
Vol.:(0123456789)

https://doi.org/10.1007/s11075-022-01385-w

1 3

ORIGINAL PAPER

Internality of generalized averaged Gauss quadrature rules 
and truncated variants for modified Chebyshev measures 
of the third and fourth kinds

D. Lj. Djukić1 · R. M. Mutavdžić Djukić1 · L. Reichel2  · M. M. Spalević1

Received: 18 January 2022 / Accepted: 26 July 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2022

Abstract
Gauss quadrature rules are commonly used to approximate integrals determined by 
a measure with support on a real interval. These rules are known to be internal, i.e., 
their nodes are in the convex hull of the support of the measure. This allows the 
application of Gauss rules also when the integrand only is defined on the convex 
hull of the support of the measure. It is important to be able to estimate the quadra-
ture error that is incurred when using a Gauss rule. Averaged and generalized aver-
aged Gauss quadrature formulas are helpful in this respect. Given an n-node Gauss 
rule, the associated (2n + 1)-node averaged and generalized averaged Gauss rules 
are easy to compute. However, they are not guaranteed to be internal, and in this 
situation they cannot be used for integrands that are defined on the convex hull of 
the support of the measure only. This paper investigates whether averaged and gen-
eralized averaged Gauss quadrature formulas for modified Chebyshev measures of 
the third and fourth kinds are internal. We show that in situations when this is not 
the case, truncated variants, that use fewer nodes, are internal. Computed examples 
that illustrate the performance of the quadrature rules discussed are presented.
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1 Introduction

Let d� be a nonnegative measure with infinitely many points of support on the interval 
[a, b] ⊆ ℝ , and assume that all the moments,

are well defined. We let {Pk}
∞
k=0

 denote the sequence of monic orthogonal polynomi-
als with respect to the measure d� , where deg(Pk) = k . The polynomials Pk satisfy a 
three-term recurrence relation of the form

where P−1(x) ≡ 0 and P0(x) ≡ 1 , �k ∈ ℝ , and 𝛽k > 0 for all k ≥ 1 ; see, e.g., [11, 29] 
for many properties and examples of orthogonal polynomials.

It is well known that among all interpolatory quadrature rules with n nodes for 
approximating the integral

the rule with maximum degree of exactness is the n-node Gauss quadrature rule 
with respect to the measure d�,

Its nodes x(n)
i

 ( i = 1, 2,… , n ) are the zeros of the monic orthogonal polynomial Pn 
and lie in the convex hull of the support of the measure d� , and the weights w(n)

i
 

( i = 1, 2,… , n ) are positive; see [11, 29] for proofs. The degree of exactness of the 
Gauss rule QG

n
 is 2n − 1 , that is, QG

n
(p) = I(p) for all polynomials p of degree not 

exceeding 2n − 1.
It is important to be able to estimate the magnitude of the quadrature error

because this helps determine a suitable value of n when applying the rule QG
n

 to 
approximate the integral (2) to desired accuracy. An unnecessarily large value of 
n requires the computation of needlessly many nodes and weights, as well as the 
evaluation of the integrand f at excessively many nodes, while a too small value of n 
does not yield the required accuracy. The development of methods for estimating the 
error (3) therefore has received considerable attention over many years.

A popular approach to estimate the error (3) is to use another quadrature rule, A
�
 , 

with � > n nodes and degree of exactness larger than 2n − 1 . One then can use

�k = ∫
b

a

xk d�(x), k = 0, 1, 2,… ,

(1)Pk+1(x) = (x − �k)Pk(x) − �kPk−1(x), k = 1, 2,… ,

(2)I(f ) = ∫
b

a

f (x) d�(x),

QG
n
(f ) =

n∑
i=1

w
(n)

i
f (x

(n)

i
).

(3)�n(f ) = |(I − QG
n
)(f )|,

(4)|(A
�
− QG

n
)(f )|

524 Numerical Algorithms (2023) 92:523–544



1 3

as an the estimate of (3).
A classical attractive choice for the rule A

�
 with � = 2n + 1 is the Gauss-Kronrod 

rule with 2n + 1 nodes, n of which are the nodes of QG
n

 , as its degree of exactness 
is at least 3n + 1 . However, the n + 1 extra nodes are neither guaranteed to be real 
nor in the convex hull of the support of the measure d�(x) ; see [21] for a nice recent 
survey of Gauss-Kronrod rules. Moreover, Gauss-Kronrod rules are somewhat com-
plicated to compute; see [1, 5, 18].

Another approach to define a quadrature rule A
�
 with � = 2n + 1 is to con-

struct an (n + 1)-node quadrature formula U�
n+1

 for approximating the functional 
I�(f ) = I(f ) − �QG

n
(f ) for some � ∈ ℝ�{0} and use the “stratified” (2n + 1)-node 

quadrature formula

to estimate the error (3); see [16, 22] for discussions of this approach. Here the 
nodes of U�

n+1
 are assumed to be distinct from the nodes of QG

n
.

We will refer to quadrature rules of the form (5) as Q2n+1 . The nodes of Q2n+1 are 
the n nodes of QG

n
 and n + 1 extra nodes. We will let the latter nodes be the zeros of 

the polynomial

for some constant 𝛽n+1 depending on � . Polynomials of the form (6) are known as 
quasi-orthogonal polynomials of order two. Their properties, and in particular, their 
zeros have been studied by Shohat [25] as well as by Joulak [14].

Two common choices of the coefficient 𝛽n+1 are 

 (i) 𝛽n+1 = 𝛽n . This gives the averaged rule QL
2n+1

 , which was introduced by Laurie 
[17]. It has degree of exactness at least 2n + 1 . It corresponds to � =

1

2
.

 (ii) 𝛽n+1 = 𝛽n+1 . This leads to the generalized averaged rule QS
2n+1

 introduced in 
[26, 27]. Its degree of exactness is at least 2n + 2.

Numerous computed examples that illustrate the high quality of the error estimate 
(4) when � = 2n + 1 and A2n+1 = QL

2n+1
 or A2n+1 = QL

2n+1
 for a variety of measures 

d� have recently been provided in [24].
The quadrature formulas QL

2n+1
 and QS

2n+1
 have real nodes and positive weights, 

and are easy to compute; see [17, 23]. However, they are not guaranteed to be inter-
nal, i.e., they may have nodes outside the convex hull of the support of the measure 
d� . In fact, it holds for both rules that they may have at most one node to the left of 
the convex hull of the support d� , and at most one node to the right; see [17, 26].

The quadrature rules QL
2n+1

 and QS
2n+1

 are associated with symmetric tridiagonal 
matrices of order 2n + 1 with positive off-diagonal entries. These matrices are deter-
mined by the recursion coefficients of the monic orthogonal polynomials (1); see, 
e.g., [23, 28] for details. The eigenvalues of these matrices are the nodes of the quad-
rature rules, and the square of suitably normalized first components of the eigenvec-
tors yield the weights; see [10, 11]. This property is used by the Golub-Welsch [12] 
algorithm for computing the nodes and weights of Gauss-type quadrature rules.

(5)A2n+1 = �QG
n
+ U�

n+1

(6)Fn+1 = Pn+1 − 𝛽n+1Pn−1
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When removing the last row and column of a symmetric tridiagonal matrix 
with positive off-diagonal entries, the eigenvalues of the reduced matrix so 
obtained strictly interlace the eigenvalues of the original matrix; see, e.g., [13]. 
It therefore may be possible to obtain internal quadrature rules with fairly high 
degree of exactness by truncating the symmetric tridiagonal matrices that are 
associated with the (2n + 1)-node average Gauss rule or generalized averaged 
Gauss rule. Specifically, we consider truncated generalized averaged quadrature 
rules obtained by removing the r = n − 1 last rows and columns from the sym-
metric tridiagonal matrix associated with the quadrature rule QS

2n+1
 . We refer to 

the (2n + 2)-node quadrature rule so obtained as Q(1)

n+2
 . Its nodes are the zeros of 

the polynomial

This follows from the recursion relations (1).
The present paper is concerned with the internality of generalized averaged Gauss 

quadrature rules associated with modifications of Chebyshev measures of the third 
and fourth kinds. The measure for Chebyshev polynomials of the third kind is given 
by

and the measure for Chebyshev polynomials of the fourth kind is

Chebyshev polynomials associated with these measures arise in the approxima-
tion of functions on the open interval −1 < x < 1 , quadrature, and the solution of 
differential equations; see [9, 11, 19]. We are interested in Gauss quadrature rules 
associated with modifications of the measures (7) and (8). In Section 2 we modify 
the measure (7) by a linear divisor, and in Section 3 by a linear divisor and a lin-
ear factor. We are interested in studying whether averaged and generalized averaged 
quadrature rules associated with these modified measures are internal and, if not, 
whether truncated rules Q(1)

n+2
 associated with generalized averaged quadrature rules 

are internal.
Orthogonal polynomials associated with modifications of Chebyshev measures of 

the second kind have been studied by Milovanović et al. [20], and properties of aver-
aged and generalized averaged Gauss quadrature associated with these measures are 
studied in [8]. Our investigation complements the latter work as well as the study 
of averaged Gauss and generalized averaged Gauss rules for modified Chebyshev 
measures of the first kind reported in [6]. A few computed examples are presented in 
Sections 2-4, and concluding remarks are provided in Section 5.

Claude Brezinski has made numerous profound contributions to orthogonal pol-
ynomials, quadrature, function approximation, and extrapolation over many years; 

tn+2(x) = (x − �n−1)Pn+1(x) − �n+1Pn(x).

(7)d𝜆(x) =

√
1 + x

1 − x
dx, −1 < x < 1,

(8)d𝜆(x) =

√
1 − x

1 + x
dx, −1 < x < 1.
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see, e.g., [2–4] as well as his home page1. It is a great pleasure to dedicate this work 
to him.

2  Modification by a linear divisor

Consider the Chebyshev measure of the third kind (7). The recurrence coefficients 
(1) for monic orthogonal polynomials associated with this measure are

see, e.g., [11, 19]. The monic orthogonal polynomials are 1
2n
Vn(x) , where the Vn(x) 

are Chebyshev polynomials of the third kind. They are can be written as

We note that Vn(1) = 1 and Vn(−1) = (−1)n(2n + 1).
This section discusses quadrature rules with respect to measures obtained by 

modifying the measure (7) by a linear divisor. Thus, for a constant c ∈ ℝ�{0} , 
define the modified Chebyshev measure

where � = −
1

2
(c + c−1) . We introduce

Everything in this section will be written solely in terms of ć . For instance, the 
zeroth moment can be expressed as

for ć ≠ −1 . This moment is not defined for ć = −1.
We present derivations for the Chebyshev measures of the third kind. Results for Chebyshev 

measures of fourth kind follow from those for the third kind by replacing x by −x and c by −c.

2.1  Monic orthogonal polynomials

Let the measures d� and d�̃  be defined by (7) and (9), respectively. Let the recur-
rence coefficients �k , �k of the monic orthogonal polynomials Pk associated with 

�0 =
1

2
and

{
�k = 0,

�k =
1

4
,

for k ⩾ 1;

Vn(cos t) =
cos(n +

1

2
)t

cos
t

2

.

(9)d�𝜆(x) =

√
1 + x

1 − x
⋅

dx

x − 𝛿
for − 1 < x < 1,

(10)ć =

{
c, |c| < 1,

c−1, |c| ⩾ 1,
so that 𝛿 = −

1

2
(ć + ć−1).

𝜇0 = 2𝜋 ⋅
ć

1 + ć

1 http://math.univ-lille1.fr/∼brezinsk

527Numerical Algorithms (2023) 92:523–544



1 3

the measure d� be known; cf. (1). Kautsky and Golub [15] and Gautschi [11, 
eqs. (2.4.24-25)] describe how the recurrence coefficients �̃k and �̃k for the monic 
orthogonal polynomials P̃k associated with the measure (9) can be computed from 
the coefficients �k and �k . Our discussion will follow the description by Gautschi 
[11]. The algorithm described there uses the values

and �−1(�) = 1 . For the measures (7) and (9), we obtain the relations

with the initial values

An easy induction shows that rk = −
1

2
ć for all k ⩾ 1 . This leads to the following 

result.

Theorem 1 The recurrence coefficients for the monic orthogonal polynomials asso-
ciated with the measure d�̃  in (9) are

The monic orthogonal polynomials P̃k with respect to d�̃  are

2.2  Internality of generalized averaged Gauss rules and truncated variants

The following result is a consequence of [28, Theorem 3.1]; related results can be 
found in [6].

Theorem 2 The averaged Gauss formula QL
2n+1

 and the generalized averaged Gauss 
formula QS

2n+1
 associated with the measure d�̃  , defined by (9), both coincide with the 

rk(�) =
�k+1(�)

�k(�)
, �k(�) = ∫

1

−1

Pk(x)

� − x
d�(x) (k = 0, 1, 2,…)

r
k
=� −

1

4r
k−1

(k ⩾ 1),

�̃
k
=r

k
− r

k−1, and �̃
k
=

r
k−1

4r
k−2

(k ⩾ 2),

r−1 = −
2𝜋ć

1 + ć
, r0 = −

1

2
ć,

�𝛼0 =
1 − ć

2
, �𝛼1 = 0, �𝛽0 =

2𝜋ć

1 + ć
, �𝛽1 =

1 + ć

4
.

�𝛼0 =
1−ć

2
, �𝛼k = 0 for k ⩾ 1,

�𝛽0 =
2𝜋ć

1+ć
, �𝛽1 =

1+ć

4
, �𝛽k =

1

4
for k ⩾ 2.

(11)�Pk(x) =
1

2k

(
Vk(x) + ć Vk−1(x)

)
for k ⩾ 0.
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Gauss-Kronrod formulas for n ⩾ 3 . Consequently, the polynomials Fn+1 in (6) are 
Stieltjes polynomials.

We remark that for n = 1 , the formulas QL
2n+1

 and QS
2n+1

 do not coincide, 
whereas for n = 2 they do, but differ from the Gauss-Kronrod rule. For all n ≥ 1 , 
the quadrature rules QL

2n+1
 and QS

2n+1
 have n nodes that coincide with the nodes of 

the Gauss rule QG
n

 ; this follows from the construction of the rules QL
2n+1

 and QS
2n+1

 ; 
see (5) as well as [23]. Consequently, these nodes are internal. For n ≥ 2 , the 
remaining n + 1 nodes, xF

1
< xF

2
< … < xF

n+1
 , are the zeros of the polynomial

cf. (6). Since the rules QL
2n+1

 and QS
2n+1

 coincide for n ≥ 2 , we will simply denote 
them by Q2n+1.

It suffices to investigate the location of the smallest and largest zeros, xF
1
 and 

xF
n+1

 , respectively of Fn+1 . Since Fn+1(1) = 0 , we have by (11) that xF
n+1

= 1 . More-
over, the condition xF

1
⩾ −1 is equivalent to

This inequality holds since ć ⩽ 1 . We have established the following result.

Theorem 3 For n ⩾ 2 , the averaged quadrature rule Q2n+1 associated with the meas-
ure d�̃  defined by (9) is internal. The truncated variants of Q2n+1 have all nodes in 
the open interval (−1, 1) . They therefore also are internal.

Fn+1(x) = P̃n+1(x) −
1

4
P̃n−1(x);

Vn+1(−1) + ćVn(−1)

Vn−1(−1) + ćVn−2(−1)
=

2n + 1 − (2n − 1)ć

2n − 3 − (2n − 5)ć
⩾ 1.

Table 1  Example 1: The smallest node of averaged Gauss rules Q2n+1 for the measure d�̃  for several val-
ues of c and n 

c n x1 c n x1

5 −9.58144212765193(−1) 5 −9.51567627092748(−1)
10 −9.88635810821284(−1) 10 −9.87752883027287(−1)

−0.1 15 −9.94808737281532(−1) −0.9 15 −9.94541066229161(−1)
20 −9.97039635400724(−1) 20 −9.96925430010067(−1)
30 −9.98666154723967(−1) 30 −9.98631935917441(−1)
5 −9.61044001085879(−1) 5 −9.91110418792453(−1)
10 −9.89061954783418(−1) 10 −9.96163261105782(−1)

0.1 15 −9.94941871960338(−1) 0.9 15 −9.97760026932085(−1)
20 −9.97097295114571(−1) 20 −9.98509394574705(−1)
30 −9.98683690097044(−1) 30 −9.99192146304767(−1)
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Example 1 Table 1 shows the smallest nodes x1 of averaged Gauss quadrature rules 
Q2n+1 for several values of n and the parameter c for the measure d�̃  defined by (9). 
As predicted by the theory, the nodes xL

1
 are inside the open interval (−1, 1) . The 

largest node, xn+1 , always is one. All computations reported in this paper were car-
ried out using Matlab and high-precision arithmetic.

3  Modifications by a linear divisor and a linear factor

This section is concerned with the measure

where

and the constant c is the same as in Section 2; hence c ∈ ℝ�{−1, 0} . Thus,

where d�̃  is given by (9).

3.1  Monic orthogonal polynomials

Let the P̂k denote the monic orthogonal polynomials associated with the measure 
(12) and let �̂k, �̂k be the recurrence coefficients for these polynomials. The polyno-
mials P̂k are related to the polynomials P̃k associated with the measure (9) for k ⩾ 0 
by the relation

under the assumption that P̃k(�) ≠ 0 for all k; see [11, Theorem 1.55].
Gautschi [11, eqs.  (2.4.12-13)] describes an algorithm for computing the recur-

sion coefficients for the measure d�̂  (12) by using the recursion coefficients for the 
measure d�̃  defined by (9). This algorithm yields

and

(12)d�𝜆(x) = (x − 𝛾) d�𝜆(x) =
x − 𝛾

x − 𝛿

√
1 + x

1 − x
dx for − 1 < x < 1,

(13)� = −(
1

2
c + c−1), � = −

1

2
(c + c−1),

d�̂(x) = (x − �) d�̃(x),

(14)P̂k(x) =
P̃k+1(x) − rkP̃k(x)

x − �
, where rk =

P̃k+1(�)

P̃k(�)
,

(15)r0 = −
c+2

2c
, r1 = −

c2+2c+4

2c(c+2)
, if |c| < 1,

(16)r0 = −
c2+c+1

2c
, r1 = −

c4+c3+2c2+c+2

2c(c2+c+1)
, if |c| ⩾ 1,

530 Numerical Algorithms (2023) 92:523–544
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The initial recursion coefficients for |c| ⩾ 1 then are

and for |c| < 1 , we have

Moreover,

It is known (see, e.g., [6, Theorem 4]) that every sequence (rk)∞k=1 that satisfies (17) 
with r1 ≠ −

1

2
z−1 is of the form

where

and A is a real constant. When r1 is given by (15) or (16), we obtain

Note that in either case A has the same sign as z and c, and

The relations (18) and (19) can be used to derive explicit expressions for �̂k and �̂k . 
This yields the following result.

Theorem 4 The recurrence coefficients for the monic orthogonal polynomials asso-
ciated with the measure (12) are given by

(17)rk = � −
1

4rk−1
(k ⩾ 2).

�̂0 =
c
3+c2+c−1

2c(c2+c+1)
, �̂1 = −

c
2+2c+2

2(c2+c+1)(c4+c3+2c2+c+2)
,

�̂1 =
(c+1)(c4+c3+2c2+c+2)

4c(c2+c+1)2
,

�̂0 =
1

c+2
, �̂1 = −

c2(c2+2c+2)

2(c+2)(c2+2c+4)
, �̂1 =

(c+1)(c2+2c+4)

4(c+2)2
.

(18)�̂k = rk+1 − rk and �̂k =
rk

4rk−1
(k ⩾ 2).

(19)rk = −
1

2z
⋅
z2k−2 + A

z2k−4 + A
(k ∈ ℕ),

(20)z =
c2+2 +

√
c4+4

2c

(21)A =

⎧⎪⎨⎪⎩

z−5
�
c2+

√
c4+4

2

�2
, �c� < 1,

[1mm]z−3
�
c2+

√
c4+4

2

�−2
, �c� ⩾ 1.

(22)0 < |A| < |z|−3.

(23)�̂k = −
Az2k−5(z2−1)2

2(z2k−2+A)(z2k−4+A)
and �̂k =

1

4
+

Az2k−6(z2−1)2

4(z2k−4+A)2

531Numerical Algorithms (2023) 92:523–544
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for k ⩾ 2 , where z and A are defined by (20) and (21). Hence �𝛼k < 0 and �̂k −
1

4
 are 

of the same sign as c.

3.2  Internality of the averaged and generalized averaged Gauss formulas QL

2n+1
 

and QS

2n+1

The non-Gaussian nodes of the formulas QL
2n+1

 and QS
2n+1

 are the zeros of the 
polynomial

for N = n and N = n + 1 , respectively; cf. (6). Let xL
1
 and xS

1
 be the smallest zeros of 

Tn+1 for N = n and N = n + 1 , respectively. Similarly, let xL
n+1

 and xS
n+1

 be the larg-
est zeros of Tn+1 for N = n and N = n + 1 , respectively. The quadrature rules QL

2n+1
 

and QS
2n+1

 are internal if xL
1
 and xS

1
 are bounded below by −1 and xL

n+1
 and xS

n+1
 are 

bounded above by 1. These conditions are equivalent to xn+1Tn+1(x) ⩾ 0 for x = ±1 , 
which is equivalent to

see, e.g., [17] for an analogous discussion. By (11) and (14), we have

The following result on the relative sizes of the recursion coefficients �̂n and �̂n+1 
will be used below.

Lemma 1 �𝛽n > �𝛽n+1 if c > 0 , and �𝛽n < �𝛽n+1 if c < 0.

Proof By (23) we have

which is of the same sign as z and c.

Combining Lemma 1 with (24) yields the following result.

Corollary 1 

(24)Tn+1(x) = P̂n+1(x) − �̂NP̂n−1(x),

(25)
P̂n+1(x)

P̂n−1(x)
⩾ �̂N for x = ±1;

(26)4 ⋅
�Pn+1(x)

�Pn−1(x)
=

⎧
⎪⎪⎨⎪⎪⎩

1 − 2rn+1

1 − 2rn−1
if x = 1,

2(1 − ć) +
�
2 + (2n + 1)(1 − ć)

�
(1 + 2rn+1)

2(1 − ć) +
�
2 + (2n − 3)(1 − ć)

�
(1 + 2rn−1)

if x = −1.

�̂n − �̂n+1 =
Az2n−6(z2−1)3(z4n−6−A2)

4(z2n−2+A)2(z2n−4+A)2
,
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 (i) If c < 0 , then xL
n+1

> 1 implies xS
n+1

> 1,
 (ii) if c < 0 , then xS

1
> −1 implies xL

1
> −1 , and

 (iii) if c > 0 , then xL
1
> −1 implies xS

1
> −1.

We are in a position to show the main result of this section.

Theorem 5 Assume that n ⩾ 2 . Then the quadrature formula QS
2n+1

 is internal if and 
only if c > 0 . The quadrature rule QL

2n+1
 is not internal. More precisely: 

 (i) xL
1
> −1 and xL

n+1
> 1,

 (ii) xS
1
> −1 , but xS

n+1
< 1 for c > 0 and xS

n+1
> 1 for c < 0.

Proof 

(a) We first show that xL
n+1

> 1 . By Corollary 1, if c < 0 , then this implies that 
xS
n+1

> 1 . By (18) and (26), the condition (25) for x = 1 and n ⩾ 2 reduces to 

 which by (19) can be expressed as 

 and expands into 

 This is false, because (22) implies that Az > 0 , (A + z2n−5)(A − z2n−3) < 0 , and 
also z2 − 1 > 0.

(b) We next verify that if c > 0 , then xS
n+1

< 1 . This is equivalent to 

 This expression expands into the inequality 

 which is trivially correct.
(c) We proceed to show that xL

1
, xS

1
> −1 . Assume that c > 0 . By Corollary 1, it suf-

fices to show that xL
1
> −1 , i.e., (25) for N = n and x = −1 . This is equivalent to 

1 − 2rn+1

1 − 2rn−1
−

rn

rn−1
⩾ 0,

z +
z2n+A

z2n−2+A

z +
z2n−4+A

z2n−6+A

−
(z2n−2 + A)(z2n−6 + A)

(z2n−4 + A)2
⩾ 0

Az(z − 1)2(z2 − 1)(A + z2n−5)(A − z2n−3) ⩾ 0.

z +
z2n+A

z2n−2+A

z +
z2n−4+A

z2n−6+A

−
(z2n + A)(z2n−4 + A)

(z2n−2 + A)2
⩾ 0.

Az2n−6(z − 1)(z2 − 1)(z3 − 1)(z2n−3 − A) ⩾ 0,
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 and expands into 

 where 

 Moreover, since z ⩾
√
2 + 1 and A < z−3 , we have 

 This implies that 

 It follows that both the numerator and denominator in the left-hand side of 
(28) are positive for n ⩾ 2 . Thus, (28) follows.

(d) Finally, in the case c < 0 , we will show that xS
1
> −1 . By Corollary 1, this implies 

that xL
1
> −1 . We need to prove that 

 where L is defined in (27). Since by (18) and (23), we have 

 and it suffices to show that L > 1 , i.e., that 

Since in this case rk > 0 for all k, the denominator is positive. Therefore, it 
remains to prove that

i.e., that

(27)L −
rn

rn−1
> 0, where L =

2(1−ć) +
(
2 + (2n+1)(1−ć)

)
(1+2rn+1)

2(1−ć) +
(
2 + (2n−3)(1−ć)

)
(1+2rn−1)

,

(28)
4(1 − ć)R1 + (2 + (2n − 1)(1 − ć))R2

rn−1
(
2(1−ć) + (2 + (2n−3)(1−ć))(1+2rn−1)

) ⩾ 0,

R1 =rn−1(1+rn+rn+1) =
(z−1)

(
2z4n−5+Az2n−4(z−1)(z2+1)−2A2

)
4z2(z2n−2 + A)(z2n−6 + A)

> 0,

R2 =rn−1−rn+2rn−1(rn+1−rn) =
Az2n−7(z−1)2(z+1)3(z2n−3+A)

2(z2n−2+A)(z2n−4+A)(z2n−6+A)
> 0.

−(1 + 2rn−1) = (z−1)

�
1 −

A(z+1)

z(z2n−6+A)

�
>

√
2

2
for n ⩾ 2.

2(1−ć) + (2 + (2n−3)(1−ć))(1+2rn−1) < (1 − ć)(2 + 3(1+2rn−1)) < 0.

L >
rn+1

rn
for n ⩾ 2,

rn+1

rn
= 4�𝛽n+1 < 1,

L − 1 =
4(1−ć)(1+rn−1+rn+1) − 2

(
2 + (2n−1)(1−ć)

)
(rn−1−rn+1)

2(1−ć) + (2 + (2n−3)(1−ć))(1+2rn−1)
> 0.

4(1−ć)(1+rn−1+rn+1) > 2
(
2 + (2n−1)(1−ć)

)
(rn−1−rn+1),
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Since 1

1−ć
< 1 (recall that ć < 0 ), it suffices to show that

which is equivalent to

Actually, we will prove that the sequence (k + 1

2
)rk is increasing in k. Specifically, 

we will show that

which is equivalent to

We use induction over n. The base case is n = 2 . Then, by (19), (29) simplifies to the 
trivial inequality

For the inductive step, we verify that

This multiplies out into 2rn−1rn+1 ⩾ rn(rn−1 + rn+1) , and by (19), when expanded 
and simplified, reduces to

This inequality holds because z2 > 1 and A < 0 , thus proving (29).

Example 2 Table 2 shows the smallest and largest nodes, xL
1
 and xL

n+1
 , respectively, 

of averaged Gauss quadrature rules QL
2n+1

 for several values of n and the parameter 
c for the measure d�̂  defined by (12). As predicted by the theory developed above, 
the smallest node xL

1
 is inside the interval [−1, 1] , while the largest node xL

n+1
 is not.

Example 3 Table 3 displays the extreme nodes xS
1
 and xS

n+1
 of the generalized aver-

aged Gauss quadrature rules QS
2n+1

 for the measure d�̂(x) given by (12) for several 
values of n and c. In agreement with the theory developed above, the smallest node, 

1+rn−1+rn+1

rn−1−rn+1
> n −

1

2
+

1

1 − ć
.

rn−1+rn+1

rn−1−rn+1
> n +

1

2
,

(n +
3

2
)rn+1 > (n −

1

2
)rn−1.

(n +
1

2
)rn > (n −

1

2
)rn−1,

(29)
rn−1 + rn

rn−1 − rn
> 2n.

2(A + 1)2 + 5A(z −
1

z
)2 > 0.

rn + rn+1

rn − rn+1
>

rn−1 + rn

rn−1 − rn
+ 2.

Az2n−6(z2 − 1)3(z2n−2 − A) < 0.
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Table 2  Example 2: The 
smallest and largest nodes of 
averaged Gauss rules QL

2n+1
 

for the measure d�̂  for several 
values of c and n 

c n x
L

1
x
L

n+1

5 −9.56252677710693(−1) 1+2.4854(−6)
10 −9.88375642391720(−1) 1+7.1313(−11)

−0.9 15 −9.94729022774889(−1) 1+2.2002(−15)
20 −9.97005429844440(−1) 1+7.0983(−20)
30 −9.98655844571235(−1) 1+8.0241(−29)
5 −9.58856005129239(−1) 1+4.7571(−15)
10 −9.88738301958147(−1) 1+2.3852(−28)

−0.1 15 −9.94840523653745(−1) 1+1.5417(−41)
20 −9.97053350474925(−1) 1+1.1112(−54)
30 −9.98670309976306(−1) 1+6.7814(−81)
5 −9.89801057715791(−1) 1+1.4330(−6)
10 −9.95868016309400(−1) 1+2.8739(−11)

0.9 15 −9.97638433414493(−1) 1+7.5439(−16)
20 −9.98445859437810(−1) 1+2.2173(−20)
30 −9.99167643851814(−1) 1+2.2594(−29)
5 −9.90420650413612(−1) 1+2.8099(−6)
10 −9.96118166775301(−1) 1+1.3923(−10)

1.1 15 −9.97767423021090(−1) 1+9.0197(−15)
20 −9.98521880161805(−1) 1+6.5413(−19)
30 −9.99200752415474(−1) 1+4.0571(−27)

Table 3  Example 3: The 
smallest and largest nodes of the 
generalized averaged Gauss rule 
Q

S

2n+1
 for the measure d�̂  for 

several values of c and n 

c n x
S

1
x
S

n+1

5 −9.56266728289617(−1) 1+5.2764(−6)
10 −9.88375642682738(−1) 1+1.5134(−10)

−0.9 15 −9.94729022774896(−1) 1+4.6694(−15)
20 −9.97005429844440(−1) 1+1.5064(−19)
30 −9.98655844571235(−1) 1+1.7029(−28)
5 −9.58856005129407(−1) 1+9.0860(−14)
10 −9.88738301958147(−1) 1+4.5558(−27)

−0.1 15 −9.94840523653745(−1) 1+2.9446(−40)
20 −9.97053350474925(−1) 1+2.1224(−53)
30 −9.98670309976306(−1) 1+1.2952(−79)
5 −9.89791207698374(−1) 1−5.9056(−6)
10 −9.95868016106703(−1) 1−1.1847(−10)

0.9 15 −9.97638433414487(−1) 1−3.1097(−15)
20 −9.98445859437810(−1) 1−9.1401(−20)
30 −9.99167643851814(−1) 1−9.3136(−29)
5 −9.90401924412408(−1) 1−1.1005(−5)
10 −9.96118165838869(−1) 1−5.4551(−10)

1.1 15 −9.97767423021027(−1) 1−3.5341(−14)
20 −9.98521880161805(−1) 1−2.5630(−18)
30 −9.99200752415474(−1) 1−1.5896(−26)
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xS
1
 , is inside the interval [−1, 1] , while the largest node, xS

n+1
 , is inside this interval 

only if c > 0.

3.3  Internality of the truncated quadrature formula Q(1)

n+2

This subsection considers the truncated generalized averaged quadrature rule Q(1)

n+2
 

that is obtained by removing the last n − 1 rows and columns of the symmetric tridi-
agonal matrix of order 2n + 1 , whose eigenvalues are the nodes of QS

2n+1
 . The nodes 

of Q(1)

n+2
 are the zeros of the polynomial

This formula is internal if its smallest zero, xt
1
 , and its largest zero, xt

n+2
 , both lie in 

[−1, 1] . This is equivalent to

see, e.g., [7] for a related discussion. By (11) and (14), we have

Theorem 6 The quadrature formula Q(1)

n+2
 is internal for all c and every n ⩾ 2.

Proof We will first show that xt
n+2

⩽ 1 , i.e., that (30) holds for x = 1 . It follows from 
(18) and (31) that this is equivalent to

By (19), we have

and, hence, by using (22), it follows that

tn+2(x) = (x − �̂n−1)P̂n+1(x) − �̂n+1P̂n(x).

(30)
(x − �̂n−1)P̂n+1(x)

�̂n+1P̂n(x)
⩾ 1 for x = ±1;

(31)2 ⋅
�Pn+1(x)

�Pn(x)
=

⎧⎪⎨⎪⎩

1−2rn+1

1−2rn
if x = 1,

−
2(1−ć)+

�
2+(2n+1)(1−ć)

�
(1+2rn+1)

2(1−ć)+
�
2+(2n−1)(1−ć)

�
(1+2rn)

if x = −1.

(32)1 ⩽
(1−�̂n−1)P̂n+1(1)

�̂n+1P̂n(1)
= 2(1−�̂n−1) ⋅

rn(1−2rn+1)

rn+1(1−2rn)
.

1 − 2rk

rk
=

1

rk
− 2 = −

(z + 1)(z2n−3 + A)

z2n−2 + A

rn(1−2rn+1)

rn+1(1−2rn)
=
(z2n−1 + A)(z2n−2 + A)

(z2n + A)(z2n−3 + A)
= 1 −

Az2n−3(z − 1)2(z + 1)

(z2n + A)(z2n−3 + A)

⩾1 −
A(z − 1)2(z + 1)

z2n + A
⩾ 1 −

|z|−3(|z| + 1)3

z2n + |z|−3 ⩾
1

2
.
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Moreover, by (23), we have 1−�𝛼n−1 > 1 , which together with the above inequality 
shows (32).

We proceed to show that xt
1
⩾ −1 , i.e., that (30) holds for x = −1 . We will first 

prove that

Introduce the quantities

Then using (31), the inequality (33) can be expressed as

which is equivalent to

Since a is positive, y and a + by are of the same sign, and

the proof of (33) is complete.
The inequality (30) readily follows for x = −1 if we can show that

In this case, it follows from (19) that

Therefore, it suffices to show that

i.e., that

The latter inequality is easy to verify. We have

(33)−
�Pn+1(−1)

�Pn(−1)
>

1 + 2rn+1

1 + 2rn
.

a = 2(1−ć), b = 2+(2n−1)(1−ć), x = 1+2rn+1, y = 1+2rn.

a + (a + b)x

a + by
>

x

y
,

a(xy + y − x)

y(a + by)
> 0.

xy + y − x = 1 + 4rn + 4rnrn+1 = −
2(z − 1)2

z
rn > 0,

1 + �̂n−1

�̂n

⋅
1 + 2rn+1

1 + 2rn
= 2(1+rn−rn−1)

rn(1 + 2rn+1)

rn+1(1 + 2rn)
⩾ 1.

rn(1 + 2rn+1)

rn+1(1 + 2rn)
=

(z2n−1 − A)(z2n−2 + A)

(z2n−3 − A)(z2n + A)
= 1 +

Az2n−3(z + 1)(z2 − 1)

(z2n−3 − A)(z2n + A)
> 1.

1+rn−rn−1 ⩾
1

2
,

rn−1 − rn ⩽
1

2
.
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Example 4 Table 4 displays the outermost nodes xt
1
 and xt

n+2
 of truncated generalized 

averaged Gauss quadrature formulas Q(1)

n+2
 for the measure d�̂  given by (12) com-

puted in high-precision arithmetic. In agreement with the results above, these nodes 
are inside the interval [−1, 1] , making these rules internal.

Finally, as noted in Section 1, we can obtain analogous results for the Cheby-
shev measure of the fourth kind (8) by replacing c by −c . In particular, the trun-
cated quadrature rule Q(1)

n+2
 is internal for the measure (8), whereas the formula 

QS
2n+1

 is internal if and only if c < 0.

4  The numerical performance of the quadrature rules

This section presents a few computed examples that illustrate the application 
of the quadrature rules QL

2n+1
 , QS

2n+1
 , and Q(1)

n+2
 to estimate the magnitude of the 

quadrature error (3) incurred when applying Gauss rules QG
n

 . Specifically, we will 
evaluate and compare the error estimates

rn−1 − rn =
Az2n−7(z2−1)2

2(z2n−4+A)(z2n−6+A)
⩽

z−3 ⋅ z2n−7(z2−1)2

2(z2n−4−z−3)(z2n−6−z−3)

=
z2n−4(z2−1)2

2(z2n−1−1)(z2n−3−1)
<

1

2z2n−4
⩽

1

2
.

Table 4  Example 4: The two 
outermost nodes of truncated 
generalized averaged quadrature 
rules Q(1)

n+2
 for the measure d�̂  

for several values of c and n 

c n x
t

1
x
t

n+2

5 −9.12569364812230(−1) 9.78480361103346(−1)
10 −9.68366438732778(−1) 9.92187753480289(−1)

−0.1 15 −9.83850057500048(−1) 9.96001055730301(−1)
20 −9.90230550263921(−1) 9.97576672634387(−1)
30 −9.95319162343563(−1) 9.98836424622862(−1)
5 −9.56573294152220(−1) 9.76882963334918(−1)
10 −9.83332991704801(−1) 9.91846036346949(−1)

0.9 15 −9.90812105799422(−1) 9.95877013278884(−1)
20 −9.94057904178699(−1) 9.97518446981950(−1)
30 −9.96851060157643(−1) 9.98817155910107(−1)
5 −9.20005057726076(−1) 9.77811816443556(−1)
10 −9.70252427064411(−1) 9.92042412994509(−1)

2 15 −9.84575257020554(−1) 9.95947976675102(−1)
20 −9.90580316621724(−1) 9.97551676433712(−1)
30 −9.95437815551145(−1) 9.98828124534837(−1)

539Numerical Algorithms (2023) 92:523–544



1 3

with the actual error magnitude (3) for several values of n and parameter c.

Example 5 Consider the evaluation of the integral

with

and � defined by (10). This integral can be expressed as the integral

with an analytic integrand by using the measure (9). We apply the quadrature rules 
of Section 2 to approximate the integral (36). Table 5 displays the error (3) in the 

(34)

EAG =|QL
2n+1

(f ) − QG
n
(f )|,

EGA =|QS
2n+1

(f ) − QG
n
(f )|,

ETGA =|Q(1)

n+2
(f ) − QG

n
(f )|

(35)∫
1

−1

g(x) dx

g(x) =
exp(3x) sin(10x)

x − 𝛿
⋅

√
1 + x

1 − x
, −1 < x < 1,

(36)I(f ) = ∫
1

−1

f (x) d�̃(x), f (x) = exp(3x) sin(10x),

Table 5  Example 5: The error 
estimates (34) and the actual 
error “Error” (3) for some 
values of c and n 

c n E
AG

≡ E
GA

E
TGA

Error I(f)

5 3.7614(−2) 8.7288(−2) 3.7678(−2)
10 1.2289(−4) 1.2269(−4) 1.2289(−4)

−2 15 2.2774(−11) 2.2768(−11) 2.2774(−11) 4.2632
20 1.2708(−19) 1.2707(−19) 1.2708(−19)
25 5.5115(−29) 5.5113(−29) 5.5115(−29)
30 3.1107(−39) 3.1106(−39) 3.1107(−39)
5 2.9851(−1) 2.8318(−1) 2.9851(−1)
10 2.3656(−5) 2.3636(−5) 2.3656(−5)

0.1 15 4.2795(−12) 4.2789(−12) 4.2795(−12) 1.5516(−1)
20 2.4317(−20) 2.4316(−20) 2.4317(−20)
25 1.0766(−29) 1.0766(−29) 1.0766(−29)
30 6.1886(−40) 6.1885(−40) 6.1886(−40)
5 2.7463 2.7105 2.7461
10 1.7011(−4) 1.7014(−4) 1.7011(−4)

0.9 15 3.2741(−11) 3.2742(−11) 3.2741(−11) 5.8310(−1)
20 1.9706(−19) 1.9706(−19) 1.9706(−19)
25 9.1082(−29) 9.1079(−29) 9.1082(−29)
30 5.4075(−39) 5.4074(−39) 5.4075(−39)
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column labeled “Error” in the Gauss formula QG
n
(f ) , as well as the error estimates 

(34). All the error estimates can be seen to be very accurate.

Example 6 We illustrate the approximation of the integral (35) with the integrand 
with

and � and � defined by (13). We express this integral as

g(x) = exp(3x) sin(10x) ⋅
x − 𝛾

x − 𝛿
⋅

√
1 + x

1 − x
, −1 < x < 1,

(37)I(f ) = ∫
1

−1

f (x) d�̂(x)

Table 6  Example 6: The error estimates (34) and the actual error “Error” (3) for some values of c and n 

c n E
AG

E
GA

E
TGA

Error I(f)

5 1.4122 1.4122 1.2883 1.4122
10 1.5852(−4) 1.5852(−4) 1.5834(−4) 1.5852(−4)

−2 15 2.8774(−11) 2.8774(−11) 2.8768(−11) 2.8774(−11) −2.4628(−1)
20 1.6213(−19) 1.6213(−19) 1.6211(−19) 1.6213(−19)
25 7.1183(−29) 7.1183(−29) 7.1180(−29) 7.1183(−29)
30 4.0629(−39) 4.0629(−39) 4.0628(−39) 4.0629(−39)
5 2.8613 2.8613 2.6992 2.8613
10 2.3900(−4) 2.3900(−4) 2.3879(−4) 2.3900(−4)

0.1 15 4.3211(−11) 4.3211(−11) 4.3204(−11) 4.3211(−11) 1.5953
20 2.4495(−19) 2.4495(−19) 2.4494(−19) 2.4495(−19)
25 1.0822(−28) 1.0822(−28) 1.0822(−28) 1.0822(−28)
30 6.2102(−39) 6.2102(−39) 6.2101(−39) 6.2102(−39)
5 3.8160 3.8162 3.7047 3.8159
10 2.6207(−4) 2.6207(−4) 2.6199(−4) 2.6207(−4)

0.9 15 4.8845(−11) 4.8845(−11) 4.8843(−11) 4.8845(−11) 1.1435
20 2.8578(−19) 2.8578(−19) 2.8577(−19) 2.8578(−19)
25 1.2940(−28) 1.2940(−28) 1.2940(−28) 1.2940(−28)
30 7.5673(−39) 7.5673(−39) 7.5671(−39) 7.5673(−39)
5 3.5076 3.5080 3.4008 3.5076
10 2.4347(−4) 2.4347(−4) 2.4339(−4) 2.4347(−4)

1.1 15 4.5301(−11) 4.5301(−11) 4.5298(−11) 4.5301(−11) 1.0848
20 2.6458(−19) 2.6458(−19) 2.6457(−19) 2.6458(−19)
25 1.1964(−28) 1.1964(−28) 1.1964(−28) 1.1964(−28)
30 6.9897(−39) 6.9897(−39) 6.9896(−39) 6.9897(−39)
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with the integrand given by (36) and the measure defined by (12). The quadrature 
rules of Section 3 are applied to approximate the integral (37). Table 6 shows the 
error (3) in the Gauss rules QG

n
(f ) , in the columns labeled “Error”, as well as the 

error estimates (34). The error estimates are seen to provide very accurate estimates 
of the actual error (3).

Example 7 We seek to approximate the integral (35) with the integrand

The parameters � and � are defined by (13). Similarly as above, we simplify the inte-
grand by using the measure (12). Then our task becomes to approximate the integral

by quadrature rules of Section 3. Table 7 displays the error (3) in the Gauss rules 
QG

n
(f ) in the column labeled “Error”, as well as computable error estimates (34). We 

note that the integrand in (38) is not defined for x > 1 , and recall that the averaged 

g(x) = ln(2 − x) ln(1 − x) ⋅
x − 𝛾

x − 𝛿
⋅

√
1 + x

1 − x
, −1 < x < 1.

(38)I(f ) = ∫
1

−1

f (x) d�̂(x), f (x) = ln(2 − x) ln(1 − x),

Table 7  Example 7: The error estimates (34) (when available) and the actual error (3), labeled “Error”, 
for some values of c and n 

c n E
AG

E
GA

E
TGA

Error I(f)

5 − − 8.9438(−2) 1.6648(−1)
10 − − 1.3056(−2) 3.7274(−2)

−0.9 15 − − 3.9011(−3) 1.4795(−2) −2.2311
20 − − 1.5916(−3) 7.4788(−3)
25 − − 7.7637(−4) 4.3369(−3)
30 − − 4.2578(−4) 2.7505(−3)
5 − 1.6426(−2) 8.8773(−3) 1.3939(−2)
10 − 2.1786(−3) 7.7454(−4) 1.8396(−3)

0.5 15 − 6.6314(−4) 1.7548(−4) 5.5956(−4) −3.3012(−1)
20 − 2.8392(−4) 5.9798(−5) 2.3953(−4)
25 − 1.4672(−4) 2.5659(−5) 1.2377(−4)
30 − 8.5446(−5) 1.2775(−5) 7.2081(−5)
5 − 6.7877(−3) 3.7641(−3) 5.8056(−3)
10 − 8.2640(−4) 2.9972(−4) 7.0359(−4)

1.1 15 − 2.4410(−4) 6.5609(−5) 2.0767(−4) 3.4925(−1)
20 − 1.0291(−4) 2.1952(−5) 8.7527(−5)
25 − 5.2680(−5) 9.3125(−6) 4.4801(−5)
30 − 3.0486(−5) 4.6003(−6) 2.5925(−5)
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rules QL
2n+1

 have a node larger than one for all values of c. They therefore cannot 
be evaluated. The generalized averaged rules QS

2n+1
 have a node larger than one for 

c < 0 , but are interior for c > 0 . They therefore can be used to approximate (38) 
when c > 0 . Finally, the truncated rules Q(1)

n+2
(f ) can be evaluated both for positive 

and negative values of c.

5  Conclusion

This paper studies quadrature rules associated with two kinds of modifications of 
Chebyshev measures of the third and fourth kinds. The internality of averaged and 
generalized averaged Gauss rules is established for some measures, as well as for 
truncated generalized averaged Gauss rules. Computed examples illustrate the the-
ory and show the quality of the computed error estimates.
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