycle length contribute to lineage identity in 

melanoma? 
 Another possible association between changes in CDC20 levels and changes in the gene 

expression program is through altering the length of the cell cycle. siRNA-mediated knockdown 
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of CDC20 increases the number of cells at the G2/M stage in hESCs, suggesting that decreasing 

levels of CDC20 could delay mitosis through a stoichiometric imbalance138. One study found that 

specifically in G1, H3K4me3 levels increase at certain developmental genes due to 

phosphorylation of a histone methyl-transferase by CDK1178. Up-regulation of these 

developmental genes allowed for pluripotency exit and differentiation. Decreasing or increasing 

this “window of opportunity” could alter differentiation rates. Through decreasing CDC20 and 

delaying G2/M, fewer cells may be at the G1 stage and paracrine signaling that would otherwise 

lead to differentiation could be missed by cells undergoing G2/M. Therefore, future work should 

go into quantifying the number of cells at each cell cycle stage and identifying differential changes 

in H3K27me3, a repressive marker, and H3K4me3, a marker of active transcription. Because 

H3K4me3 levels increase in developmental genes at G1, I hypothesize that in cells with lower 

levels of CDC20, transcription of developmental genes or cell-type specific genes would decrease 

due to a shorter G1 and/or longer G2/M stage. This would therefore delay pluripotency exit and 

differentiation. Indeed, genetic and chemical prolongation of the G2 stage in hESCs led to the up-

regulation of pluripotency maintenance factors and inhibited pluripotent state dissolution179.  

 How would altering the length of the cell cycle contribute to melanoma initiation? Initially, 

through oncogene activation and tumor suppressor loss, a population of rapidly dividing cells 

contributes to initial melanoma growth. This population is characterized by high levels of MITF57. 

Within this population, either through the CDC20 promoter mutations or a parallel epigenetic 

mechanism, cells that cycle slower may instead transcribe genes that would cause de-

differentiation, such as SOX10. These cells would be more neural crest-like. Lineage analysis of 

single clones in a melanoma mouse model identified a population of stem-like cells that either 

duplicated or differentiated into progenitor-like cells79. The stem-like cells divided more frequently 



 112 

than the progenitor-like cells, and the progenitor cells were more neural-crest like. Interestingly, 

neither of these populations appeared to contribute to metastasis; rather, a separate mesenchymal-

like subpopulation were found to initiate metastases. Altogether, this supports the notion that low 

levels of CDC20 alter cell cycle kinetics such that a cell establishes a neural crest-like identity 

separate from the subpopulation responsible for migration and likely also separate from the stem-

like subpopulation. 

 One lingering question remains – why CDC20? There are many important cell cycle 

regulators. Future work will have to go into characterizing the promoters of the other G2/M 

regulators – do they also have ETS motifs? Does reduction of other G2/M regulators also lead to 

an increase in SOX10 expression and a reduced capability to metastasize?  

4.4.5 Why does CDC20 appear to be important for metastasis? Do CDC20 

promoter indel lines inhibit melanoma in vivo? 
 Due to the promoter variants leading to a decrease in expression, the focus of Chapter 3 

was on discovering why down-regulation of CDC20 would be beneficial in melanoma. However, 

it is clear from the migration assays and bioinformatic analysis that high levels of CDC20 are also 

important for later stages in melanoma, specifically metastasis. As our CDC20 promoter indel lines 

did not affect viability but did affect migration, it is unlikely that altered cell proliferation is the 

mechanism by which CDC20 contributes to metastasis. Instead, CDC20 could affect migration 

through potentially two pathways: (1) as in the case of low CDC20, by generating a change in 

lineage identity due to altered cycling dynamics or (2) by altered maintenance of the primary cilia. 

 As discussed in the previous section, down-regulation of CDC20 may delay the G2/M 

phase of the cell cycle. Therefore, it is plausible that up-regulation of CDC20 could also alter the 

length of particular cell cycle stages so that rather than inducing a more neural crest-like state, it 
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induces a more undifferentiated cell state. Genes that were down-regulated in the CDC20 promoter 

indel lines and up-regulated in the WT melanoma lines were more likely to be associated with the 

undifferentiated state. Therefore, while low levels of CDC20 seem to be important for establishing 

the neural crest-like population of cells, high levels of CDC20 may be present in either the 

recently-discovered stem-like subpopulation or the rapidly proliferating melanocytic 

subpopulation79.  

 CDC20 has also been shown to regulate the length of the primary cilia and the disassembly 

of primary cilia140. Many receptors of major signaling pathways including Hedgehog, Wnt, and 

Notch signaling are located on the primary cilia180. Therefore, dysregulation of the length of the 

primary cilia or premature or delayed disassembly could lead to aberrant signaling of these 

pathways, all of which have been implicated in melanoma181–183. Moreover, a key step in melanoma 

metastasis is the deregulation of the primary cilia mediated by EZH2 which was downregulated in 

our CDC20 promoter indel cell lines, suggesting an association between EZH2 and CDC20184. 

 Further research will need to address the mechanism by which CDC20 contributes to 

melanoma. Ongoing work will determine whether our CDC20 promoter indel lines fail to 

metastasize compared to their WT counterparts and analyses of these tumors may elucidate the 

missing features not discussed in this thesis. 

4.4.6 Do other genes act in a dosage/time-dependent manner? 
 One of the major contributions of this thesis is providing further support that genes can 

contribute to cancer onset and progression in a dosage-dependent manner. This pattern has been 

observed with MITF where high levels appear to be important for and a marker of early melanoma 

growth while low levels of MITF are a marker of metastasis through MITF-dependent epigenetic 

regulation of Dia173,185. MITF is the master melanocyte lineage factor and expression is essential 
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for melanocyte differentiation186. MITF is amplified in 6-10% of melanomas3,8,187 and high 

expression is worse for overall survival. Like CDC20, MITF expression leads to different 

phenotypes based on expression level.  

 Another potential candidate that appears to act in a dosage- or temporal-dependent manner 

is SOX9. SOX9 acts antagonistically to SOX10 and is down-regulated in melanoma compared to 

melanocytes128. However, SOX9 also appears to be up-regulated in mesenchymal subpopulations 

in melanoma which are believed to be the population of cells that eventually will metastasize77,79. 

Moreover, SOX9 overexpression appears to be critical for metastasis in glioma and lung 

cancer188,189.  

4.5 Conclusions 
 In conclusion, this thesis identified and validated non-coding variants in human melanoma. 

We specifically focused on variants in the promoter of CDC20 which reduced reporter activity and 

endogenous gene expression in a human melanoma cell line. We observed changes in migration 

capabilities and transcriptional state. Specifically, reducing the expression of CDC20 led to an 

increase in certain neural crest transcription factors, most notably SOX10, and the down-regulation 

of genes associated with metastasis like AXL. Akin to the MITF rheostat model where high levels 

of MITF indicate rapid proliferation and low levels indicate metastasis, CDC20 also acts as a 

rheostat where low levels possibly contribute to neural crest-like state important for establishing 

early melanomas and high levels contribute to metastasis. Future work will go into further 

characterizing the dosage-dependent effect of CDC20 at various stages in melanoma and will 

likely include identifying the targets of the APC/C-CDC20 complex and the changes in the 

epigenetic landscape when the length of the cell cycle is altered. Moreover, the knowledge that 

proteins can have a dosage-dependent effect in cancer onset and progression will be an important 
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consideration in drug development, as many reviews have posited that CDC20 is a potential 

therapeutic target. 
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