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Abstract. In this paper, some basic results of the stability criteria of fractional order system 
with time delay as well as free delay are presented. Also, they are obtained and presented 
sufficient conditions for finite time stability for (non)linear (non)homogeneous as well as 
perturbed fractional order time delay systems. Several stability criteria for this class of 
fractional order systems are proposed using a recently suggested generalized Gronwall 
inequality as well as “classical” Bellman-Gronwall inequality. Some conclusions for 
stability are similar to that of classical integer-order differential equations. Last, a numerical 
example is given to illustrate the validity of the proposed procedure. 

 
 

1. Introduction  
 
The question of stability is of main interest in control theory. Also, the problem of 
investigation of time delay system has been exploited over many years.  Delay is very often 
encountered in different technical systems, such as electric, pneumatic and hydraulic 
networks, chemical processes, long transmission lines, etc.,[1]. Delays are inherent in many 
physical and engineering systems. In particular, pure delays are often used to ideally 
represent the effects of transmission, transportation, and inertial phenomena. This is 
because these systems have only limited time to receive information and react accordingly. 
Such a system cannot be described by purely differential equations, but has to be treated 
with differential difference equations or the so called differential equations with difference 
variables. Delay differential equations (DDEs) constitute basic mathematical models for 
real phenomena, for instance in engineering, mechanics, and economics, [2]. The basic 
theory concerning the stability of systems described by equations of this type was 
developed by Pontryagin in 1942. Also,important works have been written by Bellman and 
Cooke in 1963, [3]. The presence of time delays in a feedback control system leads to a 
closed-loop characteristic equation which involves the exponential type transcendental 
terms. The exponential transcendentality brings infinitely many isolated roots, and hence it 
makes the stability analysis of time-delay systems a challenging task. It is well recognized 
that there is no simple and universally applicable practical algebraic criterion, like the 
Routh–Hurwitz criterion for stability of delay-free systems, for assessing the stability of 
linear time-invariant time-delayed (LTI-TD) systems. On the other side, the existence of 
pure time delay, regardless if it present in the control or/and state, may cause undesirable 
system transient response, or generally, even an instability. Numerous reports have been 
published on this matter, with particular emphasis on the application of  Lyapunov`s second 
method, or on using idea of matrix measure,[4-7]. The analysis of time-delay systems can 
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be classified such that the stability or stabilization criteria involve the delay element or not. 
In other words, delay independent criteria guarantee global asymptotic stability for any 
time-delay that may change from zero to infinity. As there is no upper limit to time-delay, 
often delay independent results can be regarded as conservative in practice, where 
unbounded time-delays are not so realistic. In practice one is not only interested in system 
stability (e.g. in the sense of Lyapunov), but also in bounds of system trajectories. A system 
could be stable but still completely useless because it possesses undesirable transient 
performances. Thus, it may be useful to consider the stability of such systems with respect 
to certain subsets of state-space which are defined a priori in a given problem. Besides that, 
it is of particular significance to concern the behavior of dynamical systems only over a 
finite time interval. These boundedness properties of system responses, i.e. the solution of 
system models, are very important from the engineering point of view. Realizing this fact, 
numerous definitions of the so-called technical and practical stability were introduced. 
Roughly speaking, these definitions are essentially based on the predefined boundaries for 
the perturbation of initial conditions and allowable perturbation of system response. Thus, 
the analysis of these particular boundedness properties of solutions is an important step, 
which precedes the design of control signals, when finite time or practical stability control 
is concern. Motivated by “brief discussion” on practical stability in the monograph of 
LaSalle and Lefschet,[8] and  Weiss and Infante,[9] have introduced various notations of 
stability over finite time interval for continuous-time systems and constant set trajectory 
bounds. A more general type of stability (“practical stability with settling time”, practical 
exponential stability, etc.) which includes many previous definitions of finite stability was 
introduced and considered by Grujić,[10,11]. Concept of finite-time stability, called “final 
stability”, was introduced by Lashirer and Story, [12] and further development of these 
results was due to Lam and Weiss,[13]. Recently, finite-time control/stabilization, and 
methods for stability evaluation of linear systems on finite time horizont are proposed by 
Amato et al., [14,15], respectively. Also, analysis of linear time-delay systems in the 
context of finite and practical stability was introduced and considered in [16-18] and as 
well as finite-time stability and stabilization [19]. 
Recently  there have been some advances in control theory of fractional (non-integer order) 
dynamical systems for stability questions such as robust stability, bounded input–bounded 
output stability, internal stability, finite time stability, practical stability, root-locus, robust 
controllability, robust observability, etc. For example, regarding linear fractional 
differential systems of finite dimensions in state-space form, both internal and external 
stabilities are investigated by Matignon,[20].Some properties and (robust) stability results 
for linear, continuous, (uncertain) fractional order state-space systems are presented and 
discussed [20,21].However, we can not directly use an algebraic tools as for example 
Routh-Hurwitz criteria for the fractional order system because we do not have a 
characteristic polynomial but pseudopolynomial with rational power-multivalued function. 
An analytical approach was suggested by Chen and Moore,[22], who considered the 
analytical stability bound using Lambert function W. Further, analysis and stabilization of 
fractional (exponential) delay systems of retarded/neutral type are considered [23,24], and 
BIBO stability [25]. Whereas Lyapunov methods have been developed for stability analysis 
and control law synthesis of integer linear systems and have been extended to stability of 
fractional systems, only few studies deal with non-Lyapunov stability of fractional systems. 
Recently, for the first time, finite-time stability analysis of fractional time delay systems is 
presented and reported on papers [26,27]. Here, a Bellman-Gronwall`s approach is 
proposed, using  “classical” Bellman-Gronwall inequality as well as a recently obtained 
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generalized Gronwall inequality reported in [28] as a starting point. The problem of 
sufficient conditions that enable system trajectories to stay within the a priori given sets for 
the particular class of (non)linear (non)autonomous fractional order time-delay systems has 
been examined.  
 

2. Fundamentals of fractional calculus  

Fractional calculus (FC) as an extension of ordinary calculus has a 300 years old history. 
FC was initiated by Leibniz and L`Hospital as a result of a correspondence which lasted 
several months in 1695. Both Leibniz and L`Hospital, aware of ordinary calculus, raised the 
question of a noninteger differentiation (order 1/ 2n  ) for simple functions.  Subsequent 
mention of fractional derivatives was  made, in some context or the other by (for example) 
Euler in 1730, Lagrange in 1772, Laplace in 1812, Lacroix in 1819, Fourier in 1822, 
Riemann in 1847, Green in 1859, Holmgren in 1865, Grunwald in 1867, Letnikov in 1868, 
Sonini in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1919, etc. 
[29]. In that way, the theory of fractional-order derivative was developed mainly in the 19th 
century. Since from 19th century  as a foundation of fractional geometry and fractional 
dynamics, the theory of FO, in  particular,  the  theory  of  FC  and  FDEs  and  researches  
of  application  have  been  developed rapidly in the world. The modern epoch started in 
1974 when a consistent formalism of the fractional calculus has been developed by Oldham 
and Spanier,[4], and later Podlubny,[6]. Applications of FC are very wide nowadays, in 
rheology, viscoelasticity, acoustics, optics, chemical physics, robotics, control theory of 
dynamical systems, electrical engineering, bioengineering and so on, [4-12]. In fact, real 
world processes generally or most likely are fractional order systems. The main reason for 
the success of applications FC is that these new fractional-order models are more accurate 
than integer-order models, i.e. there are more degrees of freedom in the fractional order 
model. Furthermore, fractional derivatives provide an excellent instrument for the 
description of memory and hereditary properties of various materials and processes due to 
the existence of a ”memory” term in a model. This memory term insure the history and its 
impact to the present and future. A typical example of a non-integer (fractional) order 
system is the voltage-current relation of a semi-infinite lossy transmission line [17] or 
diffusion of the heat through a semi-infinite solid, where heat flow is equal to the half-
derivative of the temperature [6].In his 700 pages long book on Calculus, 1819 Lacroix [30]  

developed the formula for the n-th derivative of , m – is a positive integer, mxy

 
!

!
n m m nm

D x
m n

x 


 where  is an integer. Replacing the factorial symbol by the 

Gamma function, he further obtained the formula for the fractional derivative 

n m 
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where   and   are fractional numbers and Gamma function  z  is defined for   0z 

by the so-called Euler integral of the second kind: 

                                                       (2) 
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On the other hand, Liouville (1809-1882) formally extended the formula for the derivative 
of integral order n 

 .         (3) ,n ax n ax ax axD e a e D e a e arbitrary order     

Using the series expansion of a function, he derived the formula known as Liouville`s first 
formula for fractional derivative, where   may be rational, irrational or complex. 

  (4) 0

( ) na x
n n

n

D f x c a e 






where  . However, it can be only used for functions of the 

previous form. Also, it was J. B. J. Fourier,[31] who derived the functional representation 
of function 
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f x c a x a
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     1
( ) cos
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f t f x d d    


   , (5) 

where he also formally introduced the fractional derivative version. In 1823, Abel 
considered a mechanical problem, namely Abel’s mechanical problem  [32]. In the absence 
of friction, the problem is reduced to an integral equation  

   1/ 2

0

( ) 2 ( ), 0,
y

y z u z dz g f y y H


    , (6) 

where    21 ( ) ,u z z z    is an increasing function, g is the constant downward 

acceleration,  f y  is a prescribed function. Then Abel solved (6) in [33]. Also an Abel 

transform of a sufficiently well behaved function u  was generalized to 
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where  and  , 0,a b       (.)  is the well known Euler's gamma function. Here, 

it is assumed the solution of classical Abel integral equation exists and  the fractional 

derivative with order  1,0  exists in , [34], so we have following results: ),ba(1L

 Lemma1.Consider, for    ba,1,0 , the classical Abel integral equation  
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Then there exists at most one solution of equation (8) in . Moreover, if the  

function  is absolutely continuous on [a, b], then equation (8) has a solution in , 

given by (9) 
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If  and  are finite, then  a  af
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If  is finite and  is extended by 0 to the left of , then a f a
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If  is finite and a 0)(lim 1 
 xfxx
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From the viewpoint of fractional calculus, we can see that (9)–(12) are just some other 
forms of fractional derivatives, with order  1,0 , under some different hypotheses on . 

Fractional derivatives are typically treated as a particular case of pseudo-differential 
operators. Since they are nonlocal and have weakly singular kernels, the study of fractional 
differential equations seems to be more difficult and less theories have been established 
than for classical differential equations. In 1832-1837 a series of papers by Liouville 
[35,36] reported the earliest form of the fractional integral, though not quite rigorously from 
the mathematical point of view. The formula was taken as follows 

f
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That is now called the Liouville form of fractional integral with the factor  being 

omitted. Next the significant work was done by Riemann [37], who wrote that paper in 
1847 when he was just a student. But it was published until 1876, ten years after his death. 
Riemann had arrived at the expression 

 p1
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for fractional integration. Furthermore, we have the most useful forms of left-hand and 
right-hand Riemann- Liouville (RL) derivatives defined as follows 
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where 1m m   , a, b are the terminal points of the interval  ,a b , which can also be  

. The definition (15) of the fractional differentiation of Riemann-Liouville type leads 
a conflict between the well-established and polished mathematical theory and proper needs, 
such as the initial problem of the fractional differential equation, and the nonzero problem 
related to the Riemann-Liouville derivative of a constant, and so on. A certain solution to 
this conflict was proposed by Caputo first in his paper [38] (1967) .Caputo’s definitions can 
be written as 
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where  . Obviously, the Caputo derivative is more strict than Riemann-
Liouville derivative, one reason is that the m-th order derivative is required to exist. The 
Caputo and Riemann-Liouville formulation coincide when the initial conditions are zero. 
Besides, the RL derivative is meaningful under weaker smoothness requirements. Also, the 
RL derivative can be presented as: 
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and the Caputo derivative  
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where  is the classical -order derivative. Moreover, previous expressions 
show that the fractional-order operators are global operators having a memory of all past 
events, making them adequate for modeling hereditary and memory effects in most 
materials and systems. Also, for the RL derivative, we have 
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But for the Caputo derivative, we have   
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Obviously,  varies continuously with , but the Caputo derivative 

cannot do this. On the other side, initial conditions of fractional differential equations with 
Caputo derivative have a clear physical meaning and Caputo derivative is extensively used 
in real applications.  On the other side, Grunwald [39] (in 1867) and Letnikov [40] (in 
1868) developed an approach to fractional differentiation based on the definition 

, ,RL aD n    n
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which is the left Grunwald-Letnilov (GL) derivative as a limit of a fractional order 
backward difference. Similarly, we have the right one as 
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Therefore, one can define the new form of Grunwald-Letnikov derivative as follows 
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which is called the Grunwald-Letnikov-Riesz derivative. As indicated above, the previous 
definition of GL  is valid for α > 0 (fractional derivative) and for α < 0 (fractional integral) 
and, commonly, these two notions are grouped into one single operator called 
differintegral.  The GL derivative and RL derivative are equivalent if the functions they act 
on are sufficiently smooth. For numerical calculation of fractional–order differ-integral 
operator one can use relation derived from the GL definition. 
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where L is the "memory length", h is the step size of the calculation,   
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 x  is the integer part of x  and  
jb
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 is the binomial coefficient given by 
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For convenience, Laplace domain is usually used to describe the fractional integro-
differential operation for solving engineering problems. The formula for the Laplace 
transform of the RL fractional derivative has the form: 
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Where for 0  (i.e., for the case of a fractional integral) the sum in the right-hand side 
must be omitted). Also,  Laplace transform of the Caputo fractional derivative is:  
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which implies that all the initial values of the considered equation are presented by a set of 
only classical integer-order derivatives. Besides that, a geometric and physical 
interpretation of fractional integration and fractional differentiation can be found in 
Podlubny’s work [41]. 
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3. Preliminaries on integer time-delay systems 

 
A linear, multivariable  time-delay system can be represented by differential equation: 

0 1
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and  with associated function of initial state: 
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Equation (29) is referred to as homogenous state equation. Also, more general a linear, 
multivariable  time-delay system can be represented by following differential equation: 
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Equation (31) is referred to as nonhomogenous or the unforced state equation, ( )x t is state 

vector,  control vector, ( )u t 0 1 0, ,A A B  and are constant system matrices of appropriate 

dimensions, and 
1B

  is pure time delay,  =const. ( >0). Moreover, here it is considered a 
class of non-linear system with time delay described by the state space equation: 

          0 1 0 1

1 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

n m

i j

i j

d t
A t A t B t B t f t f t

dt
  

 

         x
x x u u x x   (33) 

with the initial functions (32) of the system. Vector functions , , 1, , 1,i jf f i n j m 

( )tx ( )t

 

present nonlinear parameter perturbations of system in respect to  and x  

respectively. Also, it is introduced next assumption that: 

                             



( , 1, 0,

( , 1, ,

i i

j j

f (t)) c (t) i n t

f (t - )) c (t - ) j m t 

   

0, )  

x x

x x 
                         (34) 

where  ,i jc c R  are known real positive numbers. Moreover, a linear multivariable time-

varying delay system can be represented by differential equation 

 0 1 0
( )

( ) ( ) ( ),
dx t

A x t A x t t B u t
dt

                                             (35) 

and with associated function of initial state  
( ) ( ), 0.x Mx t t t                                                       (36) 

where  t is an unknown time–varying parameter  which satisfies  

   0 , , , ,M o ot t J J t t T J        R                             (37) 

Moreover, here it is considered a class of perturbed non-linear system with time delay 
described by the state space equation 
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    0 0 1 1 0 0
( )

( ) ( ( )) ( ) ( ), ( ( )) ,
dx t

A A x t A A x t t B u t f x t x t t
dt

               (38) 

with the given initial functions of the system and vector function 0f .Vector function 0f  

present nonlinear parameter perturbations of system in respect to ( )x t  and ( ( ))x t t  

respectively and matrices  present perturbations of system, too. Also, it is 

assumed that  next assumption  is true. 
0 ,A A  1

0 0 1( ( ), ( ( ))) ( ) ( ( )) , 0, ,f x t x t - t c x t c x t - t t       (39) 

                  where  are known real positive numbers. Dynamical behavior of system 

(29),(31) or (33) with initial functions (30),or (32) is defined over time interval 
0 1,c c R

 t To o , J t ,  where quantity T may be either a positive real number or symbol + , 

so finite time stability and practical stability can be treated simultaneously. It is obvious 
that 



J R . Time invariant sets, used as bounds of system trajectories, are assumed to be 
open, connected and bounded. Let index ""   stands for the set of  all allowable states of 
system and  index  for the set of  all initial states of the system, such that  the set 

. In general, one may write: 

"" 

SS 

   2
: ( ) , ,

Q
S t      x x ,                                  (40) 

where Q will be assumed to be symmetric, positive definite, real matrix. 
u

S  denotes the 

set of the all allowable control actions. Let  .x  be any vector norm (e.g., ) and . 1,2, 

(.)  the matrix norm induced by this vector. Matrix measure has been widely used in the 

literature when dealing with stability of time delay systems. The matrix measure   for any 

matrix  is defined as follows: n nA C 

          
0

1
lim

I A
A








 
             (41)  

The matrix measure defined in (36) can be subdefined in three different ways, depending on 
the norm utilized in its definitions,[42]. 

          1
1

max Re
n

kk ik
k

i
i k

A a



 
 

 
  
 

 a  ,                      (42)  

                     2
1

max Re
n

kk ik
k

i
i k

A a



 
 

 
  
 

 a  ,    (43)  
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and                                
1

max Re
n

ii ki
i

i
i k

A a



 
 

 
  
 

 a                             (44)  

Expression (32)  can be written in it’s general form as:  

 
 

( ) ( ), 0, ( ) ,

( ) ( ), 0, ( ) , 0

o x x

o u u

t C

t C

       

       

      

      

x

u

0
,                    (45) 

where   is the initial time of observation of the system (29) and ot  ,0C -τ  is a Banach 

space of continuous functions over a time interval of  length , mapping the interval 

 into R  with the norm defined in the following manner:  

τ

 t,t  n

0

max ( )
C

 
  

  
 ,                              (46) 

It is assumed that the usual smoothness condition is present so that is no difficulty with 
questions of existence, uniqueness, and continuity of solutions with respect to initial data. 
 
3.1 Some previous results related to integer time-delay systems 

The existing methods developed so far for stability check are mainly for integer-order 
systems.  
 
Definition 1: System given by (31) with   0,t - t  u ,satisfying initial condition (4) is 

finite stable w.r.t  0( ), , , , ,ut J     0 ,A   if  and only if: 

 ,x S t     , 0                                            (47) 

and 

  ,
u

t S t J  u                                                                 (48) 

imply:                                      
                       0( ; , ) , 0,t t S t T  0x x                                                 (49) 

Illustration of preceding definition is pictured on Fig. 1.  
                     

 
                              Fig.1  Finite time stability concept illustration 
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Definition 2: System given by (31) satisfying initial condition (32) is finite stable w.r.t 

  if  and only if:   0, , , , , , 0 ,u J A      

 ,x S t     , 0                             (50) 

      
0
, ,u S t 0                             (51) 

and 
                                     (52)   ,

u
t S t J  u 

imply:          0( ; , , ( )) ,t t t S t J  0x x u                             (53) 

 
Theorem 1. System given by (31), with initial function (32) is finite time stable w.r.t 

 if the following condition is satisfied,[43]:   0, , , , , , 0 ,u J A       
 2 0( )1 1

2 0( ) /A tA e                   (54) 

where: 

                               2 0 2 01
1 2 0 1 1 21 1A Aa A a e c e c          t      (55) 

                         2 0 1 1 1, 1c b b c b                                        (56) 

                       1 1 1 1 1 0 0/ , / , , / , /u a A b B a b B a           1   (57)  

Results that will be presented in the sequel enables one to check finite time stability of the 
nonautonomous system to be considered (29),(31) or (33) and (30),(32) without finding the 
fundamental matrix or corresponding matrix measure.   
 
Definition 3: System given by (31) satisfying initial condition (32) is finite stable w.r.t 

 0, , , , , , ,u ot J        if  and only if: 

   0,x uC C
     ,             (58) 

( ) ,ut  u t J                                                      (59) 

 imply:                                      
     ( ) ,t t x J                                (60) 

Theorem 2. Nonautonomous system given by (31) satisfying initial condition (33) is finite 
time stable w.r.t.  0, , , , , , ,u ot J      , if the following condition is satisfied,[44]:   

                          (61)     max 0( ) * *
max 0 1 0 01 ( )

A t tA t t e t t t J                / , .

where  

                            * *
1 1 0 0 1 0 1 0 0/ , / , ,ub b b                1u ,          (62) 
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4.  Preliminaries on stability of fractional  order systems including time-delays 

 
In the field of fractional-order control systems, there are many challenging and unsolved 
problems related to stability theory such as robust stability, bounded input – bounded 
output stability, internal stability, root-locus, robust controllability, robust observability, 
etc. In engineering, the fractional order   is often less than 1, so we restrict  as 

usual. Even if 

 0,1 

1  , we can translate the fractional systems into systems with the same 

fractional order which lies in   provided some suitable conditions are satisfied [45]. To 

demonstrate the advantage of fractional calculus in characterizing system behavior,here, 
stability properties, let us consider the following illustrative example, [46].  

0,1

Example 1:  Compare the following two systems with initial condition (0)x  for 0 1  , 

 1 1
0,( ) , ( ) , 0 1.C t

d
x t t D x t t

dt
         (63) 

The analytical solutions of previous systems are  and (0)t x 
 

1( )
(0)

t
x

  
 

 


 
, 

respectively. One may conclude, the integer-order system is unstable for any . 

However, the second,given fractional dynamic  system is stable as 

 0,1 
0 1    , which 

implies that fractional-order system may have additional attractive feature over the integer-
order  system. Also, in [47], Tarasov proposed that stability is connected to motion changes 
at fractional changes of variables where systems which are unstable “in sense of Lyapuov”' 
can be stable with respect to fractional variations. In 1996, Matignon [48] studied the 
following fractional differential system involving Caputo derivative 

                            0, 0, (0) , 0,1C t

d x
D Ax t x x

dt




                                             (64) 

where   1 2, ,...,
T

n x x x x  with initial value  0 10 20 0, ,..., ,
T n n

nx x x x A R   .The stability of  

the equilibrium of system (64) was first defined and established by Matignon as follows. 
 
Definition 4. The autonomous fractional order system (64) is said to be 

(a) stable iff for any 0x , there exists 0   such that                                    (65) 

                     x    for    0t 

(b)  asymptotically stable iff   lim 0t x t                                              (66) 

Also,Matignon [48] proposed definition of the BIBO stability for fractional differential 
system.  
Definition 5.  An  input/output linear fractional system (67) 

0, (0)
d x

Ax Bu x x
dt
y Cx



   


                                                                      (67) 

,n px R y R  is externally stable or bounded-input bounded-output (BIBO) iff  

   , , ,mR y h u L R R    pu L R    which is equivalent to:  1 , p mh L R R  . 
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Also, in [49] authors give two definitions of the stability for differential  systems with the 
Caputo derivative and Riemann-Liouville derivative, respectively. Besides, the 
asymptotical stability of higher-dimensional linear fractional differential systems with the 
Riemann-Liouville fractional order and Caputo fractional order were studied where the 
asymptotical stability theorems were also derived. 
Definition 6. The zero solution of the following differential system with the α-th order 
Caputo derivative in which 0 < α < 1  

0,C tD X AX                                                                                        (68) 

is said to be: 

(i) Stable, if  0, 0,      when  0X  , the solution   X t  to (68)  with the initial 

condition    0X t X satisfies  ( )X t   for any  .                                             (69) 0t 
(ii) Asymptotically stable, if the zero solution to (68) is stable, and it is locally attractive, 

i.e., there exists a 0  such that   0X 0  implies that 

lim ( ) 0
t

X t


                                                                                   (70) 

Definition 7.  The zero solution of the following differential system with the α-th order 
Riemann- Liouville derivative in which 0 < α < 1 

0,RL tD X AX                                                                                  (71) 

is said to be: 

 (i) Stable, if  0, 0,      when  0X  , the solution   X t  to (71)  with the initial 

condition  satisfies    1
0, 0RL t t

D X t 


    0X

( )X t   for any  .                                                                 (72) 0t 
 (ii) Asymptotically stable, if the zero solution to (71) is stable, and it is locally attractive, 
i.e., there exists a 0  such that   0X 0  implies that  

lim ( ) 0
t

X t


                                                                                    (73) 

Next, one may study the stability of fractional differential systems in two spatial 
dimensions, and then study the fractional differential systems with higher dimensions. 
Now, it is studied the fractional differential system with the Caputo derivative, 

 * 0, , 0,1 , n n
tD X AX A R                                                         (74) 

where fractional derivative * 0 . They studied the 

fractional differential system with the Caputo derivative,as follows:  
, 0, 0,(..) (..) (..)t C t RL tD D or D  

 0, , 0,1 ,C
tD X AX A R  n n                                                      (75) 

Theorem 3. If the real parts of all the eigenvalues of A are negative, then the zero solution 
to system  (75) is asymptotically stable.  
Also for fractional differential system with the Riemann-Liouville  derivative 

 0, , 0,1 ,RL
tD X AX A R  n n                                                     (76) 

they stated following theorem. 
Theorem 4. If the real parts of all the eigenvalues of A are negative, then the zero solution 
to system  (76) is asymptotically stable. 
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A fractional-order linear time invariant system can be represented in the following 
pseudostate space form: 

( )
( ) ( )

( ) ( )

d x t
Ax t Bu t

dt
y t Cx t



  


                                                                      (77) 

where the notation /d dt   indicates the Caputo fractional derivative of fractional 

commensurate order  , ,n mx R u R  and  py R
n nA R

 are pseudo-state, input, and output 

vectors of the system, respectively, and , ,n m p nB R C R     . It is worth 
mentioning that the state space form Eq. (77) is a pseudo-representation because the 

knowledge of vector x  at time 0t t  and input vector  u t 0t t

0t

 for  are not entirely 

sufficient to know the behavior of system (77) for . A fractional-order model is in 

fact infinite dimensional, therefore its true state vector should be also infinite dimensional.  

t 

 
Theorem 5[48]: The following autonomous system,(64) 

     0 0

( )
( ), , 0 1

d x t
Ax t x t x

dt



                                                   (78) 

nx R , and A is an matrix, is asymptotically stable if and only if  n n   / 2arg    is 

satisfied for all eigenvalues   of matrix A. In this case, each component of the states  

decays toward 0 such as  t  . Also, this system is stable if and only if    / 2arg    is 

satisfied for all eigenvalues    of matrix A with those critical eigenvalues satisfying 

  / 2arg    have geometric multiplicity of one. 

Demonstration of this theorem is based on the computation of state vector of system 

  , 0, 0x t Nt t   . response to non-zero initial conditions. However, this result 

remains valid whatever the definition used given that for a linear system without delay, an 
autonomous system with non-zero initial conditions can be transformed into a non-
autonomous system with null initial condition. Also, the stable and unstable regions for 

10  is shown in Fig. 2 and they denote the stable and unstable regions for 

10   by   and , respectively.  
C 

C
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      Fig. 2 Stability region of fractional-order linear time invariant  system with order 0 1   

 
For a minimal realization of (77), Matignon has also demonstrated the following 
theorem,[48]. 
Theorem 6.  In [48], consider a system given by the following linear pseudostate space 
form with inner dimension n: 

0

( )
( ) ( ), (0)

( ) ( )

d x t
Ax t Bu t x x

dt
y t Cx t



   


                                                    (79) 

where 0 1  . Also, assume that the triplet (A,B,C) is minimal. System (79) is bounded-

input bounded-output (BIBO) stable if and only if  arg / 2   is satisfied for all 

eigenvalues   of matrix A. When system (79) is externally stable, each component of its 

impulse response behaves like 1t    at infinity. 
Exponential stability thus cannot be used to characterize asymptotic stability of fractional 
systems. A new definition is introduced. 

Definition 8. t   stability     

Trajectory x(t) = 0 of system     / ,d x t dt f t x t    (unforced system) is t   

asymptotically stable if the uniform asymptotic stability condition is met and if there is a 
positive real   such that: 

    0 , ox t c Q x t     such that   0 ,t t x t Qt                 (80) 

t   stability will thus be used to refer to the asymptotic stability of fractional systems.As 

the components of the state  x t  slowly decay towards 0 following t  , fractional 

systems are sometimes called long memory systems.  
 

5.  Stability of fractional delay system 

In spite of intensive researches, the stability of fractional order (time delay) systems 
remains an open problem. As for linear time invariant integer order systems, it is now well 
known that stability of a linear fractional order system depends on the location of the 
system poles in the complex plane. However, poles location analysis remains a difficult 
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task in the general case. For commensurate fractional order systems, powerful criteria have 
been proposed. The most well known is Matignon's stability theorem [48]. It permits us to 
check the system stability through the location in the complex plane of the dynamic matrix 
eigenvalues of the state space like system representation. Matignon's theorem is in fact the 
starting point of several results in the field. As we know, due to the presence of the 
exponential function se  , this equation has an infinite number of roots, which makes the 
analytical stability analysis of a time-delay system extremely difficult. In the literature few 
theorems are available for stability testing of fractional-delay systems. Almost all of these 
theorems are based on the locations of the transfer function poles [24,50] and since there is 
no universally applicable analytical method for solving fractional-delay equations in s 
domain, the numerical approach is commonly used. In the field of infinite-dimensional 
fractional-delay systems most studies are concerned about the stability of a class of 

distributed systems whose transfer functions involve s  and/or se ,[51]. Many examples 
of fractional differential systems with  delay can be found in the literature. Simple examples 

such as ( ) exp( ) / , 0G s a s s a  

G s

 arising in theory of transmission lines [52], or one can 

find in [53] fractional delay  systems with transfer function of linked to the heat equation 
which leads to  transfer functions such as  ( )

 cosh( )
( ) , 0 1

sinh( )

x s
G s x

s s
     or  

2

2
( )

(1 )

a s

a s

e
G s

b e







                (82) 

For example, Hotzel [54] presented the stability conditions for fractional-delay systems 

with the characteristic equation     0sas b cs d e     

as

. Chen and Moore [22] 

analyzed the stability of a class of fractional-delay systems whose characteristic function 

can be represented as the product of factors of the form   0
r csb e d    where the 

parameters  ,and r are  all real numbers. In fact, they computed the characteristic 
roots of the system using the Lambert W function, which has become a standard library 
function of many mathematical software. In other words, they got a stability condition of 
(83), given by a transcendent inequality via the Lambert function [22,55]. They considered 
the following delayed fractional equation 

dcba ,,,

( )
(

q

pq

d y t
K y t

dt
)                                                                             (83) 

where q and Kp are real numbers and 0 < q < 1, time delay τ is a positive constant and  all 
the initial values are zeros. We are interested in telling whether the system (10) is stable or 
not for a given set of combination of the three parameters: q, Kp and τ. The stability 
condition is that for all possible q , r and Kp 

 1/
0

q
p

q
W K

r




  
 

                                                                         (84) 

In inequality,W(.) denotes the Lambert function such that  ( )( ) W xW x e x . However, such 

a bound remains analytic and is difficult to use in practice. In paper [55], the application of 
Lambert W function to the stability analysis of time-delay systems is re-examined  through 
actually constructing the root distributions of the derived  a transcendental characteristic 
equation’s (TCE) of some chosen orders. It is found that the rightmost root of the original 
TCE is not necessarily a principal branch Lambert W function solution, and that a derived 
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TCE obtained by taking the nth power of the original TCE introduces superfluous roots to 
the system. Further, Matignon's theorem has been used in [56] to investigate fractional 
differential systems with multiple delays stability. The proposed stability conditions are 
based on the root locus of the system characteristic matrix determinant but the proposed 
conditions are thus difficult to use in practice. Authors used fractional derivative Caputo 
definition of derivative where by using the Laplace transform, it is introduced a 
characteristic equation for the above system with multiple time delays. They discovered 
that if all roots of the characteristic equation have negative parts, then the equilibrium of the 
above linear system with fractional order is Lyapunov globally asymptotical stable if the 
equilibrium exist that is almost the same as that of classical differential equations. Namely, 
the following n-dimensional linear fractional differential system with multiple time delays: 

1

1

2

2

1
11 1 11 12 2 12 1 1

2
21 1 21 22 2 22 2 2

1 1 1 2 2 2

( )
( ) ( ) ... ( ),

( )
( ) ( ) ... (

..............

( )
( ) ( ) ... (

n

n

q

n n nq

q

n n nq

q
n

n n n n nn n nq

d x t
a x t a x t a x t

d t

d x t
a x t a x t a x t

d t

d x t
a x t a x t a x t

d t

 

  ),

),n





  

      

      

      

         (85) 

where  is real and lies in (0,1), the initial values iq ( ) ( )i ix t t  are given for− 

and , maxmax 0i j t    ij 1, 2,...,i n . In this system, time-delay matrix  

   n n

ij R
 

n n
T


, coefficient matrix  ij n n

A a


 , state variables    , ,i i ijx t x t R   

and initial values  i t C 0 ,0m  ax  
0, ,ij

. Its fractional order is defined as 

. If   and   ..., nq q q iq 1 2, ,q jq 1,2,i j ..., n   , then system (85) is actually the 

one considered in [56]. 

 

11 11 12

221 2 22

1 2

11 12 1

21 22 2

1 2

...

...

...

n

n

n n n

sq s s
n

ss q s
n

s s q
n n nn

s a e a e a e

a e s a e a e
s

a e a e s a e

 

 

 

 

 

 

   
 

      
     

   
nns

                       (86) 

where  s  denotes a characteristic matrix of system (1) and   det s  a characteristic 

polynomial of (86). The distribution of   det s ’s eigenvalues totally determines the 

stability of system (86).  
 

Theorem 7. If all the roots of the characteristic equation    0det s   have negative 

real parts, then the zero solution of system (1) is Lyapunov globally asymptotically stable. 
If n = 1,  then (86) is reduced to the system studied in [56]. 
Bonnet and Partington [23,24] analyzes the BIBO stability of fractional exponential delay 
systems which  are of retarded or neutral type. Conditions ensuring stability are given and  
these conditions can be expressed in terms of the location of the poles of the system. In 
view of constructing robust BIBO stabilizing controllers, explicit expressions of coprime 
and B´ezout factors of these systems are determined.Also,they have handled the robust 
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stabilization of fractional exponential delay systems of retarded type. The determination of 
coprime and B´ezout factors in the case of neutral systems is under study in both cases.  
However, all these contributions do not provide universally acceptable practical effective 
algebraic criteria or algorithms for testing the stability of a given general fractional delay 
system. Although the stability of the given general characteristic equation can be checked 
with the Nyquist criterion or the Mikhailov criterion, it becomes sufficiently difficult when 
a computer is used since one should find an angle of turn of the frequency response plot for 
an infinite variation of the frequency  . A visual conclusion on stability with respect to the 
constructed part of the plot is not practically reliable, since, along with an infinite spiral, the 
delay generates loops whose number is infinite. As is evidenced from the literature the lack 
of universally acceptable algebraic algorithms for testing the stability of the characteristic 
equation  has hindered the advance of control system design for fractional delay systems. 
This is particularly true in the case of designing fixed-structure fractional-order controller, 

e.g., .   On the other side, Hwang and Cheng [57] proposed a numerical algorithm 
which use methods that are based on the Cauchy integral theorem and suggested the 
modified complex integral in the form of 

DPI

 
 1 2 2( )

i

k k
i

f s
J ds

s h ih f ih



 


                                                           (87) 

where  and   are randomly chosen real constants lying in a specified interval and k 

is a positive integer. The randomness of the parameters h1 and h2 makes the probability of 
the zero sum of the residues of all poles of the integrand being practically zero. Hence, the 
stability of a given fractional-delay system can be achieved by evaluating the integral 

1 0h  2h

kJ and comparing its value with zero. Also, the proposed algorithm provides no idea about 

the number and the location of unstable poles. In paper [58], an effective numerical 
algorithm for determining the location of poles and zeros on the first Riemann sheet is 
presented. The proposed method is based on the Rouche’s theorem and can be applied to all 
multi-valued transfer functions defined on a Riemann surface with finite number of  
Riemann sheets where the origin is a branch point. This covers all practical (finite-
dimensional) fractional-order transfer functions and  fractional-delay systems. 
 
 
5.1 Finite time stability and stabilization of fractional order time delay systems  
 
As we know, the boundedness properties of system responses are very important from the 
engineering point of view. That is to say, enable system trajectories to stay within a  priori 
given sets for the fractional order time-delay systems in state-space form, i.e., system 
stability from the non-Lyapunov point of view is considered. From this fact and our the best 
knowledge, we firstly introduced and defined finite-time stability for fractional order time 
delay systems [26-27, 60,62-63]. We also need the following definitions to analyze the case 
of fractional order systems with time-delay from non-Lyapunov point of view. First, we 
introduce the same order fractional differential system with time-delay (88) as well as 
multiple time delays (90) represented by the following differential equations: 

* , 0 1 0

( )
( ) ( ) ( ) ( ), 0 1,to t

d t
D x t A t A t B u t

dt




      
x

x x               (88) 

with the associated function of initial state:  
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 0( ) ( ) ,0 , 0xt t t C t        x .                                                    (89) 

Moreover, it is shown in [26] that fractional-order time delay state space model of PD  
control of Newcastle robot can be presented by (88) in state space form. Here, * , (.)to tD  

denotes either Caputo fractional derivative , (.)C to tD or Riemann-Liouville fractional 

derivative , (.)RL to tD . Also, fractional differential system with multiple time delays can be  

presented as follows: 

* , 0 0

1

1 2

( )
( ) ( ) ( ) ( ), 0 1,

0 ... ...

n

to t i i

i

i m

d t
D x t A t A t B u t

dt




  

   


     

       

x
x x 

      (90) 

 with the associated function of initial state:  

 0( ) ( ) ,0 ,xx t t t C t       0.                                           (91) 

and where 0( 0,1,..., ),iA i m B  are constant system matrices of appropriate dimensions, and 

0 (i 1,2,..., )i m   are pure time delays.  
Definition 9.[59] System given by (88), (   0u t  ) satisfying initial condition (89) is finite 

stable w.r.t  , , , , ,ot J       if and only if: 

      ,x C
                                                                                             (92)    

implies:                   ( ) , ,  x t t J                          (93)  

Definition 10.[59] System given by (90), (   0u t  ) satisfying initial condition (91) is finite 

stable w.r.t  , , , , ,ot J       if and only if: 

                   ,x C
  , , 0     t J J R ,                                           (94)  

implies:                ( ) , ,  x t  t J                    (95)  

Definition 11.[27,62]System given by (90) satisfying initial condition (91) is finite stable 
w.r.t  , , , , , , ,u ot J        if and only if: 

     , , ,0x C
t J J R                                        (96) 

and        
( ) , , 0ut t J  u u                                                            (97) 

imply:                                      
       ( ) ,t  x t J                                                                (98) 

Also, nonlinear fractional differential system with time delay in state and control can be  
presented as follows: 

   

* , 0 1 0 1

1 1

( )
( ) ( ) ( ) ( ) ( )

( ) ( ) , 0 1,

to t

n m

i j

i j

d t
D x t A t A t B t B t

dt

f t f t




  

 
 

       

    

x
x x u u

x x 
             (99) 
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 and with associated function of initial state and control: 

( ) ( ), ( ) ( ), 0x ut t t t t     x u                                       (100) 

Equation (99) is referred to as nonlinear nonhomogenous state equation, 0 1 0, ,A A B  and 

are constant system matrices of appropriate dimensions, and vector functions 1B

, , 1, , 1,i jf f i n j m 

( )t

 present nonlinear parameter perturbations of system in respect to 

 and ( )tx x  respectively.  

Definition 12: System given by (99) satisfying initial condition (100) is finite stable w.r.t 

 0, , , , , , ,u ot J        if and only if: 

      0, ,x uC C
                              (101) 

( ) ,ut  u t J                             (102) 

 imply:                    ( ) ,t  x t J                                                                       (103) 

In what follows, we introduce the sufficient conditions on finite-time stability. In [59], we 
considered the fractional time-delay systems (88),(90) in the case of   0u t  .  

Theorem 8.(A) Autonomous system given by (88) satisfying initial condition (89) is finite 
time stable w.r.t. , , , , , ,ot J     , if the following condition is satisfied:      

 
 

 
max 0( )

1max 01
1

A t tA t t
e

 


 



 

 
   

   
/ , .t J                                (104)  

where  being the largest singular value of matrix (.), namely: (.)max

   max max 0 max 1
A A A    ,                                                             (105) 

and  is the Euler's gamma function.   .

B) Autonomous system given by (90) satisfying initial condition (91) is finite time stable 
w.r.t. , , , , , ,ot J    , if the following condition is satisfied:                  

 
 

 
( )

1max 0

0max

1
1

t t
A

A

t t
e







 




 
 

   
   

/ , .t J                              (106) 

where   of matrices A
max i i

i

(.) A   ,iA i = 0,1,2,...,n

n,...,2

. where  being the 

largest singular value of matrix 

(.)max

iAi ,1,0,  .  

The above stability results for linear time-delay fractional differential systems were derived 

by applying Bellman -Gronwall’s inequality. In that way, one can check system stability 
over finite time interval. 
Remark 1[60]:  If 1  , case A, one can obtain same conditions which related to integer 
order time delay systems (1) as follows: 
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 
1

max 0( )1
max 0 11 / ,

1

A t tA t t
e t J




 
       

 
 

, (2) 1                      (107)  

For the nonautonomous case,Zhang [61] also considered the following initial value 
problem  

       0, 0 1( ) ( ) ( ), 0; , ,0RL tD x t A x t A x t f t t x t t t           (108) 

where 0 < α < 1,   is a given continuous function on [−τ, 0], 0A and  1A are constant 

system matrices of appropriate dimensions, and   is a constant with 0  . The 
system is defined over time interval  0,J T , where T is a positive number, f(t) is 

a given continuous function on [0, T]. Similarly, the sufficient conditions of finite-
time stability were derived by applying Bellman-Gronwall’s inequality. 
Theorem 9. System given by (108) satisfying initial condition is finite-time stable  
w.r.t {0, J, δ, ε, τ}, δ <ε, if the following condition is satisfied: 

  
 

 
( )

1 1
max

/ , ,
1

tA
M t

e







 


 


   
 

t J                                        (109) 

Where /M f  , and  . is the Euler’s gamma function,  0sup        

     max max 0 max 1 1 max 1,A A A       A . 
In paper [62],  we  considered a class of fractional non-linear perturbed autonomous system 
with time delay described by the state space equation: 

                       0 0 1 1 0

( )
( ) ( ) ( ) ,

d t A A t A A t f t
dt



        
x

x x x                (110) 

with the initial functions (89)of the system and vector functions  satisfied (34).  0f

Theorem 10.  Nonlinear perturbed autonomous system given by (110) satisfying initial 
condition (89) and (34) is finite time stable w.r.t.  , , , , ,   ot J , if  the following 

condition is satisfied: 

           
 

 
 

0

0 1( )
1 /

1





 





 
   
  
 

p t t

p t t
e ,  t J



1.

,                 (111) 

where  Euler's gamma function, and  (.)
0 10 1 1, ,Aoco Ao A A A Ac          

1 1, ,p Aoco A Ao Ao A A               

Remark 2:  If we have no perturbed system 0 1 00, 0, ( (t)) 0    A A f x  one can obtain 

same conditions which related to Theorem 7. 
Further, paper [63] presents  natural extension of the our paper [59] where it is obtained  
new stability criteria for nonautonomous fractional order time delay system (88). 
Theorem 11.  Nonautonomous system given by (88) satisfying initial condition (89) is 
finite time stable w.r.t.  0, , , , , , ,u ot J      , if  the following condition is satisfied: 
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 
 

 

 

( )

1max 0 0

max 0 ( )
1 /

1 1

t tA
A

t t t t
e t

  





  
 


 

  
    

     

 , .J        (112)   

where 0 0/ ,ub B   
0b .  

Remark 3.  If  1 
1B
, one can obtain same conditions which related to integer order time 

delay systems (31) ,  as follows, [18]: 0

 
1

max 0( )1 1
max 0 01 ( )

1 /
1 1

A t tA t t t t
e t




  
         

 
 

 , , (2) 1J     (113)  

Moreover, in same paper [63], it is proposed finite time stability criteria for a class of 
fractional non-linear nonautonomous system with time delay in state and in control as 
follows: 

   0 1 0 1 0 1

( )
( ) ( ) ( ) ( ) ( ) ( ) ,

d t
A t A t B t B t f t f t

dt



           
x

x x u u x x    (114) 

with the initial functions (99) of the system and vector functions  satisfied (34). 0 1,f f

Theorem 12: Nonlinear nonautonomous system given by (114) satisfying initial condition 
(99) is finite time stable w.r.t.  0, , , , , , ,u ot J      , if  the following condition is 

satisfied:                  (115) 

 

 
   

 
 
 

 
 

1 0 0 1 0 01max 01 0

0max 01( )
1 / ,

1 1 1 1

t t

u uc

c t t t tt t
e t

   



    

 
   


  

     
             

J  

b

 

where  0 0 1 1 01 0 1/ , / , /u u u ub b             . 

Recently, we studied  and reported in paper,[27] finite-time stability analysis of  linear 
fractional order single time delay systems where a Bellman-Gronwall`s approach is 
proposed, using as the starting point a recently obtained generalized Gronwall inequality 
reported in [28].  

Theorem 13.  The linear nonautonomous system given by (88) satisfying initial condition 
( ) ( ), 0xx t t t      is finite time stable w.r.t.  0, , , , ,u J     , if  the following 

condition is satisfied: 

      max 01 0
max 01 01 /

1 1
ut t

E t t J
 




 
  

 

 
          

, 0,T ,       (116)  

where 0 0 / ,u ub   

 max 01 max 0

 and  being the largest singular value of matrix (.), 

where:

(.)max
 1maxA A    and  .E denotes Mittag-Leffler function (see 

Appendix). 
Remark 4. If  1 

1B
, one can obtain same conditions which related to integer order time 

delay systems (31),  as follows [18]: 0
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 1 ( ) 1
max 0 01

1

1
max 0 ( )

1 / ,
1 1

( )

A t t

z

A
t t t t

e t

E z e






  





  
       
  



 , (2) 1,J 
   (117)  

Theorem 14. The linear autonomous system given by Eq. (88) 0 0B  , satisfying initial 

condition ( ) ( ), 0xx t t t      is finite time stable w.r.t.  0, , ,J ,     , if  the 

following condition is satisfied: 

   max 01
max 01 01

1

t
E t t

 
  
   







  


/ , J  ,                                  (118)  

Remark 5. In same manner, one may conclude that if  1  , see (21), it follows  same 
conditions [60],Eq. (107) which relate to integer order time delay systems (29). 

5.2 An illustrative example            

Using a Time-Delay PD  compensator on a linear system of equations with respect to the 
small perturbation  ,  one may obtain:  ( )e t y( ) ( )dt y t 

 ( ) ( ) ( ) ( ) / ( ),P De t e t K e t K de t dt u t                             (119) 

where:  1/ 2, 2, 3, 4,p DK K u    

1 2( ) ( ), ( )

t -feedforward control. Also, all initial values 

are zeros. Introducing: 1/ 2 1/ 2( ) /x t e t x t 

 ( ) ,
T

1 2t x xx

d e t dt ,one may write (119) in state-

space form, : 

1 11/2

2 2

( ) ( )0 1 0 0 0
( ) ( )

( ) ( )2 0 3 4 1t
x t x t

D t u t
x t x t




        
                  

x ,            (120) 

with an associated function of the initial state: ( ) ( ) 0, 0.xt t t    x   Now, we can 

check the finite time stability wrt   0 0, 0,2 , 0.1, 100, 0.1, 1 ,ut J         where  

 ( ) 0, 0.1,0x t t     . From the initial data and the Eq.(120) it yields:  

    max 0 max 1 max 0,1( ) 0.1, 2, 5, 7x C
t A A              (121) 

Applying the condition of the Theorem 13  (116) one can get: 

 
0.5 0.5

0.5
0.5

7 10
1 7 100/ 0.1 0.1 .

0.886 0.886
e e

e e
T T

E T T
  
      
  

s         (122) 

eT  being “estimated time” of finite time stability. 

Conclusion 
 
In this paper, we have studied and presented the finite time stability of perturbed 
(non)linear fractional order time delay systems. We have employed the “classical” and the 
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

generalization of Gronwall Belmann lemma to obtain finite time stability criteria for 
proposed class of time delay system. Also, they are presented some basic results on the 
stability of fractional order time delay systems as well as free delay systems. Finally, a 
numerical example is given to illustrate the validity of the proposed procedure. 
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Appendix 
 Mittag-Leffler Function 
Similar to the exponential function frequently used in the solutions of integer-order 
systems, a function frequently used in the solutions of fractional-order systems is the 
Mittag-Leffler function defined as 

  0

,
1

k

k

z
E z

k 






                                                                     (A1) 

where 0   and  . The Mittag-Leffler function with two parameters appears most 
frequently and has the following form 

z C

   ,

0

,
k

k

z
E z

k   






                                                                 (A2) 

where 0, 0   , and . For z C 1   we obtain     ,1E z E z   and   1,1
zE z e  

Lemma (Gronwall Inequality).  
Suppose that ( )g t  and are continuous in  t    0 1, , 0, 0t t g t    and  are two 

constants. If  

0r 

   
0

( )
t

t g s s r   ds                                                        (A3) 

then                             1 0 0 1

0

( ) exp ,

t

t r t t g s ds t t
 
  t         
 
                          A4) 

Theorem A ([28] Generalized Gronwall inequality)  Suppose ( ), ( )x t a t  are nonnegative 

and local integrable on ,and 0 ,t T some T    ( )g t

con

 is a nonnegative, nondecreasing 

continuous function defined on 0 , (t T g t) M st    , 0   with 

  1

0

( ) ( ) ( ) ( )

t

x t a t g t t s x s d
   s                                       (A5) 

on this interval.Then                                                    

  
    1

10

( )
( ) ( ) ( ) , 0

nt
n

n

g t
x t a t t s a s ds t T

n






  
     

  
 
  (A6) 
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Corollary 2.1 of (Theorem A) [28] Under the hypothesis of  Theorem 2.2, let  be a 

nondecreasing function on . Then holds: 

( )a t

 0,T

    ( ) ( )x t a t E g t t  
                                                     (A7) 
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