
ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE
OPERATORS

ROLAND GLÜCK a

Deutsches Zentrum für Luft- und Raumfahrt,, D-86159 Augsburg, Germany
e-mail address: roland.glueck@dlr.de

Abstract. In this paper we investigate the interplay between isolated suborders and closures.
Isolated suborders are a special kind of suborders and can be used to diminish the number of
elements of an ordered set by means of a quotient construction. The decisive point is that
there are simple formulae establishing relationships between the number of closures in the
original ordered set and the quotient thereof induced by isolated suborders. We show how
these connections can be used to derive a recursive algorithm for counting closures, provided
the ordered set under consideration contains suitable isolated suborders.

1. Introduction

A widespread and common concept in various areas of mathematics and computer science
are hull or closure operators, i.e., idempotent, isotone and extensive endofunctions on
some ordered set. The best-known examples include the topological closure in traditional
analysis, the (reflexive) transitive closure of a relation or a graph and the Kleene closure in
language theory. There are also more complicated and sophisticated appearances as for
example in automated reasoning (see e.g. [EBJ+14]), data base theory (as in [DHLM92]) or
the algebraic analysis of connected components (as done in [Glü17]). Most of this work
uses hulls or closures mainly as a tool for specific purposes but does not investigate the
properties of these operators.

If we take a look at the work dealing with actual properties of closures we see that most
of this work is concerned with closures on powerset lattices which falls also under the term
”Moore family” (here [CM03] gives a survey; for more recent results see e.g. [BD18]). Some
other work deals with closures on lattices although closures can also be defined on general
ordered sets.

In the recent year, counting structures of interest has become a rising area of research
in order theory and related topics. For example, [AJS21] gives numbers of so-called d`-
structures of various kinds, [QRRV20] counts join-endomorphisms in lattices, [BPBV18]
generates and counts a certain kind of bisemilattices whereas the topic of [BBW21] are
topological spaces, and different kinds of posets are counted in [FJST20]. However, to our
best knowledge, there is no work dealing with the number of closures on general lattices or
orders. The only results we are aware of concern the power set lattice (P(S),⊆). For this

Key words and phrases: hull, closure, counting, isolated suborder.

Preprint submitted to
Logical Methods in Computer Science

© ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS
CC© Creative Commons

ar
X

iv
:2

30
2.

13
08

1v
2

 [
cs

.D
M

]
 2

8
Fe

b
20

23

https://orcid.org/0000-0001-7909-1942
http://creativecommons.org/about/licenses

2 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

special structure, the exact number of closure operators is known only up to |S| = 7 (for
curiosity, there are 14.087.648.235.707.352.472 of them, as shown in [CIR10] only in 2010).

The present work introduces a heuristic method for structuring ordered sets in a way
that eases under certain circumstances the computation of the number of closure operators.
The key idea are so called isolated suborders which are intuitively speaking suborders
which have contact with the rest of the ordered set only via their least and greatest element.
By means of quotient orders we can reduce the number of elements of the ordered set
under consideration and obtain an ordered set with a certain structure for which there are
closed formulae for the number of closure operators available. Similar ideas were used
already in the predecessor work of [Glü21]. However, there the area of application was
restricted to lattices whereas the present work generalizes the results to general ordered
sets. Additionally to this generalization, the present work contains also thoughts about the
computation of isolated suborders.

The remainder is organized as follows: in Section 2 we introduce some notation we
will use in the sequel (on other places, we introduce notation ad hoc to spare the reader
annoying look-ups). Section 3 introduces the main topic of the present work, closures, and
shows important relations between different characterizations of closures. The main tool of
the present work, isolated suborders, are the topic of Section 4 whereas Section 5 studies the
interplay between closures and isolated suborders. Because we look at isolated suborders
not only as an object of study but will use them as tool in an algorithm we investigate in
Section 6 how to compute isolated suborders. In Section 7 we put all our results together to
obtain an algorithm for counting closures which can make use of favorable structures of an
ordered set under consideration. Finally, the concluding Section 8 gives a short retrospect
of the work, raises some open issues and sketches ways of further research.

2. Basic Notions and Properties

In this paper we presuppose general knowledge of order and lattice theory and refer e.g.
to [DP02, Grä11, Rom08] for the basics and e.g. to [Bir67, JR92] for more advanced topics.
We will, however, recapitulate some topics in order to clarify matters and to obtain a concise
notion.

The symbol ≤ and derived variants thereof (by indexes or primes) denote always an
order. Given an order ≤ we use the symbol � for the relation �⇔de f 6 (x ≤ y). The associated
strict, reverse order, and strict reverse order are denoted by <, ≥ and >, resp. In the case
of existence, ⊥ and > (also possibly indexed) stay for the least and greatest element of an
order. The sets of maximal, minimal and least elements of a subset S′ ⊆ S are denoted by
max (S′), min (S′) and lst(S′), resp An element x is said to majorize an element y if x ≥ y
holds, and we extend this concept to sets by maj(x,S′) =de f {y ∈ S′ | y ≥ x}. Two elements x
and y are called comparable, written x ≶ y, if x ≤ y or y ≤ x holds. Consequently, we call x
and y incomparable if they are not comparable and denote this by x ' y. As usual, a chain is a
set of elements which are pairwise comparable. A subset S′ ⊆ S of an ordered set (S,≤) is
called convex if for all x, y ∈ S′ and all z ∈ S the implication x ≤ z ≤ y⇒ z ∈ S′ holds. For
intervals we use the common notations [a, b] =de f {x | a ≤ x ∧ x ≤ b} and]a, b] =de f [a, b]\{a}.
For a relation R ⊆ S × S and a subset S′ ⊆ S we define the restriction of R to S′ routinely by
R|S′ =de f {(s′, t′) ∈ R | (s′, t′) ∈ S′ × S′}.

Given an equivalence relation E ⊆ S × S we denote the equivalence class of an element
s ∈ S under E by [x]E. For the set of equivalence classes of such an equivalence relation

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 3

E ⊆ S × S we use the notation S/E. For an arbitrary relation R ⊆ S × S and an equivalence
relation E ⊆ S × S we define the quotient R/E ⊆ S/E × S/E by ([x]E, [y]E) ∈ S/E ⇔de f
∃x′ ∈ [x]E∃y′ ∈ [y]E : (x′, y′) ∈ R. If (S,≤) is an ordered set and E ⊆ S × S is an equivalence
relation such that (S/E,≤ /E) is an ordered set we say that E is order generating. In this case,
we may write also≤E instead of≤ /E. Clearly, if under these circumstances both [x]E and [y]E
are singleton sets we have the equivalence x ≤ y ⇐⇒ [x]E ≤E [y]E to which we will often
refer as homomorphism properties. Examples for order generating equivalences are the
identity and the universal relation. However, the relation ∼ on the ordered set (ZZ ,≤) (where
≤ denotes the usual ordering of the integers), defined by x ∼ y⇔de f x · y , 0 ∨ x = y = 0, is
obviously not order generating.

Since we will have to unite the sets of a set system C (i.e., C is a set of sets) we use the
abbreviation

⋃
C =de f

⋃
C∈C

C to make the text easier readable. Conversely, dealing with a set

C, we use C{} to denote the set of singleton sets {{c} | c ∈ C}.

3. Closures

The main topic of this work, closures, can be characterized in two different ways, namely
as endofunctions on ordered sets or as subsets of ordered sets. At the end of this section
we will see that these characterizations are cryptomorphic; we start with the functional
definition:

Definition 3.1. Given an ordered set (S,≤) an endofunction c on S is called a closure operator
if it fulfills the following properties for all x, y ∈ S:
(1) x ≤ c(x) (extensitivity)
(2) x ≤ y⇒ c(x) ≤ c(y) (isotony)
(3) c(c(x)) = c(x) (idempotence)

A useful easy consequence of this definition is the following corollary:

Corollary 3.1. Let c be a closure function and x, y ∈ S elements such that y ≥ c(x) (y = c(x)) holds.
Then x ≤ y holds.

Proof. This follows simply from x ≤ c(x) and transitivity of ≤.

The next definition is a characterization of closures as subsets of ordered sets:

Definition 3.2. Given an ordered set (S,≤) a subset C ⊆ S is called a closure system if for
every s ∈ S the set maj(s,C) has a least element.

The set of all closure systems of an ordered set (S,≤) is denoted by C(S) (here we assume
that the order on S is clear from context).

Remark 3.2. In the literature, e.g. [Grä11] one finds a more complicated version of Defini-
tion 3.2 which imposes also the requirement that a closure system is closed under binary
infima. However, a reviewer of [Glü21] pointed out that this requirement is redundant.
This observation lead in the consequence to the generalization of [Glü21] from lattices to
the present form handling general ordered sets. This is a rare case where generalization
lead also to simplification due to the more concise formulation of Definition 3.2. ut

It turns out that closure functions generate closure systems:

Lemma 3.3. For every closure function c the set fix(c) of fixpoints of c is a closure system.

4 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

Proof. Let s ∈ S be an arbitrary element. Clearly, c(s) ∈ fix(c) holds, and due to extensitivity
of c we have c(s) ∈ maj(s, fix(c)). Let us now pick an arbitrary f ∈ fix(c) with the property
s ≤ f . Now isotony of c and f ∈ fix(c) imply c(s) ≤ f which completes the proof.

Also, closure systems determine closure functions in a unique way:

Lemma 3.4. Let C be a closure system. Then there exists exactly one closure function c with
fix(c) = C.

Proof. We define the function c by c(s) =de f lst(maj(s,C)) (note that this is well-defined due
to the properties of a closure system according to Definition 3.2). Let us first check that c is
indeed a closure function:
• Extensivity: this is obvious since every element is mapped to a majorizing one.
• Isotony: under the assumption s ≤ t we have maj(s,C) ⊇ maj(t,C) and hence c(s) =

lst(maj(s,C)) ≤ lst(maj(t,C)) = c(t).
• Idempotence: by already shown extensivity we have s ≤ c(s) and hence maj(s,C) ⊇

maj(c(s),C). Let us now pick an arbitrary s′ ∈ maj(s,C). Because c(s) is the least element of
maj(s,C) we have c(s) ≤ s′, hence s′ ∈ maj(c(s),C), implying maj(s,C) = maj(c(s),C). Now
c(s) = c(c(s)) follows from this set equality and definition of c.

Let us now assume that there is another closure function c′ with fix(c′) = C, and pick an
arbitrary s ∈ S. Because c′ is idempotent we have c′(s) ∈ C and hence c(c′(s)) = c(s) from
where we conclude that c′(s) ≤ c(s) holds (this is due to Corollary 3.1). Symmetrically we
obtain c(s) ≤ c′(s) and hence c(s) = c′(s) which shows uniqueness of c.

Lemmata 3.3 and 3.4 establish a cryptomorphic one-to-one correspondence between
closure functions and closure systems on an ordered set. Since the main contribution of this
work deals with counting of closures (both functions and systems) it is sufficient to use the
more convenient characterization. In this case, closure systems are much easier to handle
than closure functions.

4. Isolated Suborders

The main tool for structuring ordered sets we will use is the subject of the following
definition:

Definition 4.1. Let (S,≤) be an ordered set. A subset S′ ⊆ S is called an isolated suborder if it
fulfills the following properties:
(1) S′ has a greatest element >S′ and least element ⊥S′ .
(2) ∀x < S′∀y′ ∈ S′ : y′ ≤ x⇒ >S′ ≤ x
(3) ∀x < S′∀y′ ∈ S′ : x ≤ y′ ⇒ x ≤ ⊥S′

Intuitively, an isolated suborder S′ can be ”entered from below” only via ⊥S′ and ”left
upwards” only via >S′ . We call an isolated suborder nontrivial if S′ does not equal S. A
summit isolated suborder is a suborder S′ such that >S′ ∈ max (S) holds. If |S′| > 1 holds
we call an isolated suborder nonsingleton, and a useful isolated suborder is a nontrivial
non-singleton isolated suborder.

Another property we will need to make our ideas work is that an order does not ”branch
upwards” at an element under consideration (in our case at its top element):

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 5

Figure 1: Various Kinds of Isolated Suborders

Definition 4.2. Given an ordered set (S,≤) we call an element b ∈ S a bottleneck of an element
x ∈ S if the following conditions are fulfilled:

(1) b > x,
(2) [x, b] is a chain, and
(3) y > x⇒ (y ∈ [x, b] ∨ y > b) holds for all y ∈ S.

We note that this definition is equivalent to meet-irreducibility of x. However, because
later proofs make use of the properties from Definition 4.2 (in particular, the element b will
be referenced) we will stick with the definition given above.

Consequently, an isolated suborder with bottleneck is an isolated suborder S′ such that >S′

has a bottleneck. Obviously, given an element x with a bottleneck b, every element in]x, b]
is also a bottleneck of x.

Figure 1 illustrates these definitions. At the left, in isolated suborder with bottleneck is
shown. In the middle, we find an isolated suborder without bottleneck, and at the right
a summit isolated suborder is given. Note that neither the overall order nor the isolated
suborder with bottleneck are lattices (in contrast, the other two isolated suborders are
indeed lattices).

We will use isolated suborders to derive quotients of an order. To this end, we define for
an isolated suborder S′ ⊆ S an equivalence relation ∼S′ by x ∼S′ y⇔de f (x ∈ S′ ⇔ y ∈ S′).
Clearly, for an element x < S′ the equivalence class [x]∼S′ is the singleton set {x}, and for all

6 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

elements x ∈ S′ the equivalence class [x]∼S′ coincides with S′. A crucial point is that ∼S′ is
even order generating:

Lemma 4.1. Let S′ be an isolated suborder of an ordered set (S,≤). Then ∼S′ is order generating.

Proof. It is easy to see that ≤ / ∼S′ (we use this notation since we do not know yet whether
∼S′ is order generating) is both reflexive and transitive so it remains to show that it is
also antisymmetric. To this end, we pick two arbitrary [s]∼S′ , [t]∼S′ ∈ S/ ∼S′ such that both
[s]∼S′ ≤ / ∼S′ [t]∼S′ and [t]∼S′ ≤ / ∼S′ [s]∼S′ hold. In the case s, t < S′ we have [s]∼S′ = {s} and
[t]∼S′ = {t} and hence both s ≤ t and t ≤ s by homomorphism properties. Now [s]∼S′ = [t]∼S′

is an easy consequence of the antisymmetry of ≤. If s, t ∈ S′ holds we have [s]∼S′ = [t]∼S′

by construction of ∼S′ . For the last case we assume w.l.o.g. that s ∈ S′ and t < S′ hold.
From [s]∼S′ ≤ / ∼S′ [t]∼S′ we conclude that there is an s1 ∈ S′ with s1 ≤ t (note that [t]∼S′

is the singleton set {t}). By definition of an isolated suborder this implies >S′ ≤ t, and
symmetrically we obtain t ≤ ⊥S′ . This leads to the chain t ≤ ⊥S′ ≤ >S′ ≤ t, implying among
other things t = ⊥S′ and hence t ∈ S′, contradicting the choice of t. This finishes the proof
since it shows that the last case can not occur.

This lemma justifies the writing ≤∼S′ which we will use from now on.
An important property of isolated suborders is their convexitivity:

Lemma 4.2. Let S′ be an isolated suborder of an ordered set (S,≤). Then S′ is convex.

Proof. Let s, t ∈ S′ be arbitrary elements of S′ with s ≤ t and assume that there is an u < S′
such that s ≤ u ≤ t holds. By ⊥S′ ≤ s ≤ u we have ⊥S′ ≤ u. On the other hand, from u ≤ t
and u < S′ we obtain u ≤ ⊥S′ by definition of an isolated suborder; so altogether we have
u = ⊥S′ . However, this is a contradiction to the assumption u < S′.

In particular, this means that an isolated suborder S′ is the same as the interval [⊥S′ ,>S′].
However, not every interval is an isolated suborder: consider as counterexample the interval
[∅, {1}] in the ordered set (P({1, 2}),⊆). In this setting, we have ∅ ⊆ {2} but not {1} ⊆ {2} so the
second part of Definition 4.1 is not fulfilled.

The next lemma states intuitively spoken that isolated suborders with common elements
can not lie side by side:

Lemma 4.3. Let S1 and S2 be two isolated suborders with S1∩S2 , ∅. Then the set {⊥S1 ,⊥S2 ,>S1 ,>S2}

is a chain.

Proof. Let us pick an arbitrary s12 ∈ S1 ∩ S2. In the case >S1 ∈ S2 the inequality >S1 ≤ >S2 is
easy to see. If >S1 is not an element of S2 we can conclude >S2 ≤ >S1 from s12 ∈ S2, s12 ≤ >S1

and the properties of an isolated suborder. Symmetrically, we can show that ⊥S1 and ⊥S2

are comparable. Now the rest is an easy consequence of ⊥S1 ,⊥S2 ≤ s12 ≤ >S1 ,>S2 .

Now we see that two isolated suborders with a common element can be merged into
one isolated suborder:

Lemma 4.4. Let S1 and S2 be two isolated suborders with S1 ∩ S2 , ∅. Then S12 =de f S1 ∪ S2 is an
isolated suborder, too.

Proof. Because {⊥S1 ,⊥S2 ,>S1 ,>S2} is a chain due to Lemma 4.3 we can assume w.l.o.g. that
⊥S1 ≤ ⊥S2 holds. If >S2 ≤ >S1 holds we have [⊥S2 ,>S2] ⊆ [⊥S1 ,>S1] and we obtain the claim
immediately because isolated suborders are intervals. We do not have to consider the case

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 7

>S1 < ⊥S2 because of S1 ∩ S2 , ∅ so we only have to look only at ⊥S1 ≤ ⊥S2 ≤ >S1 ≤ >S2 as
last case.

To show that S12 is indeed an isolated suborder we pick arbitrary s12 ∈ S12 and x < S12
such that s12 ≤ x holds. In the case s12 ∈ S2 we obtain x ≥ >S2 = >S12 because S2 is an
isolated suborder so let us now assume that s12 ∈ S1 holds. Due to the properties of S1 we
have here x ≥ >S1 . Knowing this, we can deduce x ≥ >S2 from >S1 ∈ S2 and x < S2. The
case x ≤ s12 can be treated by a symmetric argumentation.

An easy observation is now that S1∪S2 is an isolated suborder with bottleneck provided
that S1 and S2 are isolated suborders with bottlenecks. Moreover, if S1 and S2 are nontrivial
summit isolated suborders with >S1 = >S2 then S1 ∪ S2 is also a nontrivial summit isolated
suborder with greatest element >S1 (or, equivalently, greatest element >S2). This shows the
following theorem together with Lemma 4.4:

Theorem 4.5. Let (S,≤) be an ordered set.
1. Two different inclusion-maximal suborders with bottleneck of (S,≤) are disjoint.
2. For every s ∈ max (S) there is at most one nontrivial inclusion-maximal summit isolated

suborder with s as greatest element.

The next lemma establishes a connection between isolated suborders in an ordered set
and a quotient of this order, induced by an isolated suborder.

Lemma 4.6. Let S′ be an isolated suborder of an ordered set (S,≤) and let SS′ be an isolated suborder
of S/∼S′ . Then S′′ =de f

⋃
SS′ is an isolated suborder of S.

Proof. Clearly, ⊥S′′ = ⊥S′ holds provided ⊥SS′ = S′, and also ⊥S′′ = s provided ⊥SS′ = {s}.
Analogous equalities hold also for >S′′ instead of ⊥SS′ .

To show the remaining properties of Definition 4.1 we pick arbitrary s ∈ S′′ and
t < S′′ with s ≤ t. The construction of S′′ yields both [s]∼S′ ∈ SS′ and [t]∼S′ < SS′ , and
homomorphism properties lead to [s]∼S′ ≤∼S′ [t]∼S′ . Because SS′ is an isolated suborder
we can therefrom deduce that >SS′ ≤∼S′ [t]∼S′ has to hold. We note that [t]∼S′ and >SS′ are
disjoint and consider first the case that >SS′ is a singleton set. In this case, the equality
>SS′ = {>S′′} holds which implies >S′′ ≤ t. Otherwise, i.e., if >SS′ has more than one element,
we have >SS′ = S′, implying >S′′ = >S′ . Here too we have >S′′ ≤ t by homomorphism and
because of disjointness of [t]∼S′ and >SS′ . A symmetric argumentation applies to the case
s ≥ t, hence S′′ is an isolated suborder according to Definition 4.1.

Next we extend this claim to isolated suborders with bottleneck:

Lemma 4.7. Let S′ be an isolated suborder of an ordered set (S,≤) and let SS′ be an isolated suborder
with bottleneck of S/∼S′ . Then S′′ =de f

⋃
SS′ is an isolated suborder with bottleneck of S.

Proof. S′′ is an isolated suborder by Lemma 4.6, and by assumption we can choose an
arbitrary bottleneck B ∈ S/∼S′ of SS′ . Now we have the following three possibilities:
1. >SS′ = S′: In this case we have >S′′ = >S′ and B = {b} for some b ∈ S. Hence b is a

bottleneck according to Definition 4.2 by homomorphism properties because all elements
of the (nonempty) interval]S′,B] are singleton sets.

2. B = S′: Here >SS′ = {>S′′} holds, and our goal is to show that ⊥S′ is a bottleneck of S′′. By
assumption, [{>S′′},S′] is a chain in S/∼S′ , hence [>S′′ ,⊥S′] is a chain in S due to the fact
that S/∼S′ consists only of singleton sets except possibly S′. Now it is easy to check the
remaining properties of Definition 4.2.

8 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

3. >SS′ , S′ ∧ B , S′: Here, we first investigate the case S′ ∈ [>SS′ ,B]. Under this condition,
B is also a bottleneck of SS′ and the argumentation can be carried out analogously to
the previous case. If S′ < [>SS′ ,B] holds, S/∼S′ consists of singleton sets only, and the
properties of Definition 4.2 follow easily from homomorphism properties.

An analogous lemma holds also for summit isolated suborders:

Lemma 4.8. Let S′ be an isolated suborder of an ordered set (S,≤) and let SS′ be a summit isolated
suborder of S/∼S′ . Then S′′ =de f

⋃
SS′ is a summit isolated suborder of S.

Proof. By Lemma 4.6 we know that S′′ is an isolated suborder. If >SS′ = {s} holds for some
s ∈ S then s is a maximal element in (S,≤) by homomorphism properties. Moreover, also
by homomorphism properties, s is the greatest element of S′′ so S′′ is a summit isolated
suborder in this case. Let us now assume that >SS′ = S′ holds. In this case, S′ is a maximal
element of (S/ ∼S′ ,≤∼S′), hence >S′ is a maximal element of (S,≤). By construction and
homomorphism properties, >S′ is the greatest element of S′′.

In our algorithm we may make use of consecutive quotients induced by various isolated
suborders. A (possibly infinite) sequence S0,S1,S2, . . . of ordered sets is called a quotient
sequence if for all i the ordered set Si+1 can be written as the quotient Si+1 = Si/∼S′i

for some
isolated suborder S′i of Si. Consecutive quotient formation leads to ordered sets whose
carrier sets have an increasing depth of set nesting. To be type correct, we introduce the
notation

⋃n C inductively by
⋃0 C =de f C and

⋃n+1 C =de f
⋃

(
⋃n C). Intuitively spoken,

this operation removes n set brackets from the elements of C and joins them all.
In a quotient sequence, an inclusion-maximal summit isolated suborder containing

a fixed maximal element can appear as most once as a factor (if we abstract from set
parentheses):

Lemma 4.9. Let S0,S1,S2, . . . be a quotient sequence such that Si+1 = Si/∼S′i
holds for an inclusion-

maximal useful summit isolated suborder S′i with greatest element >S′i
. Then no S j with j > i

contains a useful summit isolated suborder S′j with >S′i
∈
⋃ j−i S′j.

Proof. Assume that some S j with j > i contains a useful summit isolated suborder S′j. Then
we could construct an inclusion-maximal summit isolated suborder S′′i) S′i of Si from S′j
backwards along the lines of Lemmata 4.6 and 4.8, contradicting the inclusion-maximality
of S′i .

In the next lemma, we show that if we ignore set brackets, an element can appear in at
most one inclusion-maximal isolated suborders in a quotient sequence.

Lemma 4.10. Let S0,S1,S2, . . . be a quotient sequence such that Si+1 = Si/ ∼S′i
holds for an

inclusion-maximal useful isolated suborder with bottleneck S′i for all i ≥ 0. Then S′i and
⋃ j−i S′j are

disjoint for all i, j with j > i.

Proof. By the first part of Theorem 4.5 and Lemma 4.7 it is obvious that S′i and
⋃

S′i+1 are
disjoint for all i. Now the claim follows by straightforward induction.

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 9

5. Isolated Suborders and Closure Systems

After investigating isolated suborders and their properties we now turn our attention to
the interplay between isolated suborders and closure systems. First we show how closure
systems on an ordered set give rise to closure systems of a quotient:

Lemma 5.1. Let (S,≤) be an ordered set, S′ an isolated suborder of (S,≤) and consider a closure
system C of (S,≤).
(1) If C ∩ S′ = ∅ then C{} is a closure system of S/∼S′ .
(2) If C ∩ S′ , ∅ then (C\S′){} ∪ {S′} is a closure system of S/∼S′ .

Proof. Because ∼S′ is order inducing, S/∼S′ is a homomorphic image of (S,≤). Deploying this
fact, Definition 3.2 can now be verified easily on S/∼S′ for the two cases of the Lemma.

By the nature of things, homomorphisms work in general only in one direction so we
expect to have a harder task to show how closure systems of a quotient can induce closure
systems of the original ordered set. First we introduce a notion for ”almost” closure systems:

Definition 5.1. Let (S,≤) be an ordered set with greatest element >. A subset C ⊆ S is called
a preclosure system of (S,≤) if C ∪ {>} is a closure system of (S,≤). The set of all preclosure
systems of (S,≤) is denoted by PC(S).

Clearly, every closure system on an ordered set with greatest element is also a preclosure
system, and the empty set is a preclosure system on ordered sets with a greatest element.
An important observation for the algorithm we will develop is that |PC(S)| = 2 · |C(S)| holds
if C(S) is finite (note that this presupposes that S has a greatest element). Another crucial
fact in the further course is that a nonempty preclosure system contains a least element
majorizing ⊥ (if the order under consideration has a least element at all):

Lemma 5.2. Let C be a nonempty preclosure system of an ordered set (S,≤) with least element ⊥S
and greatest element >S. Then there is a least element c ∈ C majorizing ⊥S.

Proof. In the case >S ∈ C, C is even a closure system, and Definition 3.2 entails the claim
obviously. Otherwise, we define the closure system C′ by C′ =de f C∪̇{>S}, and by definition
of a closure system there is a least c′ ∈ C′ majorizing ⊥S. This element c′ can not be >S since
C′ contains at least one element except >S (recall the C was supposed to be nonempty), so
we conclude c′ ∈ C.

Now we can use preclosure systems to describe the intersection of an isolated suborder
and a closure system:

Lemma 5.3. Let C be a closure system on an ordered set (S,≤) and let S′ be an isolated suborder of
S with greatest element >S′ and least element ⊥S′ . Then C′ =de f C ∩ S′ is a preclosure system of S′.
Moreover, if S′ is a summit isolated suborder then C′ is a closure system of S′.

Proof. Let S′ be an arbitrary isolated suborder and consider an arbitrary s′ ∈ S′. Because
C is a closure system it contains a least c which majorizes s′. If c ∈ S′ holds then c is by
construction also an element of C′

>S′
. In the other case c < S′ we have>S′ ≤ c by definition of

an isolated suborder. Now it is obvious that >S′ is a smallest element of C′
>S′

majorizing s′.
This shows the first claim so let us now assume that S′ is even a summit isolated suborder.
Then >S′ ∈ max (S) holds by definition, hence C has to contain also >S′ wherefrom the
second claim follows immediately.

10 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

The next lemma is in some sense a ”reverse” of Lemma 5.1 in the case of isolated
suborders with bottleneck:

Lemma 5.4. Let (S,≤) be an ordered set and S′ an isolated suborder of S such that >S′ has a least
bottleneck b. Assume that CS′ is a preclosure system of S′ and let C′ be a closure system of S/∼S′

with S′ ∈ C′. Then C =de f
⋃

(C′\{S′}) ∪ CS′ is a closure system of (S,≤).

Proof. Let us pick an arbitrary s ∈ S with the goal to show that there is a least c ∈ C with
s ≤ c in order to fulfill Definition 3.2. To this end, we have several cases to consider:
1. s < S′: In this case we have [s]∼S′ = {s}, and by assumption there is a least c′ ∈ C′ with
{s} ≤∼S′ c′. Now we have the following possibilities:

a) c′ , S′: then we have c′ = {c′′} for some c′′ ∈ S. By homomorphism properties, c′′
majorizes s in (S,≤), so let us pick an arbitrary ĉ ∈ C with s ≤ ĉ. If [ĉ]∼S′ = {ĉ} holds we
have c′ ≤∼S′ {hatc} since C′ is a closure system (note that by construction of C, {ĉ} has to
be an element of C′). Otherwise, we have [ĉ]∼S′ = S′, and because C′ is a closure system,
we have c′ ≤∼S′ S′. In both cases we have c′′ ≤ ĉ by homomorphism properties.

b) c′ = S′: here we distinguish the following cases:
i) CS′ , ∅: by Lemma 5.2 there is a least c′′ ∈ CS′ majorizing ⊥S′ . By homomorphism

and the assumption {s} ≤∼S′ we have s ≤ ⊥S′ , and by transitivity we get s ≤ c′′. Let us
now consider an arbitrary ĉ ∈ C with s ≤ ĉ. If ĉ ∈ S′ we get ĉ ∈ CS′ by construction of
C. Because c′′ is the least element of CS′ we obtain c′′ ≤ ĉ immediately. In the case
ĉ < S′ we have {ĉ} ∈ C′ by construction of C, and as above we get {s} ≤∼S′ {ĉ}. Because
C′ is a closure system we obtain S′ ≤∼S′ {ĉ} and hence c′′ ≤ ĉ.

ii) CS′ = ∅: because of b < S′ we have [b]∼S′ = {b}, and because C′ is a closure system there
is a least b′ ∈ C′ majorizing {b}. Moreover, b′ = {c′′} has to hold for some c′′ ∈ S (note
that we have S′ <∼S′ {b} ≤∼S′ b′), and by homomorphism and transitivity we obtain
s ≤ c′′. As usual we pick an arbitrary ĉ ∈ C with s ≤ ĉ and observe that [ĉ]∼S′ = {ĉ}
holds (note that we assume here CS′ = ∅). From s ≤ ĉ we derive {s} ≤∼S′ {ĉ} and
hence S′ ≤∼S′ {ĉ} (recall c′ = S′ and the properties of c′). However, due to CS′ = ∅ and
construction of C we obtain ĉ < S′ and by order theory and homomorphism this leads
to {b} ≤∼S′ {ĉ} from where we conclude that b′ ≤∼S′ {ĉ} and eventually c′′ ≤ ĉ hold.

2. s ∈ S′: clearly, S′ is the least element of C′ majorizing [s]∼S′ since [s]∼S′ = S′ and S′ ∈ C′
hold. We have two cases:

a) CS′ contains an element s′ majorizing s: then CS′ contains also a minimal element c′′
majorizing s, and let ĉ be an arbitrary element of C such that s ≤ ĉ holds. In the case
ĉ ∈ CS′ we get c′′ ≤ ĉ immediately by the choice of c′′ so let us assume that ĉ < S′ holds.
However, here we have >S′ ≤ ĉ by properties of an isolated suborder, implying c′′ ≤ ĉ.

b) CS′ contains no element majorizing s: as above there is a least b′ = {c′′} ∈ C′ majorizing
{b}. Clearly, c′′ majorizes s in (S,≤) so we pick an arbitrary ĉ ∈ C with s ≤ ĉ. By
properties of an isolated suborder we have >S′ ≤ ĉ, and because CS′ does not contain
>S′ (otherwise >S′ would be an element of CS′ majorizing s) we can deduce even b ≤ ĉ.
Now it is clear that c′′ ≤ ĉ holds due to {b} ≤∼S′ {ĉ} and closure properties of C′.

In all cases, we constructed in the form of c′′ a least element of C majorizing s.

Remark 5.5. It is necessary for the correctness of Lemma 5.4 to require that >S′ has a
bottleneck. This can be seen in Figure 2. At the left, a preclosure system, indicated by
encircled elements, on an isolated suborder without bottleneck of its top element, indicated
by an ellipse, is shown. In the middle of the figure, we see a closure system on the associated

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 11

Figure 2: A preclosure system on an isolated suborder (left), a closure system on a quotient
(middle) and no closure system on the original order (right)

quotient order, indicated by circles. However, executing the construction from Lemma 5.4
leads to the set of encircled elements in the right picture which does not contain a least
element majorizing the middle element (the only unencircled element) and hence is no
closure system. This shows one effect of a bottleneck: it releases the top element of an
isolated suborder from the responsibility of being the least element majorizing of two
elements above it. Moreover, it it necessary to require that >S′ has even a least bottleneck:
consider the ordered set S = ([0, 1],≤) (where ≤ denotes the usual order on the reals) and the
isolated suborder S′ = ({0},≤). We choose the empty set as preclosure CS′ of S′ and [0, 1]{} as
closure system C′. Then the construction from above yields for C the set]0, 1] which is no
closure system since it contains no least element majorizing 0. ut

The next lemma is a variant of the previous lemma for summit isolated suborders:

Lemma 5.6. Let (S,≤) be an ordered set and let S′ be a summit isolated suborder of (S,≤). Assume
that CS′ is a closure system of S′ and let C′ be a closure system of S/ ∼S′ . Then C =de f

⋃
(C′\{S′})∪CS′

is a closure system of (S,≤).

Proof. As in the proof of Lemma 5.4 we pick an arbitrary s ∈ S and show the existence of a
least element of C majorizing s. We distinguish the following cases:
1. s < S′: analogously to Lemma 5.4 we have [s]∼S′ = {s}, and by assumption there is a least

c′ ∈ C′ with {s} ≤∼S′ c′. Now we have the following possibilities:
a) c′ , S′: this case can be handled exactly like the same case in the proof of Lemma 5.4.
b) c′ = S′: here we have the following cases:

i) CS′ , ∅: also this case can be handled along the lines of Lemma 5.4 (note that CS′ as
closure system is also a preclosure system).

ii) CS′ = ∅: in this case we can not resort to the proof of Lemma 5.4 because the argument
there uses properties of a smallest bottleneck. However, CS′ can not be empty because
it has to contain the greatest element of S′.

2. s ∈ S′: by properties of a closure system, CS′ contains a least element c′ majorizing s.
However, By construction of C and because S′ is a summit isolated suborder, all elements
of C\CS′ majorizing s are contained in CS′

12 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

In all cases we deduced the existence of a least element of C majorizing s.

Finally, we consider the case that an isolated suborder with bottleneck does not appear
in a closure system of the quotient:

Lemma 5.7. Let (S,≤) be an ordered set and let S′ be an isolated suborder with bottleneck of (S,≤).
Assume that C′ is a closure system on S/ ∼S′ such that S′ < C′. Then C =de f

⋃
C′ is a closure

system on S.

Proof. Routinely, we pick an arbitrary s ∈ S with the obligation to show the existence of a
least element of C majorizing s. Then the case s < S′ is analogous to case 1.a) of the proof of
Lemma 5.4 (note that S′ < C′ was assumed). Similarly, the case s ∈ S′ can be handled along
the lines of case 2.b) of the proof of Lemma 5.4.

Now we are ready to state our main results about the relationships between closure
systems on ordered sets and quotients thereof in the following two theorems:

Theorem 5.8. Let S′ be an isolated suborder with bottleneck of an ordered set (S,≤), and consider a
subset C ⊆ S.
(1) Assume that C′ =de f C ∩ S′ , ∅ holds. Then C is a closure system of S iff C′ is a nonempty

preclosure system of S′ and (C\S′){} ∪ {S′} is a closure system of S/∼S′ .
(2) Assume that C∩S′ = ∅ holds. Then C is a closure system of S iff C{} is a closure system of S/∼S′ .

Proof. This follows now easily from Lemmata 5.1, 5.3, 5.4 and 5.7

Theorem 5.9. Let S′ be a summit isolated suborder of an ordered set (S,≤), and consider a subset
C ⊆ S. Then C is a closure system of S iff C ∩ S′ is a closure system of S′ and (C\S′){} ∪ {S′} is a
closure system of S/∼S′ .

Proof. This follows simply from Lemmata 5.1, 5.3 and 5.6.

6. Computing Isolated Suborders

The previous results concerned isolated suborders and their relation closure systems. In
this subsection we will become more concrete and deal with the computation of isolated
suborders. As representation for an ordered set, we assume that an ordered set is given
by its Hasse diagram as a directed graph G = (S,E) where the edges point ”upwards”. i.e.,
(s, t) ∈ E implies s < t. For the reverse graph of G = (S,E) we use the notation G← = (S,E←)
and for its undirected version we write G↔. Given a path p = s1s2 . . . sn we write s ∈ p if
s = si for some i ∈ [1,n] holds and say that p contains s. We call a node u an (s, t)-separator if
every path from s to t contains u. Routinely, we add an element ⊥ to S and consider the
graph G⊥ =de f (S⊥,E⊥) with S⊥ = S∪̇{⊥} and E⊥ = E∪̇{(⊥,m) |m ∈ min (S)}. Intuitively, this
adds a least element to the ordered set. Additionally, we may add yet another element
> to S⊥ to obtain the set S⊥,> =de f S⊥∪̇{>} and define the graph G⊥,> = (S⊥,>,E⊥,>) by
E⊥,> =de f E⊥∪̇{(>,m) |m ∈ max (S)}. Analogously to the construction of G⊥, this adds a
greatest element to the ordered set under consideration. All algorithms considered in this
section have polynomial running time so these constructions do not affect their asymptotic
complexity.

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 13

6.1. Summit Isolated Suborders and Separators. As we already know, isolated suborders
are intervals. Assume now that [s,m] is a summit isolated suborder. In this case, m is a
maximal element of S, hence the second condition of Definition 4.1 can be omitted because
for every y′ ∈ [s,m] there is no x < [s,m] with y′ ≤ x. Clearly, [s,m] has s as least and m as
greatest element and we have shown the following lemma:

Lemma 6.1. An interval [s,m] with m ∈ max (S) is a summit isolated suborder iff the following
implication holds:

∀t < [s,m]∀u ∈ [s,m] : t ≤ u⇒ t ≤ s.

From this characterization we can deduce the following one:

Lemma 6.2. An interval [s,m] with m ∈ max (S) is a summit isolated suborder iff for all t < [s,m]
with t ≶ m the inequality t ≤ s holds.

Proof. ”⇒”: Let us pick an arbitrary t < [s,m] with t ≶ m. By maximality of m and
comparability of t and m we have t ≤ m, and the claim follows from the substitution y′ := m
in Lemma 6.1.
”⇐”: Similarly as above, maximality of m, comparability of t and m together with t < [s,m]
imply even t ≤ s. Now the consequent from Lemma 6.2 is always true.

This characterization which is valid in arbitrary ordered sets entails the following first
characterization for finite ordered sets:

Lemma 6.3. Let (S,≤) be a finite ordered set with Hasse diagram G = (S,E). Then every summit
isolated suborder of S has the form [s,m] with m ∈ max (S) where s ∈ S is an (m,⊥)-separator in
G←
⊥

.

Proof. We know already that isolated suborders are intervals so it remains to show the
separator property. We omit the trivial and uninteresting cases s ∈ min (S) (clearly, every
minimal element of (S,≤) reachable from m in G← is an (m,⊥)-separator in G←

⊥
) and s = m

and consider a path p = s1s2 . . . sn in G←
⊥

with s1 = m and sn = ⊥. Then there is an index
i ∈ [1,n − 1] with si ∈ [s,m] and si+1 < [s,m] and let us assume for the sake of contradiction
that si , s holds. Due to si ∈ [s,m] this implies s < si and the property (si, si+1) ∈ E← implies
si+1 < si (this follows from maximality of m and isolated suborder properties). On the other
hand, Lemma 6.2 implies si+1 < s. Altogether, we have s < si and si+1 < s. But then si+1 < si
follows already by transitivity of <, hence (si+1, si) can not be an edge in the Hasse diagram
of S and now (si, si+1) < E← contradicts the path property of p.

Problems like separators in directed graphs can be tackled by modified max-flow
algorithms which are in general somehow cumbersome to implement. Luckily, there is a
characterization of summit isolated suborders using undirected graphs:

Lemma 6.4. Let (S,≤) be a finite ordered set with Hasse diagram G = (S,E). Then every summit
isolated suborder of S has the form [s,m] with m ∈ max (S) where s ∈ S is an (m,⊥)-separator in
G↔
⊥

.

Proof. The claim is obvious for the case s ∈ min (S) ∪ {⊥,m} so let us assume that s <
min (S) ∪ {⊥,m} holds and let us fix an arbitrary path p = s1s2 . . . sn in G↔

⊥
with s1 = m and

sn = ⊥. Analogously to the proof of Lemma 6.3 there are vertices si and si+1 with si ∈ [s,m]
and si+1 < [s,m], and here, too, we claim that si = s holds. Due to si ∈ [s,m] and si+1 < [s,m]
we have (si, si+1) ∈ E← (the crucial point here is that m is a maximal element). On the other

14 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

hand, from si ∈ [s,m] we conclude that there is a path p′ = s′1s′2 . . . s
′

n′ in G←
⊥

with s′1 = m,
s′n′ = si and s′s′ , s for all i′ ∈ [1,n′]. Analogously, there is a path p′′ = s′′1 s′′2 . . . s

′′

n′′ in G←
⊥

with
s′′1 = si+1, s′′s′′ = ⊥ and s′′i′′ , s for all i′′ ∈ [1,n′′]. This means that s′1s′2 . . . s

′

n′s
′′

1 s′′2 . . . s
′′

n′′ is a
path in G←

⊥
from m to ⊥, and the claim follows from Lemma 6.3.

Lemma 6.4 shows that summit isolated suborders are intervals with certain properties.
Now we will show that all those intervals are indeed also summit isolated suborders. We
start with the following lemma:

Lemma 6.5. Consider a finite ordered set (S,≤) with Hasse diagram G = (S,E), a maximal element
m ∈ max (S) and an (m,⊥)-separator s in G←

⊥
with s , ⊥. Then [s,m] is a summit isolated suborder

in (S,≤).

Proof. Let us pick an arbitrary t < [s,m] with t ≶ m and note that due to maximality of m the
last condition is equivalent to t < m. To make use of Lemma 6.2 by means of contradiction
we assume now that 6 (t ≤ s) holds. The case t > s is ruled out by maximality of m and the
assumption t < [s,m] so we have s ' t. By t < m there is a path p1 from m to t in G← which
s 6 p1 due to s ' t. Moreover, by construction, there is a path p2 from t to ⊥ in G⊥← with s < p2
by the same argument as above. Now the concatenation of p1 and p2 yields a path p from m
to ⊥ in G←

⊥
, contradicting the assumption that s is an (m,⊥)-separator.

With an argument analogous to the one from Lemma 6.4 we can show that the claim
from Lemma 6.5 holds even for G↔

⊥
so we obtain the following theorem together with

Lemma 6.4:

Theorem 6.6. Let (S,≤) be an ordered set and consider an arbitrary element s ∈ S and an arbitrary
maximal element m ∈ max (S). Then [m, s] is a summit isolated suborder of (S,≤) iff s is an
(m,⊥)-separator in G↔

⊥
.

Using a result from [Tar72] this leads to the following corollary:

Corollary 6.7. Given the Hasse diagram (S,E) of a finite order (S,≤), it can be determined in O(|E|)
time whether S has a useful summit isolated suborder. In the case of existence, a useful summit
isolated suborder can be determined also in O(|E|) time.

Clearly, this time bound is asymptotically optimal. Note that [Tar72] uses only a simple
DFS and does not rely on some sophisticated network flow algorithms. Moreover, we can
determine (in the case of existence) an inclusion-maximal useful summit isolated suborder
in time linear in |E|.

6.2. General Isolated Suborders and Separators. Most of the arguments from the previous
subsection can easily be generalized to arbitrary isolated suborders. However, the proof
of Lemma 6.4 can not be transferred to general isolated suborders since it exploited
the maximality of the greatest element of an isolated suborder. So we can give only a
characterization in terms of directed graphs:

Theorem 6.8. Let (S,≤) be a finite ordered set with Hasse diagram G = (S,E). Then the isolated
suborders of S are exactly the intervals [s, t] where s is a (t,⊥)-separator in G←

⊥,> and t is an
(s,>)-separator in G⊥,>.

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 15

Compared to the computation of summit isolated suborders we face a much more
adversary situation if we want to compute general isolated suborders. First, we do not know
anything about the top element of such an isolated suborder (in a summit isolated suborder
the top element is always a maximal element of the ordered set itself). Second, there may be
a superlinear number of general isolated suborders: A chain of length n has n(n−1)

2 − 1 useful
isolated suborders (a linear amount of them, namely n − 1, are summit isolated suborders).
This seems to make it impossible to come up with a linear time algorithm as in the case of
summit isolated suborders. However, we are not interested in all isolated suborders but
only in inclusion-maximal ones. Since distinct inclusion-maximal isolated suborders are
disjoint (this follows from Lemma 4.4) there at most |S| of them. Moreover, we even do
not need to know all incÄºusion-maximal isolated suborders but are satisfied with some
inclusion-maximal useful isolated suborder (as we will see in Section 7 we are actually
interested only in inclusion-maximal useful isolated suborders with bottlenecks; however,
this does not ease our task). At least, separators are computable in polynomial time (consult
e.g. [CCMP20] and its references for an extensive survey on this topic) which makes the
algorithm from Section 7 reasonable under circumstances discussed there. Possibly, ideas
from [ILS12] can lead even to a linear algorithm for this problem.

7. Counting Closure Operators

In this section we will apply our previous results to counting closure systems. First, we
consider come special cases in Subsection 7.1 and give afterward a recursive algorithm
based on isolated suborders in Subsection 7.2.

7.1. Special Cases. General orders may consist of several distinct connected components;
however, we will see that for counting purposes it suffices to concentrate on orders consisting
of one connected component. The following lemma shows a splitting property for closure
systems on ordered sets with two or more connected components.

Lemma 7.1. Let (S1,≤1) and (S2,≤2) be ordered sets with S1 ∩ S2 = ∅, and let C1 ⊆ S1 and
C2 ⊆ S2 be closures systems of S1 and S2, resp. Then C1 ∪ C2 is a closure system of (S12,≤12) =de f
(S1 ∪ S2,≤1 ∪ ≤2).

Proof. Let s ∈ S12 be arbitrary, and assume w.l.o.g. that s ∈ S1 holds. Then there is a least (in
C1) element c ∈ C1 majorizing s (wrt. ≤1). However, elements from S1 and S2 (and hence
from C1 and C2) are incomparable wrt. ≤12 by construction, so c is also a least element (wrt.
≤12) majorizing s (wrt. ≤12).

This observation entails the following corollary:

Corollary 7.2. Let (S,≤) be an ordered set such that there is a partition of S = S1∪̇S2 into disjoint
nonempty finite subsets S1 and S2 such that for all s1 ∈ S1 and s2 ∈ S2 the elements s1 and s2 are
incomparable. Then the equality |C(S,≤)| = |C(S1,≤ |S1)| · |C(S2,≤ |S2)| holds.

Of course, the results of Lemma 7.1 and Corollary 7.2 can be extended to ordered sets
with more than two connected components by means of induction.

Next, we will derive closed formulae for the number of closure system on some special
kinds of ordered sets which may serve as termination case in the algorithm from the
following Subsection 7.2. However, we are not only interested in the overall number of

16 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

closure systems but also in the number of closure systems containing a given subset of the
ordered set under consideration. To deal with this situation we introduce the notations
C(S)T =de f {C ∈ C(S) |T ⊆ C} and C(S)−s,T =df {C ∈ C(S)T | s < C} for a subsets T ⊆ S and
elements s ∈ S of an ordered set (S,≤). With this notation, we have the trivial equalities
C(S) = C(S)∅ (the empty set imposes no constraints) and C(S)T = C(S)T\{m} = C(S)T∪{m} for
each m ∈ max (S) (every closure system has to contain every maximal element). Moreover,
since C(S)T is the disjoint union of C(S)T∪{s} and C(S)−s,T, we have the equality |C(S)T| =
|C(S)T∪{s}| + |C(S)−s,T|. In particular, this means that we do not need explicit formulae for
C(S)−s,T.

The first special case is that of a chain:

Lemma 7.3. Let (S,≤) be a chain with n elements and consider an arbitrary T ⊆ S. Then we have
|C(S)T| = 2n−1−|T\{>S}|.

Proof. It is straightforward to see that for a finite chain (S,≤) a set C ⊆ S is a closure system
according to Definition 3.2 iff it contains >S. The claim follows now from the formula for
the cardinality of power sets.

Next, we consider orders with only one layer of elements between the bottom and top
element:

Definition 7.1. An ordered set (S,≤) is called a diamond of width n if its carrier set S =
{⊥S,>S, b1, . . . , bn} consists of n + 2 pairwise different elements and bi ' b j holds for all i , j.
The elements (bi)1≤i≤n are called the belt elements of (S,≤).

Lemma 7.4. Let (S,≤) be a diamond of width n and let B be the set of its belt elements. Then the
following holds:
1. ⊥S ∈ T⇒ |C(S)T| = 2n−|T\{>S}|+1

2. ⊥S < T ∧ |T ∩ B| > 1⇒ |C(S)T| = 2n−|T\{>}|

3. ⊥S < T ∧ T ∩ B = {bi} ⇒ |C(S)T| = 2n−1 + 1
4. ⊥S < T ∧ T ∩ B = ∅ ⇒ |C(S)T| = 2n + n + 1

Proof. 1. Here, all elements of C(S)T have the form {⊥S,>S} ∪ T ∪ B. However, T occupies
already |T\{>S}| − 1 places in B so the claim follows again from the cardinality formula for
power sets.

2. Because closures have to contain a least element majorizing every element, |T∩B| > 1
implies ⊥ ∈ C for every C ∈ C(S)T which reduces this case to the previous one.

3. Consider a closures system C ∈ C(S)T. If ⊥ < C holds then b j < C has to hold for all
bi , b j ∈ B since C has to contain a least element majorizing any element. Hence, the only
possibility in this case is C = {⊥S, bi,>S}. The case ⊥ ∈ C can be treated analogously to the
first case and the result follows from summing up.

4. We have 2n closure systems of the form {⊥S,>S} ∪ B′ with B′ ⊆ B, n of the form
{bi,>S} and the trivial closure system {>S}.

A concept similar to diamonds are bottomless diamonds:

Definition 7.2. An ordered set (S,≤) is called a bottomless diamond of width n if its carrier set
S = {>S, b1, . . . , bn} consists of n + 1 pairwise different elements and bi ' b j holds for all i , j.
The elements (bi)1≤i≤n are called the belt elements of (S,≤).

Lemma 7.5. Let (S,≤) be a bottomless diamond of width n and let B be the set of its belt elements.
Then |C(S)T| = 2n−|T\{>S}|+1.

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 17

Proof. Clearly, every C ⊆ S is a closure system iff >S ∈ C holds so the claim follows by
elementary combinatorics.

7.2. Counting Closures using Isolated Suborders. From now we assume on that every
ordered set under consideration is finite because we are interested in developing an
algorithm for counting the number of closure systems. The algorithm we are going to
introduce in subsection 7.2 will make recursive calls computing the number of (pre)closure
systems containing already processed elements.

Let (S,≤) be an ordered set and consider an isolated suborder with bottleneck S′ ⊆ S of
S and a subset T ⊆ S with T ∩ S′ = ∅. Then we can partition the set C(S)T into two disjoint
sets C(S)S′

T and C(S)−S′
T where the first one consists of all elements from C(S)T containing

an element from S′ and the second one consists of all elements from C(S)T containing no
element from S′. By the first part of Theorem 5.8 we obtain the following equation (we have
to subtract 1 in order not to count the empty preclosure twice):

|C(S)S′
T | = |C(S/∼S′)T{}∪{{S′}}| · (|PC(S′)| − 1). (7.1)

By an analogous argumentation we obtain the following equation by means of the
second part of Theorem 5.8:

|C(S)−S′
T | = |C(S/∼S′)−{S′},T{} |. (7.2)

Now the equalities |C(S/∼S′)T{} | = |C(S/∼S′)T{}∪{S′}| + |C(S/∼S′)−{S′},T{} | and |PC(S′)| =

2 · |C(S′)|, together with |C(S)T| = |C(S)S′
T | + |C(S)−S′

T | lead to

|C(S)T| = |C(S/∼S′)T{}∪{{S′}}| · 2(|C(S′)| − 1) + |C(S/∼S′)T{} | (7.3)

Analogous considerations for a summit isolated suborder S′ guide us to the following
formula by means of Theorem 5.9:

|C(S)T| = |C(S/∼S′)T{} | · |C(S′)| (7.4)

Clearly, |C(S)| = |C(S)∅| holds, so we can use the relationships given in Equations (7.3)
and (7.4) for a recursive algorithm if the ordered set under consideration contains a useful
summit isolated suborder or a useful isolated suborder with bottleneck. However, this is
only feasible if the isolated suborder S′ and the set T are disjoint. Fortunately, we can ensure
this due to Lemmata 4.9 and 4.10 by choosing first - if possible - an inclusion-maximal
nontrivial suborder followed by the choice of inclusion maximal isolated suborders with
bottleneck. A formal description of this idea is given in Algorithm 7.2. Of course, if the
ordered set under consideration does not contain some kind of useful isolated suborder or
does not have a special structure for which a closed formula is available we have to resort
to some kind of brute force.

Let us now take a look at the complexity of this algorithm. In every recursive call of
#CLOSURES the cardinality of the ordered sets in the first arguments is strictly smaller than
the cardinality of the ordered set from the first argument of the function call. The first reason
for this is that every isolated suborder with bottleneck or every nontrivial summit isolated
suborder S′ is a strict subset of S. Moreover, we consider only useful isolated suborders
S′, hence S/∼S′ contains strictly less element than S. This enforces termination in the sense

18 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

that either an ordered set with a special structure (for which a closed formula is known) is
obtained or some brute force method is applicated.

Algorithm 1 Counting Closure Operators

function #closures(ordered set S, set T)
if some special case from Subsection 7.1 is applicable then

return the respective number
end if
if S has a useful summit isolated suborder then

S′ ← an inclusion maximal useful summit suborder
return #closures(S/∼S′ ,T{})·#closures(S′, ∅)

end if
if S has a useful isolated suborder with bottleneck then

S′ ← an inclusion maximal useful isolated suborder with bottleneck
return #closures(S/∼S′ , T{} ∪ {S′{}})·2(#closures(S′, ∅)-1)+#closures(S/∼S′ ,T{})

end if
compute and return |C(S)T| by some brute force algorithm

end function

As described in Section 6 isolated suborders of interest can be computed in polynomial
time. Let us now assume that a brute force algorithm takes c|S| time for some c > 1 to
compute the number of all closure systems. Furthermore, we consider a family of ordered
sets which have a useful summit isolated suborder of cardinality |S|2 . Then Algorithm 7.2
will make two recursive calls on instances of sizes |S|2 and |S|2 + 1. In the worst case, i.e., if no
useful isolated suborder is found in these two instances, the algorithm has to resort to a
brute force solution. By the results from Subsection 6.1, summit isolated suborders can be
determined in O(|S|2) time so the the overall running time is bounded by |S|2 + c

|S|
2 + c

|S|
2 +1

∈ O(c
|S|
2 +1). However, this running time is asymptotically strictly dominated by c|S| which

would be the running time of the immediate application of the brute force algorithm. An
analogous conclusion will be obtained considering general isolated suborders which can
be computed in time polynomial in |S| (this would only replace the term |S|2 by another
polynomial).

8. Conclusion and Outlook

As main result, we introduced Algorithm 7.2 which can simplify counting of closures if the
ordered set under consideration contains certain kinds of isolated suborders. Naturally,
the question arises whether more general or other structures than isolated suborders can
by used with the same purpose. Concepts which come to mind are bisimulation which
are used also for simplification (in the sense of reducing the number of states) in model
checking in [BK08] or model refinement in [GMS10]. The present work generalized the ideas
introduced in [Glü21] from lattices to general orders; a further generalization step could be to
consider counting of monads on categories since monads on categories are a generalization
of closure operators. Also, it would be of interest to search for more special cases than
the ones from Subsection 7.1 wherefrom the Algorithm would clearly benefit. Lastly, the
algorithm is still awaiting its implementation. Part of such an implementation would also

ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS 19

be an optimal (i.e., linear time) algorithm for the computation of isolated suborders along
the lines sketched at the end of Subsection 6.2. A combination of classical programming and
specific system like Mace4 (see [Mac]) or RelView (see [Rel]) seems to be an interesting and
promising approach. Alas, for computing the number of closure systems on a powerset the
approach presented here will be of no help: it is easy to see that a powerset lattice contains
no useful isolated suborders.

References

[AJS21] N. Alpay, P. Jipsen, and M. Sugimoto. Unary-determined distributive `-magmas and bunched
implication algebras. In U. Fahrenberg, M. Gehrke, L. Santocanale, and M. Winter, editors, Relational
and Algebraic Methods in Computer Science - 19th International Conference, RAMiCS 2021, Marseille,
France, November 2-5, 2021, Proceedings, volume 13027 of Lecture Notes in Computer Science, pages
19–36. Springer, 2021. doi:10.1007/978-3-030-88701-8_2.

[BBW21] R. Berghammer, S. Börm, and M. Winter. Algorithmic counting of zero-dimensional finite topological
spaces with respect to the covering dimension. Appl. Math. Comput., 389:125523, 2021.

[BD18] G. Brinkmann and R. Deklerck. Generation of union-closed sets and moore families. Journal of Integer
Sequences, 21(1):18.1.7, 2018. URL: https://cs.uwaterloo.ca/journals/JIS/VOL21/Brinkmann/
brink6.html.

[Bir67] G. Birkhoff. Lattice Theory. Amer. Math. Soc., 3rd edition, 1967.
[BK08] C. Baier and J-P. Katoen. Principles of Model Checking. MIT Press, 2008.
[BPBV18] S. Bonzio, M. Pra Baldi, and D. Valota. Counting finite linearly ordered involutive bisemilattices. In

J. Desharnais, W. Guttmann, and S. Joosten, editors, Relational and Algebraic Methods in Computer
Science - 17th International Conference, RAMiCS 2018, Groningen, The Netherlands, October 29 - November
1, 2018, Proceedings, volume 11194 of Lecture Notes in Computer Science, pages 166–183. Springer,
2018.

[CCMP20] A. Conte, P. Crescenzi, A. Marino, and G. Punzi. Enumeration of s-d separators in dags with
application to reliability analysis in temporal graphs. In J. Esparza and D. Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020, August
24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 25:1–25:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.25.

[CIR10] P. Colomb, A. Irlande, and O. Raynaud. Counting of moore families for n=7. In L. Kwuida and
B. Sertkaya, editors, Formal Concept Analysis, 8th International Conference, ICFCA 2010, Agadir,
Morocco, March 15-18, 2010. Proceedings, volume 5986 of Lecture Notes in Computer Science, pages
72–87. Springer, 2010.

[CM03] N. Caspard and B. Monjardet. The lattices of closure systems, closure operators, and implicational
systems on a finite set: A survey. Discrete Applied Mathematics, 127(2):241–269, 2003.

[DHLM92] J. Demetrovics, G. Hencsey, L. Libkin, and I. B. Muchnik. On the interaction between closure
operations and choice functions with applications to relational database. Acta Cybern., 10(3):129–139,
1992. URL: https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3401.

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order, Second Edition. Cambridge
University Press, 2002.

[EBJ+14] S. Elloumi, B. Boulifa, A. Jaoua, M. Saleh, J. Al Otaibi, and M. F. Frias. Inference engine based
on closure and join operators over truth table binary relations. J. Log. Algebraic Methods Program.,
83(2):180–193, 2014.

[FJST20] U. Fahrenberg, C. Johansen, G. Struth, and R.B. Thapa. Generating posets beyond N. In U. Fahrenberg,
P. Jipsen, and M. Winter, editors, Relational and Algebraic Methods in Computer Science - 18th
International Conference, RAMiCS 2020, Palaiseau, France, April 8-11, 2020, Proceedings [postponed],
volume 12062 of Lecture Notes in Computer Science, pages 82–99. Springer, 2020. doi:10.1007/
978-3-030-43520-2_6.

[Glü17] R. Glück. Algebraic investigation of connected components. In P. Höfner, D. Pous, and G. Struth,
editors, Relational and Algebraic Methods in Computer Science - 16th International Conference, RAMiCS
2017, Lyon, France, May 15-18, 2017, Proceedings, volume 10226 of Lecture Notes in Computer Science,
pages 109–126, 2017.

https://doi.org/10.1007/978-3-030-88701-8_2
https://cs.uwaterloo.ca/journals/JIS/VOL21/Brinkmann/brink6.html
https://cs.uwaterloo.ca/journals/JIS/VOL21/Brinkmann/brink6.html
https://doi.org/10.4230/LIPIcs.MFCS.2020.25
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/3401
https://doi.org/10.1007/978-3-030-43520-2_6
https://doi.org/10.1007/978-3-030-43520-2_6

20 ISOLATED SUBORDERS AND THEIR APPLICATION TO COUNTING CLOSURE OPERATORS

[Glü21] R. Glück. Isolated sublattices and their application to counting closure operators. In U. Fahrenberg,
M. Gehrke, L. Santocanale, and M. Winter, editors, Relational and Algebraic Methods in Computer
Science - 19th International Conference, RAMiCS 2021, Marseille, France, November 2-5, 2021, Proceedings,
volume 13027 of Lecture Notes in Computer Science, pages 192–208. Springer, 2021. doi:10.1007/
978-3-030-88701-8_12.

[GMS10] R. Glück, B. Möller, and M. Sintzoff. Model refinement using bisimulation quotients. In M. Johnson
and D. Pavlovic, editors, Algebraic Methodology and Software Technology - 13th International Conference,
AMAST 2010, Lac-Beauport, QC, Canada, June 23-25, 2010. Revised Selected Papers, volume 6486 of
Lecture Notes in Computer Science, pages 76–91. Springer, 2010.

[Grä11] G. Grätzer. Lattice theory: Foundation. Springer Basel, 2011.
[ILS12] G. F. Italiano, L. Laura, and F. Santaroni. Finding strong bridges and strong articulation points in

linear time. Theor. Comput. Sci., 447:74–84, 2012. doi:10.1016/j.tcs.2011.11.011.
[JR92] P. Jipsen and H. Rose. Varieties of Lattices. Springer, 1st edition, 1992.
[Mac] Mace4. https://www.cs.unm.edu/˜mccune/mace4/. [Online; accessed 23-February-2023].
[QRRV20] S. Quintero, S. Ramı́rez, C. Rueda, and F. Valencia. Counting and computing join-endomorphisms

in lattices. In U. Fahrenberg, P. Jipsen, and W. Winter, editors, Relational and Algebraic Methods in
Computer Science - 18th International Conference, RAMiCS 2020, Palaiseau, France, April 8-11, 2020,
Proceedings [postponed], volume 12062 of Lecture Notes in Computer Science, pages 253–269. Springer,
2020.

[Rel] RelView. https://www.informatik.uni-kiel.de/˜progsys/relview/. [Online; accessed 23-
February-2023].

[Rom08] S. Roman. Lattices and Ordered Sets. Springer, 1st edition, 2008.
[Tar72] Robert Endre Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput., 1(2):146–160,

1972.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://doi.org/10.1007/978-3-030-88701-8_12
https://doi.org/10.1007/978-3-030-88701-8_12
https://doi.org/10.1016/j.tcs.2011.11.011
https://www.cs.unm.edu/~mccune/mace4/
https://www.informatik.uni-kiel.de/~progsys/relview/

	1. Introduction
	2. Basic Notions and Properties
	3. Closures
	4. Isolated Suborders
	5. Isolated Suborders and Closure Systems
	6. Computing Isolated Suborders
	6.1. Summit Isolated Suborders and Separators
	6.2. General Isolated Suborders and Separators

	7. Counting Closure Operators
	7.1. Special Cases
	7.2. Counting Closures using Isolated Suborders

	8. Conclusion and Outlook
	References

