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Abstract

For analytic functions the remainder term of Gauss–Radau quadrature formulae can be represented as a contour integral with a
complex kernel. We study the kernel on elliptic contours with foci at the points ±1 and a sum of semi-axes � > 1 for the Chebyshev
weight function of the second kind. Starting from explicit expressions of the corresponding kernels the location of their maximum
modulus on ellipses is determined. The corresponding Gautschi’s conjecture from [On the remainder term for analytic functions of
Gauss–Lobatto and Gauss–Radau quadratures, Rocky Mountain J. Math. 21 (1991), 209–226] is proved.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we prove a conjecture of Gautschi [1] for the Gauss–Radau quadrature formula

∫ 1

−1
w(t)f (t) dt =

N∑
�=1

��f (��) + RN(f )w, (1.1)

with respect to the Chebyshev weight function of the second kind w(t) = w2(t) = √
1 − t2 and with a fixed node at

−1 (or 1).
Let � be a simple closed curve in the complex plane surrounding the interval [−1, 1] and D= int � its interior. If the

integrand f is analytic in D and continuous on D, then the remainder term RN(f )w in (1.1) admits the contour integral
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representation

RN(f )w = 1

2�i

∮
�
KN(z; w)f (z) dz, (1.2)

where the kernel is given by

KN(z; w) = 1

�N(z; w)

∫ 1

−1

w(t)�N(t; w)

z − t
dt, z /∈ [−1, 1],

and �N(z; w) =∏N
�=1(z − ��). It is clear that

KN(z; w) = KN(z; w). (1.3)

The integral representation (1.2) leads to the error estimate

|RN(f )w|� �(�)

2�

(
max
z∈�

|KN(z; w)|
)(

max
z∈�

|f (z)|
)

, (1.4)

where �(�) is the length of the contour �. In order to get estimate (1.4), one has to study the magnitude of |KN(z; w)|
on �. Note that the previous formulae hold for every interpolatory quadrature rule with mutually different nodes on
[−1, 1].

Many authors have used (1.4) to derive bounds of |RN(f )w|. Two choices of the contour � have been widely used:
(1) a circle Cr with a center at the origin and a radius r (> 1), i.e., Cr = {z : |z| = r}, r > 1, and (2) an ellipse E� with
foci at the points ±1 and a sum of semi-axes � > 1,

E� = {z ∈ C|z = 1
2 (�ei	 + �−1e−i	), 0�	 < 2�}. (1.5)

When � → 1 the ellipse shrinks to the interval [−1, 1], while with increasing � it becomes more and more circle-like.
The advantage of the elliptical contours, compared to the circular ones, is that such a choice needs the analyticity of f
in a smaller region of the complex plane, especially when � is near 1.

Since the ellipse E� has length �(E�) = 4
−1E(
), where 
 is the eccentricity of E�, i.e., 
 = 2/(� + �−1), and

E(
) =
∫ �/2

0

√
1 − 
2sin2	 d	

is the complete elliptic integral of the second kind, estimate (1.4) reduces to

|RN(f )w|� 2E(
)

�


(
max
z∈E�

|KN(z; w)|
)

‖f ‖�, 
 = 2

� + �−1
, (1.6)

where ‖f ‖� = maxz∈E� |f (z)|. As we can see, the bound on the right-hand side in (1.6) is a function of �, so it can be
optimized with respect to � > 1.

This approach was discussed first for Gaussian quadrature rules, in particular with respect to the Chebyshev weight
functions (cf. [4,5])

w1(t) = 1√
1 − t2

, w2(t) =
√

1 − t2, w3(t) =
√

1 + t

1 − t
, w4(t) =

√
1 − t

1 + t
,

and later has been extended to Bernstein–Szegő weight functions [8] and some symmetric weight functions including
especially the Gegenbauer weight functions [10], as well as to Gauss–Lobatto and Gauss–Radau (cf. [1–3,6,9]), and
to Gauss–Turán (cf. [7]) quadrature rules.

In [1] Gautschi considered Gauss–Radau and Gauss–Lobatto quadrature rules relative to the four Chebyshev weight
functions wi , i = 1, 2, 3, 4, and derived explicit expressions of the corresponding kernels KN(z; wi), i = 1, 2, 3, 4, in
terms of the variable u = �ei	; they are the key for determining the maximum point of |KN(z; wi)|, i = 1, 2, 3, 4, on
�=E� given by (1.5). Note that z=(u+u−1)/2. For Gauss–Lobatto quadratures it was proved that |KN(z; w1)| attains



G.V. Milovanović et al. / Journal of Computational and Applied Mathematics 218 (2008) 281–289 283

its maximum on E� on the real axis (cf. [1, Theorem 4.1]). For w2, w3 and w4 only empirical results and conjectures
on the location of the maximum point on E� were presented. These conjectures have been proved by Schira (see [9]).

For Gauss–Radau quadratures with a fixed node at −1, Gautschi proved that the corresponding kernel KN(z; w) for
Chebyshev weight functions w = w1 and w = w4 attains its maximum modulus on E� on the negative real axis (cf. [1,
Theorems 4.4 and 4.5]). For the remaining cases w = w2 and w = w3 only empirical results and conjectures on the
location of the maximum point on E� for the corresponding kernels are presented in [1]. They are also mentioned in
[9], but without the proof. In this paper we derive an analytic proof of the conjecture for w = w2.

Thus, we are concerned with the Gauss–Radau quadrature rule (1.1) with respect to the weight function w=w2 with
N = n + 1 nodes and a fixed node at −1 or 1. Because of symmetry, it is enough to consider only one case, e.g., when
�1 = −1. It is well known that the node polynomial in this case can be expressed as

�n+1(z; w) = (1 + z)�n(z; wR),

where �n(·; wR) denotes the monic polynomial of degree n orthogonal with respect to the weight function wR(t) =
(1 + t)w2(t) = (1 + t)3/2(1 − t)1/2.

2. The maximum of the kernel for Chebyshev weight function of the second kind

Gautschi [1, Eq. (3.16)] derived the explicit representation of the kernel on E�

Kn+1(z; w2) = �

un+1

(u − u−1)(u−1 + (n + 2)/(n + 1))

un+2 − u−(n+2) + ((n + 2)/(n + 1))(un+1 − u−(n+1))
, (2.1)

where z = (u + u−1)/2 and u = �ei	. Using (2.1) we can determine the modulus of the kernel on E�. It is easy to prove

|u − u−1| = √
2
√

a2 − cos 2	, (2.2)∣∣∣∣u−1 + n + 2

n + 1

∣∣∣∣= 2√
�

√
n + 2

n + 1

√
d − sin2 	

2
, (2.3)

where

aj = aj (�) = 1
2 (�j + �−j ), j ∈ N, � > 1, (2.4)

and

d = d(�) = 1

4

(
n + 2

n + 1
� + 2 + n + 1

n + 2
�−1

)
. (2.5)

Further,∣∣∣∣un+2 − u−(n+2) + n + 2

n + 1

(
un+1 − u−(n+1)

)∣∣∣∣
2

=
[(

�n+2 − �−(n+2)
)

cos(n + 2)	 + n + 2

n + 1

(
�n+1 − �−(n+1)

)
cos(n + 1)	

]2

+
[(

�n+2 + �−(n+2)
)

sin(n + 2)	 + n + 2

n + 1

(
�n+1 + �−(n+1)

)
sin(n + 1)	

]2

= [�2(n+2) + �−2(n+2) + 2 − 4 cos2(n + 2)	]

+
(

n + 2

n + 1

)2 [
�2(n+1) + �−2(n+1) + 2 − 4 cos2(n + 1)	

]

+ 2

(
n + 2

n + 1

)[(
�2n+3 + �−(2n+3)

)
cos 	 −

(
� + �−1

)
cos(2n + 3)	

]
= 4

n + 2

n + 1
B(	),
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where

B(	) = B(�, 	) = n + 1

n + 2
(a2

n+2 − cos2(n + 2)	)

+ n + 2

n + 1
(a2

n+1 − cos2(n + 1)	) + a2n+3 cos 	 − a1 cos(2n + 3)	. (2.6)

In this way we get

|Kn+1(z; w2)| = �
√

2

�n+3/2

[
(a2 − cos 2	)(d − sin2(	/2))

B(	)

]1/2

. (2.7)

For the location of the maximum point of |Kn+1(z; w2)| on E� the following conjectures are presented in [1, p. 224]: if
n�3, the maximum is attained at z=− 1

2 (�+�−1) on every ellipse E�, � > 1; if n�4 there exist parameters �0 =�0(n)

and �′
0=�′

0(n), �0 > �′
0, such that the maximum is attained at z=− 1

2 (�+�−1) when � ∈ (1, �′
0)∪(�0, +∞). Otherwise,

the maximum point moves on the ellipse E� from somewhere close to the imaginary axis to the negative real axis as �
increases.

With increasing n the parameters �′
0 converge to one rather rapidly (cf. [1, Table 4.2]). Hence, the part of the conjecture

when n�4 and � ∈ (1, �′
0) is less important for practical use because the corresponding maximum tends to infinity for

increasing n and � ∈ (1, �′
0). Therefore, the error bound (1.4) is rather poor in this case.

Theorem 2.1. For each integer n�4 there exists �0 = �0(n) such that the kernel of the (n + 1)-point Gauss–Radau
formula (with fixed node at −1) for the Chebyshev weight function of the second kind attains its maximum modulus on
E� on the negative real axis when � > �0. For n = 1, 2, 3, the maximum of the kernel Kn+1(z; w2) attains its maximum
on the negative real axis on every ellipse E� (� > 1). The maximum is given by

max
z∈E�

|Kn+1(z; w2)| =
∣∣∣∣Kn+1

(
−1

2
(� + �−1); w2

)∣∣∣∣
= �

�n+1

(� − �−1)(((n + 2)/(n + 1)) − �−1)

�n+2 − �−(n+2) − ((n + 2)/(n + 1))(�n+1 − �−(n+1))
.

Proof. First we show that the denominator of the previous fraction, i.e., the function

V (�, n) = �n+2 − �−(n+2) − n + 2

n + 1
(�n+1 − �−(n+1))

is always positive (� > 1, n ∈ N). If n is fixed (V (�) := V (�, n)), we get V ′(�) = (n + 2)(� − 1)(�n − �−(n+3)) > 0
and V (1) = 0.

We consider four separate cases: n = 1, n = 2, n = 3, and n�4.
Case n = 1: Using (2.1) we get

|K2(z; w2)| =
∣∣∣∣ �(u2 − 1)(3u + 2)

u(2u6 + 3u5 − 3u − 2)

∣∣∣∣= ��−1

|(u + 1)/(3u + 2)||2u3 + u2 + u + 2| .

Now, we prove that both of the expressions in the denominator for fixed � and 	 ∈ [0, �] attain their minimum modulus
when 	 = �.

The first expression can be written as

u + 1

3u + 2
= 1

3

(
1 + 1

3u + 2

)
,

from which it is evident that it attains its minimum modulus when 	 = � (|1/(3u + 2)| < 1 and attains maximum when
	 = �).
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For the second expression we can get the following equality:

|2u3 + u2 + u + 2|2 = 32x3 + (8�2 + 1)x2 + (4�4 − 22�2 + 4)x + (4�6 − 3�4 − 3�2 + 4),

where x = R(u) = � cos 	, x ∈ [−�, �]. We denote the right-hand side of the last equality as F�(x) = F(x). Now it
suffices to prove F(x) − F(−�)�0, for x ∈ [−�, �] and � > 1:

F(x) − F(−�)

= 32(x3 + �3) + (8�2 + 1)(x2 − �2) + (4�4 − 22�2 + 4)(x + �)

= 2(x + �)[16x2 + (4�2 − 16� + 4)x + (2�4 − 4�3 + 5�2 − 4� + 2)].
For the discriminant of the polynomial in brackets D there holds

D = −16(� − 1)2(7�2 + 6� + 7)�0,

which completes the proof of this case.
Case n = 2: Using (2.1) we get

K3(z; w2) = �

u3

(u − u−1)
(
u−1 + 4

3

)
u4 − u−4 + 4

3

(
u3 − u−3

) = �(u2 − 1)(4u + 3)

u(3u8 + 4u7 − 4u − 3)

= �

u

4u + 3

3u6 + 4u5 + 3u4 + 4u3 + 3u2 + 4u + 3
,

i.e.,

|K3(z; w2)| = ��−1

|g(u)| , (2.8)

where

g(u) = 3u6 + 4u5 + 3u4 + 4u3 + 3u2 + 4u + 3

4u + 3
.

By (2.8) and (1.3) it suffices to prove that |g(u)| attains its minimum when 	 = � (u = −�), i.e.,

g(u)g(u) − g(−�)g(−�)�0, 	 ∈ [0, �].
After some calculation we get

g(u)g(u) − g(−�)g(−�) = 4�2 (y + 1)

(3 − 4�)2|4u + 3|2 P(�, y),

where y = cos 	 and

P(�, y) = 144�4(3 − 4�)2y5

+ �3(1536�4 − 4608�3 + 5856�2 − 3600� + 864)y4

+ �2(576�6 − 2400�5 + 2500�4 − 2208�3 + 2808�2 − 1728� + 324)y3

+ �(384�8 − 1152�7 + 1080�6 − 196�5 − 192�4 − 504�3 + 1248�2 − 900� + 216)y2

+ (144�10 − 600�9 + 913�8 − 600�7 + 432�6 − 432�5 + 418�4 − 768�3

+ 864�2 − 432� + 81)y

+ (42�11 − 144�10 + 258�9 − 337�8 + 426�7 − 432�6 + 378�5 − 418�4

+ 384�3 − 288�2 + 216� − 81).
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Now it suffices to prove P(�, y)�0. If we take � = x + 1 and y = t − 1, x > 0, t ∈ [0, 2], we have

P(x + 1, t − 1) = 42x11 +
10∑
i=0

bi(t)x
i ,

where

b10(t) = 6(24t + 29),

b9(t) = 24(16t2 + 3t + 28),

b8(t) = 576t3 + 576t2 − 887t + 2170,

b7(t) = 1536t4 − 3936t3 + 8280t2 − 8512t + 6230,

b6(t) = 2(1152t5 − 2688t4 + 146t3 + 7852t2 − 10332t + 5845),

b5(t) = 4(2592t5 − 10344t4 + 14118t3 − 4914t2 − 3766t + 3185),

b4(t) = 4(4644t5 − 20640t4 + 32517t3 − 19866t2 + 2093t + 1862),

b3(t) = 4(4176t5 − 19224t4 + 31556t3 − 21350t2 + 4606t + 539),

b2(t) = 4(1944t5 − 9048t4 + 15036t3 − 10458t2 + 2548t + 49),

b1(t) = 48t (6t2 − 14t + 7)2,

b0(t) = 4t (6t2 − 14t + 7)2.

By computing their zeros, it can be seen that all functions bi(t), i = 0, 1, . . . , 10, are nonnegative when t ∈ [0, 2].
Case n = 3: We prove this case in the same way as the previous one. From (2.1) we get

K4(z; w2) = �

u4

(u − u−1)
(
u−1 + 5

4

)
u5 − u−5 + 5

4

(
u4 − u−4

) = �(u2 − 1)(5u + 4)

u(4u10 + 5u9 − 5u − 4)

= �

u

5u + 4

4u8 + 5u7 + 4u6 + 5u5 + 4u4 + 5u3 + 4u2 + 5u + 4
,

i.e.,

|K4(z; w2)| = ��−1

|h(u)| , (2.9)

where

h(u) = 4u8 + 5u7 + 4u6 + 5u5 + 4u4 + 5u3 + 4u2 + 5u + 4

5u + 4
.

By (2.9) and (1.3) it suffices to prove that |h(u)| attains its minimum when 	 = � (u = −�), i.e.,

h(u)h(u) − h(−�)h(−�)�0, 	 ∈ [0, �].
After some calculation we get

h(u)h(u) − h(−�)h(−�) = 4�2(y + 1)

(4 − 5�)2|5u + 4|2 R(�, y).

After denoting � = x + 1 and y = t − 1, x > 0, t ∈ [0, 2], we have

R(x + 1, t − 1) = 90x15 +
14∑
i=0

ci(t)x
i ,
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where

c14(t) = 50(8t + 11),

c13(t) = 20(50t2 + 98t + 81),

c12(t) = 1600t3 + 5000t2 + 2761t + 3798,

c11(t) = 4(1000t4 − 840t3 + 7220t2 − 4467t + 3264),

c10(t) = 2(3200t5 − 400t4 − 10318t3 + 56192t2 − 56697t + 23670),

c9(t) = 20(800t6 − 2912t5 + 7400t4 − 13230t3 + 21642t2 − 18807t + 6462),

c8(t) = 25600t7 − 86400t6 + 46736t5 + 317824t4 − 845684t3 + 1139736t2 − 830739t + 250710,

c7(t) = 2(81920t7 − 456640t6 + 986944t5 − 895744t4 + 15024t3 + 685464t2 − 580020t + 170073),

c6(t) = 446464t7 − 2786432t6 + 6890432t5 − 8288384t4 + 4522092t3 − 184992t2 − 896592t + 313902,

c5(t) = 4(167936t7 − 1095968t6 + 2844320t5 − 3685848t4 + 2414562t3 − 638574t2 − 49554t + 47295),

c4(t) = 4(151040t7 − 1005920t6 + 2666584t5 − 3558984t4 + 2473269t3 − 803946t2 + 63414t + 17280),

c3(t) = 20(16384t7 − 110112t6 + 294624t5 − 398136t4 + 283140t3 − 98334t2 + 11970t + 675),

c2(t) = 4(25600t7 − 172640t6 + 463536t5 − 629256t4 + 451212t3 − 160218t2 + 21690t + 225),

c1(t) = 64t (−16t3 + 54t2 − 54t + 15)2,

c0(t) = 4t (−16t3 + 54t2 − 54t + 15)2.

By computing their zeros, it can be seen that all functions ci(t), i = 0, 1, . . . , 14, are nonnegative when t ∈ [0, 2],
which completes the proof of this case.

Case n�4: By (2.7) it is enough to prove

(a2 − cos 2	)(d − sin2(	/2))

B(	)
� (a2 − 1)(d − 1)

B(�)
,

for sufficiently large � (� > �0) and 	 ∈ [0, �).
The last inequality is reduced to

[(a2 − 1) + 2 sin2	]
[
(d − 1) + cos2 	

2

]
B(�)

�(a2 − 1)(d − 1)

{
n + 1

n + 2
[(a2

n+2 − 1) + sin2(n + 2)	]

+ n + 2

n + 1
[(a2

n+1 − 1) + sin2(n + 1)	]

+a2n+3

(
2 cos2 	

2
− 1

)
− a1

(
2 cos2(2n + 3)

	

2
− 1

)}
,

and further, using the value of B(�) from (2.6) on the right-hand side,

(a2 − 1)(d − 1)B(�) +
[
(a2 − 1)cos2 	

2
+
(

d − sin2 	

2

)
2 sin2	

]
B(�)

�(a2 − 1)(d − 1)B(�) + (a2 − 1)(d − 1)

[
2a2n+3 cos2 	

2

−2a1 cos2(2n + 3)
	

2
+ n + 1

n + 2
sin2(n + 2)	 + n + 2

n + 1
sin2(n + 1)	

]
.
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Table 1

n �0 n �0

4 4.7394 9 16.4698
5 7.7651 10 18.5332
6 10.0870 11 20.5829
7 12.2672 12 22.6229
8 14.3854 13 24.6557

1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
x 10

6

Fig. 1. The typical graph of G(�).

After dividing this by cos2(	/2) we have

2 (a2 − 1)(d − 1) a2n+3 − 2(a2 − 1)(d − 1) a1
cos2(2n + 3)(	/2)

cos2(	/2)

− [(a2 − 1) + 8 (d − sin2(	/2))sin2(	/2)]B(�)

+ (a2 − 1)(d − 1)

[
n + 1

n + 2
sin2(n + 2)	 + n + 2

n + 1
sin2(n + 1)	

]
�0.

Since

max
	∈[0,�]

cos2(2n + 3)(	/2)

cos2(	/2)
= (2n + 3)2,

C = C(�) := max
	∈[0,�]

8

(
d − sin2 	

2

)
sin2 	

2
=
{

8(d − 1) if d �2,

2d2 if d < 2,
(2.10)

min
	∈[0,�]

{
n + 1

n + 2
sin2(n + 2)	 + n + 2

n + 1
sin2(n + 1)	

}
= 0,
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we conclude that the left-hand side of the last inequality is greater than or equal to G(�) = Gn(�), where

G(�) = 2(a2 − 1)(d − 1)a2n+3 − 2(a2 − 1)(d − 1)a1(2n + 3)2 − (a2 − 1 + C)B(�).

Using (2.4), (2.5) and (2.10) we get

G(�) = 1

8

(
n + 2

n + 1
− n + 1

n + 2

)
�2n+6 +

2n+5∑
i=−(2n+6)

li (n)�i , ���d , (2.11)

where �d is the unique zero greater than 1 of the equation d(�)=2. When � ∈ (1, �d), G(�) is less than the function from
right-hand side of (2.11). Since G(�) is continuous when � > 1 and lim�→+∞G(�) = +∞, it follows that G(�) > 0,
for each � > �0, where �0 is the largest zero of G(�). �

The values of �0 for some values of n are displayed in Table 1. All values of �0, except when n = 4, are optimal in a
sense that for � < �0 (and � > �′

0) the point z = − 1
2 (� + �−1) is not a maximum point. The optimal value of �0 when

n = 4 is 4.7385. The values for n = 5, . . . , 10 coincide with the values �n given in [1, Table 4.2].
A typical graph of G(�) is displayed in Fig. 1. Here n = 4.
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