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MAXIMUM OF THE MODULUS OF KERNELS
IN GAUSS-TURÁN QUADRATURES

GRADIMIR V. MILOVANOVIĆ, MIODRAG M. SPALEVIĆ, AND MIROSLAV S. PRANIĆ

Abstract. We study the kernels Kn,s(z) in the remainder terms Rn,s(f)
of the Gauss-Turán quadrature formulae for analytic functions on elliptical
contours with foci at ±1, when the weight ω is a generalized Chebyshev weight
function. For the generalized Chebyshev weight of the first (third) kind, it is
shown that the modulus of the kernel |Kn,s(z)| attains its maximum on the
real axis (positive real semi-axis) for each n ≥ n0, n0 = n0(ρ, s). It was stated
as a conjecture in [Math. Comp. 72 (2003), 1855–1872]. For the generalized
Chebyshev weight of the second kind, in the case when the number of the
nodes n in the corresponding Gauss-Turán quadrature formula is even, it is
shown that the modulus of the kernel attains its maximum on the imaginary
axis for each n ≥ n0, n0 = n0(ρ, s). Numerical examples are included.

1. Introduction

We consider the Gauss-Turán quadrature formula with multiple nodes

(1.1)
∫ 1

−1

f(t)ω(t)dt =
n∑

ν=1

2s∑
i=0

Ai,νf (i)(τν) + Rn,s(f) (n ∈ N; s ∈ N0)

where ω is a nonnegative and integrable function on the interval (−1, 1), which is
exact for all algebraic polynomials of degree at most 2(s + 1)n − 1. The nodes τν

in (1.1) must be zeros of the s-orthogonal polynomials with respect to the weight
function ω(t). The s-orthogonal polynomials πn = πn,s with respect to the weight
function ω(t) are polynomials which satisfy the following orthogonality conditions:∫ 1

−1

πn(t)2s+1tkω(t)dt = 0 , k = 0, 1, . . . , n − 1.

Numerically stable methods for constructing nodes τν and coefficients Ai,ν can
be found in [3, 10, 13]. For more details on quadrature formulae with multiple
nodes see [7] and [9].

Received by the editor August 15, 2006 and, in revised form, December 4, 2006.
1991 Mathematics Subject Classification. Primary 41A55; Secondary 65D30, 65D32.
Key words and phrases. Gauss-Turán quadrature, Chebyshev weight functions, remainder term

for analytic functions, error estimate, contour integral representation, confocal ellipses, kernel.
The authors were supported in part by the Swiss National Science Foundation (SCOPES Joint

Research Project No. IB7320-111079 “New Methods for Quadrature”) and the Serbian Ministry of
Science (Research Projects: “Approximation of linear operators” (No. #144005) & “Orthogonal
systems and applications” (No. #144004C)).

c©2007 American Mathematical Society

985



986 G. V. MILOVANOVIĆ, M. M. SPALEVIĆ, AND M. S. PRANIĆ

Let Γ be a simple closed curve in the complex plane surrounding the interval
[−1, 1] and let D be its interior. If the integrand f is analytic on D and con-
tinuous on D, then the remainder term Rn,s in (1.1) admits the contour integral
representation (see [14], [11])

(1.2) Rn,s(f) =
1

2πi

∮
Γ

Kn,s(z)f(z)dz.

The kernel is given by Kn,s(z) = ρn,s(z)/[πn,s(z)]2s+1, z /∈ [−1, 1], where

ρn,s(z) =
∫ 1

−1

[πn,s(t)]2s+1

z − t
ω(t)dt.

The modulus of the kernel is symmetric with respect to the real axis, i.e.,
|Kn,s(z)| = |Kn,s(z)|. If the weight function in (1.1) is even, the modulus of the
kernel is symmetric with respect to both axes, i.e., |Kn,s(−z)| = |Kn,s(z)| (see [11,
Lemma 2.1]).

A particularly interesting case is the Chebyshev weight ω1(t) = (1 − t2)−1/2.
In 1930, S. Bernstein [1] showed that the monic Chebyshev polynomial T̂n(t) =
Tn(t)/2n−1 minimizes all integrals of the form∫ 1

−1

|πn(t)|k+1

√
1 − t2

dt (k ≥ 0).

This means that the Chebyshev polynomials Tn are s-orthogonal on (−1, 1) for each
s ≥ 0. Ossicini and Rosati [14] found three other weights ωk(t) (k = 2, 3, 4) for
which the s-orthogonal polynomials can be identified as Chebyshev polynomials of
the second, third and fourth kind: Un, Vn, and Wn, which are defined by

Un(cos θ) =
sin(n + 1)θ

sin θ
, Vn(cos θ) =

cos(n + 1
2 )θ

cos 1
2θ

, Wn(cos θ) =
sin(n + 1

2 )θ
sin 1

2θ
,

respectively (cf. Gautschi and Notaris [4]). However, these weights depend on s,

ω2(t) = (1 − t2)1/2+s, ω3(t) =
(1 + t)1/2+s

(1 − t)1/2
, ω4(t) =

(1 − t)1/2+s

(1 + t)1/2
.

It is easy to see that Wn(−t) = (−1)nVn(t), so that in the investigation it is sufficient
to study only the first three generalized Chebyshev weights ωk(t), k = 1, 2, 3.

The integral representation (1.2) leads directly to the error estimate

|Rn,s| ≤
l(Γ)
2π

(
max
z∈Γ

|Kn,s(z)|
) (

max
z∈Γ

|f(z)|
)

,

where l(Γ) denotes the length of the contour Γ. First maximum depends only on
the quadrature rule (i.e., on ω) and not on f . The first unified approach described
above was taken by Donaldson and Elliot [2]. They applied it to several kinds of
interpolatory and non-interpolatory quadrature rules. Error bounds for Gaussian
quadratures of analytic functions were studied by Gautschi and Varga [5] (see also
[6]), and later by Schira [15, 16], Hunter and Nikolov [8].

As a contour Γ we take an ellipse Eρ with foci at points ±1 and a sum of semi-axes
ρ > 1,

Eρ =
{

z ∈ C : z =
1
2

(
u + u−1

)
, 0 ≤ θ ≤ 2π

}
, u = ρeiθ.
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When ρ → 1, the ellipse shrinks to the interval [−1, 1], while with increasing ρ
it becomes more and more circle-like.

When ω is the generalized Chebyshev weight of the first (third) kind, it is con-
jectured, on the basis of numerical experiments (see [11]), that the modulus of
the kernel attains its maximum on the real axis (positive real semi-axis) for each
n ≥ n0, n0 = n0(ρ, s).

In this paper we prove those conjectures. Moreover, for the generalized Cheby-
shev weight of the second kind, in the case when the number of the nodes n in the
corresponding Gauss-Turán quadrature formula is even, we show that the modulus
of the kernel attains its maximum on the imaginary axis for each n ≥ n0, n0 =
n0(ρ, s). Numerical examples are included.

2. The maximum modulus of the kernel on confocal ellipses

We study the magnitude of |Kn,s(z)| on the contour Eρ for the generalized Cheby-
shev weight functions of the first, second and third kind, respectively. The partic-
ular case |Kn,0(z)| was analyzed in details by Gautschi et al. [5, 6].

2.1. The weight function ω1(t) = (1 − t2)−1/2. An explicit representation of
the kernel K

(1)
n,s(z) on the ellipse Eρ for the weight function ω1(t) was given by

Milovanović and Spalević in [11], as well as

(2.1)
∣∣∣K(1)

n,s(z)
∣∣∣ =

21−sπ

ρn

∣∣∣Z(1)
n,s(ρeiθ)

∣∣∣
(a2 − cos 2θ)1/2(a2n + cos 2nθ)1/2+s

, z ∈ Eρ,

where

(2.2) aj = aj(ρ) =
1
2

(
ρj + ρ−j

)
, j ∈ N,

and

(2.3) Z(1)
n,s(u) =

s∑
k=0

(
2s + 1

s + k + 1

)
u−2nk =

s∑
k=0

(
2s + 1

k

)
u−2n(s−k).

The weight function ω1(t) is even, so we can take θ ∈ [0, π/2].
The following result was conjectured in [11]:

Theorem 2.1. For each fixed ρ > 1 and s ∈ N0 there exists n0 = n0(ρ, s) such
that

max
z∈Eρ

∣∣∣K(1)
n,s(z)

∣∣∣ = K(1)
n,s

(
1
2
(ρ + ρ−1)

)
for each n ≥ n0.

Proof. The inequality |Z(1)
n,s(ρeiθ)| ≤ Z

(1)
n,s(ρ) immediately follows from (2.3). Be-

cause of that and (2.1), it is sufficient to prove

(2.4)
1

(a2 − cos 2θ)1/2(a2n + cos 2nθ)1/2+s
≤ 1

(a2 − 1)1/2(a2n + 1)1/2+s

for a sufficiently large n (n ≥ n0(ρ, s)) and θ ∈ (0, π/2], where aj are given by (2.2).
By squaring (2.4) it is reduced to

(2.5) (a2 − 1)(a2n + 1)2s+1 ≤ (a2 − cos 2θ)(a2n + cos 2nθ)2s+1.

The following transformation will be used

(2.6) a2 − cos 2θ = (a2 − 1) + 2 sin2 θ.
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Further, we will use

(a2n + cos 2nθ)2s+1 =
(
(a2n + 1) − 2 sin2 nθ

)2s+1

= (a2n + 1)2s+1 +
2s+1∑
k=1

(−2)k

(
2s + 1

k

)
(a2n + 1)2s+1−k sin2k nθ,

i.e.,

(2.7) (a2n + cos 2nθ)2s+1 = (a2n + 1)2s+1 − 2(sin2 nθ)Eρ,s(n, θ),

where

Eρ,s(n, θ) =
2s+1∑
k=1

(−2)k−1

(
2s + 1

k

)
(a2n + 1)2s+1−k sin2k−2 nθ (≥ 0).

It is easy to see that Eρ,s(n, θ) can be represented in the form

Eρ,s(n, θ) = (2s + 1)(a2n + 1)2s +
2s+1∑
k=2

(−2)k−1

(
2s + 1

k

)
(a2n + 1)2s+1−k sin2k−2 nθ,

i.e.,

Eρ,s(n, θ) = (2s + 1)(a2n + 1)2s(2.8)

−
s∑

k=1

22k−1

(
2s + 1

2k

)
(a2n + 1)2s−2k+1 sin4k−2 nθ

+
s∑

k=1

22k

(
2s + 1
2k + 1

)
(a2n + 1)2s−2k sin4k nθ.

Using (2.6) and (2.7), the inequality (2.5) is reduced to

(a2 − 1) (a2n + 1)2s+1

≤ [(a2 − 1) + 2 sin2 θ]
[
(a2n + 1)2s+1 − 2 (sin2 nθ) Eρ,s(n, θ)

]
,

i.e.,
2 sin2 θ (a2n + 1)2s+1 − 2 sin2 nθ [(a2 − 1) + 2 sin2 θ] Eρ,s(n, θ) ≥ 0.

Dividing this inequality by 2 sin2 θ, it becomes

(2.9) (a2n + 1)2s+1 − sin2 nθ

sin2 θ
[(a2 − 1) + 2 sin2 θ] Eρ,s(n, θ) ≥ 0.

By using the well-known fact | sin nθ/ sin θ| ≤ n, it is easy to see that

(2.10)
sin2 nθ

sin2 θ
[(a2−1)+2 sin2 θ] = (a2−1)

sin2 nθ

sin2 θ
+2 sin2 nθ ≤ (a2−1)n2+2.

According to (2.8), we conclude that

Eρ,s(n, θ) − (2s + 1)(a2n + 1)2s =
s∑

k=1

4k(2s + 1)!
(2k)!(2s − 2k)!

(a2n + 1)2s−2k

×
(

sin2 nθ

2k + 1
− a2n + 1

2(2s − 2k + 1)

)
sin4k−2 nθ.

Since sin4k−2 nθ ≤ 1 and

sin2 nθ

2k + 1
− a2n + 1

2(2s − 2k + 1)
≤ 1

2k + 1
− a2n + 1

2(2s − 2k + 1)
,
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from the previous equality we obtain

Eρ,s(n, θ)−(2s+1)(a2n+1)2s≤
s∑

k=1

4k(a2n+1)2s−2k

[(
2s + 1
2k + 1

)
− a2n + 1

2

(
2s+1
2k

)]
.

Therefore,

Eρ,s(n, θ) ≤
s∑

k=0

4k

(
2s + 1
2k + 1

)
(a2n + 1)2s−2k − 1

2

s∑
k=1

4k

(
2s + 1

2k

)
(a2n + 1)2s−2k+1.

Using the last inequality and (2.10), we conclude that the left-hand side of (2.9)
is greater than or equal to F (n) ≡ Fρ,s(n), where

Fρ,s(n) := (a2n + 1)2s+1 −
[
(a2 − 1)n2 + 2

]
×

[
s∑

k=0

4k

(
2s + 1
2k + 1

)
(a2n + 1)2s−2k − 1

2

s∑
k=1

4k

(
2s + 1

2k

)
(a2n + 1)2s−2k+1

]
.

Since Fρ,s(n) (ρ, s – are fixed) is continuous on R and limn→+∞ Fρ,s(n) = +∞,
it follows that Fρ,s(n) > 0, for each n > t, where t is the largest zero of Fρ,s(n).
For n0 we can take [t] + 1. �

Table 1. The smallest possible (s.p.) values of n0 and their ap-
proximations [t] + 1 (t is the largest zero of F )

ρ = 1.05 ρ = 1.3
s [t] + 1 the s.p. n0 [t] + 1 the s.p. n0

1 41 34 8 7
2 50 46 10 9
3 56 53 11 10
4 59 57 12 11
5 63 61 12 12
6 65 63 13 12
7 67 66 13 13
8 69 68 13 13
9 70 69 14 13

The proof of Theorem 2.1 is not only of theoretical, but also of practical impor-
tance. We can use the function F (n) from the proof to estimate n0. Numerical
values of [t] + 1 (t is the largest zero of F ) for some values of ρ and s are presented
in Tables 1 and 2. The smallest possible (s.p.) values of n0 are also presented. We
can see that the smallest possible n0 is estimated by [t] + 1 very well.

A typical graph illustrating the relationship between n and F (n) is given in
Figure 1. Here, ρ = 1.05, s = 1; n ∈ [1, 42].

2.2. The weight function ω2(t) = (1− t2)s+1/2, s ∈ N0. An explicit representa-
tion of the kernel K

(2)
n,s(z) on the ellipse Eρ for the weight function ω2(t) was given

in [11], as well as

(2.11) |K(2)
n,s(z)| =

π

4sρn+1

[
a2 − cos 2θ

a2n+2 − cos (2n + 2)θ

]s+1/2

|Z(2)
n,s(ρeiθ)|,
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Table 2. The smallest possible (s.p.) values of n0 and their ap-
proximations [t] + 1 (t is the largest zero of F )

s = 1 s = 5
ρ [t] + 1 the s.p. n0 [t] + 1 the s.p. n0

1.01 200 165 305 295
1.02 101 83 153 148
1.03 68 56 103 100
1.04 51 42 78 75
1.05 41 34 63 61
1.06 35 29 52 51
1.07 30 25 45 44
1.08 26 22 40 39
1.09 24 20 36 35
1.1 21 18 32 31
1.2 11 10 17 17
1.3 8 7 12 12
1.4 6 6 10 9
1.5 6 5 8 8
1.6 5 4 7 7
1.7 4 4 6 6
1.8 4 4 6 6
1.9 4 3 5 5
2.0 4 3 5 5

10 20 30 40

�1000

�500

500

1000

1500

Figure 1. The typical graph of F (n).

where

(2.12) Z(2)
n,s(ρeiθ) =

s∑
k=0

(−1)k

(
2s + 1

s + k + 1

)
(ρeiθ)−2(n+1)k.

There we proved the following statement:

Theorem 2.2. If ω2(t) = (1 − t2)s+1/2 on (−1, 1), s ∈ N0, and n is odd, then

max
z∈Eρ

|K(2)
n,s(z)| =

∣∣∣ K(2)
n,s

( i

2
(
ρ − ρ−1

))∣∣∣ .

In this section we consider the case when n is even.
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Theorem 2.3. For each fixed ρ > 1 and s ∈ N0 there exists even n0 = n0(ρ, s)
such that

max
z∈ερ

|K(2)
n,s(z)| =

∣∣∣ K(2)
n,s

( i

2
(
ρ − ρ−1

)) ∣∣∣
for each even n ≥ n0.

Proof. First we prove the inequality

(2.13) |Z(2)
n,s(ρeiθ)| ≤ Z(2)

n,s(iρ) , θ ∈ [0, π/2), n is even.

We note that (see [11, Eq. (3.13)])

Z(2)
n,s(u) =

[(s−1)/2]∑
ν=0

(
2ν+1∑
k=2ν

(−1)k

(
2s + 1

s + k + 1

)
u−2(n+1)k

)
+ ζn,s(u)

=
[(s−1)/2]∑

ν=0

(
2s + 1

s + 2ν + 1

)
u−4ν(n+1)

(
1 − αu−2(n+1)

)
+ ζn,s(u),

where u = ρeiθ, α = (s − 2ν)/(s + 2ν + 2), 0 < α < 1, and

ζn,s(u) = ζn,s(ρeiθ) :=
{

0 if s is odd,
(ρeiθ)−2(n+1)s if s is even,

as well as |ζn,s(ρeiθ)| = ζn,s(iρ).
Since

|Z(2)
n,s(u)| ≤

[(s−1)/2]∑
ν=0

(
2s + 1

s + 2ν + 1

) ∣∣∣u−4ν(n+1)
(
1 − αu−2(n+1)

)∣∣∣ + |ζn,s(u)| ,

introducing q = αρ−2(n+1), now we get

|Z(2)
n,s(u)| ≤

[(s−1)/2]∑
ν=0

(
2s + 1

s + 2ν + 1

)
ρ−4ν(n+1)

√
1 − 2q cos(2n + 2)θ + q2 + ζn,s(iρ)

≤
[(s−1)/2]∑

ν=0

(
2s + 1

s + 2ν + 1

)
ρ−4ν(n+1)(1 + q) + ζn,s(iρ)

=
[(s−1)/2]∑

ν=0

(
2s + 1

s + 2ν + 1

)
(iρ)−4ν(n+1)

(
1 − α(iρ)−2(n+1)

)
+ ζn,s(iρ)

= Z(2)
n,s(iρ).

Therefore, in order to prove the statement, on the basis of (2.11) and (2.13), it
is sufficient to prove

a2 − cos 2θ

a2n+2 − cos (2n + 2)θ
≤ a2 + 1

a2n+2 + 1
, θ ∈ [0, π/2), n is even,

for sufficiently large n (n ≥ n0; n0 = n0(ρ) – even). This is equivalent to

a2n+2 + a2n+2 cos 2θ − a2 − a2 cos(2n + 2)θ + cos 2θ − cos(2n + 2)θ ≥ 0,

and furthermore to

a2n+2(1 + cos 2θ) − a2(1 + cos 2(n + 1)θ) + (1 + cos 2θ) − (1 + cos 2(n + 1)θ) ≥ 0,
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introducing half-angles, to (a2n+2 + 1) cos2 θ − (a2 + 1) cos2(n + 1)θ ≥ 0, and to

(2.14) (a2n+2 + 1) − cos2(n + 1)θ
cos2 θ

(a2 + 1) ≥ 0.

Since | cos(n + 1)θ/ cos θ| ≤ n + 1 for even n, we have

(a2n+2 + 1) − cos2(n + 1)θ
cos2 θ

(a2 + 1) ≥ (a2n+2 + 1) − (n + 1)2(a2 + 1),

which means that (2.14) holds if (a2n+2 + 1) − (n + 1)2(a2 + 1) ≥ 0.
Since a2 + 1 = 2a2

1 and a2n+2 + 1 = 2a2
n+1, the last inequality is equivalent to

a2
n+1 − [(n + 1)a1]2 ≥ 0 or to an+1 − (n + 1)a1 ≥ 0. Substituting a1, an+1 by (2.2),

this inequality becomes

Gρ(n) ≡ G(n) := ρn+1 − (n + 1)ρ − (n + 1)ρ−1 + ρ−(n+1) ≥ 0.

Since Gρ(n) (ρ – is fixed) is continuous on R and limn→+∞ Gρ(n) = +∞, it
follows that Gρ(n) > 0, for each n > t, where t is the largest zero of Gρ(n). For n0

we can take the smallest even integer which is greater than or equal to t . �

Let t be the smallest even integer ≥ t. If t is an even integer, we have t = t,
otherwise

t :=
{

[t] + 1 if [t] is odd,
[t] + 2 if [t] is even.

We can use the function G(n) from the proof to estimate n0. Numerical values of
t for some values of ρ are presented in Table 3. The smallest possible (s.p.) values
of n0, for s = 1, . . . , 10, are also presented in the same table. We can see that the
smallest possible n0 (which is even) is estimated very well, independently of s.

Finally, observe that the function Gρ(n) ≡ G(n) in this case has rather simple
form. Because of G(0) = 0, and G′′(n) = 2an+1 log2 ρ > 0, for n ∈ [0, +∞), we
conclude that G(n) has at most one zero t in the interval (0, +∞).

2.3. The weight function ω3(t) = (1 + t)1/2+s(1 − t)−1/2, s ∈ N0. An explicit
representation of the kernel K

(3)
n,s(z) on the ellipse Eρ for the generalized Chebyshev

weight function of the third kind ω3(t) was given in [11], as well as

(2.15)
∣∣∣K(3)

n,s(z)
∣∣∣ =

21−sπ

ρn+1/2

(a1 + cos θ)s+1
∣∣∣Z(3)

n,s(ρeiθ)
∣∣∣

(a2 − cos 2θ)1/2(a2n+1 + cos (2n + 1)θ)1/2+s
,

where

Z(3)
n,s (u) =

s∑
k=0

(
2s + 1

s + k + 1

)
u−(2n+1)k.

The following result was conjectured in [11]:

Theorem 2.4. For each fixed ρ > 1 and s ∈ N0 there exists n0 = n0(ρ, s) such
that

max
z∈Eρ

∣∣∣K(3)
n,s(z)

∣∣∣ = K(3)
n,s

(
1
2
(ρ + ρ−1)

)
for each n ≥ n0.
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Table 3. The smallest possible (s.p.) values of n0 and their ap-
proximations t (t is the largest zero of G)

the s.p. n0

ρ s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8 s = 9 s = 10 t

1.01 726 726 728 728 728 730 730 730 730 730 732
1.02 324 324 324 326 326 326 326 326 326 326 328
1.03 200 202 202 202 202 202 202 202 202 202 204
1.04 142 142 144 144 144 144 144 144 144 144 144
1.05 110 110 110 110 110 110 110 110 110 110 110
1.06 88 88 88 88 88 88 88 88 88 88 88
1.07 72 72 74 74 74 74 74 74 74 74 74
1.08 62 62 62 62 62 62 62 62 62 62 62
1.09 54 54 54 54 54 54 54 54 54 54 54
1.1 48 48 48 48 48 48 48 48 48 48 48
1.2 20 20 20 20 20 20 20 20 20 20 20
1.3 12 12 12 12 12 12 12 12 12 12 12
1.4 8 8 8 8 8 8 8 8 8 8 8
1.5 6 6 6 6 6 6 6 6 6 6 6
1.6 4 4 6 6 6 6 6 6 6 6 6
1.7 4 4 4 4 4 4 4 4 4 4 4
1.8 4 4 4 4 4 4 4 4 4 4 4
1.9 2 2 2 2 4 4 4 4 4 4 4
2. 2 2 2 2 2 2 2 2 2 2 2
2.5 2 2 2 2 2 2 2 2 2 2 2

Proof. Because of (2.15), it is sufficient to prove

(a1 + cos θ)s+1
∣∣∣Z(3)

n,s(ρeiθ)
∣∣∣

(a2 − cos 2θ)1/2(a2n+1 + cos (2n + 1)θ)1/2+s
≤ (a1 + 1)s+1Z

(3)
n,s(ρ)

(a2 − 1)1/2(a2n+1 + 1)1/2+s

for sufficiently large n (n ≥ n0(ρ, s)) and θ ∈ (0, π], where aj are given by (2.2).
It is obvious that for each n ≥ 1, we have (a1 + cos θ)s+1 ≤ (a1 + 1)s+1. On the

basis of the results from Subsection 2.1, we obtain∣∣∣Z(3)
n,s(ρeiθ)

∣∣∣
(a2 − cos 2θ)1/2(a2n+1 + cos (2n + 1)θ)1/2+s

=

∣∣∣Z(1)
n+1/2,s(ρeiθ)

∣∣∣
(a2 − cos 2θ)1/2(a2(n+1/2) + cos (2(n + 1/2))θ)1/2+s

≤
Z

(1)
n+1/2,s(ρ)

(a2 − 1)1/2(a2(n+1/2) + 1)1/2+s
=

Z
(3)
n,s(ρ)

(a2 − 1)1/2(a2n+1 + 1)1/2+s
,

for each n ≥ n0 (n0 = n0(ρ, s)). Therefore, we conclude that∣∣∣∣K(3)
n,s

(
1
2

(
ρeiθ + ρ−1e−iθ

))∣∣∣∣ ≤ K(3)
n,s

(
1
2

(
ρ + ρ−1

))
,

for each n ≥ n0 (n0 = n0(ρ, s)).
If t is the largest zero of F , for n0 we can take [(2t − 1)/2] + 1. �
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P.O. Box 73, 18000 Nǐs, Serbia
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